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We use the method of the moving plane (MMP) to obtain necessary and sufficient
conditions for the radial symmetry of positive solutions of the following semi-linear
elliptic equation with singular nonlinearity:

∆u − 1
uν

= 0 in R
n, n � 2,

where ν > 0. In order to apply the MMP, it is crucial to obtain the asymptotic
expansion of u at ∞.

1. Introduction

In this paper we investigate the symmetry and local behaviour of non-negative
solutions of the equation

∆u − 1
uν

= 0, x ∈ R
n, n � 2, ν > 0. (I)

We call u a non-negative (positive) solution of (I) if u ∈ C0(Rn), u � 0(u > 0),
u �≡ 0 in R

n and u satisfies (I) a.e. in R
n. (Clearly, u ≡ 0 is not a solution of (I).)

Problem (I) arises in the study of steady states of thin films. Equations of the
type

ut = −∇ · (f(u)∇∆u) − ∇ · (g(u)∇u) (1.1)

have been used to model the dynamics of thin films of viscous fluids, where z =
u(x, t) is the height of the air–liquid interface. The zero set Σu = {u = 0} is the
liquid–solid interface and is sometimes called the set of ruptures. Ruptures play a
very important role in the study of thin films. The coefficient f(u) reflects surface
tension effects; a typical choice is f(u) = u3. The coefficient of the second-order term
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can reflect additional forces such as gravity g(u) = u3, van der Waals interactions
g(u) = um, m < 0. For the background to (1.1), we refer the reader to [2,3,11–13,16]
and the references therein.

In general, let us assume that f(u) = up, g(u) = um, where p, m ∈ R. Then if we
consider the steady state of (1.1), we see that u satisfying

up∇∆u + um∇u = C

is a steady state of (1.1), where C = (C1, C2, . . . , Cn) is some constant vector. By
assuming that C = 0 (which prevents linear terms on x), we obtain

∆u +
uq

q
− C = 0 in Ω, (1.2)

where q = m − p + 1 and C is some constant. (Here we have assumed that q �= 0.
If q = 0, we have to replace uq/q by log u.) Note that solutions to (I) are steady
states of (1.1) but the reverse is not true. For thin films under van der Waals forces,
we have f(u) = u3, g(u) = um, q = m − 2 < −2. The one-dimensional steady-state
problem of (1.1) has been studied thoroughly in [11,13] and the references therein.
It is found that ruptures never occur in the one-dimensional case. On the other
hand, numerical works on van der Waals driven rupture for (1.1) in two dimensions
suggests that the rupture can occur in points [4, 10] or rings [16–18].

In this paper, we consider problem (1.2) in R
n for n � 2 and assume that the

constant C = 0. Problem (1.2) becomes (I) with a simple scale of u. It is easy to
see that if u ∈ C0

loc(R
n \ Σu), then u ∈ C∞

loc(R
n \ Σu).

The structure of non-negative solutions of (I) can be complicated since if u is a
non-negative solution of (I), then the rupture set Σu can be non-empty and with a
positive Hausdorff dimension [9]. In this paper we are interested in the symmetry
property of positive solutions u of (I), i.e. Σu = ∅. Note that Σu can contain at
most one element if u is radially symmetric. Indeed, if Σu contains more than
one element, then we claim that u cannot be radially symmetric about some point
x0 ∈ R

n. In fact, suppose on the contrary that we have a radially symmetric non-
negative solution u ∈ C2(Rn) of (I) with z0, z1 ∈ Σu, z0 �= z1. We assume that u
is radially symmetric about a point x0. Then there are three cases here: x0 = z0,
x0 = z1 and x0 �= zi, i = 0, 1. Now, setting r = |x − x0|, we easily find that
u(x) := u(r) satisfies

(rn−1u′)′ = rn−1u−ν , 0 < r < ∞. (1.3)

This implies that u′(r) � 0 for r ∈ (0,∞). Now, for the first case, we have u(r1) = 0
with r1 := |z1 −x0|, and hence u ≡ 0 in Br1(x0), which is impossible. We can derive
contradictions for other two cases similarly. This implies that our claim holds. On
the other hand, the same arguments imply that if Σu = {a single point}, then u
must be radially symmetric about this point.

Define
α =

2
ν + 1

, λ = [α(n − 2 + α)]−1/(ν+1). (1.4)

It is easy to see that
u0(x) = λ|x|α (1.5)
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is a non-negative radially symmetric solution of (I). For this solution, it is clear
that Σu0 = {0} and |x|−αu0(x) = λ. It may be seen that the limit

lim
|x|→+∞

|x|−αu(x) = λ (1.6)

plays an important role in the radially symmetric properties of non-negative solu-
tions of (I).

Not all solutions of (I) with a single rupture point are radially symmetric. In fact,
let n = 2 and ν = 3; then the solution

uε(x) =
√

2|x|(ε(cos 1
2θ)2 + ε−1(sin 1

2θ)2)1/2, ε > 0, (1.7)

satisfies (I) and has one single point rupture, 0. Note that uε is not radially sym-
metric when ε �= 1.

Our main goal of this paper is to find necessary and sufficient conditions for
which solutions of (I) are radially symmetric.

It is very interesting to see that symmetry properties of positive solutions of (I)
are related to those of positive solutions of the Lane–Emden equation with positive
supercritical exponent

∆u + up = 0, x ∈ R
n, p >

n + 2
n − 2

. (1.8)

The symmetry and local behaviour of positive C2-solutions of (1.8) were studied
by Zhou [19]. He showed that for n � 3 and (n + 2)/(n − 2) < p < m, where

m =

{
∞, n = 3,

(n + 1)/(n − 3), n > 3,

a solution u of (1.8) is radially symmetric about some point, provided that u has
the following decay:

u(x) = O(|x|−2/(p−1)) at +∞. (1.9)

In a more recent paper [8], Guo extended Zou’s result to the cases when m �
p < ∞ if n = 4 and p � n/(n − 4) if n � 5. More precisely, he showed that, for
n � 5 and p � n/(n − 4), a non-negative C2 solution of (1.8) is radially symmetric
about some point in R

n if and only if lim|x|→+∞ |x|2/(p−1)u(x) = λ for some λ > 0.
Furthermore, for n � 4 and (n+1)/(n−3) � p < n/(n−4), u is radially symmetric
about some point in R

n if and only if

lim
|x|→+∞

|x|2/(p−1)u(x) = λ and lim
|x|→+∞

|x|1−(µ+n)/2(|x|2/(p−1)u(x) − λ) = 0,

where µ = 4/(p − 1) + 4 − 2n.
Unlike those in [8,19], positive solutions of (I) do not decay as |x| → ∞. In fact,

because of the negative power of u, u grows as |x| → +∞. We will establish strong
asymptotic estimates for the positive solutions of (I) satisfying (1.6), which are good
enough to obtain their radially symmetric properties.

We remark that the negative exponent u−ν can be considered as negative super-
critical in R

n, n � 2. In [1], it is found that, in R, u−ν is subcritical if ν < 3, critical
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if ν = 3 and supercritical if ν > 3. Thus, all u−ν with ν > 0 can be considered
supercritical in R

n, n � 2.
In this paper, we will use the devices introduced in [8, 19]. In particular, our

arguments in the proofs below are closely related to those of [8]. The key ingredient
of our arguments in this paper is the powerful Alexandroff–Serrin method of the
moving plane (MMP), which was first developed by Serrin in partial differential
equation theory, later extended and generalized by Gidas et al . [6, 7] and used by
many authors. In contrast to the case of bounded domains or subcritical (critical)
nonlinearities, where the Hopf boundary lemma or the Kelvin transform is available
to start the MMP, appropriately strong asymptotic estimates of solutions at ∞,
replacing boundary lemmas or the Kelvin transform and providing a starting point
for the method, are crucial for the moving-plane procedure in the case of the entire
space with supercritical nonlinearities.

Define µ = 2(α + n − 2). We will establish the strong asymptotic estimates for
positive solutions u(x) of (I) satisfying (1.6) at ∞ for the following two cases below:

µ − n � 0, (1.10 a)
−1 < µ − n < 0. (1.10 b)

It is easily seen that (1.10 a) holds if n � 4 and ν > 0; n = 3 and 0 < ν � 3;
n = 2 and 0 < ν � 1, (1.10 b) holds if n = 3 and ν > 3; n = 2 and 1 < ν < 3.
For the case in (1.10 a), the asymptotic estimate (1.6) of u is good enough for us
to obtain its symmetry by the moving-plane method. For the case in (1.10 b), the
asymptotic estimate (1.6) of u is not good enough to do so. We need to obtain
better asymptotic estimates for it.

Our main global results read as follows.

Theorem 1.1. Let n � 2 be an integer, let ν > 0 and let u(x) be a positive C0-
solution of (I). Suppose that

µ − n � 0, i.e.

⎧⎪⎨
⎪⎩

n � 4, ν > 0,

n = 3, 0 < ν � 3,

n = 2, 0 < ν � 1.

(1.11)

Then u is radially symmetric about some point x0 ∈ R
n if and only if

lim
|x|→+∞

|x|−αu(x) = λ. (1.12)

Theorem 1.2. Assume that n = 3 and ν > 3 or n = 2 and ν > 1 (note that
−2 < µ−n < 0), u(x) is a positive C0-solution of (I). Then u is radially symmetric
about some point x0 ∈ R

n if and only if

lim
|x|→+∞

|x|−αu(x) = λ (1.13)

and

lim
|x|→+∞

|x|1+(µ−n)/2(|x|−αu(x) − λ) = 0. (1.14)

https://doi.org/10.1017/S0308210505001083 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210505001083


Symmetry of non-negative solutions with singular nonlinearity 967

We remark that in [19], it is only assumed that

u(x) = O(|x|−2/(p−1)) at +∞.

Here we need the exact asymptotics. Example (1.7) shows that it is not enough
merely to assume that

u(x) = O(|x|2/(ν+1)) at +∞.

Example (1.7) also implies that the assumption (1.14) is needed in theorem 1.2 at
least for some ν.

However, in the case n = 2, ν �= 3, we can show the following result.

Theorem 1.3. If u(x) satisfies (I) and the growth condition

u(x) � C|x|α at +∞, (1.15)

then (1.6) holds.

The radially symmetric solutions of (I) can be classified according to the following
theorem.

Theorem 1.4. All radially symmetric solutions of (I) can be classified as follows:

(a) the first solution is a solution with a single rupture,

u0(r) =
(

ν + 1
2

)2/(ν+1)

r2/(ν+1);

(b) the other solutions form a one-parameter family {uη}η>0 with uη(r), r = |x|,
strictly increasing in r, uη(0) = η > 0, uη(r) = ηu1(η−(ν+1)/2r) and, as r →
+∞,

r−2/(ν+1)uη(r) → λ.

As far as we know, our result is the first of its kind in dealing with radial symmetry
of non-negative solutions for semi-linear elliptic equations with negative power. This
paper is organized as follows. In §§ 2 and 3 we provide some key inequalities for the
difference v(y) = r−αu(x) − λ, y = x/r2. In §§ 4 and 5 we study the Lipschitz
and the Hölder continuities of v near 0. In § 6 we provide a key auxiliary lemma
(lemma 6.2), which is needed for using the MMP. In § 7, we prove the necessary
parts of theorems 1.1–1.4. Finally, in § 8, we use the MMP to finish the proofs of
sufficient parts of theorems 1.1 and 1.2.

2. Preliminaries

Let n � 2 be a positive integer and let R
n be the n-Euclidean space. For ν > 0,

consider the equation
∆u = u−ν , x ∈ R

n. (2.1)

We are interested in non-negative C0-solutions u of (2.1) satisfying (1.6).
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We begin with notation and definitions. Let

α =
2

ν + 1
, λ = [α(α + n − 2)]−1/(ν+1). (2.2)

Throughout the paper, we shall assume that ν > 0 and

lim
|x|→∞

|x|−αu(x) = λ. (2.3)

In what follows, we define by M = M(·) positive constants, depending on the
arguments inside the parentheses, as well as the structural numbers n and ν, which
may vary line from line to line.

For any function u(x) on R
n, we introduce the Kelvin-type transform

v(y) = r−αu(x) − λ, y =
x

r2 , r = |x| > 0. (2.4)

Equation (2.1) is converted with singular coefficients at the origin under (2.4). In
particular, study the new equation near the origin.

Lemma 2.1. Let u be a non-negative solution of (2.1), and let v be given by (2.4).
Suppose that (2.3) holds. Then v satisfies

∆v − µy · ∇v

s2 +
µv

s2 − f(v)
s2 = 0, y ∈ R

n \ {0}, (2.5)

where s = |y| and

µ = 2(α + n − 2), f(t) = (t + λ)−ν − λ−ν + νλ−(ν+1)t.

Note that f is real analytic at t = 0 and satisfies

f(0) = f ′(0) = 0, f ′′(0) = ν(ν + 1)λ−(ν+2) > 0.

Moreover, for any integer τ � 0 there exists a constant M = M(u) > 0, s0 =
s0(u) > 0, such that

lim
s→0

v(y) = 0, |∇τv(y)| � M

sτ
for s = |y| � s0. (2.6)

Proof. Using (2.1) and (2.4), equation (2.5) is obtained by direct calculation. The
estimates (2.6) can be obtained by arguments identical to those in the proof of [19,
lemma 2.1].

By lemma 2.1, we are reduced to studying solutions of (2.5) satisfying (2.6).
Therefore, in the following, we shall assume that (2.6) is satisfied.

We introduce the function

w(s, θ) = v(s, θ) − v̄(s), (2.7)

where

v̄(s) =
1

ωn

∫
Sn−1

v(s, θ) dθ, ωn = |Sn−1|.
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Lemma 2.2. Let v be a solution of (2.5) and let ∆θ be the Laplace–Beltrami operator
on Sn−1. Then v, v̄ and w respectively satisfy

v′′ +
∆θv

s2 − µ − n + 1
s

v′ +
µv

s2 − f(v)
s2 = 0, (2.8)

v̄′′ − µ − n + 1
s

v̄′ +
µv̄

s2 − f(v)
s2 = 0, (2.9)

w′′ +
∆θw

s2 − µ − n + 1
s

w′ +
µw

s2 − f(v) − f(v)
s2 = 0, (2.10)

where the prime denotes the derivative with respect to the radius s.

Proof. Equation (2.8) follows directly from (2.5) and

∆v = v′′ +
∆θv

s2 +
n − 1

s
v′, ∇v · y = v′s.

Integrating (2.8) over Sn−1 yields (2.9) since

∆θv =
1

ωn

∫
Sn−1

∆θv(s, θ) dθ = 0.

Finally, subtracting (2.9) from (2.8) gives (2.10).

3. A fundamental inequality

The Lipschitz continuity of w at the origin is crucial in proving the expansion of u
near ∞, which can be used to obtain the symmetry of u by the MMP. To this end,
we first obtain the Hölder-type estimate for v. The function

W (s) =
( ∫

Sn−1
w2(s, θ) dθ

)1/2

(3.1)

plays an important role in achieving our goal.

Theorem 3.1. Let W be given by (3.1). There then exist s0 > 0 and a positive
constant K = K(v, ν, n, s0) such that, for 0 < s < s0,

W (s) �
{

Ks1+µ−n if − 1 < µ − n < 0,

Ks if µ − n � 0.
(3.2)

The proof of this theorem is related to that of [8, theorem 3.1]. We first obtain
the following lemma.

Lemma 3.2. For any 0 < ε < min{ 1
2 (1+µ−n), 1

2}, there exist δ̂ = 1+µ−n−ε > 0
for −1 < µ−n < 0, δ̂ = 1− ε for µ−n � 0, s0 = s0(ε) > 0 and a positive constant
K = K(v, δ̂, s0) such that

W (s) � Ksδ̂, 0 < s < s0. (3.3)
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Proof. Let g(v) = f(v) − f(v). Then it is known from (2.10) that w satisfies

w′′ +
∆θw

s2 − µ − n + 1
s

w′ +
µw

s2 − g(v)
s2 = 0. (3.4)

It is known from [14] that the eigenvalues of the problem

−∆θQ = σQ, θ ∈ Sn−1,

are
σk = k(n + k − 2), k � 0,

with multiplicity

mk =
(n − 3 + k)!(n − 2 + 2k)

k!(n − 2)!
.

In particular, we have

σ0 = 0, m0 = 1, Q0 ≡ 1,

σ1 = n − 1, m1 = n, Qi(θ) = xi, 1 � i � n,

σ2 = 2n.

Here the Qi(θ) denote the associated eigenvectors. Therefore, if u ∈ L2(Sn−1) is
orthogonal to Q0, i.e. ū = 0, we have∫

Sn−1
|∇θu|2 dθ � (n − 1)

∫
Sn−1

u2 dθ.

Moreover, if u is orthogonal to Q0, Qi, i = 1, 2, . . . , n, we have∫
Sn−1

|∇θu|2 dθ � 2n

∫
Sn−1

u2 dθ.

Since w(s, ·) ∈ L2(Sn−1) and w̄ = 0, we have w(s, θ) = w1(s, θ) + w2(s, θ), where
w1(s, θ) =

∑n
i=1 wi(s)Qi(θ), {Q1(θ), . . . , Qn(θ)} is the basis of the eigenspace H1

of −∆Sn−1 corresponding to the eigenvalue n − 1, w2(s, ·) ∈ H⊥
1 . Now, it follows

from (3.4) that wi(s) satisfies

w′′
i (s) − µ − n + 1

s
w′

i(s) +
µ − n + 1

s2 wi(s) − gi(s)
s2 = 0 (3.5)

for i = 1, 2, . . . , n, where

gi(s) =
∫

Sn−1
f ′(ξ(s, θ))

n∑
j=1

wj(s)Qj(θ)Qi(θ) dθ +
∫

Sn−1
f ′(ξ(s, θ))w2(s, θ)Qi(θ) dθ,

and ξ(s, θ) = ηv(s, θ) + (1 − η)v̄, η ∈ (0, 1) (see [8]).
Let t = − ln s, zi(t) = wi(s), ξ̃(t, θ) = ξ(s, θ) and z2(t, θ) = w2(s, θ). Then zi(t)

satisfies
z′′
i (t) + (µ − n + 2)z′

i(t) + (µ − n + 1)zi(t) − g̃i(t) = 0, (3.6)

where

g̃i(t) =
∫

Sn−1
f ′(ξ̃)

n∑
j=1

zj(t)Qj(θ)Qi(θ) dθ +
∫

Sn−1
f ′(ξ̃)z2(t, θ)Qi(θ) dθ.
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We first study solutions of

y′′(t) + (µ − n + 2)y′(t) + (µ − n + 1)y(t) = 0. (3.7)

A simple calculation implies that (3.7) admits two linearly independent positive
solutions

y1(t) = e−(1+µ−n)t, y2(t) = e−t.

Let δ1 = 1 + µ − n, δ2 = 1. Then if µ − n > −1, we see δ1 > 0 and δ2 > 0. By the
ordinary differential equation theory, we have

zi(t) = M1e−δ1t + M2e−δ2t + M3

∫ t

t0

e−δ1se−δ2t − e−δ1te−δ2s

e−(δ1+δ2)s
g̃i(s) ds, (3.8)

where Mj , j = 1, 2, are constants depending upon t0, δ1 and δ2, and |M3| =
|1/(µ − n)| is a constant independent of t0. Now we consider the only case when
µ − n �= 0; the case when µ − n = 0, i.e. n = 3 and ν = 3 or n = 2 and ν = 1, will
be studied later. It follows from (3.8) that, for t sufficiently large,

|zi(t)| � Ce−δt + C1e−δt

∫ t

t0

eδs|g̃i(s)| ds, (3.9)

where δ = min{δ1, δ2} > 0 and C1 is independent of t0. This implies that

|zi(t)| � Ce−δt + C1e−δt

∫ t

t0

eδs

[ n∑
j=1

|zj(s)| |Fj(s)| + |Gi(s)|
]

ds, (3.10)

where

|Fj(s)| =
∣∣∣∣
∫

Sn−1
f ′(ξ̃)Qi(θ)Qj(θ) dθ

∣∣∣∣,
|Gi(s)| =

∣∣∣∣
∫

Sn−1
f ′(ξ̃)z2(t, θ)Qi(θ) dθ

∣∣∣∣.
Thus,

n∑
i=1

|zi(t)| � C2e−δt + C3e−δt

∫ t

t0

eδs

[ n∑
j=1

|zj(s)| |Fj(s)| +
n∑

i=1

|Gi(s)|
]

ds, (3.11)

where C3 is independent of t0. Set F (t) = max1�j�n |Fj(t)|, G(t) =
∑n

i=1 |Gi(t)|
and Z(t) =

∑n
i=1 |zi(t)|. Then

Z(t) � C2e−δt + C3e−δt

∫ t

t0

eδs[F (s)Z(s) + G(s)] ds. (3.12)

Define d(t0) = maxt�t0 F (t). Using the fact that f ′(ξ̃(t, θ)) → 0 as t → ∞, we find
that d(t0) → 0 as t0 → ∞. Thus,

eδtZ(t) � C2 + C3d(t0)
∫ t

t0

eδsZ(s) ds + C4

∫ t

t0

F̃ (s)Z2(s)eδs ds, (3.13)
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where

F̃ (t) =
n∑

i=1

[ ∫
Sn−1

(f ′(ξ̃)Qi(θ))2 dθ

]1/2

,

Z2(t) =
( ∫

Sn−1
z2
2(t, θ) dθ

)1/2

.

Let eδtZ(t) = h(t). Then

h(t) � C2 + C3d(t0)
∫ t

t0

h(s) ds + C4

∫ t

t0

F̃ (s)Z2(s)eδs ds.

Set

R(t) =
∫ t

t0

h(s) ds and l(t) = C2 + C4

∫ t

t0

F̃ (s)Z2(s)eδs ds.

We have
R′(t) � l(t) + C3d(t0)R(t).

This implies that

R(t) � eC3d(t0)t
∫ t

t0

e−C3d(t0)sl(s) ds.

It follows from the integration by parts that

h(t) � l(t) + C3d(t0)eC3d(t0)t
∫ t

t0

e−C3d(t0)sl(s) ds

= l(t) − eC3d(t0)t
∫ t

t0

l(s)
d
ds

(e−C3d(t0)s)

= eC3d(t0)(t−t0)l(t0) +
∫ t

t0

eC3d(t0)(t−s)l′(s) ds.

Therefore,

Z(t) � C5e−δ̃t + C6

∫ t

t0

F̃ (s)Z2(s)e−δ̃(t−s) ds, (3.14)

where δ̃ = δ − C3d(t0). Since d(t0) → 0 as t0 → ∞, we can choose t0 sufficiently
large such that δ̃ > 0.

On the other hand, we know that w2(s, θ) satisfies

w′′
2 (s, θ) +

∆θw2(s, θ)
s2 − µ − n + 1

s
w′

2(s, θ) +
µ

s2 w2(s, θ) − g2(s, θ)
s2 = 0, (3.15)

where∫
Sn−1

g2(s, θ)w2(s, θ) dθ

=
∫

Sn−1
f ′(ξ(s, θ))w(s, θ)w2(s, θ) dθ

=
∫

Sn−1
f ′(ξ(s, θ))w1(s, θ)w2(s, θ) dθ +

∫
Sn−1

f ′(ξ)w2
2(s, θ) dθ.
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Therefore,∣∣∣∣
∫

Sn−1
g2(s, θ)w2(s, θ) dθ

∣∣∣∣
�

[ ∫
Sn−1

(f ′(ξ)w1(s, θ))2
]1/2[ ∫

Sn−1
(w2(s, θ))2

]1/2

+ H(s)
∫

Sn−1
w2

2(s, θ) dθ,

where H(s) = maxθ∈Sn−1 |f ′(ξ(s, θ))| and H(s) → 0 as s → 0.
Let

W2(s) =
( ∫

Sn−1
w2

2(s, θ) dθ

)1/2

.

By arguments similar to those in [8, 19], we see that W2 satisfies

W ′′
2 (s) − µ − n + 1

s
W ′

2(s) +
µ − 2n + H(s)

s2 W2(s) +
[
∫

Sn−1(f ′(ξ)w1(s, θ))2]1/2

s2 � 0

(3.16)
for s ∈ (0, S) and some S > 0. Here we use the inequality∫

Sn−1
|∇θw2(s, θ)|2 dθ � 2n

∫
Sn−1

w2
2(s, θ) dθ.

Making the transformations t = − ln s, w2(s, θ) = z2(t, θ) and Z2(t) = W2(s), we
observe that Z2(t) satisfies

Z ′′
2 (t) + (µ − n + 2)Z ′

2(t) + (µ − 2n + H∗(t))Z2(t) + H∗
1 (t)Z(t) � 0, (3.17)

where H∗(t) = H(s) and H∗(t) → 0 as t → ∞. To obtain H∗
1 (t), we note that∫

Sn−1
(f ′(ξ)w1(s, θ))2 dθ =

∫
Sn−1

( n∑
i=1

f ′(ξ)wi(s)Qi(θ)
)2

dθ

� C

( n∑
i=1

|wi(s)|
)2

H2
1 (s),

where

H2
1 (s) =

∫
Sn−1

(f ′(ξ))2
n∑

i=1

Q2
i (θ) dθ

and H1(s) → 0 as s → 0. Under the transformation, we have H∗
1 (t) = H1(s) and

Z(t) =
∑n

i=1 |wi(s)|. Thus, H∗
1 (t) → 0 as t → ∞. Using (3.17) and (3.14), we obtain

Z ′′
2 (t) + (µ − n + 2)Z ′

2(t) + (µ − 2n + H∗(t))Z2(t)

+ C5H
∗
1 (t)e−δ̃t + C6H

∗
1 (t)

∫ t

t0

F̃ (s)Z2(s)e−δ̃(t−s) ds � 0. (3.18)

For any 0 < δ̂ < δ̃, choose t∗ > t0 such that

µ − 2n + H∗(t) = 2
(

2
ν + 1

− 2
)

+ H∗(t) < 0 for t � t∗,
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and K = K(t0, t∗) > 1 such that

Z2(t) � Ke−δ̂t, t ∈ [t0, t∗].

Let ζ(t) = Ke−δ̂t. We claim that

ζ ′′(t) + (µ − n + 2)ζ ′(t) + (µ − 2n + H∗(t))ζ(t)

+ C5H
∗
1 (t)e−δ̃t + C6H

∗
1 (t)

∫ t

t0

F̃ (s)ζ(s)e−δ̃(t−s) ds � 0, (3.19)

for t � t∗. In fact, a simple calculation implies that

ζ ′′(t) + (µ − n + 2)ζ ′(t) + (µ − 2n + H∗(t))ζ(t)

+ C5H
∗
1 (t)e−δ̃t + C6H

∗
1 (t)

∫ t

t0

F̃ (s)ζ(s)e−δ̃(t−s) ds

= K[δ̂2 − (µ − n + 2)δ̂ + (µ − 2n + H∗(t))]e−δ̂t

+ C5H
∗
1 (t)e−δ̃t + C6H

∗
1 (t)

∫ t

t0

F̃ (s)Ke−δ̂se−δ̃(t−s) ds

= e−δ̂t

[
K(δ̂2 − (µ − n + 2)δ̂ + (µ − 2n + H∗

1 (t)))

+ C5H
∗
1 (t)e−(δ̃−δ̂)t + C6H

∗
1 (t)

∫ t

t0

F̃ (s)Ke−(δ̃−δ̂)(t−s) ds

]
.

Since δ̂ < δ̃, we easily see that

C5H
∗
1 (t)e−(δ̃−δ̂)t + C6H

∗
1 (t)

∫ t

t0

F̃ (s)Ke−(δ̃−δ̂)(t−s) ds → 0

as t → ∞. On the other hand, since, for ν > 0,

µ − 2n = 2
(

2
ν + 1

− 2
)

< 0, δ̂ − µ + n − 2 < −1,

we easily see that our claim holds.
Let X(t) = Z2(t) − ζ(t). We know that

X ′′(t) + (µ − n + 2)X ′(t) + (µ − 2n + H∗(t))X(t)

+ C6H
∗
1 (t)

∫ t

t0

F̃ (s)X(s)e−δ̃(t−s) ds � 0. (3.20)

Since X(t) → 0 as t → ∞ and X(t∗) � 0, the maximum principle implies that

X(t) � 0 for t � t∗.

This implies that

Z2(t) � Ke−δ̂t for t � t0. (3.21)
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It follows from (3.14) that

Z(t) � Ke−δ̂t for t � t0. (3.22)

This implies that

W (s) :=
( ∫

Sn−1
w2(s, θ) dθ

)1/2

� Ksδ̂ (3.23)

for s ∈ (0, s0), where s0 = e−t0 .
When n = 3 and ν = 3 or n = 2 and ν = 1, i.e. µ − n = 0, equation (3.7) has

only one characteristic value, −1. By a different variation-of-constants formula and
the same steps as above, we also observe that, for any 0 < δ̂ < 1,

W (s) :=
( ∫

Sn−1
w2(s, θ) dθ

)1/2

� Ksδ̂ (3.24)

for s ∈ (0, s0), where s0 = e−t0 .
It is clear that, for any ε > 0, we can choose t0 = t0(ε) sufficiently large such

that 0 < δ̂ := δ − ε < δ̃. Since δ = 1 + µ − n for −1 < µ − n < 0 and δ = 1 for
µ − n � 0, we obtain our conclusion. This completes the proof of lemma 3.2.

We fix the ε in lemma 3.2 for the proofs below, as follows.
Now we study the Hölder estimate for v̄. Let σ ∈ R and

ρ(s) = s−σ v̄(s).

Lemma 3.3. For any 0 < σ < δ̂, there exists a positive constant M = M(v) such
that

ρ(s) � M, |ρ′(s)| � M

s
, 0 < s < s0. (3.25)

Proof. The proof is easily obtained from the equation for v̄ and a simple calculation
in which ρ(s) satisfies

ρ′′(s) +
2σ − µ + n − 1

s
ρ′ +

µ1

s2 ρ − f1(v̄)
s2 ρ = g(s), (3.26)

where

µ1 = σ(σ + n − µ − 2) + µ, f1(t) =
f(t)

t
, t �= 0,

and

g(s) =
f(v) − f(v̄)

s2+σ
= o(sδ̂−σ−2).

The above identity can be obtained from lemma 3.2 and from the fact that, for s
small,

f(v) − f(v̄) = o(|v − v̄|),

and so

|f(v) − f(v̄)| � 1
ωn

∫
Sn−1

|f(v) − f(v̄)| = o(W ) = o(sδ̂).
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We first claim that there exist two positive constants T = T (v) and M = M(v)
such that ∫ T

t

ρ2

s
� M

[
1 + (ρ(t))2 + (ρ′(t))2t2 +

∫ T

t

s(ρ′)2
]

(3.27)

for all 0 < t < T . To see this, fix T and multiply (3.26) by sρ(s) and integrate from
t to T ,

µ1

∫ T

t

ρ2

s
=

∫ T

t

sρg(s) +
∫ T

t

f1(v̄)
ρ2

s

− (sρ′ρ)|Tt +
∫ T

t

s(ρ′)2 − 2σ − µ + n − 2
2

ρ2
∣∣∣∣
T

t

. (3.28)

Since µ1 = µ1(σ) = σ2 + (n − µ − 2)σ + µ, we have µ1 > 1
2 for 0 < σ < δ̂.

Indeed, we know that µ1(σ) attains its minimum at σ = 1 + 1
2 (µ − n). On the

other hand, δ̂ < 1 + 1
2 (µ − n) for both −1 < µ − n < 0 and µ − n � 0. (Note that

δ̂ < 1 + µ − n < 1 + 1
2 (µ − n) if −1 < µ − n < 0, δ̂ < 1 � 1 + 1

2 (µ − n) if µ − n � 0.)
These imply that µ1(σ) is decreasing in (0, 1 + 1

2 (µ − n)) and, for σ ∈ (0, δ̂),

µ1(σ) � µ1(δ̂) �
{

µ1(1 + µ − n) = n − 1 for − 1 < µ − n < 0,

µ1(δ̂) � µ1(1) = n − 1 for µ − n � 0.

Thus, to obtain (3.27), it suffices to bound the right-hand side of (3.28) in terms of
the right-hand side of (3.27). By the condition for f1, we have

lim
s→0

f1(v̄) = 0.

Hence, by fixing T small enough, we may bound∣∣∣∣
∫ T

t

f1(v̄)
ρ2

s

∣∣∣∣ � µ1

4

∫ T

t

ρ2

s
.

By the Schwarz and Young inequalities, we have∣∣∣∣
∫ T

t

sρg(s)
∣∣∣∣ �

( ∫ T

t

ρ2

s

)1/2( ∫ T

t

s3g2(s)
)1/2

� µ1

4

∫ T

t

ρ2

s
+ M

∫ T

t

s2δ̂−2σ−1,

since
|g(s)| = o(sδ̂−σ−2), s → 0.

Therefore, ∫ T

t

f1(v̄)
ρ2

s
+

∫ T

t

sρg(s) � µ1

2

∫ T

t

ρ2

s
+ MT 2δ̂−2σ,

since δ̂ > σ. Inserting this into (3.28), we obtain (3.27) immediately, since the last
three terms in (3.28) are bounded by the right-hand side of (3.27).

Note that σ < δ̂ < δ implies that 2σ < µ − n + 2 for both −1 < µ − n < 0 and
µ − n � 0. Indeed,

2σ < 2δ =

{
2(µ − n + 1) < µ − n + 2 if − 1 < µ − n < 0,

2 � µ − n + 2 if µ − n � 0.
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The remainder of the proof of this lemma is a slight variant of the proof of [19,
lemma 4.2].

As an immediate corollary of lemma 3.3, we obtain the following Hölder-type
estimate of v̄ and v̄′ near s = 0.

Lemma 3.4. Let δ̂ be given as in lemma 3.2 and let v be a solution of (2.8). There
then exists a constant M = M(v) > 0 such that

|v̄(s)| � Msδ̂, |v̄′(s)| � Msδ̂−1, (3.29)

and ∫
Sn−1

v2(s, θ) � Ms2δ̂. (3.30)

Proof. We show only (3.29)1 and (3.30). The proof of (3.29)2 is left to the reader.
We first make the change of variables

t = − ln s, v1(t) = v̄(s).

Then v1 satisfies

v′′
1 (t) + (µ − n + 2)v′

1(t) + µv1 = g1(t), t > 0, (3.31)

where

g1(t) = f(v) = f(v1) + (f(v) − f(v1)) = O(|v1|2) + o(W ) = o(e−δ̂t)

for 2σ > δ̂ (see lemma 3.3). The two characteristic values of equation (3.31) are

k1 =
n − µ − 2

2
+

[(µ − n)2 − 4(n − 1)]1/2

2
,

k2 =
n − µ − 2

2
− [(µ − n)2 − 4(n − 1)]1/2

2
.

When (µ − n)2 � 4(n − 1) (note that this covers the case −1 < µ − n < 0), we
observe that the equation (3.31) has two conjugate characteristic values,

k1 = −σ0 + σ1i, k2 = −σ0 − σ1i

with σ0 = 1 + 1
2 (µ − n), σ1 � 0. It follows, by the variation-of-constants formula,

that there exists a positive constant M = M(v1) such that

|v1(t)| � Me−σ0t

(
1 +

∫ t

t0

|g1(s)|eσ0s

)
ds � Me−δ̂t.

(Note that δ̂ < 1 + 1
2 (µ − n) whether or not µ − n � 0 or −1 < µ − n < 0.)

When (µ − n)2 > 4(n − 1), we have µ − n > 0 and δ̂ < 1. Moreover, the two
characteristic values of (3.31) satisfy

k1 < −1 and k2 < −1.

Therefore, by arguments similar to those above, we obtain

|v1(t)| � Me−t � Me−δ̂t.
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Since v(s, θ) = w(s, θ) + v̄, it is easy to see that (3.30) follows from lemma 3.2 and
(3.29). This completes the proof.

By arguments similar to those in the proof of [19, theorem 5.2], we obtain the
following proposition from lemmas 3.2 and 3.4.

Proposition 3.5. Let τ � 0 be an integer and let v be a solution of (2.8). Then, for
the ε given in lemma 3.2, there exists a constant M = M(v, ε, τ) > 0 (independent
of s) such that, for 0 < s < s0,

max
|y|=s

|Dτv(y)| �
{

Ms1+µ−n−ε−τ if − 1 < µ − n < 0,

Ms1−ε−τ if µ − n � 0.

Proof of theorem 3.1. By proposition 3.5, we know that

|f ′(ξ̃)| � Me−δ̂t.

Let δ and G be as in the proof of lemma 3.2. We obtain

G(t) � Me−2δ̂t = Me−2(δ−ε)t.

Choosing ε sufficiently small, it follows from (3.12) that

Z(t) � Me−δt + Me−δt

∫ t

t0

e(δ−δ̂)sZ(s) ds. (3.32)

Let R(t) = eδtZ(t). Then Gronwall’s inequality implies that

R(t) � M.

Thus,
Z(t) � Me−δt. (3.33)

Arguments similar to those in the proof of lemma 3.2 imply that

Z2(t) � Me−δt.

This completes the proof.

Corollary 3.6. Let v be a solution of (2.8). There then exists a constant M =
M(v) > 0 such that, for 0 < s < s0,

v̄(s) � Ms1+(µ−n), |v̄′(s)| � Msµ−n if − 1 < µ − n < 0

and

|v̄(s)| � Ms, |v̄′(s)| � M if µ − n � 0.

Proof. Since 2δ̂ > δ (by choosing ε small), the proof is similar to that of lemma 3.4.

Now we can use the estimates obtained in theorem 3.1; corollary 3.6 and argu-
ments similar to those in the proof of [19, theorem 5.2] to obtain the following
theorem.
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Theorem 3.7. Let τ � 0 be an integer and let v be a solution of (2.8). There then
exist s0 > 0 and M = M(v, τ) > 0 (independent of s) such that, for 0 < s < s0,

max
|y|=s

|Dτv(y)| �
{

Ms1+µ−n−τ if − 1 < µ − n < 0,

Ms1−τ if µ − n � 0.
(3.34)

4. Local Lipschitz-type estimates and asymptotic expansions for
µ − n � 0

In this section we will obtain the local Lipschitz-type estimate for w. This yields
the desired expansion for the application of the moving-plane method. Our main
result in this section is the following theorem.

Theorem 4.1. Let τ � 0 be an integer. There then exist s0 > 0 and a constant
M = M(v, τ) > 0 (independent of s) such that

max
|y|=s

|Dτw(y)| � Ms1−τ for 0 < s < s0, (4.1)

where w is given by (2.7).

The proof of theorem 4.1 is identical to that of theorem 3.7 and the local maximal
principle, as [19, lemma 5.1] plays a role. As before, we first establish a local L2-
estimate for w near the origin and then the rest is routine.

Proof. We show only the case that τ = 0. The rest is left to the reader. Define
w̃(s, θ) = w(s, θ)/s. Then w̃ satisfies

w̃′′(s, θ) +
∆θw̃

s2 − µ − n − 1
s

w̃′ +
n − 1

s2 w̃ − f(v) − f(v)
s3 = 0. (4.2)

As in the proof of lemma 3.2, we define

w̃(s, θ) = w̃1(s, θ) + w̃2(s, θ)

and

w̃1(s, θ) =
n∑

i=1

w̃i(s)Qi(θ).

Then w̃i(s) satisfies

w̃′′
i (s) − µ − n − 1

s
w̃′

i(s) − gi(s)
s2 = 0 (4.3)

for i = 1, 2, . . . , n, where

gi(s) =
∫

Sn−1
f ′(ξ(s, θ))

n∑
j=1

w̃j(s)QjQi +
∫

Sn−1
f ′(ξ)w̃2(s, θ)Qi,

and ξ(s, θ) = ρv(s, θ) + (1 − ρ)v̄, ρ ∈ (0, 1). Let t = − ln s, zi(t) = w̃i(s), ξ̃(t, θ) =
ξ(s, θ) and z2(t, θ) = w̃2(s, θ). Then zi(t) satisfies

z′′
i (t) + (µ − n)z′

i(t) − g̃i(t) = 0, (4.4)
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where

g̃i(t) =
∫

Sn−1
f ′(ξ̃)

n∑
j=1

zj(t)QjQi +
∫

Sn−1
f ′(ξ̃)z2(t, θ)Qi.

The two characteristic values of the equation

y′′(t) + (µ − n)y′(t) = 0

are λ1 = −(µ − n) and λ2 = 0. Note that µ − n � 0. Arguments similar to those in
the proof of lemma 3.2 imply that

n∑
i=1

|zi(t)| � C7 + C8

∫ t

t0

[ n∑
j=1

|zj(s)| |Fj(s)| +
n∑

i=1

|Gi(s)|
]

ds, (4.5)

where C8 is independent of t0. Since |f ′(ξ̃)| = O(e−t) and
∑n

i=1 |zi(t)| is bounded
(see theorem 3.7 and corollary 3.6), we obtain

Z(t) � C9 + C10

∫ t

t0

e−sZ2(s) ds,

where Z(t) and Z2(t) are as in the proof of lemma 3.2. On the other hand, we know
that Z2 satisfies

Z ′′
2 (t) + (µ − n)Z ′

2(t) − (n + 1 − e−t)Z2(t) + e−tZ(t) � 0. (4.6)

By the argument in the proof of lemma 3.2 we have

Z2(t) � Me−t for t � t0.

This implies that Z(t) � M for t � t0. Thus, W̃ (s) � M for s ∈ (0, s0), where
W̃ (s) = W (s)/s, s0 = e−t0 .

By arguments similar to those in the proof of [19, theorem 6.1], we obtain our
conclusion. This completes the proof of theorem 4.1.

Let
w̃(s, θ) =

1
s
w(s, θ), (4.7)

where w is given by (2.7). We view s as a parameter and show that w̃ tends to
one of the first eigenfunctions or 0 uniformly in Cτ (Sn−1) as s → 0 for any τ � 0.
We also obtain an expansion of v in terms of v̄ and higher-order terms of w. The
following lemma can be obtained from theorem 4.1 and [19, lemma 7.1].

Lemma 4.2. Let v be a solution of (2.8), let w̃ be given by (4.7) and µ−n � 0. Then,
for any non-negative integers τ and τ1, there exists a constant M = M(v, τ, τ1) > 0
such that

|sτDτ1
θ Dτ

s w̃| � M, y ∈ Bs0(0), y �= 0. (4.8)

Moreover, w̃ satisfies

w̃′′(s, θ) +
∆θw̃

s2 − µ − n − 1
s

w̃′ +
n − 1

s2 w̃ =
f(v) − f(v)

s3 , (4.9)
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where

|g(s)| =
∣∣∣∣f(v) − f(v)

s3

∣∣∣∣ � Ms−1. (4.10)

Now we show the following theorem.

Theorem 4.3. Let w̃ be a solution of (4.9). Then, necessarily,

lim
s→0

w̃(s, θ) = V (θ), (4.11)

where V is 0 or one of the first eigenfunctions of −∆ on Sn−1, i.e.

∆θV + (n − 1)V = 0, V̄ = 0. (4.12)

Proof. Let w̃(s, θ) = w̃1(s, θ) + w̃2(s, θ) be as in the proof of theorem 4.1. It is
easily seen from the proof of theorem 4.1 that w̃2(s, θ) → 0 as s → 0. (We know
that Z2(t) → 0 as t → +∞.) On the other hand, we know from the proof of
theorem 4.1 that

w̃1(s, θ) =
n∑

i=1

w̃i(s)Qi(θ)

and w̃i(s) satisfies equation (4.3). Let t = − ln s, zi(t) = w̃i(s) and g̃i(t) = gi(s).
Then zi satisfies equation (4.4). We easily see that g̃i(t) � Me−t and zi(t) is
bounded for t sufficiently large. Then z′′′

i , z′′
i and z′

i remain also bounded when
t is sufficiently large.

If µ − n = 0, we easily obtain

z′
i(t) → 0, z′′

i (t) → 0 as t → +∞. (4.13)

If µ − n > 0, it follows from (4.4) that

(µ − n)(z′
i(t))

2 = g̃i(t)z′
i(t) − ( 1

2 (z′
i(t))

2)′. (4.14)

This implies that ∫ ∞

t

(z′
i(s))

2 ds < ∞, (4.15)

which implies that (4.13) still holds. Therefore, it follows easily from equation (4.4)
that

zi(t) → zi
0 as t → ∞ (4.16)

for i = 1, 2, . . . , n. Where z0 = (z1
0 , z2

0 , . . . , zn
0 ) is a point in R

n, z0 may be equal to
0 ∈ R

n. This also implies our conclusion.

Combining theorems 4.1 and 4.3, we establish the following asymptotic expansion
at the origin for solutions of (2.8).

Theorem 4.4 (asymptotic expansion). Let µ − n � 0 and let v be a solution
of (2.8). Then

v(y) = v̄(s) + sw̃(s, θ), (4.17)

where
v̄(s) = O(s), v̄′(s) = O(1).
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Moreover, for any integer τ � 0, we have

w̃(s, θ) → V (θ) as s → 0 (4.18)

uniformly in Cτ (Sn−1), where V is 0 or one of the first eigenfunction of (−∆) on
Sn−1, namely,

∆θV + (n − 1)V = 0, V̄ = 0. (4.19)

5. Local Hölder-type estimates and asymptotic expansions for
−1 < µ − n < 0

In this section we study the local Hölder-type estimates and asymptotic expansions
for the solutions v of (2.8) when −1 < µ−n < 0. We will see that we cannot obtain
local Lipschitz-type estimates in this case without extra conditions on v. Our main
ideas in all the proofs in this section are similar to those in § 4. We first show the
following theorem, which is similar to theorem 4.1.

Theorem 5.1. Let τ � 0 be an integer, let −1 < µ − n < 0 and and let v be
a solution of (2.8). There then exist s0 > 0 and a constant M = M(v, τ) > 0
(independent of s) such that

max
|y|=s

|Dτw(y)| � Ms1+µ−n−τ for 0 < s < s0, (5.1)

where w is given by (2.7).

Proof. The proof is similar to that of theorem 4.1. Define

w̃ =
w

s1+µ−n
and w̃(s, θ) =

n∑
i=1

w̃i(s)Qi(θ) + w̃2(s, θ), (5.2)

as in the proof of theorem 4.1. We observe that w̃(s) satisfies

w̃′′ +
∆θw̃

s2 +
1 + µ − n

s
w̃′ +

n − 1
s2 w̃ = g(y), (5.3)

where

|g(y)| =
∣∣∣∣f(v) − f(v)

s2+1+µ−n

∣∣∣∣
and w̃i(s) satisfies

w̃′′
i (s) +

1 + µ − n

s
w̃′

i(s) − gi(s)
s2 = 0, (5.4)

where

gi(s) =
∫

Sn−1
f ′(ξ)

[ n∑
j=1

w̃j(s)QjQi + w̃2(s, θ)Qi

]
dθ. (5.5)

Let t = − ln s, zi(t) = w̃i(s) and g̃i(t) = gi(s). Then

z′′
i − (µ − n)z′

i − g̃i(t) = 0. (5.6)

The two characteristic values of the equation

y′′(t) − (µ − n)y′(t) = 0 (5.7)
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are λ1 = µ − n and λ2 = 0. We know that λ1 < 0 if −1 < µ − n < 0. Therefore,
exactly the same arguments as those in the proof of theorem 4.1 imply that

Z2(t) � Me−(1+µ−n)t for t � t0 (5.8)

and
Z(t) � M for t � t0. (5.9)

These also imply that
W̃ (s) � M for s ∈ (0, s0), (5.10)

where W̃ (s) = s−(1+µ−n)W (s). The rest of the proof identical to that of theo-
rem 4.1.

The following lemma, which is similar to lemma 4.2, can be obtained by theo-
rem 5.1 and [19, lemma 7.1].

Lemma 5.2. Let v be a solution of (2.8) and let w̃ be given by (5.2). Then, for any
non-negative integers τ and τ1, there exists a constant M = M(v, τ, τ1) > 0 such
that

|sτDτ1
θ Dτ

s w̃| � M, y ∈ Bs0(0), y �= 0. (5.11)

Moreover, w̃ satisfies

w̃′′ +
∆θw̃

s2 +
1 + µ − n

s
w̃′ +

n − 1
s2 w̃ = g(y), (5.12)

where

|g(y)| =
∣∣∣∣f(v) − f(v)

s2+1+µ−n

∣∣∣∣ � Msµ−n−1. (5.13)

Now we claim the following theorem.

Theorem 5.3. Let w̃ be a solution of (5.12). Then, necessarily,

lim
s→0

w̃(s, θ) = V (θ), (5.14)

where V is 0 or one of the first eigenfunctions of −∆ on Sn−1 (with eigenvalue
(n − 1)), i.e.

∆θV + (n − 1)V = 0, V̄ = 0. (5.15)

Proof. This theorem can be obtained by the same arguments as those in the proof
of theorem 4.3 or [19, theorem 7.1].

Combining theorems 5.1 and 5.3, we establish the following asymptotic expansion
at the origin for solutions of (2.8).

Theorem 5.4 (asymptotic expansion). Let −1 < µ−n < 0 and let v be a solution
of (2.8). Then

v(y) = v̄(s) + s1+µ−nw̃(s, θ), (5.16)

where
v̄(s) = O(sσ̂), v̄′(s) = O(sσ̂−1).
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Here σ̂ = min{1+ 1
2 (µ−n), 2(1+µ−n)}. Moreover, for any integer τ � 0, we have

w̃(s, θ) → V (θ) as s → 0 (5.17)

uniformly in Cτ (Sn−1), where V is 0 or one of the first eigenfunctions of −∆ on
Sn−1, namely,

∆θV + (n − 1)V = 0, V̄ = 0. (5.18)

Remark 5.5. When µ − n = −1, i.e. n = 2 and ν = 3, we easily obtain the
expansion of v of (2.8) by

v(y) = v̄(s) + w(s, θ), (5.19)

where w(s, θ) is defined in (2.7) and w(s, θ) → 0 as s → 0. Moreover, since w(s, θ)
satisfies

w′′ +
∆θw

s2 +
n − 1

s2 w − f(v) − f(v)
s2 = 0, (5.20)

it follows by the same arguments as those in the proof of [19, lemma 7.3] that

lim
s→0

sw′(s, θ) = 0, lim
s→0

s2w′′(s, θ) = 0 (5.21)

in Cτ (Sn−1) uniformly for any integer τ � 0.

6. An auxiliary lemma for µ − n � 0

In this section we obtain an auxiliary lemma for the moving-plane procedure. The
main idea is similar to that of [19, § 8].

Using the transform (2.4), we immediately obtain an asymptotic expansion for
non-negative solutions of (I) at ∞ by combining theorem 4.4 and [19, lemma 8.1]
under assumptions µ − n � 0 and (2.3).

Theorem 6.1. Let µ − n � 0 and let u be a non-negative solution of (I). Suppose
that the assumption (2.3) holds. Then we have the expansion

u(x) = rα

(
λ + ξ(r) +

η(r, θ)
r

)
, (6.1)

where (r, θ) is the spherical coordinates with r = |x|. Furthermore, the following
properties are satisfied.

(i) ξ(r) = r−αū(r) − λ, and there exist R0( = s−1
0 ) > 0 and a constant M =

M(u) > 0 such that

|ξ(r)| � Mr−1, |ξ′(r)| � Mr−2 for r > R0. (6.2)

(ii) Let τ and τ1 be two non-negative integers. There then exists a positive constant
M = M(u, τ, τ1) such that

|rτDτ1
θ Dτ

r η| � M, r > R0. (6.3)
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(iii) Let τ be a non-negative integer. Then η(r, θ) tends to V (θ) uniformly in
Cτ (Sn−1) as r → ∞, where

V (θ) = θ · x0 (6.4)

for some x0 ∈ R
n fixed and θ = x/r ∈ Sn−1.

The theorem enables us to establish the precise limit property below (lemma 6.2)
for non-negative solutions of (I), which we need in order to begin the moving-plane
procedure.

We first introduce some notation.
For γ ∈ R, let Σγ be the following hyperplane:

Σγ = {x = (x1, . . . , xn) ∈ R
n : x1 = γ}.

For x ∈ R
n, denote by xγ the reflection point of x about Σγ , that is,

xγ = (2γ − x1, x2, . . . , xn).

As a corollary of the expansions (6.1)–(6.4), we have the following result.

Lemma 6.2. Let µ − n � 0 and u be a non-negative solution of (I). Suppose that
(2.3) holds. Then

(i) If γj ∈ R → γ and {xj} → ∞, with xj
1 < γj, then

lim
j→∞

u(xj) − u(xjγ

)
(γj − xj

1)|xj |α−2
= −2αλγ − 2(x0)1, (6.5)

where (x0)1 is the first component of x0 in (6.4).

(ii) Define

γ0 = − (x0)1
αλ

. (6.6)

There then exists a constant M = M(u) > 0 such that

u1(x) � 0 if x1 � γ0 + 1 and |x| � M. (6.7)

Proof. To prove (6.5), without loss of generality, we assume that

lim
j→∞

xj

|xj | = θ̄ ∈ Sn−1.

For simplicity, we also assume that

γj ≡ γ, j = 1, 2, . . . ,

since the following arguments work equally well for the sequence {γj}.
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Using the expansion (6.1), we have

u(xj) − u(xjγ

)
(γ − xj

1)|xj |α−2
=

λ

(γ − xj
1)|xj |α−2

(|xj |α − |xjγ |α)

+
1

(γ − xj
1)|xj |α−2

(ξ(|xj |)|xj |α − ξ(|ξjγ |)|xjγ |α)

+
1

(γ − xj
1)|xj |α−2

(|xj |α−1η(|xj |, θj) − |xjγ |α−1η(|xjγ |, θjγ

)).

By the mean-value theorem, we have

|xj |α − |xjγ |α = −
4αγβα−1

j (γ − xj
1)

|xj | + |xjγ | ,

where βj is a number between |xj | and |xjγ |. Therefore,

λ

(γ − xj
1)|xj |α−2

(|xj |α − |xjγ |α) = −
4λαγβα−1

j

|xj |α−2(|xj | + |xjγ |)

= −4αλγ( 1
2 + o(1)) → −2αλγ as j → ∞,

since |xj |/|xjγ | → 1. Similarly, for some βj between |xj | and |xjγ | we have

ξ(|xj |)|xj |α − ξ(|ξjγ |)|xjγ |α = [αβα−1
j ξ(|xj |) + |xjγ |αξ′(βj)]

−4γ(γ − xj
1)

|xj | + |xjγ | ,

and, in turn,

1
|xj |α−2(γ − xj

1)
(ξ(|xj |)|xj |α − ξ(|xjγ |)|xjγ |α) = O(|xj |α−2)

4γ

|xj |α−2(|xj | + |xjγ |)
= O(|xj |−1) → 0 as j → ∞.

Here we have used the estimate (6.2). We write

1
|xj |α−2(γ − xj

1)
(|xj |α−1η(|xj |, θj) − |xjγ |α−1η(|xjγ |, θjγ

))

=
η(|xjγ |, θjγ

)
|xj |α−2(γ − xj

1)
(|xj |α−1 − |xjγ |α−1)

+
|xj |

γ − xj
1

(η(|xj |, θjγ

) − η(|xjγ |, θjγ

))

+
|xj |

γ − xj
1

(η(|xj |, θj) − η(|xj |, θjγ

)).

As before, by (6.3) we bound

η(|xjγ |, θjγ

)
|xj |α−2(γ − xj

1)
(|xj |α−1 − |xjγ |α−1) = O(|xj |−1) → 0 as j → ∞.
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We can obtain the estimates

|xj |
γ − xj

1

[η(|xj |, θjγ

) − η(|xjγ |, θjγ

)] = O(|xj |−1) → 0 as j → ∞,

|xj |
γ − xj

1

[η(|xj |, θj) − η(|xj |, θjγ

)] → −2(x0)1

by the same idea as that in [19]. Thus,

1
|xj |α−2(γ − xj

1)
(|xj |α−1η(|xj |, θj) − |xjγ |α−1η(|xjγ |, θjγ

)) → −2(x0)1 as j → ∞.

(6.8)
These imply that (6.5) holds.

To prove (6.7), we may use similar arguments to those in the proof of (6.5).
Indeed, suppose that (6.7) is false. There then exists a sequence {xj} → ∞ such
that

u1(xj) < 0, xj
1 � γ0 + 1, j = 1, 2, . . . .

It follows that there exists a sequence of bounded positive numbers {dj} such that

u(xj) > u(xdj ), xdj = xj + (2dj , 0, . . . , 0), j = 1, 2, . . . .

Define
γj = xj

1 + dj > xj
1.

By assumption, we have

1
(γj − xj

1)|xj |α−2
[u(xj) − u(xjγ

)] > 0, j = 1, 2, . . . . (6.9)

There are two possibilities, that is,

lim
j→∞

inf γj < ∞ or lim
j→∞

γj = ∞.

If the first case occurs, we choose a convergent subsequence of {γj} (with limit
γ � γ0 + 1, still denoted by {γj}) and, applying (6.5), (6.6), we obtain

1
(γj − xj

1)|xj |α−2
[u(xj) − u(xjγ

)] → −2αλγ − 2(x0)1 � −2αλ < 0.

This contradicts (6.9). We can derive a contradiction for the second case similarly.
The proof is a slight variant of the proof of [19, lemma 8.2]. Thus, neither the first
or the second case can occur and (6.7) is shown.

7. Necessary conditions

In this section we will prove that, if u is a non-negative radially symmetric solution
of (I), then the limits (1.12) and (1.13), (1.14) hold for µ−n � 0 and −2 < µ−n < 0,
respectively. Furthermore, we classify all radially symmetric solutions and prove
theorems 1.3 and 1.4.
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Theorem 7.1. Let n � 2, let ν > 0 and let u be a non-negative solution of (I). If
u is radially symmetric about some point x0 ∈ R

n, then

lim
|x|→∞

|x|−αu(x) = λ, (7.1)

where α and λ are as in (1.4). If −2 < µ − n < 0, then

lim
|x|→∞

|x|1+(µ−n)/2(|x|−αu(x) − λ) = 0. (7.2)

Proof. Without loss of generality, we assume that x0 = 0. First define a new inde-
pendent variable t = − ln |x|, r = |x|, and set

v(− ln(|x|)) ≡ |x|−2/(ν+1)u(x). (7.3)

Then the new function v(t) satisfies

v′′(t) − (n + 2α − 2)v′(t) + α(n + α − 2)v(t) = v−ν . (7.4)

Now look at the phase-plane portrait for this equation in the (v, vt)-plane. The only
equilibrium point is (v∗, 0) with (v∗)−(ν+1) = α(n + α − 2), which is an unstable
equilibrium. This implies that v(t) → v∗ as t → −∞ and thus

lim
|x|→∞

|x|−αu(x) = λ.

To prove (7.2), we define

v(s) = |x|−αu(x) − λ, s =
1
|x| , ṽ(s) = s−σ0v(s),

where σ0 = 1 + 1
2 (µ − n) with −2 < µ − n < 0. Then, by (3.26), ṽ(s) satisfies

ṽ′′ +
1
s
ṽ′ −

1
4 ((µ − n)2 − 4n + 4)

s2 ṽ − f(v)
s2+σ0

= 0. (7.5)

Since v(s) → 0 as s → 0 (see (7.1)), by arguments similar to those in the proofs
of lemmas 3.3 and 3.4, we have ṽ(s) � M for s sufficiently small. Indeed, if we
use the notation in the proof of lemmas 3.3 and 3.4, we may claim that, for any
0 < σ < σ0, v(s) = O(sσ). In fact, noting that g(s) in the proof of lemma 3.3 is 0
here and 2σ < µ − n + 2 if 0 < σ < σ0, this claim can be obtained from a variant
of the proof of lemma 3.3 (since µ1(σ0) > 0 for −2 < µ − n < 0). This implies that
the g1(t) in the proof of lemma 3.4 satisfies

g1(t) = O(|v1|2) = O(e−2σt)

here. Choose 0 < σ < σ0 and 2σ > σ0. The proof of lemma 3.4 shows that

|v1(t)| � Me−σ0t

(
1 +

∫ t

t0

|g1(s)|eσ0s

)
ds � Me−σ0t.

This implies that ṽ(s) � M . Let t = − ln s, v̂(t) = ṽ(s). Then v̂(t) satisfies

v̂′′ − 1
4 ((µ − n)2 − 4n + 4)v̂ + O(e−σ0t)v̂ = 0 (7.6)
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and v̂ is bounded for sufficiently large t. Arguments identical to those in the proof
of theorem 4.3 imply that

lim
t→∞

v̂′(t) = 0 = lim
t→∞

v̂′′(t).

This implies that
lim

t→∞
v̂(t) = 0

(note that (ν − n)2 − 4n + 4 < 0 for −2 < µ − n < 0, ν > 0 and n � 2). This
completes the proof.

Proof of theorem 1.3. This follows from results in [5].
Suppose that u(x) � C|x|2/(ν+1) for |x| large. We now consider the function v

defined in (7.3) and satisfying (7.4). As t → −∞, v(t, θ) � C and v−ν � C.
Hence, by the Harnack inequality, v(t, θ) � C as t → −∞. By the results in [15],
v(t, θ) → v(θ), where v(θ) satisfies

vθθ +
4

(ν + 1)2
v − 1

vν
= 0, v is 2π-periodic.

By [5, theorem 2.1], v(θ) ≡ const. This proves theorem 1.3.

Proof of theorem 1.4. Let u = u(r) be a radially symmetric solution of (I). If u(0) =
0, then we have

(rn−1ur)r =
rn−1

uν
,

which implies that ur � 0 and rn−1ur → 0 as r → 0. Hence,

rn−1ur =
∫ r

0

sn−1

uν(s)
ds � 1

nuν(r)
rn,

which implies that
u(r) � Crα for all r � 0. (7.7)

We now consider the function v defined in (7.3) and satisfying (7.4). As we know,
v(t) → v∗ as t → −∞. Next we consider the case when t → +∞. From (7.7), we
see that v(t) � C for all t. Since e−2/(ν+1)tv(t) → 0 as t → +∞ and v−ν � C, a
simple ordinary differential equation theory shows that v(t) is bounded as t → +∞
and v(t) → v∗ as t → +∞ (since v∗ is the only positive equilibrium point).

Now multiplying the equation for v(t) by v′(t) and integrating over (−∞, +∞),
we see that

−(n + 2α − 2)
∫ +∞

−∞
(v′(t))2 dt = 0,

which implies that v(t) ≡ v∗. Thus, u = u0(r) = ( 1
2 (ν + 1))2/(ν+1)r2/(ν+1).

If u(0) = η > 0, by theorems 1.1 and 1.2, we have

lim
|x|→+∞

|x|−αu(x) = λ.

Then, by scaling invariance, all solutions of (I) form a one-parameter family of
solutions.
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8. The moving-plane method: proof of the main results

In this section we use the moving-plane method to give the proofs of theorems 1.1
and 1.2.

The following special form of maximum principles is useful.

Lemma 8.1. Let γ ∈ R
1 and let u be a positive solution of (I). Suppose that

u(x) � u(xγ), u(x) �≡ u(xγ) if x1 < γ.

Then
u(x) < u(xγ) if x1 < γ (8.1)

and
u1 > 0 on x1 = γ, (8.2)

where xγ is the reflection point of x with respect to Σγ .

Proof. Consider the function

v(x) = u(x) − u(xγ) � 0, x1 < γ.

Then v satisfies
∆v = −νh(x)v(x), x1 < γ,

where

h(x) =
∫ 1

0
ξ−(ν+1)
ρ dρ

and ξρ = ρu(x) + (1 − ρ)u(xγ). Since u(xγ) > 0 and u(x) > 0 for x1 < γ, we
have h(x) > 0 for x1 < γ. Hence, by the strong maximum principle, v assumes
non-negative maximal values only on the boundary x1 = γ, which implies (8.1),
while (8.2) is a direct consequence of the Hopf boundary lemma, since v = 0 on
x1 = γ.

Proof of theorem 1.1. We need only to prove sufficiency. We first claim that there
exists γ′ > 0 such that

u(x) < u(xγ) if x1 < γ and γ � γ′. (8.3)

Suppose for contradiction that (8.3) is not true. There then exist two sequences,
{γi} → ∞ and {xi}, with xi

1 < γi such that

u(xi) � u(yi), yi = xiγi

, i = 1, 2, . . . . (8.4)

Obviously, yi → ∞, so u(yi) → ∞. In turn |xi| → ∞. By lemma 6.2, we must have

xi
1 � γ0 + 1 for i large.

It follows that, for any γ1 > γ0 + 1,

u(xi) � u(yi) � u(xiγ1 ) for i large,
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since xiγi

1 � xiγ1

1 for i large and u(x) → ∞ as |x| → ∞. On the other hand, by
lemma 6.2 again, we conclude that

0 � 1
(γ1 − xi

1)|xi|α−2 [u(xi) − u(xiγ1 )] → −2αγ1λ − 2(x0)1 < 0.

This is a contradiction and (8.3) follows.
Now let Γ be a subset of R defined by

Γ = {γ ∈ (γ0,∞) : (8.3) holds}.

We shall prove that
Γ = (γ0,∞). (8.5)

We first show that Γ is open. Suppose for contradiction that, for some γ ∈ Γ ,
there exist two sequences {γi} → γ and {xi} with xi

1 < γi such that (8.4) holds.
Obviously, there is a subsequence of {xi} tending to either ∞ or x̂ ∈ R

n as i → ∞.
If the first case occurs, we simply use lemma 6.2 and derive a contradiction, since
γ > γ0. If the second case occurs, we can infer, from the definition of γ, that

x̂1 = γ.

It follows that
u1(x̂) � 0, x̂1 = γ.

This simply cannot happen because of (8.2), that is, Γ is open.
Set

γ̃ = inf{γ ∈ (γ0,∞) : (γ,∞) ⊂ Γ}.

We want to show that
γ̃ = γ0. (8.6)

Suppose for contradiction that this is not true, i.e. γ̃ > γ0. By continuity, we have

u(x) � u(xγ̃) for x1 < γ̃.

By lemma 8.1, we see that either

u(x) ≡ u(xγ̃) for x1 < γ̃

or

u(x) < u(xγ̃) for x1 < γ̃, i.e. γ̃ ∈ Γ.

The latter cannot occur because (γ̃,∞) is maximal and Γ is open. The former
cannot occur either because it contradicts lemma 6.2 since γ̃ > γ0. Thus, γ̃ = γ0
and (8.5) is proved.

By continuity again, we have

u(x) � u(xγ0) for x1 < γ0.

Reversing the x1-axis, we conclude that

u(x) � u(xγ0) for x1 > γ0.
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That is, u is symmetric about the plane x1 = γ0. Since this argument applies for
any direction, we finally obtain the radial symmetry of u about some point x0 ∈ R

n.
The proof of theorem 1.1 is thus complete.

Proof of theorem 1.2. It is enough to prove the sufficiency. First, we note that the
asymptotic expansion obtained in theorem 5.4 is not good enough for us to use the
moving-plane method. This implies that the assumption (1.6) is not sufficient to
guarantee the symmetry of u; we need stronger assumptions.

The following lemma implies our conclusion.

Lemma 8.2. Let −2 < µ − n < 0, v(s, θ), w(s, θ) be defined as in (2.4) and (2.7).
Assume that v(s, θ) satisfies

s−σ0v(s, θ) → 0 as s → 0, (8.7)

where σ0 = 1+ 1
2 (µ−n). Then v has a local Lipschitz-type estimate and an asymp-

totic expansion similar to (4.17).

Proof. Let w̃(s, θ) = s−σ0w(s, θ). We see that w̃ satisfies

w̃′′ +
1
s
w̃′ +

∆θw̃

s2 −
1
4 ((µ − n)2 − 4n + 4)

s2 w̃ − f(v) − f(v)
s2+σ0

= 0. (8.8)

Define

W̃ (s) =
( ∫

Sn−1
w̃2(s, θ) dθ

)1/2

.

Arguments similar to those in the proof of [19, theorem 3.1] imply that W̃ (s)
satisfies the inequality

W̃ ′′ +
1
s
W̃ − (µ − n)2/4 − F (s)

s2 W̃ � 0, (8.9)

and W̃ (s) → 0 as s → 0, where

F (s) = max
θ∈Sn−1

|f ′(v(s, θ))|.

Using the comparison principle as in [19], we obtain the following fundamental
inequality similar to that in theorem 3.1 or [19, theorem 3.2]:

W̃ (s) � Msδ̃, 0 < s < 1, (8.10)

for any 0 < δ̃ < |µ − n|/2 − F (s). (We know that F (s) → 0 as s → 0.) This implies
that, for any 0 < δ̃ < 1

2 |µ − n|, there exist s0 = s0(δ̃) > 0 sufficiently small and a
positive constant M = M(δ̃, v) > 0 such that

W̃ (s) � Msδ̃, 0 < s < s0. (8.11)

Let W (s) be the same as that in theorem 3.1. Note that 0 < − 1
2 (µ − n) < 1

for n = 3, ν > 3 and n = 2, ν > 1. We can then obtain the same conclusion as
in [19, theorem 3.2] (note that W (s) = sσ0W̃ (s)). That is, for any

0 < max{− 1
2 (µ − n), (1 + µ − n)} < δ < 1,
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there exist ŝ0 = ŝ0(δ) > 0 and a positive constant M = M(δ, v) such that

W (s) � Msδ, 0 < s < ŝ0.

We can also obtain the same conclusion as in [19, lemma 6.1]. Indeed, define
Ŵ (s) = W (s)/s. We infer by a similar argument to that in the proof of [19,
lemma 6.1] that there exists a constant M = M(v) > 0 such that Ŵ satisfies

Ŵ ′′ +
1 − (µ − n)

s
Ŵ ′ + Msσ0−2Ŵ � 0, 0 < s < ŝ0. (8.12)

We also have

Ŵ � Msδ−1, |Ŵ ′| � Msδ−2. (8.13)

For any T > 0, T � ŝ0, multiply (8.12) by s1−(µ−n) and integrate from T > t > 0
to T to obtain

s1−(µ−n)Ŵ ′|Tt + M

∫ T

t

Ŵsσ0−(µ−n)−1 ds � 0. (8.14)

By (8.13), we see that

lim
t→0

|t1−(µ−n)Ŵ ′(t)| = 0,

∫ T

t

Ŵsσ0−(µ−n)−1 ds � MT δ+σ0−(µ−n)−1, (8.15)

since δ > 1 + µ − n and σ0 − (µ − n) − 1 = − 1
2 (µ − n) > 0. Thus, letting t → 0

in (8.14) yields

Ŵ ′(T ) + MT δ+σ0−2 � 0.

For any s � T , we integrate from s to T to obtain

Ŵ (T ) − Ŵ (s) + M

∫ T

s

tδ+σ0−2 � 0,

that is,

Ŵ (s) � Ŵ (T ) + MT δ+σ0−1,

since δ + σ0 − 1 > 0 (note that δ > − 1
2 (µ − n)). We now obtain

W (s) � Ms, 0 < s < ŝ0.

This implies that a conclusion similar to that of theorem 4.1 holds for this case.
By the same procedure as in the proofs of lemma 4.2 and theorems 4.3 and 4.4,

we obtain the local Lipschitz estimate for v and the asymptotic expansion of v
similar to that in (4.17).

From lemma 8.2 we obtain conclusions similar to those in theorem 6.1 for u. The
proof of sufficiency is then obtained by the moving-plane method as in §§ 6 and 8.
This completes the proof of theorem 1.2.
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