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We consider the zero-resistivity limit for Hasegawa–Wakatani equations in a
cylindrical domain when the initial data are Stepanov almost-periodic in the axial
direction. First, we prove the existence of a solution to Hasegawa–Wakatani
equations with zero resistivity; second, we obtain uniform a priori estimates with
respect to resistivity. Such estimates can be obtained in the same way as for our
previous results; therefore, the most important contribution of this paper is the proof
of the existence of a local-in-time solution to Hasegawa–Wakatani equations with
zero resistivity. We apply the theory of Bohr–Fourier series of Stepanov
almost-periodic functions to such a proof.
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1. Introduction

There are many applications of plasma physics, for example, in light sources, sur-
face treatments and nuclear fusion. Specifically, controlled thermonuclear fusion
has, thus far, been a challenging problem, because there are many kinds of insta-
bility in nuclear fusion plasmas. To confine high-temperature plasma in a vacuum
vessel using magnetic forces, we must control both microscopic and macroscopic
instabilities [21]. Following studies that began with the Vlasov equation, new insta-
bilities were discovered when the wavelength of the perturbed fields was taken to
be as small as the Larmor radius of the charged particles. These instabilities were
termed microscopic instabilities [28]. Therefore, to study nuclear fusion plasmas,
we must use both magnetohydrodynamic equations, which describe macroscopic
instabilities, and other model equations [21].

In this paper, we are concerned with the Hasegawa–Wakatani equations, which
are useful in the study of resistive drift wave turbulence and the related anomalous
transport, and result in a dramatic reduction in confinement time in a tokamak.
A tokamak is the most advanced magnetic confinement device for thermonuclear
fusion; in this device, an axisymmetric plasma is confined by a strong magnetic field.
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Turbulence that is excited by unstable drift waves is called drift wave turbulence;
drift wave instability is classed as a microscopic instability [28]. Drift waves are
quasi-electrostatic waves that propagate perpendicularly to both the magnetic field
and the density gradient [22]. Hasegawa–Wakatani equations are fluid models; thus,
to research the effect of non-Maxwellian distributions in velocity space, we must
consider the problem for Vlasov–Poisson equations (kinetic equations) [24,25].

In 1983, Hasegawa and Wakatani [12, 13] proposed the following equations for
the perturbations of plasma density n and the electrostatic potential φ to describe
the resistive drift wave turbulence in the tokamak:(

∂

∂t
− (∇φ × e) · ∇

)
∆φ = − c1

n∗
∂2

∂x2
3
(φ − n) + c2∆2φ,

(
∂

∂t
− (∇φ × e) · ∇

)
(n + log n∗) = − c1

n∗
∂2

∂x2
3
(φ − n).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.1)

These are Hasegawa–Wakatani equations from the two-fluid models in a strong
homogeneous magnetic field B = B0e and an inhomogeneous plasma equilibrium
density n∗ = n∗(|x′|) (x = (x1, x2, x3) = (x′, x3), |x′|2 = x2

1 + x2
2). Here, the total

density N is divided into equilibrium and fluctuating parts, N = n∗ + n1; and the
normalizations eφ/Te ≡ φ, n1/n∗ ≡ n, ωcit ≡ t and x/ρs ≡ x are used. Here,
B0 is the strength of the magnetic field (assumed to be a constant), e = (0, 0, 1),
c1 = Te/(e2ηωci), c2 = µ/(ρ2

sωci), Te is the electron temperature, e is the elementary
charge, µ is the kinematic ion-viscosity coefficient, η is the resistivity, mi is the ion
mass, ωci = eB0/mi is the cyclotron frequency and ρs =

√
Te/(ωci

√
mi) is the ion

Larmor radius. For simplicity, we assume that c1 and c2 are positive constants.
In 1977, before the advent of Hasegawa–Wakatani equations, Hasegawa and Mima

[10,11] proposed the following equation:(
∂

∂t
− (∇φ × e) · ∇

)
(∆φ − φ − log n∗) = 0. (1.2)

This is the Hasegawa–Mima equation from the one-fluid model under the same
magnetic field and plasma equilibrium state as used for the Hasegawa–Wakatani
equations. Concerning the mathematical results for (1.2) we refer the reader to [16]
and the references therein.

Our results address the mathematical issues inherent in (1.1). The existence
and uniqueness of a strong solution to the initial–boundary-value problems for
(1.1) in a cylindrical domain were proven when the initial data are periodic in
the axial direction [16], and when the initial data are Stepanov almost-periodic
[19]. In nuclear fusion research, it is important to consider an irrational magnetic
surface on which the line of force covers the surface ergodically without closing
[27]. However, research into plasma phenomena in an irrational magnetic surface
is difficult; therefore, we consider a simple problem as the first step in researching
plasma phenomena in a tokamak. In [17, 18] we proved that, as the resistivity
tends to zero, the solution of the Hasegawa–Wakatani equations established in [16]
converges strongly to that of the model equations of drift wave turbulence with
zero resistivity. When the temperature of the plasma is very high, the resistivity
of the plasma approaches zero; therefore, it is important for nuclear fusion plasma
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research to consider the case of zero resistivity. In [14] we obtained two useful
lemmas for Stepanov almost-periodic functions for the purpose of obtaining uniform
a priori estimates for resistivity; additionally, we proved that the Stepanov almost-
periodic solution of linearized Hasegawa–Wakatani equations converges strongly
to that of linearized Hasegawa–Wakatani equations with zero resistivity as the
resistivity tends to zero when the initial data are Stepanov almost-periodic. In
[15], we used the lemmas presented in [14] to prove that the Stepanov almost-
periodic solutions of the Hasegawa–Wakatani equations established in [19] converge
strongly to that of the Hasegawa–Wakatani equations with zero resistivity under the
additional condition of n̄ = 0 as the resistivity tends to zero. Note that Hasegawa–
Wakatani equations with zero resistivity under the additional condition n̄ = 0 are
similar to the Hasegawa–Mima equation with a higher-order correction term.

By defining ε = 1/c1, (1.1) can clearly be written as(
∂

∂t
− (∇φ × e) · ∇

)
(∆φ − n − log n∗) = c2∆2φ,

ε

(
∂

∂t
− (∇φ × e) · ∇

)
(n + log n∗) = − 1

n∗
∂2

∂x2
3
(φ − n).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.3)

Note that ∂2n/∂x2
1 and ∂2n/∂x2

2 do not appear on the right-hand side of (1.3)2.
We shall show that when studying the zero-resistivity limit for (1.3) with almost-
periodic initial data this anisotropy causes unexpected difficulties. Generally, when
looking for almost-periodic solutions, one looks for almost-periodicity in the time
variable. However, in this paper, we consider another problem, as follows.

For a given initial electrostatic potential φε
0, an initial plasma density nε

0, and a
background density n∗ = n∗(|x′|), let (φε, nε) = (φε, nε)(x, t) be a solution to the
initial–boundary-value problem for (1.3) with ε > 0 in ω ×R× (0,∞) ≡ Ω × (0,∞)
under the following initial and boundary conditions:

φε(x, 0) = φε
0(x), nε(x, 0) = nε

0(x) for x ∈ Ω,

φε(x, t) = ∆φε(x, t) = nε(x, t) = 0 for x ∈ Γ, t > 0,

}
(1.4)

when the initial data are Stepanov almost-periodic in the direction e. Here, ω =
{x′ = (x1, x2) ∈ R

2 | |x′| < R}, ∂ω = {x′ = (x1, x2) ∈ R
2 | |x′| = R}, Γ = {x ∈

R
3 | x′ ∈ ∂ω} and R is a positive real number.
There are several technological applications of almost-periodic functions, for

example, in time–frequency analysis of audio signals (e.g. piano, singing voice and
violin tones). The fast Fourier transform (FFT) is generally used in time–frequency
analysis; however, the FFT is influenced by its window. On the other hand, as sug-
gested by Wiener, generalized harmonic analysis (GHA) using almost-periodic func-
tions can analyse and synthesize signals without introducing window effects. GHA
has a very high resolution. Furthermore, a waveform reconstructed by GHA can
enable prediction by extrapolation of a reconstructed waveform. However, because
this method has a high computational cost, there was no attempt to pursue tech-
nological applications until Hirata developed an efficient GHA algorithm in 1994.
In [23, 26, 29], GHA is applied to non-stationary signals. Because GHA is a new
field, further research is required to clarify its fundamental characteristics.
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It is more convenient to change nε(x, t) and nε
0(x) into nε(x, t) + log n∗(|x′|) −

log n∗(R) and nε
0(x) + log n∗(|x′|) − log n∗(R), respectively, while keeping the same

notation nε(x, t) and nε
0(x). Then, (1.3) becomes(

∂

∂t
− (∇φε × e) · ∇

)
(∆φε − nε) = c2∆2φε,

ε

(
∂

∂t
− (∇φε × e) · ∇

)
nε = − 1

n∗
∂2

∂x2
3
(φε − nε) for x ∈ Ω, t > 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(1.5)

whereas (1.4) remains unchanged.
For convenience, we introduce

f̄ε(x′) = M{fε(x)} ≡ lim
A→∞

1
2A

∫ A

−A

fε(x) dx3,

f̃ε(x) = fε(x) − M{fε(x)} ≡ (I − M){fε(x)}.

Then, problem (1.5) is equivalent to the following problem:(
∂

∂t
− (∇φε × e) · ∇

)
(∆φε − nε) = c2∆2φε,

ε(I − M)
{(

∂

∂t
− (∇φε × e) · ∇

)
nε

}
= − 1

n∗
∂2

∂x2
3
(φ̃ε − ñε),

M
{(

∂

∂t
− (∇φε × e) · ∇

)
nε

}
= 0 for x ∈ Ω, t > 0,

and (1.4) remains the same.
Setting ε = 0 in this problem, we have(

∂

∂t
− (∇φ0 × e) · ∇

)
(∆φ0 − n0) = c2∆2φ0,

1
n∗

∂2

∂x2
3
(φ̃0 − ñ0) = 0,

M
{(

∂

∂t
− (∇φ0 × e) · ∇

)
n0

}
= 0 for x ∈ Ω, t > 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.6)

The aim of this paper is to establish both the unique existence of a strong
Stepanov almost-periodic solution to the initial–boundary-value problem for (1.4)
and (1.6) with ε = 0 when the initial data are Stepanov almost-periodic in the direc-
tion e and the convergence of (φε, nε) to (φ0, n0) as ε tends to zero on some interval,
which corresponds to the vanishing resistivity of Hasegawa–Wakatani equations.
Note that a similar problem is considered in [15] under the additional condition of
n̄ = 0.

In § 2, Stepanov almost-periodic functions and the function spaces appearing in
the following theorems are defined.

The following proposition is established in [15].
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Proposition 1.1. Let c� > 0, let ε ∈ (0, c�] and let n∗(|x′|) ∈ W 2
2 (ω) satisfy

n∗(|x′|) � n∗ with a positive constant n∗. Assume that (φε
0, n

ε
0) ∈ S̃4

ap(R; L2(ω)) ×
S̃2

ap(R; L2(ω)) satisfies the compatibility conditions

φε
0(x) = ∆φε

0(x) = nε
0(x) = 0 for x ∈ Γ. (1.7)

Then, there exists a unique solution (φε, nε) to problem (1.4), (1.5) on some inter-
val [0, T ] such that (φε, nε) ∈ L2(0, T ; S̃4

ap(R; L2(ω))) × S̃2,1
ap (R; L2(ωT )), ∂φε/∂t ∈

L2(0, T ; S̃2
ap(R; L2(ω))). Here, T is a constant that is independent of ε.

The second equation of (1.6) implies φ̃0 − ñ0 = 0 by virtue of the almost-periodic
condition in x3 and Mφ̃0 = Mñ0 = 0. Inserting this relation into (1.6) and (1.4)
with ε = 0, we have(

∂

∂t
− (∇φ0 × e) · ∇

)
(∆φ0 − φ̃0) + (∇φ̃0 × e) · ∇n̄0 = c2∆2φ0,

(
∂

∂t
− (∇φ̄0 × e) · ∇

)
n̄0 = 0 for x ∈ Ω, t > 0,

φ0(x, 0) = φ0
0(x) for x ∈ Ω,

n̄0(x′, 0) = n̄0
0(x

′) for x′ ∈ ω,

φ0(x, t) = ∆φ0(x, t) = 0 for x ∈ Γ, t > 0,

n̄0(x′, t) = 0 for x′ ∈ ∂ω, t > 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.8)

Under an additional condition n̄0
0(x

′) = 0, the equation in (1.8) is similar to the
Hasegawa–Mima equation (1.2) with a higher-order correction term.

In § 3, the following theorem is proven through the local-in-time existence and a
priori estimates. We can easily obtain a priori estimates in the same way as in [15].
Note that a similar problem to that in the present paper is considered in [17] under
a periodic boundary condition. The most important contribution of our paper is the
proof of the local-in-time solution existence theorem. In [14, 15, 19], a proof of the
existence of a local-in-time solution to a linear problem is given; in this paper, we
modify the proof and show the existence of a local-in-time solution to a nonlinear
problem.

Theorem 1.2. Assume that (φ0
0, n̄

0
0) ∈ S̃4

ap(R; L2(ω)) × W 3
2 (ω) satisfies the com-

patibility conditions (1.7) with ε = 0. Then, there exists a unique solution (φ0, n̄0)
to the problem (1.8) on some interval [0, T ∗] such that

(φ0, n̄0) ∈ L2(0, T ∗; S̃4
ap(R; L2(ω))) × L∞(0, T ∗; W 3

2 (ω)),

∂φ0/∂t ∈ L2(0, T ∗; S̃2
ap(R; L2(ω))) and ∂n̄0/∂t ∈ L2(0, T ∗; W 2

2 (ω)).

For this solution (φ0, n̄0), let ñ0(x, t) = φ̃0(x, t) and ñ0
0(x) = φ̃0

0(x). Then, (φ0, n0)
satisfies (1.4) and (1.6).

In § 4 the following theorem is proven by virtue of a priori estimates, proposi-
tion 1.1 and theorem 1.2.
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Theorem 1.3. Let (φε, nε) and (φ0, n0) be the solutions established in proposition
1.1 and theorem 1.2, respectively. If the initial data

(φε
0, n

ε
0) → (φ0

0, n
0
0) as ε → 0

in S̃3(R; L2(ω)) × S̃2(R; L2(ω)), then, as ε → 0,

(φε, nε) → (φ0, n0) in L2(0, T �; S̃4(R; L2(ω))) × S̃2,0(R; L2(ωT �)),

∆φε − nε → ∆φ0 − n0 in S̃0,1(R; L2(ωT �))

and n̄ε → n̄0 in W 0,1
2 (ωT �)(ωT � ≡ ω × (0, T �)) on the some time-interval [0, T �],

where T � is determined from proposition 1.1 and theorem 1.2.

2. Function spaces

We introduce the function spaces and the almost periodic functions that we use in
the following (see [1]).

Let Ω be a domain in R
m (m = 1, 2, 3, . . . ). We denote by W l

2(Ω) (l ∈ R, l � 0)
the space of functions u(x), x ∈ Ω, equipped with the norm

‖u‖2
W l

2(Ω) =
∑
|α|<l

‖Dα
xu‖2

L2(Ω) + ‖u‖2
Ẇ l

2(Ω),

where

‖u‖2
Ẇ l

2(Ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
|α|=l

‖Dα
xu‖2

L2(Ω) for l ∈ Z,

∑
|α|=[l]

∫
Ω

∫
Ω

|Dα
xu(x) − Dα

y u(y)|2

|x − y|m+2(l−[l]) dxdy for l /∈ Z.

Here [l] is the integral part of l, α = (α1, α2, . . . , αm) is a multi-index and Dα
xu =

∂|α|u/∂xα1
1 ∂xα2

2 · · · ∂xαm
m is the generalized derivative of order |α| = α1 +α2 + · · ·+

αm. For 1 � p � ∞, we denote by ‖ · ‖Lp(Ω) the norm of the Lebesgue space Lp(Ω).
The anisotropic Sobolev–Slobodetskĭı space W

l,l/2
2 (QT ) (QT ≡ Ω × (0, T )) is

defined as L2(0, T ; W l
2(Ω)) ∩ L2(Ω; W l/2

2 (0, T )), equipped with the norm

‖u‖2
W

l,l/2
2 (QT )

= ‖u‖2
W l,0

2 (QT )
+ ‖u‖2

W
0,l/2
2 (QT )

≡
∫ T

0
‖u(t)‖2

W l
2(Ω) dt +

∫
Ω

‖u(x)‖2
W

l/2
2 (0,T )

dx.

Let X be a Banach space with the norm ‖ · ‖X . We denote by Sp(R; X) (1 � p <
∞) the subspace of Lp

loc(R; X) equipped with the finite norm

‖u‖p
Sp(R;X) ≡ sup

s∈R

∫ s+1

s

‖u(x)‖p
X dx.

The function f(x) ∈ Lp
loc(R; X) is called Stepanov almost-periodic (Sp-a.p.) if, for

any ε > 0, the set

Eε(f) ≡
{

σ ∈ R

∣∣∣∣ sup
s∈R

( ∫ s+1

s

‖f(x + σ) − f(x)‖p
X dx

)1/p

� ε

}
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is relatively dense in R, that is, there exists L = L(ε) > 0 (inclusion length) such
that Eε(f) ∩ (a, a + L) 	= ∅ for any a ∈ R. We denote by Sp

ap(R; X) the space of all
Sp-a.p. functions from R to X.

Let ωT ≡ ω × (0, T ) and l ∈ Z, l � 0. We introduce the following spaces:

S̃l(R; X) =
{

u ∈ S2(R; X)
∣∣∣∣ ‖u‖2

S̃l ≡
l∑

|α|=0

‖Dα
xu‖2

S2(R;X) < ∞
}

,

S̃l
ap(R; X) = {u ∈ S̃l(R; X) | Dα

xu ∈ S2
ap(R; X), |α| = 0, 1, . . . , l},

S̃l,l/2(R; L2(ωT )) = S̃l(R; L2(ωT )) ∩ S̃0(R; L2(ω; W l/2
2 (0, T ))),

S̃l,l/2
ap (R; L2(ωT )) = S̃l

ap(R; L2(ωT )) ∩ S̃0
ap(R; L2(ω; W l/2

2 (0, T ))).

Here Dα
xu = ∂|α|u/∂xα1

1 ∂xα2
2 ∂xα3

3 is the generalized derivative of order |α| =
α1 + α2 + α3 for a multi-index α = (α1, α2, α3) when X = L2(ω), L2(ωT ) or
L2(ω; W 1

2 (0, T )).
Moreover, we define the norm

‖u‖2
S̃

l,l/2
T

≡ ‖u‖2
S̃l(L2(ωT )) + ‖u‖2

S̃0(L2(ω;W l/2
2 (0,T )))

.

We denote by ‖ · ‖, ‖ · ‖Sp and |‖ · |‖T the norms in S2(R; L2(ω)), Sp(R; Lp(ω))
and S2(R; L2(ωT )), respectively, and set

‖Dl
xφ‖2

Lp(Ω) ≡
∑
|α|=l

‖Dα
xφ‖2

Lp(Ω) (1 � p � ∞, l = 2, 3),

∂t = ∂/∂t and ∂xk
= ∂/∂xk.

3. Proof of theorem 1.2

The proof is divided into two parts. In § 3.1 we prove the local-in-time existence in
a similar way to that in [14, 15, 19]. In § 3.2 we prove theorem 1.2 with the help of
a priori estimates.

3.1. Local-in-time existence and uniqueness

3.1.1. Auxiliary lemmas

Let X be a Hilbert space and let ψ ∈ S2
ap(X). Note that for any ξ ∈ R the mean

value

ψξ = M{ψ(x)e−iξx3} ≡ lim
A→∞

1
2A

∫ A

−A

ψ(x)e−iξx3 dx3

exists in X [5, 30], where i =
√

−1.
Let {ξk}k∈N be a sequence in R such that ξk 	= ξk′ for k 	= k′. For each m ∈ N it

is easy to obtain

M
{∥∥∥∥ψ(x3) −

m∑
k=1

ψξk
e−iξkx3

∥∥∥∥
2

X

}
= M{‖ψ(x3)‖2

X} −
m∑

k=1

‖ψξk
‖2

X ,
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and hence
m∑

k=1

‖ψξk
‖2

X � M{‖ψ(x3)‖2
X}.

This inequality implies that for any ε > 0 there correspond at most a finite number
of ξk for which ‖ψξk

‖X > ε. From this fact it follows that every ‖ψξk
‖X(	= 0) belongs

to one of the enumerable set of inequalities

‖ψξk
‖X > 1,

1
m

� ‖ψξk
‖X >

1
m + 1

(m = 1, 2, 3, . . . ),

and each of these inequalities is satisfied by at most a finite number of ξk. There-
fore, the quantity ψξ is a non-zero element of X only for at most countable ξ ∈ R.
We call σ(ψ) = {ξ ∈ R | ‖ψξ‖X 	= 0} the spectrum of ψ, and the formal series∑

ξ∈σ(ψ) ψξeiξx3 the Bohr–Fourier series of ψ, which is written as

ψ ∼
∑

ξ∈σ(ψ)

ψξeiξx3 .

Then the following lemmas hold (see [1, 3, 7, 8]).

Lemma 3.1. If ψ, ψ′ ∈ S2
ap(X) have the same Bohr–Fourier series, then

‖ψ − ψ′‖S2(X) = 0.

Lemma 3.2. For any ψ ∈ S2
ap(X) Parseval’s identity

M{‖ψ(x3)‖2
X} =

∑
ξ∈σ(ψ)

‖ψξ‖2
X

holds.

Let us consider a generalized trigonometric series∑
ξ∈Λ

aξeiξx, (3.1)

where Λ is a countable subset of R and {aξ}ξ∈Λ ⊂ C. Let {γj}j∈N be a basis of Λ [5].
The Bochner–Fejér sum Sm(x) associated with (3.1) is given by

Sm(x) =
(m!)2∑

ν1=−(m!)2
· · ·

(m!)2∑
νm=−(m!)2

(
1 − |ν1|

(m!)2

)
· · ·

(
1 − |νm|

(m!)2

)

× a∗
ξ exp

(
i

m∑
j=1

νj
γj

m!
x

)
,

where, for ξ ∈ Λ,

a∗
ξ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

aξ if
m∑

j=1

νj
γj

m!
= ξ,

0 if
m∑

j=1

νj
γj

m!
	= ξ.
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By introducing an increasing symmetric sequence {Λm}m∈N of Λ converging to Λ,
that is, −Λm = Λm, Λm ⊂ Λm+1 and Λ =

⋃
m Λm, Sm(x) can be written as

Sm(x) =
∑

ξ∈Λm

d
(m)
ξ aξeiξx

with constants d
(m)
ξ satisfying 0 � d

(m)
ξ � 1 and limm→∞ d

(m)
ξ = 1. Note that d

(m)
ξ

depend on ξ and m but not on aξ [8].
We say that F ⊂ Sp

ap(X) is Sp-equi-almost-periodic if, for any ε > 0, there exists
a relatively dense subset Eε of R such that

sup
s∈R

∫ s+1

s

‖f(x + σ) − f(x)‖p
X dx < ε for f ∈ F , σ ∈ Eε.

It is well known that the Riesz–Fischer theorem does not hold for Sp
ap(X) (1 � p <

∞) [2, 20], while the following lemma holds true (see [6, 9]).

Lemma 3.3. A necessary and sufficient condition for a generalized trigonometric
series (3.1) to be a Bohr–Fourier series of a function f ∈ Sp

ap(X) (1 < p < ∞) is
that a sequence of the Bochner–Fejér sums {Sm(x)}m∈N associated with the series
(3.1) is bounded in Sp(X) and is Sp-equi-almost-periodic.

3.1.2. Local-in-time existence and uniqueness

Let us fix the symmetric increasing sequence {Λm}m∈N of Λ ≡ σ(φ0
0) = {ξ ∈ R |

‖φ0
0ξ‖L2(ω) 	= 0} converging to Λ. For ξ ∈ Λm we consider the problem

∂

∂t
((∆′ − ξ2)d(m)

ξ φm
ξ − (I − M){d

(m)
ξ φm

ξ }) − c2(∆′ − ξ2)2d(m)
ξ φm

ξ

=
∑

η+θ=ξ

(∇d(m)
η φm

η × e) · ∇((∆′ − θ2)d(m)
θ φm

θ − (I − M){d
(m)
θ φm

θ })

− (∇(I − M){d
(m)
ξ φm

ξ } × e) · ∇nm,(
∂

∂t
− (∇φm

0 × e) · ∇
)

nm = 0 for x′ ∈ ω, t > 0,

(φm
ξ , nm)|t=0 = (φ0

0ξ, n̄
0
0) for x′ ∈ ω,

(φm
ξ , nm) = (0, 0) for x′ ∈ ∂ω, t > 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.2)

where φ0
0ξ = M{φ0

0e
−iξx3}. The existence of a unique solution (φm

ξ , nm) to (3.2)
can be proven by the method of characteristics and successive approximations. We
define v(x′, t) ≡ −∇φm

0 (x′, t) × e and introduce the characteristic transformation
Πx′

ξ′ : x′ → ξ′ = (ξ1, ξ2) ≡ X(0; x′, t), where X(τ ; x′, t) is the solution curve of the
ordinary differential equations

d
dτ

X(τ ; x′, t) = v(X(τ ; x′, t), τ), X(t; x′, t) = x′ (0 � τ � t). (3.3)

The unique existence of such a solution curve X(τ ; x′, t) (x′ ∈ Ω, 0 � τ � t) of
(3.3) is due to the fundamental existence theorem of ordinary differential equa-
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tions provided that v is suitably smooth. Let x′ = X−1(t; ξ′, 0) be the inverse of
X(0; x′, t) = ξ′. Then (3.3) implies that X−1 is a solution curve of

d
dτ

X−1(τ ; ξ′, 0) = u(ξ′, τ) (3.4)

with u(ξ′, t) ≡ v(X−1(t; ξ′, 0), t) = v(x′, t) whose solution is expressed by

x′ = X−1(t; ξ′, 0) = ξ′ +
∫ t

0
u(ξ′, τ) dτ ≡ Xu(ξ′, t). (3.5)

According to the condition v = 0 on ∂ω, Πx′

ξ′ is a one-to-one mapping from ω̄ and
∂ω onto ω̄ and ∂ω, respectively for each t > 0.

Then (3.2)2 yields ∂ρ̄/∂t = 0 for ρ̄(ξ′, t) ≡ nm(Xu(ξ′, t), t), which is easily solved
as

ρ̄(ξ′, t) = ρ̄(ξ′, 0) = n̄0
0(Xu(ξ′, 0)) = n̄0

0(ξ
′). (3.6)

Using the results above we can transform (3.2) by using the characteristic trans-
formation Πx′

ξ′ and then we can prove the local-in-time existence theorem for the
transformed problem by successive approximations. Finally, we can prove the local-
in-time existence theorem for the problem (3.2) by using the inverse transformations
of Πx′

ξ′ . This proof is similar to that in [17], and hence we omit it.
Then it is obvious that (Sm

φ0 , nm) = (
∑

ξ∈Λm
d
(m)
ξ φm

ξ eiξx3 , nm) is a solution of the
problem(

∂

∂t
− (∇Sm

φ0 × e) · ∇
)

(∆Sm
φ0 − (I − M){Sm

φ0})

+ (∇(I − M){Sm
φ0} × e) · ∇nm = c2∆2Sm

φ0 ,(
∂

∂t
− (∇φm

0 × e) · ∇
)

nm = 0 for x ∈ Ω, t > 0,

Sm
φ0(x, 0) = Sm

φ0
0
(x) for x ∈ Ω,

nm(x′, 0) = n̄0
0(x

′) for x′ ∈ ω,

Sm
φ0(x, t) = ∆Sm

φ0(x, t) = 0 for x ∈ Γ, t > 0,

nm(x′, t) = 0 for x′ ∈ ∂ω, t > 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.7)

where
Sm

φ0
0

=
∑

ξ∈Λm

d
(m)
ξ φ0

0ξe
iξx3 .

In order to obtain a priori estimates of (Sm
φ0 , nm), let us introduce the following

cut-off function ηs:

let s, δ ∈ R, let δ > 1 and let ηs(x3) ∈ C1(R) be a cut-off function
such that ηs ≡ 1 on [s, s + δ], ηs ≡ 0 on (−∞, s − δ] ∪ [s + 2δ, +∞),
0 � ηs(x3) � 1, and |η′

s(x3)| � c/δ, |η′′
s (x3)| � c/δ2 with a constant c

independent of δ and η′
s(x3 + 2δ) = −η′

s(x3) for x3 ∈ [s − δ, s].

The following lemma was obtained in [14].
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Lemma 3.4. Let

f ∈ S1
ap(R; L1(ω × (0, t))), s ∈ R.

Then for any η > 0 there exists δ ∈ R such that the following inequality holds:∣∣∣∣
∫ s+2δ

s−δ

∫ t

0

∫
ω

f(x, τ)η′
s(x3) dx′ dτ dx3

∣∣∣∣ � η.

We shall now prove the following. Since the regularity of the solution is not
sufficient, the arguments of the proof are formal. However, one can justify them by
using the method of difference quotients or mollifiers. Throughout this subsection,
we denote by c a constant, which may differ at each occurrence.

Lemma 3.5. For any t ∈ [0, T ], η > 0, there exists a positive constant δ such that
the following estimates hold:

‖nm(t)‖2
L∞(ω) = ‖n̄0

0‖2
L∞(ω), (3.8)

‖∇Sm
φ0(t)‖2 + ‖(I − M){Sm

φ0}(t)‖2 + c2|‖∆Sm
φ0 |‖2

t

� c(3δ + 1)(‖∇Sm
φ0

0
‖2 + ‖(I − M){Sm

φ0
0
}‖2) + η

≡ c∗, (3.9)

‖∆Sm
φ0(t)‖2 + ‖∇(I − M){Sm

φ0}(t)‖2 + |‖∇∆Sm
φ0 |‖2

t

� c(3δ + 1)(‖∆Sm
φ0

0
‖2 + ‖∇(I − M){Sm

φ0
0
}‖2

+ c∗(1 + (‖n̄0
0‖2

L∞(ω) + c∗4)t)) + η

≡ C∗∗(t). (3.10)

Proof. The solution of (3.7)2 is given by Πx′

ξ′ ρ̄(ξ′, t) via (3.6), which yields (3.8).
Multiplying (3.7)1 by Sm

φ0ηs and integrating over

Ωs ≡ ω × (s − δ, s + 2δ),

we have, by virtue of integration by parts,

1
2

d
dt

(‖∇Sm
φ0(t)

√
ηs‖2

L2(Ωs) + ‖(I − M){Sm
φ0}(t)

√
ηs‖2

L2(Ωs))

+ c2‖∆Sm
φ0(t)

√
ηs‖2

L2(Ωs) =
∫

Ωs

{·}η′
s dx.

Integrating this over [0, t] and taking the supremum over s ∈ R, we obtain (3.9)
with the help of lemma 3.4 and the inequalities

sup
s∈R

‖f‖p
Lp(Ωs) � (3δ + 1)‖f‖p

Sp ,

‖f‖2 � sup
s∈R

‖f
√

ηs‖2
L2(Ωs) for f ∈ Sp(Lp(ω)) (1 � p < ∞).

⎫⎪⎬
⎪⎭ (3.11)

https://doi.org/10.1017/S0308210515000803 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000803


994 S. Kondo

Multiplying (3.7)1 by ∆Sm
φ0ηs and integrating over Ωs, we have, by virtue of

integration by parts and the Gagliardo–Nirenberg and Young inequalities,

1
2

d
dt

(‖∆Sm
φ0(t)

√
ηs‖2

L2(Ωs) + ‖∇(I − M){Sm
φ0}(t)

√
ηs‖2

L2(Ωs))

+ c2‖∇∆Sm
φ0(t)

√
ηs‖2

L2(Ωs)

= −
∫

Ωs

(∇(I − M){Sm
φ0} × e) · ∇nm∆Sm

φ0ηs dx

+
∫

Ωs

(∇Sm
φ0 × e) · ∇(I − M){Sm

φ0}∆Sm
φ0ηs dx +

∫
Ωs

{·}η′
s dx

� c‖∇(I − M){Sm
φ0}(t)‖L2(Ωs)‖nm(t)‖L∞(ω)‖∇∆Sm

φ0(t)‖L2(Ωs)

+ c‖∇∆Sm
φ0(t)‖L2(Ωs)‖∇Sm

φ0(t)‖L4(Ωs)‖(I − M){Sm
φ0}(t)‖L4(Ωs)

+
∫

Ωs

{·}η′
s dx

� (ε1 + ε2)‖∇∆Sm
φ0(t)‖2 + c(3δ + 1)2

(
c∗

ε1
‖n̄0

0‖2
L∞(ω) +

1
ε2

(c∗5 + ‖∆Sm
φ0(t)‖2)

)

+
∫

Ωs

{·}η′
s dx.

Here we used the estimates (3.8), (3.9) and (3.11) and the inequality

‖∇(I − M){Sm
φ0}‖ � ‖∇Sm

φ0‖ + ‖∇M{Sm
φ0}‖ � 2‖∇Sm

φ0‖.

Integrating this over [0, t] and taking the supremum over s ∈ R and taking ε1, ε2
sufficiently small, we obtain (3.9) with the help of lemma 3.4, (3.9) and (3.11).

Since lemma 3.4 enables us to easily obtain the following in the same way as
in [17], we omit the proof.

Lemma 3.6. For any η > 0 there exist positive constants δ and T ∗ such that the
estimates

‖∇∆Sm
φ0(t)‖2 + ‖∆(I − M){Sm

φ0}(t)‖2 + ‖∇nm(t)‖2
L2(ω) + c2|‖∆2Sm

φ0 |‖2
t

� C ′(t)
1 − cC ′(t)t

,

‖Dα
x′nm(t)‖2

L2(ω) �
( ∑

|α′|�|α|
‖Dα′

x′ n̄0
0‖2

L2(ω)

)
Cα(t) ≡ C ′

α(t), |α| = 1, 2, 3,

‖∂tDα
x′nm(t)‖2

L2(ω) � C ′(t)C ′
α+1(t)

1 − cC ′(t)t
, |α| = 0, 1, 2,

hold for any t ∈ [0, T ∗). Here

C ′(t) = (3δ + 1)(‖∇∆Sm
φ0

0
‖2 + ‖∆(I − M){Sm

φ0
0
}‖2

+ ‖∇n̄0
0‖2

L2(ω) + c(C∗∗(t) + c∗C∗∗(t)4 + c∗2 + 1)) + η

and Cα(t) is a monotonically increasing function of t (|α| = 1, 2, 3).
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Now we prove that {(Sm
φ0 , nm, ∂tSm

φ0 , ∂tn
m)}∞

m=1 forms a sequence bounded in
L2(0, T ; S̃4(R; L2(ω)))×L∞(0, T ; W 3

2 (ω))×L2(0, T ; S̃2(R; L2(ω)))×L2(0, T ; W 2
2 (ω))

with the help of lemmas 3.5 and 3.6 and the well-known fact (see [2, 4, 6, 8])

‖Sm
ψ ‖Sp(X) � ‖ψ‖Sp(X), (3.12)

‖Sm
ψ − ψ‖Sp(X) → 0 as m → ∞ (3.13)

for any ψ ∈ Sp
ap(X) defined on a Banach space X (1 � p � ∞).

Indeed, the boundedness of

{(Sm
φ0 , nm, ∂tSm

φ0 , ∂tn
m)}∞

m=1

in L2(0, T ; S̃4(R; L2(ω))) × L∞(0, T ; W 3
2 (ω)) × L2(0, T ; S̃2(R; L2(ω))) × L2(0, T ;

W 2
2 (ω)) followed from ‖Sm

φ0
0
‖2

S̃2 � ‖φ0
0‖2

S̃2 directly derived from (3.12) and lem-
mas 3.5 and 3.6. Hence, there exists a subsequence of {(Sm

φ0 , nm, ∂tSm
φ0 , ∂tn

m)}∞
m=1,

and some function (φ0, n̄0, ∂tφ
0, ∂tn̄

0) satisfies

(Sm
φ0 , ∂tSm

φ0 , ∂tn
m) ⇀ (φ0, ∂tφ

0, ∂tn̄
0)

in L2(0, T ; S̃4(R; L2(ω)))

× L2(0, T ; S̃2(R; L2(ω))) × L2(0, T ; W 2
2 (ω))

weakly as m → ∞,

nm ⇀ n̄0 in L∞(0, T ; W 3
2 (ω)) weakly∗ as m → ∞.

According to the Rellich theorem, we have

(Sm
φ0 , ∂tSm

φ0 , ∂tn
m) → (φ0, ∂tφ

0, ∂tn̄
0)

in L2(0, T ; S̃3(R; L2(ω)))

× L2(0, T ; S̃1(R; L2(ω))) × L2(0, T ; W 1
2 (ω))

strongly as m → ∞.

From these we have

(∇Sm
φ0 × e) · ∇(∆Sm

φ0 − (I − M){Sm
φ0}) ⇀ (∇φ0 × e) · ∇(∆φ0 − φ̃0),

(∇(I − M){Sm
φ0} × e) · ∇nm ⇀ (∇φ̃0 × e) · ∇n̄0,

(∇φm
0 × e) · ∇nm ⇀ (∇φ̄0 × e) · ∇n̄0

in L2(0, T ; S̃0(R; L2(ω)))
weakly as m → ∞.

Therefore, we obtain∫ s+1

s

∫
ωt

{(
∂

∂t
− (∇φ0 × e) · ∇

)
(∆φ0 − φ̃0)

+ (∇φ̃0 × e) · ∇n̄0 − c2∆2φ0
}

ϕ dx′ dt dx3 = 0,

∫
ωt

(
∂

∂t
− (∇φ̄0 × e) · ∇

)
n̄0ϕ dx′ dt = 0 for all ϕ ∈ C∞

0 (Ω).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.14)
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Here ωt ≡ ω × (0, t), s ∈ R and C∞
0 is constituted by all infinitely differentiable

functions with compact support in Ω.
Now we shall prove that (φ0, ∂tφ

0) belongs to L2(0, T ; S̃4
ap(R; L2(ω))) × L2(0, T ;

S̃2
ap(R; L2(ω))) with the help of lemma 3.3. Let

Sm[σ]
φ0 (x, t) = Sm

φ0(x′, x3 + σ, t) and Vm
φ0σ(x, t) = Sm

φ0(x′, x3 + σ, t) − Sm
φ0(x′, x3, t)

for any σ 	= 0. Then Vm
φ0σ satisfies

∂

∂t
(∆Vm

φ0σ − (I − M){Vm
φ0σ}) − (∇Sm[σ]

φ0 × e) · ∇(∆Vm
φ0σ − (I − M){Vm

φ0σ})

− (∇Vm
φ0σ × e) · ∇(∆Sm

φ0 − (I − M){Sm
φ0})

+ (∇(I − M){Vm
φ0σ} × e) · ∇nm = c2∆2Vm

φ0σ for x ∈ Ω, t > 0,

Vm
φ0σ(x, 0) = Vm

φ0
0σ(x) for x ∈ Ω,

Vm
φ0σ(x, t) = ∆Vm

φ0σ(x, t) = 0 for x ∈ Γ, t > 0.

Since this is a linear problem, we can easily obtain the following lemmas with the
help of lemmas 3.5 and 3.6.

Lemma 3.7. For any t ∈ [0, T ], η > 0 there exists a positive constant δ such that
the following estimates hold:

‖∇Vm
φ0σ(t)‖2 + ‖(I − M){Vm

φ0σ}(t)‖2 + c2|‖∆Vm
φ0σ|‖2

t

� C(t, δ)(‖∇Vm
φ0

0σ‖2 + ‖(I − M){Vm
φ0

0σ}‖2) + η,

‖∆Vm
φ0σ(t)‖2 + ‖∇(I − M){Vm

φ0σ}(t)‖2 + |‖∇∆Vm
φ0σ|‖2

t

� C(t, δ)(‖∇Vm
φ0

0σ‖2
S̃1 + ‖(I − M){Vm

φ0
0σ}‖2

S̃1) + η.

Lemma 3.8. For any η > 0 there exist positive constants δ and T ∗ such that the
estimates

‖∇∆Vm
φ0σ(t)‖2 + ‖∆(I − M){Vm

φ0σ}(t)‖2 + c2|‖∆2Vm
φ0σ|‖2

t

� C(t, δ)(‖∇Vm
φ0

0σ‖2
S̃2 + ‖(I − M){Vm

φ0
0σ}‖2

S̃2) + η

hold for any t ∈ [0, T ∗).

Now we prove that {(Sm
φ0 , ∂tSm

φ0)}∞
m=1 is L2(0, T ; S̃4(R; L2(ω))) × L2(0, T ; S̃2(R;

L2(ω)))-equi-almost-periodic with the help of lemmas 3.7, 3.8 and (3.12).
Let

Φ0
0σ(x) = φ0

0(x
′, x3 + σ) − φ0

0(x
′, x3) for any σ 	= 0.

It is easy to see that

Φ0
0σξ = (eiξσ − 1)φ0

0ξ and Vm
φ0

0σ(x) = Sm
Φ0

0σ
(x).

Then (3.12) yields ‖Vm
φ0

0σ
‖2

S̃2 � ‖Φ0
0σ‖2

S̃2 . From this we find that {(Sm
φ0 , ∂tSm

φ0)}∞
m=1

is L2(0, T ; S̃4(R; L2(ω))) × L2(0, T ; S̃2(R; L2(ω)))-equi-almost-periodic by virtue of
lemmas 3.7 and 3.8.
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Lemma 3.3 implies that (φ0, ∂tφ
0) belongs to L2(0, T ; S̃4

ap(R; L2(ω))) × L2(0, T ;
S̃2

ap(R; L2(ω))). Moreover, (φ0, ∂tφ
0) is unique in the same class according to lemma

3.1. From these results and (3.14), we find that (φ0, n̄0) is a unique solution of
problem (1.8). Thus, the proof of local-in-time existence and uniqueness is complete.

3.2. A priori estimates

Let T be an arbitrary positive number and let (φ0, n̄0) be a solution of problem
(1.8) belonging to (L2(0, T ; S̃4

ap(R; L2(ω))) ∩ W 1
2 (0, T ; S̃2

ap(R; L2(ω)))) × (L∞(0, T ;
W 3

2 (ω))∩W 1
2 (0, T ; W 2

2 (ω))). Throughout this subsection, we denote by c a constant,
which may differ at each occurrence. We can obtain the following in the same way
as in lemmas 3.5 and 3.6.

Lemma 3.9. For any t ∈ [0, T ], η > 0 there exists a positive constant δ such that
the following estimates hold

‖n̄0(t)‖2
L∞(ω) = ‖n̄0

0‖2
L∞(ω),

‖∇φ0(t)‖2 + ‖φ̃0(t)‖2 + c2|‖∆φ0|‖2
t � c(3δ + 1)(‖∇φ0

0‖2 + ‖φ̃0
0‖2) + η

≡ c∗,

‖∆φ0(t)‖2 + ‖∇φ̃0(t)‖2 + |‖∇∆φ0|‖2
t � c(3δ + 1)(‖∆φ0

0‖2 + ‖∇φ̃0
0‖2

+ c∗(1 + (‖n̄0
0‖2

L∞(ω) + c∗4)t)) + η

≡ C∗∗(t).

Lemma 3.10. For any η > 0 there exist positive constants δ and T ∗ such that the
estimates

‖∇∆φ0(t)‖2 + ‖∆φ̃0(t)‖2 + ‖∇n̄0(t)‖2
L2(ω) + c2|‖∆2φ0|‖2

t � C ′(t)
1 − cC ′(t)t

,

‖Dα
x′ n̄0(t)‖2

L2(ω) �
( ∑

|α′|�|α|
‖Dα′

x′ n̄0
0‖2

L2(ω)

)
Cα(t) ≡ C ′

α(t), |α| = 1, 2, 3,

‖∂tDα
x′ n̄0(t)‖2

L2(ω) � C ′(t)C ′
α+1(t)

1 − cC ′(t)t
, |α| = 0, 1, 2,

hold for any t ∈ [0, T ∗). Here

C ′(t) = (3δ+1)(‖∇∆φ0
0‖2+‖∆φ̃0

0‖2+‖∇n̄0
0‖2

L2(ω)+c(C∗∗(t)+c∗C∗∗(t)4+c∗2+1))+η

and Cα(t) is a monotonically increasing function of t (|α| = 1, 2, 3).

By standard arguments based upon the a priori estimates in lemmas 3.9 and 3.10,
the solution (φ0, n̄0) established above can be extended up to T ∗ indicated in the
proof of lemma 3.10. In the same way as in [19], we can easily prove the Stepanov
almost-periodicity of the solution. Thus, the proof of theorem 1.2 is complete.

4. Proof of theorem 1.3

Let T � = min(T, T ∗), where T and T ∗ are found in proposition 1.1 and theorem 1.2,
respectively. Subtracting (1.6) from (1.5), and setting φ ≡ φε −φ0 and n ≡ nε −n0,
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we have(
∂

∂t
− (∇φε × e) · ∇

)
(∆φ − n) − (∇φ × e) · ∇(∆φ0 − n0) = c2∆2φ,

ε

(
∂

∂t
− (∇φε × e) · ∇

)
n = −ε(I − M)

{(
∂

∂t
− (∇φ0 × e) · ∇

)
n0

}

− 1
n∗

∂2(φ − n)
∂x2

3
+ ε(∇φ × e) · ∇n0

for x ∈ Ω, 0 < t < T �,

φ(x, 0) = φε
0 − φ0

0, n(x, 0) = nε
0 − n0

0 for x ∈ Ω,

φ(x, t) = ∆φ(x, t) = n(x, t) = 0 for x ∈ Γ, 0 < t < T �.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.1)

For the solution (φε, nε) of problem (1.4), (1.5), the following a priori estimates
are established in [15].

Lemma 4.1. Let c� > 0 and ε ∈ (0, c�]. For any t ∈ [0, T ], η > 0 there exists a
positive constant δ independent of ε such that the following estimates hold:

‖∇φε(t)‖2 + ‖nε(t)‖2 + c2|‖∆φε|‖2
t � c(3δ + 1)(‖∇φε

0‖2 + ‖nε
0‖2) + η,

|‖∂x3(φ
ε − nε)|‖2

t � εc((3δ + 1)(‖∇φε
0‖2 + ‖nε

0‖2) + η).

Here c is a positive constant independent of ε and δ.

Lemma 4.2. Let c� > 0 and ε ∈ (0, c�]. For any η > 0 there exist positive constants
δ and T independent of ε such that the estimate

ε(‖∇nε(t)‖2 + ‖∆φε(t)‖2 + ‖∆nε(t)‖2 + ‖∇∆φε(t)‖2)

+ εc2(|‖∇∆φε|‖2
t + |‖∆2φε|‖2

t ) + |‖∂x3∇(φε − nε)|‖2
t + |‖∂x3∆(φε − nε)|‖2

t

� ε

((
1

S∗
0 + ‖∇φε

0‖2 + ‖nε
0‖2 + η

− C(δ)t
)−1

− (‖∇φε
0‖2 + ‖nε

0‖2 + η)
)

holds for any t ∈ [0, T ). Here c is a positive constant independent of ε and δ, and
C(δ) is a positive constant depending increasingly on δ and S∗

0 ≡ (3δ+1)(‖∇nε
0‖2 +

‖∆φε
0‖2 + ‖∆nε

0‖2 + ‖∇∆φε
0‖2 + c(‖∇φε

0‖2 + ‖nε
0‖2 + 1)) + η.

From lemmas 3.9, 3.10, 4.1 and 4.2 we can obtain uniform a priori estimates for
(φ, n) with respect to resistivity that are necessary to prove theorem 1.3. In order
to get a priori estimates, we use lemma 3.4 and the following lemmas, which are
proved in [14,15].

Lemma 4.3. Let ψ ∈ S2
ap(R; L2(ω)), ∂x3ψ ∈ S2

ap(R; L2(ω)), M{ψ(x)} = 0 in L2(ω)
and s, δ ∈ R, δ > 1. Then∫ s+2δ

s−δ

‖ψ(x3)‖2
L2(ω) dx3 � c

∫ s+2δ

s−δ

‖∂x3ψ(x3)‖2
L2(ω) dx3.

Here c is a positive constant independent of s and δ.
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The following are the generalization of lemma 3.4 to the case of Stepanov almost-
periodic functions depending on a parameter.

Lemma 4.4. Let c� > 0 and ε ∈ (0, c�]; fε depends on ε, fε ∈ S1
ap(R; L1(ω×(0, t)));

s ∈ R. Assuming that there exists a positive constant M independent of ε such that
the inequality

−M < Rε(s, t) ≡
∫ s+2δ

s−δ

∫ t

0

∫
ω

fε(x, τ)η′
s(x3) dx′ dτ dx3

holds, for any η > 0 there then exists a positive constant δ independent of ε such
that the inequality |Rε(s, t)| � η holds.

Corollary 4.5. Let c�, c∗ > 0, ε ∈ (0, c�], fε and gε depend on ε, fε ∈ S1
ap(R;

L1(ω × (0, t))), gε ∈ L1(0, t), |gε(t)| � c∗ and s ∈ R. Assuming that there exists a
positive constant M independent of ε such that the inequality

−M < Rε(s, t) ≡
∫ t

0

(
gε(τ)

∫ s+2δ

s−δ

∫
ω

fε(x, τ)η′
s(x3) dx′ dx3

)
dτ

holds, for any η > 0 there then exists a positive constant δ independent of ε such
that the inequality |Rε(s, t)| � η holds.

Again, as in § 3.1, the following arguments are formal. However, they are justified
by the method of difference quotients or mollifiers. We denote by c a constant
independent of t and by C(t) a constant dependent on both t and the bounds of
φε, nε, φ0, n0, which may differ at each occurrence. We now prove the following.

Lemma 4.6. Let c� > 0 and ε ∈ (0, c�]. For any t ∈ [0, T �], η > 0 there exists a
positive constant δ independent of ε such that the following estimate holds:

ε(‖∇φ(t)‖2 + ‖n(t)‖2 + |‖∆φ|‖2
t ) + |‖∂x3(φ − n)|‖2

t

� ε(C(t, δ)(‖∇φ(0)‖2 + ‖n(0)‖2 + ε) + η). (4.2)

Proof. Multiplying (4.1)1 by φηs and integrating over Ωs, we have

1
2

d
dt

‖∇φ(t)
√

ηs‖2
L2(Ωs) + c2‖∆φ(t)

√
ηs‖2

L2(Ωs) +
∫

Ωs

(∂t − (∇φε × e) · ∇)nφηs dx

=
∫

Ωs

(∇φε × e) · ∇φ∆φηs dx +
∫

Ωs

{·}η′
s dx

� ε1‖∆φ(t)‖2
L2(Ωs) +

c

ε1
‖∇φε(t)‖2

L∞(Ωs)‖∇φ(t)‖2
L2(Ωs) +

∫
Ωs

{·}η′
s dx.

(4.3)

Here we used integration by parts and Schwarz’s inequality.
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Similarly, multiplying (4.1)2 by (φ̃ − ñ)ηs and integrating over Ωs, we have

ε

2
d
dt

‖n(t)
√

ηs‖2
L2(Ωs) +

∥∥∥∥∂x3(φ̃ − ñ)(t)
√

ηs

n∗

∥∥∥∥
2

L2(Ωs)

− ε

∫
Ωs

(∂t − (∇φε × e) · ∇)nφηs dx

= ε

∫
Ωs

(∂t − (∇φε × e) · ∇)n(φ̄ − n̄)ηs dx −
∫

Ωs

1
n∗ ∂x3(φ̃ − ñ)(φ̃ − ñ)η′

s dx

+ ε

∫
Ωs

(I − M){(∂t − (∇φ0 × e) · ∇)n0}(φ̃ − ñ)ηs dx

− ε

∫
Ωs

(∇φ × e) · ∇n0(φ̃ − ñ)ηs dx

� ε2c

∥∥∥∥
∫ x3

c

(I − M){(∂t − (∇φ0 × e) · ∇)n0} dx3

∥∥∥∥
2

L2(Ωs)

+
c

δ

∥∥∥∥∂x3(φ̃ − ñ)(t)

√
1
n∗

∥∥∥∥
2

L2(Ωs)
+ ε

∫
Ωs

{·}η′
s dx

+ ε‖∇φ(t)‖L2(Ωs)‖∇n0(t)‖L∞(Ωs)(‖φ(t)‖L2(Ωs) + ‖n(t)‖L2(Ωs)). (4.4)

Here we use lemma 4.3 and M{(∂t − (∇φε × e) · ∇)n} = M{(∇φ × e) · ∇n0}.
Adding (4.4) and (4.3) multiplied by ε yields

ε

(
d
dt

(‖∇φ(t)
√

ηs‖2
L2(Ωs) + ‖n(t)

√
ηs‖2

L2(Ωs)) + c2‖∆φ(t)
√

ηs‖2
L2(Ωs)

)

+
∥∥∥∥∂x3(φ̃ − ñ)(t)

√
ηs

n∗

∥∥∥∥
2

L2(Ωs)

� εc

(
1
ε1

‖∇φε(t)‖2
L∞(Ωs) + ‖∇n0(t)‖L∞(Ωs)

)
× (‖∇φ(t)‖2

L2(Ωs) + ‖n(t)‖2
L2(Ωs))

+ ε2c‖(I − M){(∂t − (∇φ0 × e) · ∇)n0}‖L2(Ωs) + εε1‖∆φ(t)‖2
L2(Ωs)

+
c

δ

∥∥∥∥∂x3(φ̃ − ñ)(t)

√
1
n∗

∥∥∥∥
2

L2(Ωs)
+ ε

∫
Ωs

{·}η′
s(x3) dx. (4.5)

Setting

S(t) ≡ ‖∇φ(t)‖2 + ‖n(t)‖2,

Iε(x, t) ≡ ε

∫ t

0

∫
Ωs

{·}η′
s(x3) dxdτ,

integrating (4.5) over [0, t], taking the supremum over s ∈ R and taking δ sufficiently
large and ε1 sufficiently small, we have

S(t) − sup
s∈R

Iε(x, t) � c(3δ + 1)
{ ∫ t

0
S(τ) dτ + S(0) + ε

}
. (4.6)

https://doi.org/10.1017/S0308210515000803 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000803


Almost-periodic solution of HW equations 1001

Here we used (3.11). Similarly, we obtain

−Iε(x, t) � c(3δ + 1)
{ ∫ t

0
S(τ) dτ + S(0) + ε

}
. (4.7)

We shall prove that there exists a positive constant M independent of ε such
that −M < Iε(x, t) holds. Now we consider the following cases:

(i) sups∈R Iε(x, t) � 0, and

(ii) sups∈R Iε(x, t) > 0, Iε(x, t) � − 1
2 sups∈R Iε(x, t).

Let α > 2 and add (4.6) to (4.7) multiplied by α. Then

S(t) − α∗Iε(x, t) � c(1 + α)(3δ + 1)
{ ∫ t

0
S(τ) dτ + S(0) + ε

}
. (4.8)

Here α∗ ≡ α in case (i) and α∗ ≡ α − 2 in case (ii). Let C(δ) ≡ c(3δ + 1). Then
Gronwall’s lemma yields∫ t

0
S(τ) dτe−(1+α)C(δ)t �

∫ t

0
{(1 + α)C(δ)(S(0) + ε) + α∗Iε(x, t)}e−(1+α)C(δ)τ dτ

≡
∫ t

0
(1 + α)C(δ)(S(0) + ε)e−(1+α)C(δ)τ dτ + Rε(s, t).

(4.9)

Since ε ∈ (0, c�] � 0 and
∫ t

0 S(τ) dτe−(1+α)C(δ)t � 0, we can apply corollary 4.5
to Rε(s, t). Then we find that for any η > 0 there exists a positive constant δ
independent of ε such that |Rε(s, t)| < η holds. Hence, (4.9) yields∫ t

0
S(τ) dτ + S(0) + ε � (η + S(0) + ε)e(1+α)C(δ)t

From this and (4.7) we have −Iε(x, t) � C(δ)(η + S(0) + ε)e(1+α)C(δ)t. If

sup
s∈R

Iε(x, t) > 0, Iε(x, t) > −1
2

sup
s∈R

Iε(x, t),

we can obtain the same estimate by using the above result. Above all, we can apply
lemmas 4.4 to Iε(x, t). For any η > 0 there exists a positive constant δ independent
of ε such that |Iε(x, t)| < η holds. Hence, (4.6) yields

S(t) � c(3δ + 1)
{ ∫ t

0
S(τ) dτ + S(0) + ε

}
+ η.

From this inequality, (4.5) and Gronwall’s lemma, we have (4.2).

Since lemmas 4.3 and 4.4 and corollary 4.5 enable us to easily obtain the following
lemma in the same way as in [17], we omit its proof.
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Lemma 4.7. Let c� > 0 and ε ∈ (0, c�]. For any t ∈ [0, T �], η > 0 there exists a
positive constant δ independent of ε such that the following estimates hold:

ε(‖∆φ(t)‖2 + ‖∇n(t)‖2 + |‖∇∆φ|‖2
t ) + |‖∂x3∇(φ − n)|‖2

t

� ε(C(t, δ)(‖∇φ(0)‖2
S̃1 + ‖n(0)‖2

S̃1) + ε + η),

ε(‖∇∆φ(t)‖2 + ‖∆n(t)‖2 + |‖∆2φ|‖2
t ) + |‖∂x3∆(φ − n)|‖2

t

� ε(C(t, δ)(‖∇φ(0)‖2
S̃2 + ‖n(0)‖2

S̃2) + ε + η),

|‖∂τ (∆φ − n)|‖2
t � C(t, δ)(‖∇φ(0)‖2

S̃2 + ‖n(0)‖2
S̃2 + ε) + η,∫ t

0
‖∂τM{n}(τ)‖2

L2(ω)dτ � C(t, δ)(‖∇φ(0)‖2
S̃1 + ‖n(0)‖2

S̃1 + ε) + η.

From lemmas 4.6 and 4.7, it is easy to see that if the initial data (φε
0, n

ε
0) →

(φ0
0, n

0
0) as ε → 0 in S̃3(R; L2(ω)) × S̃2(R; L2(ω)), then, as ε → 0, (φε, nε) →

(φ0, n0) in L2(0, T �; S̃4(R; L2(ω))) × S̃2,0(R; L2(ωT �)), ∆φε − nε → ∆φ0 − n0 in
S̃0,1(R; L2(ωT �)) and n̄ε → n̄0 in W 0,1

2 (ωT �). Thus, the proof of theorem 1.3 is
complete.
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