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This paper deals with the Riemann problem for a partial di® erential equation’ s
model arising in phase-transition dynamics and consisting of an hyperbolic{elliptic
system of two conservation laws. First of all, we provide a complete description of all
solutions of the Riemann problem that are consistent with the mathematical entropy
inequality associated with the total energy of the system. Second, following
Abeyaratne and Knowles, we impose a kinetic relation to determine the dynamics of
subsonic phase boundaries. Based on the requirement that subsonic phase boundaries
are preferred whenever available, we determine the corresponding wave curves
associated with composite waves (shocks, rarefaction fans, phase boundaries). It
turns out that even after the kinetic relation is imposed, the Riemann problem may
admit up to two solutions. A nucleation criterion is necessary to select between a
solution remaining in a single phase and a solution containing two phase boundaries.
Alternatively, a strong assumption on the kinetic relation ensures that the Riemann
solution is unique and depends continuously upon its initial data.

1. Introduction

This is the second paper of a series [10,11] devoted to constructing Riemann solvers
for hyperbolic or hyperbolic{elliptic systems of partial di¬erential equations in con-
servative form, modelling phase-transition dynamics. In [11] we treated a hyperbolic
model of phase transitions, which was shown to admit under-compressive non-
classical shock waves singled out by the so-called kinetic relation. In the present
paper we extend the analysis to a hyperbolic{elliptic model, which exhibits under-
compressive subsonic phase boundaries, also characterized via a kinetic relation.
Our construction extends, to rather general equations of state, the construction
obtained by Abeyaratne and Knowles [2] (in the piecewise linear case) and Shearer
and Yang [16] (in the cubic case). Understanding the dynamics of phase bound-
aries in solids undergoing phase transformations is essential in many applications
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of material science, for instance, in the study of smart materials. Active research
by physicists and applied mathematicians is now under way to identify and study
the relevant models. There is now a vast literature on the subject and we refer the
reader to [1{5,7{9,13,15{20] and the references cited therein.

In this paper we deal with an important model of continuum physics, consisting
of two conservation laws for the velocity v = v(x; t) and deformation gradient
w = w(x; t) > ¡ 1 of some ®uid or solid,

@tv ¡ @x ¼ (w) = 0;

@tw ¡ @xv = 0:

)

(1.1)

The stress ¼ is a twice-di¬erentiable function of w satisfying (see ­ gure 1 below)

¼ 0(0) < 0; w¼ 00(w) > 0 for w 6= 0;

lim
w ! ¡1

¼ 0(w) = +1; lim
w ! + 1

¼ 0(w) = +1:

)

(1.2)

Under the hypotheses (1.2), there exist a and b 2 ( ¡ 1; +1), with a < 0 < b, such
that

¼ 0(w) < 0 if and only if a < w < b: (1.3)

The system (1.1) under consideration has the general form of a system of con-
servation laws,

@tu + @xf (u) = 0; (1.4)

provided we set u = (v; w) and f (u) = ¡ ( ¼ (w); v). Under the assumptions (1.2),
we have ¼ 0(w) > 0 for w < a or w > b, and the matrix Df (u) admits two real and
distinct eigenvalues depending only on w and denoted by

¶ 1(w) := ¡
p

¼ 0(w) < 0 <
p

¼ 0(w) := ¶ 2(w):

Therefore, system (1.1) is strictly hyperbolic for w =2 [a; b]. Right-eigenvectors are
chosen to be ri(u) = ri(w) := ( ¡ ¶ i(w); 1) = (§

p
¼ 0(w); 1) for i = 1; 2. We also

de­ ne the sound speed to be c(w) :=
p

¼ 0(w). Throughout this paper, we restrict
the discussion to values in the hyperbolic regions only.

To exhibit fundamental features of the discontinuous solutions of (1.1), we solve
in this paper the Riemann problem corresponding to the initial data

(v; w)(x; 0) =

(
(vl; wl); x < 0;

(vr; wr); x > 0;
(1.5)

where (vl; wl) and (vr; wr) are constants. As is customary, we constrain the weak
solutions to satisfy the entropy inequality

@tU (u) + @xF (u) 6 0;

U (v; w) := 1
2v2 + § (w); F (v; w) = ¡ v¼ (w);

§ (w) :=

Z w

0

¼ (z) dz:

9
>>>=

>>>;
(1.6)

Since ¼ is increasing in both intervals ( ¡ 1; a] and [b; +1), the internal energy
function § (w) is convex in each of these intervals, and actually strictly convex
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away from the points w = a; b. However, § is not globally convex, as it admits two
local minima at w = a; b. This is a typical shape in phase dynamics problems. The
values w < a will be referred to as the phase-1 region, and the values w > b as the
phase-2 region.

Recall that the Riemann problem just described was ­ rst solved by Shearer [15],
using the Liu entropy criterion [12] (see x 2). Abeyaratne and Knowles proposed a
more general construction for the Riemann problem, restricting attention to trilin-
ear equations of state, that is, linear in each of the region w < a, a < w < b and
w > b. In [1,2,19,20], the concept of kinetic relation was introduced, and Abeyaratne
and Knowles [2] successfully applied it to construct a Riemann solver for (1.1). The
continuous dependence of these solutions was investigated by LeFloch [7]. More-
over, a Riemann solver is explicitly constructed in Shearer and Yang [16] for a
cubic stress{strain function and an impact problem for general constitutive law
is solved by Pence [13]. Indeed, there exists an extensive literature on the Rie-
mann problem for models of the type (1.1) (for more details, we refer the reader
to [2,8,13{18] and to the references cited therein). In particular, in Slemrod’s pio-
neering work [17,18], the mathematical properties of the capillarity were identi­ ed.
The problem under consideration is also closely related to the recent activity on
non-classical shock waves of systems of conservation laws generated by di¬usive-
dispersive limits (see [8,9] for a review and references).

The principal aim of this paper is to generalize the Riemann solver in [2] to
the nonlinear equation of state (1.2). Based on the concepts of the kinetic relation
and nucleation criterion, we are going to derive here a unique Riemann solution
for (1.1).

An outline of this paper is as follows.
To begin with, in x 2, we impose [15] that any stationary phase boundary is

admissible, which allows one to construct a unique Riemann solver. In this case, the
Riemann solutions depend L1 continuously on their initial data (see theorem 2.7).

In x 3, following a similar analysis as in the ­ rst part of this series [11], in the-
orem 3.3 we investigate the consequences of the single entropy inequality (1.6) on
the weak solutions of (1.1). We naturally distinguish between two types (subsonic,
supersonic) of phase boundaries. Subsonic phase boundaries turn out to be the main
source of non-uniqueness. Theorems 3.9 and 3.10 provide a complete description of
the corresponding 1- and 2-wave sets (in the terminology introduced by Hayes and
LeFloch [4]).

In x 4, following Abeyaratne and Knowles, we impose a kinetic relation for the
propagation of subsonic phase boundaries, and under the requirement that subsonic
phase boundaries are preferred whenever available, in theorems 4.1 and 4.2 we
arrive at uniquely de­ ned wave curves for each of the two wave families. However,
it turns out in theorem 4.4 that the Riemann problem may admit two solutions,
since the wave curves may intersect twice. A nucleation criterion must be imposed
to select between a solution remaining in a single phase and a solution containing
two phase boundaries. Alternatively, in theorem 4.5, a strong condition is assumed
on the kinetic relation, implying that the Riemann solution is unique and depends
continuously upon its initial data. However, this last assumption is probably not
very realistic in the applications. The non-uniqueness of the Riemann solutions
seem to be the rule rather than being the exception.

https://doi.org/10.1017/S030821050000158X Published online by Cambridge University Press

https://doi.org/10.1017/S030821050000158X


184 P. G. LeFloch and M. D. Thanh

2. A unique Riemann solver based on stationary phase boundaries

In this section we discuss some basic properties of the system of conservation
laws (1.1). Following Shearer [15], we provide a ­ rst approach to the Riemann prob-
lem, relying here on a stronger entropy condition than (1.6). Precisely, we consider
as admissible all the jump discontinuities satisfying the Liu entropy criterion or
else being stationary. These conditions indeed select uniquely de­ ned wave curves,
denoted below by W c

1(ul) and W c
2(ur).

Consider a shock wave for (1.1), connecting a left-hand state (v0; w0) to a right-
hand state (v1; w1) and propagating with the speed s 2 R. In other words, set

u(x; t) =

(
u0; x < st;

u1; x > st;

where u0 = (v0; w0) and u1 = (v1; w1). Since u is a weak solution, the Rankine{
Hugoniot relations

s(v1 ¡ v0) + ¼ (w1) ¡ ¼ (w0) = 0; s(w1 ¡ w0) + v1 ¡ v0 = 0 (2.1)

yield

s(u0; u1) = ¡ ¼ (w1) ¡ ¼ (w0)

v1 ¡ v0
= ¡ v1 ¡ v0

w1 ¡ w0
:

Therefore, provided ¼ (w1) ¡ ¼ (w0) and w1 ¡ w0 have the same sign, the shock speed

s = ¨·c(w0; w1) := ¨

s
¼ (w1) ¡ ¼ (w0)

w1 ¡ w0
(2.2)

is well de­ ned and independent of v0 and v1. We will simply write s = s(w0; w1).
In (2.2), the 1- and 2-shocks correspond to the ¨ signs, respectively.

To select a unique solution to the Riemann problem, we attempt to apply the
Liu entropy criterion (­ rst introduced by Wendro¬ for systems of two conservation
laws). By de­ nition, a shock satis­ es the Liu entropy condition if and only if

¨·c(w0; w) > ¨·c(w0; w1) for all w between w0 and w1: (2.3)

Note that, for an i-shock (i = 1; 2), the inequality (2.3) implies the Lax shock
inequalities

¶ i(u0) = ¨c(w0) > s(w0; w1) = ¨·c(w0; w1) > ¨c(w1) = ¶ i(u1): (2.4)

The Liu condition (2.3) can be explained geometrically. For instance, when i = 2,
equation (2.3) is equivalent to

¼ (w) ¡ ¼ (w0)

w ¡ w0
> ¼ (w1) ¡ ¼ (w0)

w1 ¡ w0
for all w between w0 and w1: (2.5)

This means that the graph of ¼ is below (respectively, above) the line connecting
w0 to w1 when w1 < w0 (respectively, w1 > w0). When i = 1, the inequalities (2.5)
are reversed. The condition (2.5) shows that the characteristic lines impinge on the
discontinuity and the shock is called compressive.

The following terminology will be used.
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Definition 2.1. A jump discontinuity connecting u0 to u1 satisfying the Liu en-
tropy criterion will be called:

(i) a classical shock wave if the states u0 and u1 belong to the same phase;

(ii) a supersonic phase boundary if the states belong to di¬erent phases.

Observe that supersonic phase boundaries satisfy the Lax shock inequalities (2.4).
(This will no longer be true of the subsonic phase boundaries to be exhibited in x 3.)
In passing, we note the following result. geometrically from the graph of ¼ , we obtain
easily:

Lemma 2.2. Under the assumption (1.2), the Lax inequalities and the Liu criterion
are equivalent.

Fix a left-hand state u0 = (v0; w0). Leaving from u0, it is not di¯ cult to determine
the sets of all right-hand states that can be arrived at by crossing one elementary
wave (a shock or a rarefaction wave). On one hand, in view of (2.1), (2.2), the
Hugoniot curves for the ­ rst and the second families are given by

H1(u0) := f(v; w)=v ¡ v0 = ·c(w0; w)(w ¡ w0)g (2.6)

and

H2(u0) := f(v; w)=v ¡ v0 = ¡ ·c(w0; w)(w ¡ w0)g: (2.7)

On the other hand, the integral curves associated with the vector ­ elds ri(w),
i = 1; 2, are

O1(u0) :=

½
(v; w)

v
¡ v0 =

Z w

w0

c(z) dz

¾
(2.8)

and

O2(u0) :=

½
(v; w)

v
¡ v0 = ¡

Z w

w0

c(z) dz

¾
: (2.9)

Consider the graph of the function ¼ in the (w; ¼ )-plane. By (1.2), for any w 6= 0,
there exists a unique line that passes through the point with coordinates (w; ¼ (w))
and is tangent to the graph at a point (’\(w); ¼ (’\(w)), with ’\(w) 6= w. In other
words,

¼ 0(’\(w)) =
¼ (w) ¡ ¼ (’\(w))

w ¡ ’\(w)
for w 6= 0 (2.10)

(see ­ gure 1). Note that w’\(w) < 0, and also set ’\(0) = 0. Under the hypothe-
ses (1.2), the map ’\ : ( ¡ 1; +1) ! ( ¡ 1; +1) is strictly monotone decreasing
and onto, and so is invertible. Denote by ’¡\ : ( ¡ 1; +1) ! ( ¡ 1; +1) its inverse
function. We have

w’¡\(w) 6 w’\(w) 6 0 for all w 2 ( ¡ 1; +1)

and
’\(0) = ’¡\(0) = 0:
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Figure 1. Stress{strain function.

In view of (1.2), (1.3), there exist unique points a¡\ and b¡\ satisfying b¡\ < a <
0 < b < a¡\ and

¼ (a) = ¼ (a¡\) and ¼ (b) = ¼ (b¡\): (2.11)

Given a left-hand state ul = (vl; wl) and a right-hand state ur = (vr; wr), we will
now determine explicitly the 1-wave curve W c

1(ul) and the 2-wave curve W c
2(ur).

By de­ nition, they consist of all states that can be reached through a combination
of shocks, rarefactions and/or supersonic phase boundaries. These wave curves are
the key to solving the Riemann problem with data ul and ur. We will check that
the two wave curves intersect at a unique point, i.e.

W c
1(ul) \ W c

2(ur) = fum g;

where um represents the constant value taken by the Riemann solution in between
the two wave fans.

First, the parts of the wave curves corresponding to Liu-admissible shocks are
easily identi­ ed, as stated below.

Lemma 2.3. Consider shock waves satisfying the Liu entropy condition (2.3).

(i) The Liu-admissible 1-shock waves connecting the left-hand state ul to some
right-hand state cover the following section of the 1-wave curve,

W c
1(ul) ¼ fu = (v; w) 2 H1(ul)=wwl 6 wl’

¡\(wl) or wwl > w2
l g:
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(ii) Similarly, using Liu-admissible 2-shocks connecting to the right-hand state ur,
we obtain

W c
2(ur) ¼ fu = (v; w) 2 H2(ur)=wwr 6 wr’

¡\(wr) or wwr > w2
r g:

Second, we consider rarefaction waves, relying on the geometrical constrain that
the wave speed must be strictly increasing inside a rarefaction fan.

Lemma 2.4.

(i) The 1-rarefaction waves connecting the left-hand state ul to some right-hand
state cover the following section of the 1-wave curve. If wl > b, then

W c
1(ul) ¼ f(v; w) 2 O1(ul)=b 6 w 6 wlg:

If wl < a, then

W c
1(ul) ¼ f(v; w) 2 O1(ul)=w0 6 w 6 ag:

(ii) Similarly, using 2-rarefaction waves connecting to the right-hand state ur, we
obtain the following. If wr > b, then

W c
2(ur) ¼ f(v; w) 2 O2(ur)=b 6 w 6 wrg:

If wr < a, then

W c
2(ur) ¼ f(v; w) 2 O2(ur)=wr 6 w 6 ag:

To complete the construction of the wave curves, we now combine shock and
rarefaction waves. We assume that wl > b and wr > b, as the other cases wl < a
and/or wr < a can be handled similarly. To construct the 1-wave curve W c

1(ul), we
proceed as follows. If ¡ 1 < w 6 ’¡\(wl) or if w > wl, then we use a supersonic
phase boundary or a 1-classical shock, respectively, that is a part of the Hugoniot
curve H1(ul) (see lemma 2.3 (i)). If b 6 w < wl, in view of lemma 2.3, we use a
1-rarefaction wave that is a part of the curve O1(ul). If w 2 (’¡\(wl); b¡\), then
there exists a unique point w ¤ 2 (b; wl) such that ¡ ·c(w; w ¤ ) = ¡ c(w ¤ ) = ¶ 1(w ¤ ).
Namely, w ¤ = ’\(w). In this case, the solution curve moves along O1(ul) until it
reaches the state u ¤ = (v ¤ ; w ¤ ) 2 O1(ul), and then jumps on H1(u¤ ) to eventually
reach (v; w). Hence we de­ ne the corresponding composite curve by

K 1(ul) := f(v; w) 2 H1(u ¤ )=b 6 ’\(w) 6 wl; u ¤ = (v ¤ ; ’\(w)) 2 O1(ul)g: (2.12)

On the other hand, the values w 2 [b¡\; a] cannot be reached by combining Liu-
admissible shocks and rarefactions. Additional phase boundaries must therefore
must allowed in our construction, in order to ensure the existence of a Riemann
solution. Following Shearer [15], we now postulate that stationary phase boundaries
are admissible. These phase boundaries are called subsonic, as both characteristic
families are transverse to the discontinuity. Note that non-stationary subsonic phase
boundaries will be used later too (x 3).

The function ¼ is not one-to-one and it is convenient to de­ ne two distinct
inverse functions. The function [b¡\; a] 3 w 7! ¼ (w) 2 [¼ (b¡\); ¼ (a)] is concave,
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monotone increasing and onto. Therefore, it admits an inverse denoted here by
½ a : [¼ (b¡\); ¼ (a)] ! [b¡\; a]. The function ½ a is convex and monotone increas-
ing. Similarly, ¼ is convex and monotone increasing on the interval [b; a¡\], and
its inverse function is denoted by ½ b : [¼ (b); ¼ (a¡\)] ! [b; a¡\]. The function ½ b is
concave and monotone increasing. Recall that a¡\ and b¡\ are de­ ned by (2.11).
The above functions allow us to de­ ne the mapping

[b¡\; a] [ [b; a¡\] 3 w 7! ’0(w) 2 [b¡\; a] [ [b; a¡\]

by

’0(w) :=

8
>>><

>>>:

½ a( ¼ (w)); w 2 (b; a¡\];

½ b( ¼ (w)); w 2 [b¡\; a);

a¡\; w = a;

b¡\; w = b:

(2.13)

On the interval [b; a¡\], the function ’0 is convex and increasing, since it is the
composition of two convex and increasing functions. On the interval [b¡\; a], ’0 is
concave and increasing, since it is the composition of two concave and increasing
functions. Moreover, ’0 is its own inverse, that is,

’0(’0(w)) = w for all [b¡\; a] [ [b; a¡\]:

Now, using stationary phase boundaries, we are able to complete the construction
of the 1-wave curve. Every value w 2 [b¡\; a] can be connected to the corresponding
state ’0(w) 2 [b; a¡\] by a stationary phase boundary. More generally, we can de­ ne
a new section of the wave curve W c

1(ul) by using a shock or a rarefaction wave
leaving from ul and remaining in the phase-2 region, followed with a stationary
phase boundary. This part of the wave curve is de­ ned as follows.

(1) If wl > a¡\,

Z1(ul) := f(v; w)=(v; ’0(w)) 2 O1(ul), with b 6 ’0(w) 6 a¡\g: (2.14 a)

(2) If wl 2 (b; a¡\),

Z1(ul) := f(v; w)=(v; ’0(w)) 2 O1(ul), with b 6 ’0(w) < wlg
[ f(v; w)=(v; ’0(w)) 2 H1(ul), with wl 6 ’0(w) 6 a¡\g:

(2.14 b)

The solution is made of two waves with distinct wave speeds. When the solution
contains a rarefaction, the phase boundary is not attached to the rarefaction fan,
except in the limiting case w = b and along the curve K 1(ul). This completes the
construction of the wave curve W c

1(ul).
It is easy to see that, in each of the above cases, the v component is a monotone

increasing function of w. So v varies continuously from ¡ 1 to +1 while w describes
the union of intervals ( ¡ 1; b¡\) [ [b; +1). The above results are summarized in the
proposition below (see ­ gure 2).
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Figure 2. Classical 1-wave curve.

Proposition 2.5 (The 1-wave curve). Fix a left-hand state ul = (vl; wl), with
wl > b. Based on Liu-admissible shock waves, rarefaction fans, supersonic phase
boundaries and stationary phase boundaries, there exists a uniquely de¯ned 1-wave
curve issuing from ul and given by

W c
1(ul) =

8
>>>>>><

>>>>>>:

H1(ul); w > wl;

O1(ul); b 6 w 6 wl;

Z1(ul); b¡\ 6 w 6 a;

K 1(ul); ’¡\(wl) 6 w 6 b¡\;

H1(ul); ¡ 1 < w 6 ’¡\(wl):

The wave curve
w 2 ( ¡ 1; a] [ [b; +1) 7! v = v1(w) 2 R

is continuous, onto, monotone increasing in each of the intervals ( ¡ 1; a] and
[b; +1), of class C2 and convex in each interval ( ¡ 1; b¡\), (b¡\; a) and (b; +1).
Moreover, the wave curve satis¯es

v1(a¡\) = v1(a); v1(b¡\) = v1(b);

dv1

dw
(a) = 0;

dv1

dw
(b) = 0;
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and, more precisely,

v1(’0(w)) = v1(w) for all w 2 [b¡\; a] [ [b; a¡\]:

Similar arguments can be developed to construct the 2-wave curve W c
2(ur), which

we omit. Alternatively, we could use the transformation v 7! ¡ v, x 7! ¡ x to con-
struct the (backward) 2-wave curves from the (forward) 1-wave curves. By analogy
with (2.12) and (2.14), we de­ ne now, for the 2-wave curve,

K 2(ur) := f(v; w) 2 H2(u ¤ )=b 6 ’\(w) 6 wr; u ¤ = (v ¤ ; ’\(w)) 2 O2(ur)g

and

(1) if wr > a¡\,

Z2(ur) := f(v; w)=(v; ’0(w)) 2 O2(ur), with b 6 ’0(w) 6 a¡\g;

(2) if wr 2 (b; a¡\),

Z2(ur) := f(v; w)=(v; ’0(w)) 2 O2(ur), with b 6 ’0(w) 6 wrg
[ f(v; w)=(v; ’0(w)) 2 H2(ur), with wr 6 ’0(w) 6 a¡\g:

Proposition 2.6 (The 2-wave curve). Fix a right-hand state ur = (vr; wr) with
wr > b. Based on Liu-admissible shock waves, rarefaction fans, supersonic phase
boundaries and stationary phase boundaries, there exists a uniquely de¯ned 2-wave
curve issuing from ur given by

W c
2(ur) :=

8
>>>>>><

>>>>>>:

H2(ur); w > wr;

O2(ur); b 6 w 6 wr;

Z2(ur); b¡\ 6 w 6 a;

K 2(ur); ’¡\(wr) 6 w 6 b¡\;

H2(ur); ¡ 1 < w 6 ’¡\(wr):

The wave curve

w 2 ( ¡ 1; a] [ [b; +1) 7! v = v2(w) 2 R

is continuous, onto, monotone decreasing in each of the intervals ( ¡ 1; a] and
[b; +1), and of class C2 and concave in each of the intervals ( ¡ 1; b¡\), (b¡\; a)
and (b; +1). Moreover, the wave curve satis¯es

v2(a¡\) = v2(a); v2(b¡\) = v2(b);

dv2

dw
(a) = 0;

dv2

dw
(b) = 0;

and, more precisely,

v2(’0(w)) = v2(w) for all w 2 [b¡\; a] [ [b; a¡\]:

Similar results as those stated in propositions 2.5 and 2.6 can be obtained when
wl < a and wr < a, respectively. Finally, we conclude with the Riemann problem.
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Theorem 2.7. Under the assumption (1.2), the Riemann problem (1.1){(1.5) ad-
mits a unique self-similar solution made of Liu-admissible shock waves, rarefaction
fans, supersonic phase boundaries or stationary phase boundaries.

The following L1
loc-continuous dependence property holds. Denote the solution

of (1.1){(1.5) by u = u(y), with y = x=t. Let u0 = u0(y) be another Riemann solu-
tion corresponding to some other data u0

l and u0
r. Restrict attention to Riemann data

remaining in a compact subset and let M be a bound for the maximum wave speed
in that region. Then, for some uniform constant C > 0, we have the continuous
dependence estimate,

Z M

¡M

ju(y) ¡ u0(y)j dy 6 C(jul ¡ u0
lj + jur ¡ u0

rj): (2.15)

Proof. Denote by w 7! v1(w) the 1-wave curve of all right-hand states attainable
from ul. Denote by w 7! v2(w) the 2-wave curve of all left-hand states attainable
from ur. In view of propositions 2.5 and 2.6, the gap function

µ(w) := v2(w) ¡ v1(w); w 2 ( ¡ 1; a] [ [b; +1);

is monotone decreasing in each of the intervals ( ¡ 1; a] and [b; +1). Solving the Rie-
mann problem is equivalent to ­ nding a root for the function µ. Let us distinguish
between three cases.

(i) µ(a) > 0.

(ii) µ(b) < 0.

(iii) µ(a) 6 0 and µ(b) > 0.

In case (i), we have v1(a) < v2(a). Since the function µ is monotone decreasing
in ( ¡ 1; a] and µ(a) > 0, it follows that

µ(w) > µ(a) > 0; w 2 ( ¡ 1; a]:

Hence the two wave curves cannot meet in the domain w 2 ( ¡ 1; a]. On the other
hand, for w 2 [b; +1), propositions 2.5 and 2.6 yield

µ(a¡\) = v2(a¡\) ¡ v1(a¡\) = v2(a) ¡ v1(a) > 0:

Since µ is monotone decreasing in the interval [b; +1) (which contains a¡\), and
since µ(w) ! ¡ 1 as w ! +1, we conclude that there exists a unique point
wm 2 (a¡\; +1) such that

µ(wm ) = 0:

In conclusion, the two wave curves have a unique intersection point (v1(wm ); wm ) =
(v2(wm ); wm ). Note that, since wm > a¡\, the Riemann solution cannot contain a
stationary phase boundary.

Dealing with case (ii), for which v1(b) > v2(b), is similar. We obtain a unique
intersection point (v1(wm ); wm ) = (v2(wm ); wm ) with wm 2 ( ¡ 1; b¡\).

Finally, consider case (iii), for which we have v1(a) > v2(a) and v1(b) 6 v2(b).
We ­ nd

µ(a) > 0; µ(b¡\) = µ(b) 6 0
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and

µ(b) 6 0; µ(a¡\) = µ(a) > 0:

Therefore, there exist two points wm 2 [b; a¡\] and w0
m 2 [b¡\; a] such that

µ(wm ) = µ(w0
m ) = 0:

Since the function µ is monotone, these two points are unique and

µ(’0(wm )) = µ(wm ) = 0:

By a uniqueness argument, we also obtain

w0
m = ’0(wm ):

Hence the two wave curves intersect at exactly two points u1 := (v1(wm ); wm ) =
(v2(wm ); wm ) and u2 := (v1(wm ); ’0(wm )) = (v2(wm ); ’0(wm )). Note that these
two points correspond to solutions having stationary phase boundaries. Recall also
that, by construction, a stationary phase boundary connects two points such that
(v; w) and (v; ’0(w)). The key observation here is that actually both states u1 and
u2 provide us with the same Riemann solution.

First, if the given states ul and ur belong to the same phase, say wl, wr > b,
then u2 2 Z1(ul) \ Z2(ur). The point u2 cannot be observed in the (x; t)-plane,
since, by construction, it would correspond to using a stationary phase boundary
from phase 1 to phase 2, followed with another stationary phase boundary from
phase 2 to phase 1. These two waves have the same speed and do not separate in
the (x; t)-plane. If the given states ul and ur belong to di¬erent phases, i.e. wl > b
and wr 6 a, the solution does contain a stationary phase boundary, precisely the
one connecting u1 to u2. Therefore, the two points of intersection simply correspond
to two ways to describe the solution: the stationary wave being counted together
with the non-negative waves or with the non-positive ones.

This completes the description of the Riemann solution.
It can be checked that all the values in the range of the Riemann solutions are

continuous functions of the initial data, at least as long as the structure of the
Riemann solution remains the same. Importantly, the wave speeds arising in the
Riemann solution always change continuously. This is clearly true in each region
where the wave curve is smooth. On the other hand, one can check directly on the
explicit formulae that the wave speeds are continuous at the critical points where the
structure of the Riemann solution changes. This implies the continuous dependence
property stated in the theorem. The proof of theorem 2.7 is complete.

Based on propositions 2.5 and 2.6, we now distinguish between the values of the
parameters ul and ur and we list all the possible wave structures of the Riemann
solution. The following notation will be used for 1-waves. A classical shock wave
connecting a left-hand state u0 to a right-hand state u1 is denoted by C1(u0; u1),
a supersonic phase boundary by P s u p er

1 (u0; u1), a rarefaction wave by R1(u0; u1)
and a stationary phase boundary by Z(u0; u1). A similar notation will be used for
2-waves. Note that stationary phase boundaries can be considered as 1-waves or
2-waves.
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Solving the Riemann problem is equivalent to solving the algebraic equation

v1(w) = v2(w); w 2 ( ¡ 1; +1): (2.16)

For de­ niteness, let us assume wl > b. To state that a Riemann solution is made of
a wave A(u1; u2) followed by some wave B(u2; u3), we simply write

A(u1; u2) + B(u2; u3):

Here is the complete classi­ cation of Riemann solutions.

Case I. Assume that v1(a) < v2(a), so that (2.16) admits a unique solution wm

satisfying wm > a¡\.
On one hand, if the states ul, ur belong to the same phase (thus wl; wr > b), then

we have the following.

(I.1) If wl > wm and wr > wm , the Riemann solution is R1(ul; um ) + R2(um ; ur).

(I.2) If wl > wm and b 6 wr < wm , then R1(ul; um ) + C2(um ; ur).

(I.3) If b 6 wl < wm and wr > wm , then C1(ul; um ) + R2(um ; ur).

(I.4) If b 6 wl < wm and b 6 wr < wm , then C1(ul; um ) + C2(um ; ur).

On the other hand, if the states ul, ur lie in the di¬erent phases (thus wl > b and
¡ 1 < wr 6 a), then we have the following.

(I.5) If wl > wm , then R1(ul; um ) + P s u p er
2 (um ; ur).

(I.6) If b 6 wl < wm , then C1(ul; um ) + P s u p er
2 (um ; ur).

Case II. Suppose next that v1(b) > v2(b), so that (2.16) admits a unique solution
wm satisfying ¡ 1 < wm < a¡\.

(II.1) If ¡ 1 < wr 6 wm , then the Riemann solution is P s u p er
1 (ul; um ) + R2(um ; ur).

(II.2) If wm < wr 6 a, then P s u p er
1 (ul; um ) + C2(um ; ur).

Case III. Suppose, ­ nally, that v1(a) > v2(a) and v1(b) 6 v2(b), so that (2.16)
now admits exactly two solutions wm and ’0(wm ), where wm 2 [b; a¡\].

If the Riemann data ul and ur belong to the same phase, thus wl; wr > b, then
we have the following.

(III.1) If wl > wm and wr > wm , then the Riemann solution is made of

R1(ul; um ) + R2(um ; ur):

(III.2) If wl > wm and b 6 wr < wm , then R1(ul; um ) + C2(um ; ur).

(III.3) If b 6 wl < wm and wr > wm , then C1(ul; um ) + R2(um ; ur).

(III.4) If b 6 wl < wm and b 6 wr < wm , then

C1(ul; um ) + C2(um ; ur):
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If the states ul and ur belong to di¬erent phases (thus wl > b and ¡ 1 < wr 6 a),
we have the following.

(III.5) If wl > wm and ¡ 1 < wr 6 ’0(wm ), then the Riemann solution is made of

R1(ul; um ) + Z(um ; ’0(um )) + R2(’0(um ); ur);

where ’0(um ) := (v1(wm ); ’0(wm )).

(III.6) If wl > wm and a > wr > ’0(wm ), then

R1(ul; um ) + Z(um ; ’0(um )) + C2(’0(um ); ur):

(III.7) If b 6 wl 6 wm and ¡ 1 < wr 6 ’0(wm ), then

C1(ul; um ) + Z(um ; ’0(um )) + R2(’0(um ); ur):

(III.8) If b 6 wl > wm and a > wr > ’0(wm ), then

C1(ul; um ) + Z(um ; ’0(um )) + C2(’0(um ); ur):

3. Non-classical wave sets based on the entropy inequality

We now return to our initial goal, that is, to describe the family of all Riemann
solutions that are solely consistent with the entropy inequality (1.6). We prove in
this section that instead of wave curves, we can determine two-dimensional (non-
classical) wave sets for each of the two wave families. We focus on the 1-waves and
on the construction of the set of all right-hand states attainable via 1-waves only.
Relying on the transformation v 7! ¡ v; x 7! ¡ x, it is an easy matter to deduce
from the following results similar conclusion for the 2-waves.

First of all, let us investigate the behaviour of the entropy dissipation E(u0; u1)
given by

E(u0; u1) := ¡ s( 1
2
(v2

1 ¡ v2
0) + § (w1) ¡ § (w0)) ¡ v1 ¼ (w1) + v0 ¼ (w0)

for a shock wave with speed s connecting a left-hand state u0 = (v0; w0) to some
right-hand state u1 = (v1; w1). The Rankine{Hugoniot relations (2.1), (2.2) lead us
to the simpler expression

E(v0; w0; v1; w1) = ¡ s( § (w1) ¡ § (w0) ¡ 1
2
( ¼ (w1) + ¼ (w0))(w1 ¡ w0));

which, in particular, tell us that E is independent of v0 and v1. In the following,
we simply write E = E(w0; w1).

In view of the entropy condition (1.6) and the left-hand state u0 being ­ xed, our
main objective is to determine all the values u1 for which

E(w0; w1) = ¡ s( § (w1) ¡ § (w0) ¡ 1
2 ( ¼ (w1) + ¼ (w0))(w1 ¡ w0)) 6 0: (3.1)

The entropy dissipation function under study is formally analogous to the one
associated with the scalar conservation law

wt + ¼ (w)x = 0;
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Figure 3. b 6 wl < c. (a) Scalar case. (b) System case.

together with the quadratic entropy U (w) = 1
2
w2. The corresponding entropy dis-

sipation function is

F (w0; w1) := § (w1) ¡ § (w0) ¡ 1
2
( ¼ (w1) + ¼ (w0))(w1 ¡ w0);

which is indeed a factor in (3.1). Namely (for shocks propagating with negative
speed), we ­ nd

E(w0; w1) =

s
¼ (w1) ¡ ¼ (w0)

w1 ¡ w0
F (w0; w1) 6 0: (3.10)

It is not di¯ cult to check that F is the area limited by the graph of ¼ and the line
connecting the points with coordinates w0 and w1.

From [8] we recall the following.

Lemma 3.1. The function F (w0; w1) is monotone increasing in ( ¡ 1; ’\(w0)] and
monotone decreasing in [’\(w0); +1). More precisely, we have

@w1 F (w0; ¢) > 0 in the interval ( ¡ 1; ’\(w0));

@w1 F (w0; ¢) < 0 in the interval (’\(w0); +1);

and

F (w0; w0) = 0; F (w0; ’\(w0)) > 0; F (w0; ’¡\(w0)) < 0:

Therefore, there exists a value ’[
1 (w0) satisfying

F (w0; ’[
1 (w0)) = 0; w0’[

1 (w0) 2 (w0’¡\(w0); w0’\(w0)): (3.2)

Moreover, the function ’[
1 : ( ¡ 1; +1) ! ( ¡ 1; +1) is monotone decreasing (as

are both functions ’\ and ’¡\),

d’[
1

dw
(w) < 0 for all w 2 ( ¡ 1; +1):

(See part (a) of ­ gures 3, 4, 5 and 6.)
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Figure 4. c 6 wl < a ¡ \ . (a) Scalar case. (b) System case.

Figure 5. a ¡ \ < wl < d. (a) Scalar case. (b) System case.

Figure 6. wl > d. (a) Scalar case. (b) System case.

The function ’[
1 : ( ¡ 1; +1) ! ( ¡ 1; +1) in (3.2) is of class C1 (by the implicit

function theorem), is monotone decreasing and is its own inverse,

’[
1 (’[

1 (w)) = w; w 2 ( ¡ 1; +1):

The later property is a direct consequence of the skew-symmetry of F ,

F (’[
1 (w); w) = ¡ F (w; ’[

1 (w)) = 0;

and of

F (’[
1 (w); ’[

1 (’[
1 (w))) = 0:
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The entropy dissipation function E(w0; w1) of interest here has a somewhat dif-
ferent behaviour, due to the factor s in the expression (3.10). Clearly, E vanishes
whenever the shock speed s vanishes, so that E may have three roots instead of two.
Recalling that the speed s must be a real number, we also see that the constraint

s2 =
¼ (w1) ¡ ¼ (w0)

w1 ¡ w0
> 0

should also be taken into account. With a notation introduced in x 2, this is equiv-
alent to saying w1w0 =2 (’0(w0)w0; w2

0). On the other hand, by lemma 3.1, the
value w1 = ’[

1 (w0) is a root of F , and thus of E, provided this value belongs to
the interval of interest, that is, w0’[

1 (w0) =2 (w0’0(w0); w2
0). These observations

suggest us to study the equation

’[
1 (w) = ’0(w): (3.3)

To this end, we have the following result.

Proposition 3.2. Equation (3.3) admits a unique value c 2 (b; a¡\) satisfying

’[
1 (c) = ’0(c):

The value ’0(c) 2 (b¡\; a) is also a solution of the same equation. By the mono-
tonicity properties of the function ’[

1 ¡ ’0 on each of the intervals [b¡\; a] and
[b; a¡\], we also have

’[
1 (w) < ’0(w) for w 2 (’0(c); a] [ [c; a¡\);

’[
1 (w) > ’0(w) for w 2 [b¡\; ’0(c)] [ [a; c):

Proof. First assume w > 0. Recall that, by lemma 3.1, the function F (w0; w1)
vanishes exactly when w1 = w0 or w1 = ’[

1 (w0). Hence it is su¯ cient for our
purpose to check that the equation

F (w; ’0(w)) = 0

has exactly one solution w = c 2 (b; a¡\). For all w 2 [b; a¡\], consider

G(w) := F (w; ’0(w)) =

Z w

’0(w)

¼ ( ½ ) d ½ ¡ ¼ (w)(w ¡ ’0(w)):

Clearly, the function G is monotone increasing, and we have that G(b) < 0 and
G(a¡\) > 0. Consequently, there exists a unique value w = c 2 (b; a¡\) such that

F (c; ’0(c)) = G(c) = 0:

By lemma 3.1, we get ’0(c) = ’[
1 (c), which completes the proof of proposition 3.2.

The behaviour of the function E is determined now, from lemma 3.1 and propo-
sition 3.2 (see part (b) of ­ gures 3, 4, 5 and 6).

Theorem 3.3. Consider the entropy dissipation function E = E(w0; w1) associated
with 1-shock waves and restrict attention to values w0 > b. We distinguish between
the following three cases.
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(i) If w0 2 [b; c), the entropy dissipation E(w0; w1) is monotone increasing in
( ¡ 1; ’0(w0)], monotone decreasing in [b; +1) and vanishes at exactly two
points, i.e.

E(w0; ’0(w0)) = E(w0; w0) = 0:

(ii) If w0 2 [c; a¡\], the entropy dissipation E(w0; w1) is monotone increasing
in ( ¡ 1; ³ (w0)], monotone decreasing in [ ³ (w0); ’0(w0)] and in [b; +1), and
vanishes at exactly three points, with, in particular,

E(w0; ³ (w0)) > E(w0; ’0(w0)) = E(w0; ’[
1 (w0)) = E(w0; w0) = 0:

(iii) If w0 > a¡\, the entropy dissipation E(w0; w1) is monotone increasing in
( ¡ 1; ’[

1 (w0)], monotone decreasing in [b; +1) and vanishes at exactly two
points, i.e.

E(w0; ’[
1 (w0)) = E(w0; w0) = 0:

For w0 6 a, the same properties hold, provided we replace a, a¡\, b and c with b,
b¡\, a and ’0(c), respectively.

Proof. We already know that w1 = w0, ’0(w0) or ’[
1 (w0) are the roots of E. How-

ever, only values remaining in the intervals of interest are relevant. The following
arguments focus on deriving the monotonicity of E. First of all, a simple calculation
yields

@E(w0; w1)

@w1
=

1

2

r
w1 ¡ w0

¼ (w1) ¡ ¼ (w0)

1

(w ¡ w0)2
M (w0; w1)N (w0; w1); (3.4)

where

M (w0; w1) := ¼ (w1) ¡ ¼ (w0) ¡ ¼ 0(w1)(w1 ¡ w0)

and

N (w0; w1) := 2

Z w0

w1

¼ (w) dw + (3 ¼ (w1) ¡ ¼ (w0))(w1 ¡ w0):

Therefore, the sign of E depends on the signs of M and N , which we now investigate.
For the function M , we ­ nd

@M

@w1
(w0; w1) = ¡ ¼ 00(w1)(w1 ¡ w0) > 0 if and only if 0 < w1 < w0:

Clearly, from the de­ nition of ’\(w0), we get

M (w0; ’\(w0)) = M (w0; w0) = 0:

Hence the previous inequality gives us

M (w0; w1) < 0 for all w1 > ’\(w0); w1 6= w0;

M (w0; w1) > 0 for all w1 < ’\(w0); where ’\(w0) < 0:

)

(3.5)
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For the function N , we have

@N

@w1
(w0; w1) = (w1 ¡ w0)

µ
3 ¼ 0(w1)+

¼ (w1) ¡ ¼ (w0)

w1 ¡ w0

¶
> 0 if and only if w1 > w0:

(3.6)
In the following we study the entropy dissipation E in each interval: w1 2 [b; +1)
and w1 2 ( ¡ 1; a].

Case A. The interval w1 2 [b; +1).
In view of (3.6), the function N achieves a strict minimum in this interval at the

point w0, i.e.
N (w0; w1) > N (w0; w0) = 0 for all w1 6= w0:

In view of (3.5) and the latter inequality, equation (3.4) yields

@E(w0; w1)

@w1
< 0 for all w1 6= w0: (3.7)

Clearly, inequality (3.7) implies that E is strictly monotone in the interval under
consideration.

Case B. The interval w1 2 ( ¡ 1; a].

Case B.I. Assume also that w0 2 [b; c].
The function N is well de­ ned only in the interval w1 2 ( ¡ 1; ’0(w0)]. It follows

from (3.6) that N is decreasing in this interval and, therefore, its (strict) minimum
value is N (w0; ’0(w0)) = 0. In other words, we have

N (w0; w1) > 0 for all w1 6= ’0(w0):

By (3.5) and the above inequality, equation (3.4) gives

@E(w0; w1)

@w1
> 0 for all w1 6= ’0(w0);

which establishes that E is strictly increasing.

Case B.II. Assume also that w0 2 [c; a¡\].
The entropy dissipation E is well de­ ned only if w1 2 ( ¡ 1; ’0(w0)]. Then we

have ’\(w0) 2 [a; 0). In view of proposition 3.2, we have ’[
1 (w0) 6 ’0(w0), and

from (3.6),

min
w1 2 (¡1;’0(w0)]

N(w0; w1) = N (w0; ’0(w0)) = G(w0) < 0: (3.8)

It is not di¯ cult to see that

N (w0; w1) ! +1 as w1 ! ¡ 1: (3.9)

Thus from (3.6), (3.8) and (3.9), we deduce that there exists a unique point, depend-
ing on w0 and denoted by ³ (w0) 2 ( ¡ 1; ’0(w0)), such that

N (w0; w1) = 0; w1 = ³ (w0);

N (w0; w1) > 0 for all w1 2 ( ¡ 1; ³ (w0));

N (w0; w1) < 0 for all w1 2 ( ³ (w0); ’0(w0)):

9
>=

>;
(3.10)

Combining (3.5) and (3.10) proves the monotonicity of E.
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Case B.III. Assume also that w0 > a¡\.
In this case, the function N is monotone decreasing in the interval ( ¡ 1; a] and

thus achieves a strict minimum value at w1 = a, i.e.

N(w0; w1) > N (w0; a) for all w1 6= w0:

One needs to investigate the sign of N (w0; a). It is not di¯ cult to check that the
function w 7! N (w; a) is monotone increasing in the interval w 2 [a¡\; +1), that
N (w; a) ! +1 as w ! +1 and that

N(a¡\; a) = 2

µZ a ¡ \

a

¼ (w) dw ¡ ¼ (a)(a¡\ ¡ a)

¶
< 0:

Thus there exists a unique root w = d 2 (a¡\; +1) of N (w; a),

N(d; a) = 0:

From this observation, we see that if w0 2 [a¡\; d), then N (w0; a) < 0 and, therefore,
there exists a unique value, still denoted by ³ (w0), such that

N(w0; w1) = 0; w1 = ³ (w0);

N(w0; w1) > 0; w1 2 ( ¡ 1; ³ (w0));

N(w0; w1) < 0; w1 2 ( ³ (w0); ’0(w0)):

9
>=

>;
(3.11)

From (3.5) and (3.11), one obtains

@E(w0; w1)

@w1
> 0 for all w1 2 (minf’\(w0); ³ (w0)g;

maxf’\(w0); ³ (w0)g);

@E(w0; w1)

@w1
6 0 elsewhere.

9
>>>>=

>>>>;

(3.12)

This implies the desired monotonicity property of E.

Theorem 3.3 provides us with a complete description of the sign of the entropy
dissipation. We see that the two functions, ’[

1 and ’0, play a central role, as they
correspond to the (non-trivial) roots of E. However, not both roots are always of
interest. The points with component w 2 (’0(w0); ’[

1 (w0)) cannot be reached,
since the associated shock speed would be complex. Based on these considerations,
it seems natural to introduce the following (continuous) function, which determines
the attainable region:

’[
1 ;0(w) =

(
’[

1 (w); w 2 ( ¡ 1; ’0(c)] [ [c; +1);

’0(w); w 2 (’0(c); a] [ [b; c):
(3.13)

In view of theorem 3.3, we arrive at the following conclusion.

Lemma 3.4 (Characterization of propagating discontinuities).

(i) A left-hand state u0 = (v0; w0) being ¯xed, the right-hand states u1 = (v1; w1)
that can be reached, using propagating discontinuities having non-positive
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speeds and satisfying the entropy inequality (1.6), are characterized by

w0w1 6 w0’[
1 ;0(w0); w0w1 > w2

0 or w1 = ’0(w0): (3.14)

(ii) A right-hand state u1 = (v1; w1) being ¯xed, the left-hand states u0 = (v0; w0)
that can be reached, using propagating discontinuities having non-negative
speeds and satisfying the entropy inequality (1.6), are characterized by

w1w0 6 w1’[
1 ;0(w1); w1w0 > w2

1 or w0 = ’0(w1): (3.15)

We will use the following terminology.

Definition 3.5. A propagating discontinuity connecting a left-hand state u0 to
a left-hand state u1 is called a subsonic phase boundary if it satis­ es the entropy
inequality (1.6) but does not satis­ es the Liu entropy criterion. We denote such
waves by P s u b

1 (u0; u1) or P s u b
2 (u0; u1) when they have non-zero propagating speeds.

Recall that stationary phase boundaries were denoted by Z(u0; u1).

Combining lemmas 2.2 and 3.4 yields a characterization of subsonic phase bound-
aries.

Proposition 3.6 (Characterization of subsonic phase boundaries).

(i) Given a left-hand state u0 = (v0; w0), the set of all right-hand states u1 =
(v1; w1) associated with subsonic 1-phase boundaries is determined by

w0’¡\(w0) < w0w1 6 w0’[
1 ;0(w0) or w1 = ’0(w0): (3.16)

(ii) Given a right-hand state u1 = (v1; w1), the set of all left-hand states u0 =
(v0; w0) associated with subsonic 2-phase boundaries is determined by

w1’¡\(w1) < w1w0 6 w1’[
1 ;0(w1) or w0 = ’0(w1): (3.17)

It will be convenient to introduce the continuous mapping

’] : (w; w ¤ ) 2 ( ¡ 1; +1)2 7! ’](w ¤ ; w) 2 ( ¡ 1; +1);

de­ ned for w ¤ 6= w; ’\(w); ’¡\(w) by

¼ (w) ¡ ¼ (w ¤ )

w ¡ w ¤ =
¼ (’](w ¤ ; w)) ¡ ¼ (w ¤ )

’](w ¤ ; w) ¡ w ¤ ; (3.18)

and extended by continuity. In other words, the points w, w ¤ and ’](w ¤ ; w) on the
graph of f are aligned. This mapping arises when attempting to combine two shock
waves: indeed, it corresponds to the limiting case where the wave connecting w to
’](w ¤ ; w) travels at the same speed as the wave connecting ’](w ¤ ; w) to w ¤ .

Keeping w ¤ ­ xed, one can check that the function ’] is monotone decreasing
in w.

We now start the main construction of this section by focusing mainly on the
1-wave curve (for de­ niteness). So (v0; w0) denotes a ­ xed left-hand state. We inves-
tigate under what conditions a rarefaction wave or a shock wave can be followed
with another wave. It is easy to see that the second wave can only be a shock, either
a classical one or a (subsonic, supersonic) phase boundary, as described now.
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Lemma 3.7. A rarefaction wave connecting u0 to some u1 = (v1; w1) 2 O1(u0),
with, of course, 0 6 w1w0 6 w2

0, can be followed with a shock wave connecting u1

to some point u2 = (v2; w2) 2 H1(u1), provided we have the inequalities

w1’¡\(w1) 6 w1w2 6 w1’[
1 ;0(w1); (3.19)

or else, when w1 2 [b; a¡\], the second wave can be a stationary phase boundary.

Proof. We restrict attention to the case w0 > b. Condition (3.19) rewrites as

’¡\(w1) 6 w2 6 ’[
1 ;0(w1): (3.20)

On one hand, the assumption u2 2 H1(u1) with w2 6 0 yields

¡ 1 < w2 6 ’[
1 ;0(w1): (3.21)

On the other hand, the constraint that the shock from (v1; w1) to (v2; w2) must
follow the rarefaction wave connecting u0 to u1 implies that the characteristic speeds
in the rarefaction fan be smaller than the shock speed s1(w1; w2). In other words,
we must have

¡ ·c(w1; w2) > ¡ c(w1);

or, equivalently,
¼ 0(w1)(w1 ¡ w2) ¡ ¼ (w1) + ¼ (w2) > 0:

Thanks to (3.10), the last inequality holds true provided

w1 > ’\(w2):

Since the function ’¡\ is decreasing, we get

w2 > ’¡\(w1): (3.22)

Combining (3.21) and (3.22) gives (3.20), which completes the proof.

Lemma 3.8. A classical shock connecting the left-hand state u0 to u1 = (v1; w1) 2
H1(u0), with, of course, w0w1 > w2

0, can be followed with a subsonic 1-phase bound-
aries connecting to some u2 = (v2; w2) 2 H1(u1), provided

w0’](w1; w0) 6 w0w2 6 w0’[
1 ;0(w1): (3.23)

Proof. We only treat the case w0 > b, so we have w1 > w0. The inequalities (3.23)
become

’](w1; w0) 6 w2 6 ’[
1 ;0(w1): (3.24)

On one hand, in view of (3.14), the condition u2 2 H1(u1) imposes

w2 6 ’[
1 ;0(w1): (3.25)

On the other hand, in order for the subsonic phase boundary to follow the classical
one, we need

s1(w0; w1) 6 s1(w1; w2);

that is,
w2 > ’](w1; w0): (3.26)
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Figure 7. Two-parameter 1-wave set.

Based on lemmas 3.7 and 3.8, we easily arrive to the main results of this section
(see ­ gure 7).

Theorem 3.9 (Two-parameter 1-wave set). Consider the phase-transition model
(1.1) under the assumption (1.2), and restrict attention to weak solutions satisfying
the single entropy inequality (1.6). Fix some left-hand state ul = (vl; wl) such that
wl > b (for de¯niteness). Then the set of all right-hand states um = (vm ; wm ) that
can be attained from ul by combining Liu-admissible shock waves, rarefaction fans,
subsonic (including stationary) phase boundaries and supersonic phase boundaries
of the 1-wave family is given as follows.

(i) If wm > wl, the solution consists of a classical shock connecting ul to um 2
H1(ul).

(ii) If wm 2 [b; wl), the solution consists of a rarefaction wave connecting ul to
um 2 O1(ul). The w component of the solution decreases monotonical ly from
wl to wm as x increases in the rarefaction fan.

(iii) If wm 2 [’0(c); a], then the solution is a Lax shock (respectively, a rarefaction)
if wl 6 ’0(wm ) (respectively, wl > ’0(wm )) connecting wl to ’0(wm ), followed
by a stationary phase boundary connecting ’0(wm ) to wm . The w component
of the solution is a non-monotone (respectively, monotone) function of x.
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(iv) If wm 2 [’¡\(wl); ’0(c),there exists a one-parameter family of admissible solu-
tions. The solution may consist of a subsonic phase boundary from some inter-
mediate state u ¤ to um 2 H1(u ¤ ) such that either w ¤ 2 [’0(wm ); ’[

1 ;0(wm )] if
wm > b¡\ or w ¤ 2 [’\(wm ); ’[

1 ;0(wm )] if wm > b¡\, preceded with (a) either
a rarefaction connecting ul to u ¤ 2 O1(ul) if w ¤ < wl, the w component of
the solution being then a monotone function in x, or else (b) a classical shock
connecting ul to u¤ 2 H1(ul) if w ¤ > wl, the w component of the solution
being then a non-monotone function in x.

(v) If wm < ’¡\(wl), there exists also a one-parameter family of admissible solu-
tions. The solution can be a composite of a classical shock connecting ul to
some point u ¤ 2 H1(ul) with w ¤ 2 (’](wm ; wl); ’[

1 ;0(wr)] followed by a sub-
sonic phase boundary connecting u ¤ to um 2 H1(u ¤ ). This patterns makes
sense if ’](wm ; wl) < ’[

1 ;0(wr), that is, if the phase boundary propagates
faster than the classical shock. It can also be a supersonic phase boundary con-
necting directly ul to um . The w component of the solution is a non-monotone
function of x.

The discussion of 2-wave patterns is completely analogous. Recall that the wave
patterns are always described from left to right. The 2-wave set below is made of
all attainable left-hand states, while the right-hand state is kept ­ xed.

Theorem 3.10 (Two-parameter 2-wave set). Consider the model of phase transi-
tions (1.1) under the assumption (1.2), and restrict attention to weak solutions sat-
isfying the single entropy inequality (1.6). Fix a right-hand state ur = (vr; wr) such
that wr > b (for de¯niteness). Then the set of all left-hand states um = (vm ; wm )
that can be attained from ur by combining Liu-admissible shock waves, rarefaction
fans, subsonic (including stationary) phase boundaries and supersonic phase bound-
aries of the 2-wave family is given as follows.

(i) If wm > wr, the solution consists of a classical shock connecting um 2 H2(ur)
to ur.

(ii) If b 6 wm < wr, the solution consists of a rarefaction wave connecting um 2
O2(ur) to ur. The w component of the solution decreases monotonical ly from
wm to wr as x increases in the rarefaction fan.

(iii) If wm 2 [’0(c); a], then the solution is a Lax shock (respectively, a rarefaction)
if wr 6 ’0(wm ) (respectively, wr > ’0(wm )) connecting ’0(wl) to wr, preceded
with a stationary phase boundary from wm to ’0(wm ). The w component of
the solution being a non-monotone (respectively, monotone) function in x.

(iv) If wm 2 [’¡\(wr); ’0(c), there exists a one-parameter family of admissi-
ble solutions, consisting of a subsonic phase boundary from some interme-
diate state um 2 H2(u ¤ ) to u ¤ such that either w ¤ 2 [’0(wm ); ’[

1 ;0(wm )]

if wm > b¡\ or w ¤ 2 [’\(wm ); ’[
1 ;0(wm )] otherwise, followed with either a

rarefaction connecting ur to u ¤ 2 O2(ur) if w ¤ < wr, the w component of
the solution being a monotone function in x, or a classical shock connect-
ing u ¤ 2 H2(ur) to ur otherwise, the w-component of the solution being a
non-monotone function in x.
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(v) If wm < ’¡\(wr), there exists a one-parameter family of admissible solutions.
The solution can be a composite of a classical shock connecting some point
u ¤ 2 H2(ur) to ur, with w ¤ 2 (’](wm ; wr); ’[

1 ;0(wm )] preceded with a subsonic
phase boundary connecting ul 2 H2(u¤ ) to u ¤ . This patterns makes sense if
’](wm ; wr) < ’[

1 ;0(wm ), that is, if the phase boundary propagates slower
than the classical shock. It can also be a supersonic phase boundary directly
connecting ur to um . The w component of the solution is a non-monotone
function of x.

4. Riemann solvers based on a prescribed kinetic relation

At this juncture, we have two-dimensional wave sets of admissible sets, rather than
the customary (one-dimensional) wave curves. Our objective now is to impose
an additional algebraic relation on the subsonic phase boundaries|the kinetic
relation|in order to select uniquely de­ ned wave curves in the wave sets. However,
we stress that imposing a kinetic relation is not su¯ cient, as the classical solution
introduced in x 2 and based instead on supersonic phase boundaries is, in principle,
also available. Indeed, a precise rule must be given on the use of supersonic phase
boundaries as well.

Given condition (C) below, we do obtain uniquely de­ ned wave curves. We also
derive some monotonicity properties. It turns out that, when solving the Riemann
problem, either the two wave curves intersect at a unique point and the Riemann
solution is unique or else, for some range of data, the wave curves intersect at two
di¬erent points. Contrary to what was observed in x 2, the two intersection points
correspond to distinct Riemann solutions.

We aim at constructing piecewise monotone wave curves. That is, the wave curves
will be such that the v component regarded as a function of the w component will
be monotone in each of the two intervals w 2 ( ¡ 1; a] and w 2 [b; +1). For the
selection of the subsonic phase boundaries, we must impose a kinetic relation in
each wave family. Let ’[;i : ( ¡ 1; +1) ! ( ¡ 1; +1) be locally Lipschitz continuous
and monotone decreasing kinetic functions satisfying (cf. ­ gure 8)

w’[
1 (w) 6 w’[;i(w) < w’\(w); w 2 ( ¡ 1; 1); i = 1; 2: (4.1)

Their inverse functions, denoted by ’¡[;i : ( ¡ 1; 1) ! ( ¡ 1; 1), i = 1; 2, are mono-
tone decreasing functions as well. It follows from (4.1) that

w’¡\(w) < w’¡[;i(w) 6 w’[
1 (w); w 2 ( ¡ 1; 1): (4.2)

Recalling proposition 3.6, we observe that the inverse function of ’[;1 covers admis-
sible subsonic 1-phase boundaries. Indeed, we can connect the left-hand state (v ¤ ; w)
to the right-hand state (v ¤ ; ’¡[;1(w)). By setting w ¤ = ’¡[;1(w), we can say equiva-
lently that the kinetic function ’[;1 in (4.1) covers all the possible values of admissi-
ble subsonic 1-phase boundaries: the left-hand states (v ¤ ; ’[;1(w ¤ )) being connected
to the right-hand states (v ¤ ; w ¤ ).

We now formulate the following kinetic relation for subsonic 1-phase boundaries.
Any subsonic 1-phase boundary connecting a left-hand state (v0; w0) to some right-
hand state (v1; w1) should satisfy

w0 = ’[;1(w1): (4.3)
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Figure 8. The kinetic function and its inverse.

Similarly, for subsonic 2-phase boundaries, we require that any subsonic 2-phase
boundary connecting a left-hand state (v0; w0) to some right-hand state (v1; w1)
should satisfy

w1 = ’[;2(w0): (4.4)

In theorem 3.9 for 1-waves (and similarly in theorem 3.10 for 2-waves), we found in
case V two distinct types of Riemann solutions: for values w 2 (’[

1 ;0(wl); ’¡\(wl)),
the solution can contain a non-stationary subsonic phase boundary or else a sta-
tionary phase boundary; for values w 2 (’¡\(wl); +1), the solution can contain a
non-stationary subsonic phase boundary or else a supersonic phase boundary. How-
ever, such solutions are available only under a condition on the potential wave speed
given by the kinetic relation (see the condition ¹ (w) := ’[;1(w) ¡ ’](wl; w) > 0 in
the statement of theorem 3.9, as well as in the proof of theorem 4.3 below).

In the construction proposed here, we postulate that subsonic phase boundaries
are preferred. Precisely, the following condition is imposed:

the Riemann solution always uses non-stationary
subsonic phase boundaries whenever available.

¾
(C)

Alternatively, one could use supersonic phase boundaries whenever they are avail-
able. It is not di¯ cult to see that we would then recover the construction in x 2
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Figure 9. Non-classical 1-wave curve.

based on stationary subsonic phase boundaries only. In a speci­ c application, the
actually observed solutions should share properties from both constructions.

Observe that, in view of (4.1) and for i = 1; 2, the kinetic function and its
inverse intersect the set fv = ’0(w)g at some points, denoted, respectively, by
(­ i; ’0(­ i)) and ( ¬ i; ’0( ¬ i)), with ¬ i 2 [b¡\; ’0(c)]; ­ i 2 [c; a¡\]. As a consequence
of theorem 3.9, we obtain (cf. ­ gure 9) the following result.

Theorem 4.1 (The 1-wave curve). Consider all weak solutions of the Riemann
problem (1.1){(1.5). Given some left-hand state ul = (vl; wl), with wl > b for de¯-
niteness. Under condition (C), the 1-wave curve W 1(ul) consisting of all right-hand
states um = (vm ; wm ) attainable from ul by combining Liu-admissible shock waves,
rarefaction fans, subsonic phase boundaries satisfying the kinetic relation (4.3) and
supersonic phase boundaries of the 1-wave family and stationary phase boundaries
is given as follows.

(i) If wm > wl, then the solution is a classical shock connecting ul to um .

(ii) If wm 2 [b; wl), the solution is a rarefaction wave connecting ul to um .

(iii) If wm 2 [¬ 1; a], the solution consists of either a Lax shock if ’0(wm ) > wl or
a rarefaction if ’0(wm ) 2 (b; wl), from wl to ’0(wm ), followed by a stationary
phase boundary from ’0(wm ) to wm .
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(iv) If wm 2 [’¡[;1(wl); ¬ 1), the solution consists of a rarefaction wave from ul to
u = (v; ’[;1(wm )) 2 O1(ul) followed by a subsonic phase boundary connecting
u to um . The w component of the solution is monotone.

(v) If wm 2 (’¡\(wl); ’¡[;1(wl)), then the solution is a Lax shock from ul to
u = (v; ’[;1(wm )) 2 H1(ul) followed by a subsonic phase boundary connecting
u to um , the w component of the solution is non-monotone.

(vi) If wm 6 ’¡\(wl), then the solution is either a Lax shock from ul to u =
(v; ’[;1(wm )) 2 H1(ul), followed by a subsonic phase boundary connecting u
to um , if and only if ’[;1(wm ) > ’](wl; wm ) (the w component of the solution
is non-monotone in this case), or a supersonic phase boundary connecting
directly ul with um otherwise.

Similarly, theorem 3.10 yields the following result.

Theorem 4.2 (The 2-wave curve). Consider all weak solutions of the Riemann
problem (1.1){(1.5). Given some right-hand state ur = (vr; wr), with wr > b for
de¯niteness. Under condition (C), the 2-wave curve W 2(ur) made of all left-hand
states um = (vm ; wm ) attainable from ur by combining Liu-admissible shock waves,
rarefaction fans, subsonic phase boundaries satisfying the kinetic relation (4.4), and
supersonic phase boundaries of the 2-wave family and stationary phase boundaries
is given as follows.

(i) If wm > wr, then the solution is a classical shock connecting ur to um .

(ii) If wm 2 [b; wr), the solution is a rarefaction wave connecting ur to um .

(iii) If wm 2 [ ¬ 2; a], the solution consists of either a Lax shock if wr 6 ’0(wm ), or
a rarefaction elsewhere, from wr to ’0(wm ), followed by a stationary phase
boundary from ’0(wm ) to wm .

(iv) If wm 2 [’¡[;2(wr); ¬ 2), the solution consists of a rarefaction wave from ur to
u = (v; ’[;2(wm )) 2 O2(ur), followed by a subsonic phase boundary connecting
u to um . The w component of the solution is monotone.

(v) If wm 2 (’¡\(wr); ’¡[;2(wr)), then the solution is a Lax shock from ur to
u = (v; ’[;2(wm )) 2 H2(ur), followed by a subsonic phase boundary connecting
u to um . The w component of the solution is non-monotone.

(vi) If wm 6 ’¡\(wr), then the solution is either a Lax shock from ur to u =
(v; ’[;2(wm )) 2 H2(ur), followed by a subsonic phase boundary connecting u
to um if ’[;2(wm ) > ’](wr; wm ) (the w component of the solution is non-
monotone in this case), or a supersonic phase boundary connecting directly
ur with um otherwise.

The properties of the wave curves are now summarized.

Theorem 4.3. Under condition (C), the 1-wave curve W 1(ul) (the 2-wave curve
W 2(ur)) is continuous, monotone increasing (monotone decreasing, respectively)
in each interval ( ¡ 1; a] and [b; +1), and extends from (v; w) = ( ¡ 1; ¡ 1) to
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(v; w) = (+1; +1). The curve is locally Lipschitz in w whenever we have ¬ 1 6= b¡\

and ­ 1 6= a¡\ (respectively, ¬ 2 6= b¡\ and ­ 2 6= a¡\). Moreover, we have the s̀ym-
metry’ property

v(w) = v(’0(w)) for all w 2 [¬ 1; a] [ [b; ­ 1] (w 2 [ ¬ 2; a] [ [b; ­ 2], respectively):
(4.5)

Proof. We only consider the 1-wave curve W 1(ul) leaving from ul = (vl; wl) with
wl > b. The case wl 6 a can be treated similarly. The curve W 1(ul), ul = (vl; wl),
wl > b, can be parametrized by a function v = v(w; ul). The regularity of the curve
is an immediate consequence of the construction.

If w > b, the non-classical curve coincides with the classical curve given by the
Liu construction. It is based on a classical shock if w > wl and a rarefaction wave
otherwise. As noted in the classical case, the function v = v(w; vl; wl) is monotone
increasing. Furthermore, in view of (1.2), (2.6), we have, by construction,

v ! +1 as w ! +1:

If ¬ 1 6 w 6 a, the solution consists of either a rarefaction wave if wl > ’0(wr), or
a classical shock otherwise. This wave connects wl to ’0(wr) and is followed with a
stationary phase boundary from ’0(wr) to wr. By the monotonicity property of the
function ’[

1 ;0(w) = ’0(w) in this interval, the wave curve is monotone increasing
as well. Observe that the value of v at w coincides with the one of v at ’0(w). This
is due to the fact that we use here stationary jumps. Therefore, condition (4.5)
holds.

If w 2 (’¡[;1(wl); ¬ 1), the solution consists of a rarefaction wave from wl to
’[;1(w) followed by a phase boundary connecting ’[;1(w) to w. The value of v is
determined by (2.6) and (2.8),

v ¡ v(’[;1(w)) = ·c(’[;1(w); w)(w ¡ ’[;1(w));

v(’[;1(w)) ¡ vl =

Z ’[;1(w)

wl

c(z) dz:

9
>=

>;
(4.6)

For w in the interval under consideration, we deduce from (4.6) that1

dv

dw
=

³

2
p

[ ¼ (’[;1(w)) ¡ ¼ (w)]=[’[;1(w) ¡ w]

³ := ¡ d’[;1

dw
(w)

µq
¼ 0(’[;1(w)) ¡

s
¼ (’[;1(w)) ¡ ¼ (w)

’[;1(w) ¡ w

¶2

+ ¼ 0(w) +
¼ (’[;1(w)) ¡ ¼ (w)

’[;1(w) ¡ w
> 0:

This again yields the desired monotonicity property of the wave curve.
If w 2 ( ¡ 1; ’¡[;1(wl)], the solution is either a composite of a classical shock

connecting wl to ’[;1(w) followed by a subsonic phase boundary connecting ’[;1(w)

1In fact, the monotonicity of the kinetic function is not necessary. It is not di± cult to see that
the weaker requirement (¼ (’[;1) ¡ ¼ ) 0 < 0 su± ces here.
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with w, provided
¹ (w) := ’[;1(w) ¡ ’](wl; w) > 0;

or a classical shock connecting directly wl with w. In this proof, let us consider
together both cases (v) and (vi) listed in the theorem. We claim that the last
inequality is always valid in case (v).

Since the function ¹ is continuous, the set

N := fw 2 ( ¡ 1; ’[;1(wl))=’[;1(w) ¡ ’](wl; w) > 0g

is an open set and is therefore a union of open intervals. At an endpoint, say
w0, of an interval (w0; w00) » N , the speeds of the classical and subsonic phase
boundaries tend to the speed of the classical shock connecting wl to w0. Therefore,
the wave curve is (at least) continuous. In each interval » N c corresponding to
classical solutions, the wave curve is clearly monotone increasing. Consider now
some w 2 (w0; w00) » N . From the construction in theorem 4.1, we have

v ¡ v(’[;1(w)) = ·c(’[;1(w); w)(w ¡ ’[;1(w));

v(’[;1(w)) ¡ vl = ·c(wl; ’[;1(w))(’[;1(w) ¡ wl):

)

(4.7)

Then (4.7) yields

dv

dw
= 1

2 ³ 1 ³ 2 +
¼ 0(w) + 1

2
p

[¼ (’[;1(w)) ¡ ¼ (w)]=[’[;1(w) ¡ w]
;

³ 1 :=

s
¼ (’[;1(w)) ¡ ¼ (wl)

’[;1(w) ¡ wl
¡

s
¼ (’[;1(w)) ¡ ¼ (w)

’[;1(w) ¡ w
;

³ 2 :=
¼ 0(’[;1(w))

2
p

[ ¼ (’[;1(w)) ¡ ¼ (wl)]=[’[;1(w) ¡ wl]p
[¼ (’[;1(w)) ¡ ¼ (w)]=[’[;1(w) ¡ w]

¡ 1:

9
>>>>>>>>>>>=

>>>>>>>>>>>;

(4.8)

Using the condition that the shock speed is increasing, one obtains

¡

s
¼ (’[;1(w)) ¡ ¼ (wl)

’[;1(w) ¡ wl

6 ¡

s
¼ (’[;1(w)) ¡ ¼ (w)

’[;1(w) ¡ w
: (4.9)

By de­ nition, ’[;1(w) > wl > ’\(w). Then it follows from inequality (3.10) that

¼ (’[;1(w)) ¡ ¼ (wl)

’[;1(w) ¡ wl

6 ¼ 0(’[;1(w));

¼ (’[;1(w)) ¡ ¼ (w)

’[;1(w) ¡ w
6 ¼ 0(’[;1(w)):

9
>>>=

>>>;
(4.10)

From (4.8){(4.10), we deduce
dv

dw
> 0;

so that the wave curve is monotone increasing. Besides, in view of (1.2) and (2.6),
our construction gives

v ! ¡ 1 as w ! ¡ 1:

The proof of theorem 4.3 is completed.
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Figure 10. Non-unique Riemann solution.

Figure 11. Unique Riemann solution.

It turns out now that the wave curves may intersect at one or two points, depend-
ing on the Riemann data (see ­ gures 10 and 11).

Theorem 4.4. Consider the two wave curves constructed from condition (C).
Given two states in di® erent phases, the wave curves either intersect exactly once
and their intersection point leads to a unique solution of the Riemann problem, or
else the wave curves intersect at exactly two points located in di® erent phases. In
the latter case, if the intersection point corresponds to a solution having a station-
ary phase boundary, then the two points correspond to the same Riemann solution.
In the opposite case, the intersection points are associated with di® erent Riemann
solutions.

This non-uniqueness property of the Riemann solutions was already pointed out
by Abeyaratne and Knowles [2] (for the piecewise linear functions) and Shearer and
Yang [16] (for the cubic function).
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The proof of theorem 4.4 follows from the properties of the wave curves estab-
lished earlier. To select between two solutions when available, one possibility is to
follow Abeyaratne and Knowles [1] and impose a further criterion, the nucleation
criterion. For instance, as long as the initial jump (or some other similar quantity)
of the Riemann data remains below a given threshold, one can pick up the single-
phase solution. The two-phase solutions is then selected only above the threshold.
This approach has the advantage of providing a unique Riemann solution, which,
however, is not L1 continuous with respect to the initial data. This seems to be an
actual feature of the dynamics of phase boundaries, and constructing a Riemann
solver to be both physically relevant and mathematically sound remains currently
open.

A mathematically attracting approach is to restrict attention to a narrow class
of kinetic functions, based on the following observation: non-uniqueness does not
arise as long as we are concerned with stationary phase boundaries, as they cannot
separate in the (x; t)-plane. Indeed, a strong assumption on the kinetic functions
can ensure that the two intersection points, when they exist, always correspond to
stationary phase boundaries. In this way, we guarantee the uniqueness of the Rie-
mann solution, as well as its continuous dependence with respect to the data. This
construction proposed now is probably not realistic from the physical standpoint.
The more general approach based on a nucleation criterion above should be more
relevant in most applications.

Theorem 4.5. Suppose that the kinetic functions (4.1) also satisfy the restriction

’[;i(a¡\) = a and ’[;i(b¡\) = b; i = 1; 2:

Under condition (C), the Riemann problem (1.1){(1.5) admits a unique solution
made of Liu-admissible shock waves, rarefaction fans, supersonic phase boundaries
and stationary phase boundaries, as well as subsonic phase boundaries satisfying
the kinetic relations (4.3), (4.4).

Moreover, this solution depends continuously upon its initial data in the L1-norm
(see (2.15)).

Proof. Since the arguments are quite similar to the ones in the proof of theorem 2.7,
we only sketch the proof. We parametrize the two wave curves W 1(ul) and W 2(ur)
by the functions

W 1(ul): v = v1(w) for w 2 ( ¡ 1; a] [ [b; +1);

W 2(ur): v = v2(w) for w 2 ( ¡ 1; a] [ [b; +1):

From theorem 4.3, we see that the function

µ(w) := v2(w) ¡ v1(w); w 2 ( ¡ 1; a] [ [b; +1); (4.11)

is monotone decreasing in each interval ( ¡ 1; a] and [b; +1).
We distinguish three case, as in the proof of theorem 2.7.

Case 1. On one hand, the function µ in (4.11) is monotone decreasing in ( ¡ 1; a],
with µ(a) > 0. This implies that µ(w) > µ(a) > 0 for all w 2 ( ¡ 1; a] and, therefore,
the two wave curves can not intersect in the region w 2 ( ¡ 1; a]. On the other hand,
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equation (4.5) and the restriction on the kinetic functions imposed in the theorem
yield

µ(a¡\) = v2(a¡\) ¡ v1(a¡\) = v2(a) ¡ v1(a) > 0:

In view of this inequality and since the function µ is monotone decreasing in the
interval [b; +1) 3 a¡\, and that µ(w) ! ¡ 1 as w ! +1, we see that there exists
a unique value wm 2 (a¡\; +1) such that

µ(wm ) = 0:

The two wave curves thus intersect at a unique point (v1(wm ); wm ). Since wm > a¡\,
the solution does not contain stationary phase boundaries.

Case 2. The proof is completely similar. Now the intersection point (v1(wm ); wm )
satis­ es wm 2 ( ¡ 1; b¡\).

Case 3. In this case, the two wave curves actually meet at exactly two points,
u1 := (v1(wm ); wm ) and u2 := (v1(wm ); ’0(wm )). Here we have wm 2 [b; a¡\]. This
value corresponds to a stationary phase boundary, as follows from the additional
assumption made on the kinetics. Clearly, stationary phase boundary appear if
and only if ui 2 Zi, i = 1; 2. As in the construction of x 2, the points u1 and
u2 correspond to a unique stationary phase boundary. The Riemann solution is
thus unique. The continuous dependence is checked similarly as in the proof of
theorem 2.7. The proof of theorem 4.5 is completed.

Remark 4.6. Finally, based on the general description of the wave curves in the-
orems 4.1 and 4.2, we now list all the possibilities of Riemann solutions. Consider
the roots wm of the equation

v1(w) = v2(w); w 2 ( ¡ 1; 1); (4.12)

and set
ui;[

m := (vi(’
[;i(wm )); wm ); i = 1; 2:

For de­ niteness, we will assume that wl > b and consider ur as a parameter.

Case I. Suppose that v2(a) > v1(a). Then (4.12) admits a unique solution wm

satisfying wm > a¡\.
If the states ul and ur belong to the same phase, i.e. wl, wr > b, then we have

the following.

(I.2) If wl > wm and wr > wm , then the Riemann solution contains the following
waves: R1(ul; um ) + R2(um ; ur).

(I.2) If wl > wm and b 6 wr < wm , then R1(ul; um ) + C2(um ; ur).

(I.3) If b 6 wl < wm and wr > wm , then C1(ul; um ) + R2(um ; ur).

(I.4) If b 6 wl < wm and b 6 wr < wm , then C1(ul; um ) + C2(um ; ur).

If the states ul and ur belong to di¬erent phases, i.e. wl > b and ¡ 1 < wr 6 a,
then we ­ nd the following.
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(I.5) If wl > wm and ¡ 1 < wr < ’[;2(wm ), then

R1(ul; um ) + P s u b
2 (um ; u2;[

m ) + R2(u2;[
m ; ur):

(I.6) If wl > wm and ’[;2(wm ) 6 wr 6 ’\(wm ), then

R1(ul; um ) + P s u b
2 (um ; u2;[

m ) + C2(u2;[
m ; ur):

(I.7) If wl > wm and ’\(wm ) 6 wr 6 a, then the solution is either

R1(ul; um ) + P s u b
2 (um ; u2;[

m ) + C2(u2;[
m ; ur) if ’[;2(wm ) > ’](wr; wm )

or R1(ul; um ) + P s u p er
2 (um ; ur) otherwise.

(I.8) If b 6 wl < wm and ¡ 1 < wr < ’[;2(wm ), then

C1(ul; um ) + P s u b
2 (um ; u2;[

m ) + R2(u2;[
m ; ur):

(I.9) If b 6 wl < wm and ’[;2(wm ) 6 wr 6 ’\(wm ), then

C1(ul; um ) + P s u b
2 (um ; u2;[

m ) + C2(u2;[
m ; ur):

(I.10) If b 6 wl < wm and ’\(wm ) 6 wr 6 a, then the solution is either

C1(ul; um ) + P s u b
2 (um ; u2;[

m ) + C2(u2;[
m ; ur) if ’[;2(wm ) > ’](wr; wm )

or R1(ul; um ) + P s u p er
2 (um ; ur) otherwise.

Case II. Suppose that v2(b) < v1(b). Then (4.12) admits a unique solution wm

satisfying ¡ 1 < wm < a¡\.
If the states ul and ur belong to the same phase, i.e. wl; wr > b, then we have the

following.

(II.1) If wl > ’[;1(wm ) and wr > ’[;2(wm ), then the Riemann solution contains the
following waves:

R1(ul; u1;[
m ) + P s u b

1 (u1;[
m ; um ) + P s u b

2 (um ; u2;[
m ) + R2(u2;[

m ; ur):

(II.2) If wl > ’[;1(wm ) and ’\(wm ) 6 wr 6 ’[;2(wm ), then

R1(ul; u1;[
m ) + P s u b

1 (u1;[
m ; um ) + P s u b

2 (um ; u2;[
m ) + C2(u2;[

m ; ur):

(II.3) If ’\(wm ) 6 wl 6 ’[;1(wm ) and wr > ’[;2(wm ), then

C1(ul; u1;[
m ) + P s u b

1 (u1;[
m ; um ) + P s u b

2 (um ; u2;[
m ) + R2(u2;[

m ; ur):

(II.4) If ’\(wm ) 6 wl 6 ’[;1(wm ) and ’\(wm ) 6 wl 6 ’[;2(wm ), then

C1(ul; u1;[
m ) + P s u b

1 (u1;[
m ; um ) + P s u b

2 (um ; u2;[
m ) + C2(u2;[

m ; ur):

https://doi.org/10.1017/S030821050000158X Published online by Cambridge University Press

https://doi.org/10.1017/S030821050000158X


Riemann solvers for phase-transition dynamics 215

(II.5) If wl > ’[;1(wm ) and a 6 wr < ’\(wm ), then the solution is either

R1(ul; u1;[
m ) + P s u b

1 (u1;[
m ; um ) + P s u b

2 (um ; u2;[
m ) + C2(u2;[

m ; ur)

if ’[;2(wm ) > ’](wr; wm )

or R1(ul; um ) + P s u p er
2 (um ; ur) otherwise.

(II.6) If a 6 wl < ’\(wm ) and wr > ’[;2(wm ), then the solution is either

C1(ul; u1;[
m ) + P s u b

1 (u1;[
m ; um ) + P s u b

2 (um ; u2;[
m ) + R2(u2;[

m ; ur)

if ’[;1(wm ) > ’](wr; wm )

or P s u p er
1 (ul; um ) + R2(um ; ur) otherwise.

(II.7) If ’\(wm ) 6 wl 6 ’[;1(wm ) and ’\(wm ) 6 wl 6 ’[;2(wm ), then

C1(ul; u1;[
m ) + P s u b

1 (u1;[
m ; um ) + P s u b

2 (um ; u2;[
m ) + C2(u2;[

m ; ur):

(II.8) If a 6 wl < ’\(wm ) and ’\(wm ) 6 wr 6 ’[;2(wm ), then the solution is either

C1(ul; u1;[
m ) + P s u b

1 (u1;[
m ; um ) + P s u b

2 (um ; u2;[
m ) + C2(u2;[

m ; ur)

if ’[;1(wm ) > ’](wr; wm )

or P s u p er
1 (ul; um ) + C2(um ; ur) otherwise.

(II.9) If ’\(wm ) 6 wl < ’[;1(wm ) and a 6 wr 6 ’\(wm ), then the solution is either

C1(ul; u1;[
m ) + P s u b

1 (u1;[
m ; um ) + P s u b

2 (um ; u2;[
m ) + C2(u2;[

m ; ur)

if ’[;2(wm ) > ’](wr; wm )

or C1(ul; um ) + P s u p er
2 (um ; ur) otherwise.

(II.10) If a 6 wl < ’\(wm ) and a 6 wr 6 ’\(wm ), then the solution is either

C1(ul; u1;[
m ) + P s u b

1 (u1;[
m ; um ) + P s u b

2 (um ; u2;[
m ) + C2(u2;[

m ; ur)

if ’[;i(wm ) > ’](wr; wm )

or

P s u p er
1 (ul; um ) + C2(um ; ur) if ’[;1(wm ) 6 ’](wr; wm ) < ’[;2(wm )

or

C1(ul; um ) + P s u p er
2 (um ; ur) if ’[;2(wm ) 6 ’](wr; wm ) < ’[;1(wm )

or, ­ nally, P s u p er
1 (ul; um ) + P s u p er

2 (um ; ur) otherwise.

If the states belong to di¬erent phases, i.e. wl > b and ¡ 1 < wr 6 a, we have the
following.
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(II.11) If wl > ’[;1(wm ) and ¡ 1 < wr 6 wm , then the solution is

R1(ul; u1;[
m ) + P s u b

1 (u1;[
m ; um ) + R2(um ; ur):

(II.12) If wl > ’[;1(wm ) and wm < wr 6 a, then the solution is

R1(ul; u1;[
m ) + P s u b

1 (u1;[
m ; um ) + C2(um ; ur):

(II.13) If ’\(wm ) 6 wl 6 ’[;1(wm ) and ¡ 1 < wr 6 wm , then

C1(ul; u1;[
m ) + P s u b

1 (u1;[
m ; um ) + R2(um ; ur):

(II.14) If ’\(wm ) 6 wl 6 ’[;1(wm ) and wm < wr 6 a, then

C1(ul; u1;[
m ) + P s u b

1 (u1;[
m ; um ) + C2(um ; ur):

(II.15) If b 6 wl < ’\(wm ) and ¡ 1 < wr 6 wm , then the solution is either

C1(ul; u1;[
m ) + P s u b

1 (u1;[
m ; um ) + P s u b

2 (um ; u2;[
m ) + R2(u2;[

m ; ur)

if ’[;1(wm ) > ’](wr; wm )

or P s u p er
1 (ul; um ) + R2(um ; ur) otherwise.

(II.16) If b 6 wl < ’\(wm ) and wm < wr 6 a, then the solution is either

C1(ul; u1;[
m ) + P s u b

1 (u1;[
m ; um ) + P s u b

2 (um ; u2;[
m ) + C2(u2;[

m ; ur)

if ’[;1(wm ) > ’](wr; wm )

or P s u p er
1 (ul; um ) + C2(um ; ur) otherwise.

Case III. Suppose, ­ nally, that v2(a) 6 v1(a) and v2(b) > v1(b). Then (4.12)
admits exactly two solutions wm 2 [b; +1) and w n 2 ( ¡ 1; a]. When w n 6= ’0(wm ),
the Riemann solutions are not unique as one can see in the following.

If the states ul and ur belong to the same phase, i.e. wl and wr > b, we have the
following.

(III.1) If wl > wm and wr > wm , then the solution is R1(ul; um ) + R2(um ; ur).

(III.2) If wl > wm and b 6 wr < wm , then R1(ul; um ) + C2(um ; ur).

(III.3) If b 6 wl < wm and wr > wm , then C1(ul; um ) + R2(um ; ur).

(III.4) If b 6 wl < wm and b 6 wr < wm , then C1(ul; um ) + C2(um ; ur).

However, the solution is not unique and can also contain subsonic phase bound-
aries, as follows.

(III.5) If wl > ’[;1(wm ) and wr > ’[;2(w n ), then the Riemann solution can also be

R1(ul; u1;[
n ) + P s u b

1 (u1;[
n ; u n ) + P s u b

2 (un ; u2;[
n ) + R2(u2;[

n ; ur):
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(III.6) If wl > ’[;1(wm ) and b 6 wr < ’[;2(wn ), then

R1(ul; u1;[
n ) + P s u b

1 (u1;[
n ; u n ) + P s u b

2 (un ; u2;[
n ) + C2(u2;[

n ; ur):

(III.7) If b 6 wl < ’[;1(wm ) and wr > ’[;2(wn ), then the Riemann solution can be

C1(ul; u1;[
n ) + P s u b

1 (u1;[
n ; u n ) + P s u b

2 (un ; u2;[
n ) + R2(u2;[

n ; ur):

(III.8) If b 6 wl < ’[;1(wm ) and b 6 wr < ’[;2(wn ), then

C1(ul; u1;[
n ) + P s u b

1 (u1;[
n ; u n ) + P s u b

2 (un ; u2;[
n ) + C2(u2;[

n ; ur):

Assume now that the states ul and ur belong to di¬erent phases, i.e. wl > b and
¡ 1 < wr 6 a. If w n = ’0(wm ), then the Riemann solution is unique and it contains
stationary phase boundaries (but no other subsonic waves).

(III.9) If wl > wm and ¡ 1 < wr 6 ’0(wm ), then the solution is

R1(ul; um ) + Z(um ; ~um ) + R2(~um ; ur);

where ~um := (v1(wm ); ’0(wm )).

(III.10) If wl > wm and a > wr > ’0(wm ), then

R1(ul; um ) + Z(um ; ~um ) + C2(~um ; ur):

(III.11) If b 6 wl 6 wm and ¡ 1 < wr 6 ’0(wm ), then

C1(ul; um ) + Z(um ; ~um ) + R2(~um ; ur):

(III.12) If b 6 wl > wm and a > wr > ’0(wm ), then

C1(ul; um ) + Z(um ; ~um ) + C2(~um ; ur):

If w n 6= ’(wm ), then the Riemann problem may admit two solutions.

(III.13) If wl > wm and ¡ 1 < wr 6 w n , then the Riemann solution is either

R1(ul; um ) + P s u b
2 (um ; u2;[

m ) +

(
R2(u2;[

m ; ur) if wr 6 ’[;2(wm );

C2(u2;[
m ; ur) if wr > ’[;2(wm );

or

R1(ul; u1;[
n ) + P s u b

1 (u1;[
n ; u n ) + R2(u n ; ur) if wl > ’[;1(w n );

C1(ul; u1;[
n ) + P s u b

1 (u1;[
n ; u n ) + R2(u n ; ur) if wl < ’[;1(w n ):

(III.14) If wl > wm and a > wr > w n , then the Riemann solution is either

R1(ul; um ) + P s u b
2 (um ; u2;[

m ) +

(
R2(u2;[

m ; ur) if wr 6 ’[;2(wm );

C2(u2;[
m ; ur) if wr > ’[;2(wm );

or

R1(ul; u1;[
n ) + P s u b

1 (u1;[
n ; u n ) + C2(u n ; ur) if wl > ’[;1(w n );

C1(ul; u1;[
n ) + P s u b

1 (u1;[
n ; u n ) + C2(u n ; ur) if wl < ’[;1(w n ):
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(III.15) If b 6 wl 6 wm and ¡ 1 < wr 6 w n , then the Riemann solution is either

C1(ul; um ) + P s u b
2 (um ; u2;[

m ) +

(
R2(u2;[

m ; ur) if wr 6 ’[;2(wm );

C2(u2;[
m ; ur) if wr > ’[;2(wm );

or

R1(ul; u1;[
n ) + P s u b

1 (u1;[
n ; u n ) + R2(u n ; ur) if wl > ’[;1(w n );

C1(ul; u1;[
n ) + P s u b

1 (u1;[
n ; u n ) + R2(u n ; ur) if wl < ’[;1(w n ):

(III.16) If b 6 wl 6 wm and a > wr > w n , then the Riemann solution is either

C1(ul; um ) + P s u b
2 (um ; u2;[

m ) +

(
R2(u2;[

m ; ur) if wr 6 ’[;2(wm );

C2(u2;[
m ; ur) if wr > ’[;2(wm );

or

R1(ul; u1;[
n ) + P s u b

1 (u1;[
n ; u n ) + C2(u n ; ur) if wl > ’[;1(w n );

C1(ul; u1;[
n ) + P s u b

1 (u1;[
n ; u n ) + C2(u n ; ur) if wl < ’[;1(w n ):
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