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We show that, if f : M?2*2 — R is rank-one convex on the hyperboloid

Hp:={X €8%%?:det X = —D, X11 > ¢ >0}, D > 0, S2%2 is the set of 2 x 2 real
symmetric matrices, then f can be approximated by quasi-convex functions on M?2 %2
uniformly on compact subsets of H,. Equivalently, every gradient Young measure
supported on a compact subset of Hp is a laminate.

1. Introduction and results

The notion of quasi-convexity was introduced by Morrey in the fundamental paper
[7]. He proved that the variational integral

I(u) ::/Q]”(Vu(ac))dac7

defined for sufficiently regular functions u : {2 — R™, where (2 is a bounded open
set in R™, Vu(z) denotes the gradient of u at z and f : M™*™ — R is a continuous
function, is weakly lower semicontinuous if and only if f satisfies the following
so-called quasi-convexity condition: for any open bounded set U C R™,

/(f(F+V¢)—f(F))dx>0 VF e M™*" V¢ € C(U).
U

There is no general procedure to verify whether a given function f is quasi-convex
or not. A function f: M™*"™ — R, on the m X n real matrices, is called rank-one
convex if it is convex on each rank-one line, i.e. all the functions ¢t — f(F 4 ta ® b)
are convex for every F' € M™*" and a € R™,b € R"™. It is easy to prove that
quasi-convexity implies rank-one convexity (see, for example, [8]). Whether the
converse is true for m = 2, n > 2, is a major unsolved problem in the calculus of
variation. In 1992, Sverak [15] found a striking counterexample showing that rank-
one convexity does not imply quasi-convexity for any n > 2, m > 3. Pedregal and
Sverdk [12] showed that Sverdk’s idea of the counterexample for m > 3 could not
be used to obtain a counterexample for the 2 x 2 case. However, in 1999, Miiller [9]
proved that rank-one convexity implies quasi-convexity on 2 X 2 diagonal matrices.
The aim of this article is to extend this result to the following two-dimensional
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nonlinear hypersurface, for any D > 0, ¢ > 0,
Hp = {X = (X;j)1<i, j<2 € S22 i det X = =D, X131 = ¢ > 0},

where S2%? is the set of 2 x 2 real symmetric matrices.

The most concise statement of our result is in terms of gradient Young measures.
A Young measure v is a (weak* measurable) map from a measurable set 2 C R"
to the space of probability measures on R?. The fundamental theorem for Young
measures [1,2,14,18,19] implies that every sequence of maps u@) : 2 — R? that
is bounded in L* contains a subsequence (not relabelled) that generates a Young
measure v in the sense that

i [ @0 dr = [ (e 1ol da,
i—ee /o ¢

for all continuous functions f and for all ¢ € L'(§2). Moreover, v has compact

support. Here,

(Va, [) = f( ) dvz ().

We say that v is a W1 *°-gradient Young measure if {2 is open and v is generated by
a sequence of gradients Vu(?), where (u(j)) is bounded in W1 *°. A Young measure
is homogeneous if = — v, is the constant map (a.e.). Kinderlehrer and Pedregal [6]
showed that homogeneous Young measures are exactly those probability measures
that satisfy Jensen’s inequality for all quasi-convex functions,

(v, f) = f((r,id)) V[ quasi-convex.

A probability measure p is called a laminate if Jensen’s inequality holds for all rank-
one convex functions (see [11]). It is well known that the question of whether rank-
one convexity implies quasi-convexity can be rephrased as: is every homogeneous
gradient Young measure a laminate (see, for example, [8])7 Our main result is the
following.

THEOREM 1.1. Fvery gradient Young measure supported on a compact subset of
the hypersurface H,, D > 0, is a laminate.

This shows that rank-one convex functions on H, almost admit a quasi-convex
extension. More precisely, the following assertion holds.

COROLLARY 1.2. Let f: M?*2 — R be a function that is convex on every rank-one
line contained in

Hp ={X = (Xij)i<i,j<2 € S :det X = =D, X11 2¢>0}, D=0.

Let K C Hp, be compact and let € > 0. Then there exists a quasi-convex function
fe: M2%2 — R such that supy |f. — f| < e.

Sverak [17, lemma 3] proved that a probability measure supported on connected
subsets of 2 X 2 matrices without rank-one connections and commuting with the
determinant is a Dirac mass. In particular, this argument applies to gradient Young
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measures, since the determinant is weakly continuous. Together with [16, proposi-
tion 1], it follows that any gradient Young measure supported on the two-sheeted
hyperboloid Hp := {X € $?*? : det X = D} is a Dirac mass for D > 0. In con-
trast, if A, B € K C M™*" differs by a matrix of rank-one, then, for any A € (0,1),
Ada + (1 — AN)dp is a non-trivial gradient Young measure supported on the set K.
One notices that the one-sheeted hyperboloid

(€57 2)2-r-v-)
Y z—x

is made by two families of straight lines and these lines are exactly the rank-one
lines. Presence of these rank-one lines is the main source of difficulty in showing
that gradient Young measures are laminates. However, our idea here is to transform
the hard Jacobian constraint by means of some coordinate transformations used by
Evans and Gariepy [4], inspired by the work of Schoen and Wolfson [13] (see [5] for
the corresponding change of variables in the elliptic case), to some linear constraint,
and then argue by using [9, theorem 2]. We will make use of the following truncation
result, which generalizes an earlier work of Zhang [20].

PROPOSITION 1.3 (cf. theorem 2 of [10]). Let K be a compact convex set in M™*™.
Suppose that u¥) € Wﬁ)’cl(R”,Rm) and

/ dist(Vu' (), K) dz — 0.

Then there exists a sequence (v(j)) of Lipschitz functions such that
[ dist(VoD), K)o — 0,  L{u® £ 00} 0.

In particular, (Vu")) and (Vo)) generate the same Young measure.

2. Linear constraint

The following lemma quite easily follows from [9, theorem 2], just by rotating and
reflecting the coordinate axes. However, we give a proof here, since the idea of the
proof will be used later.

LEMMA 2.1. Let £2 be a bounded domain in R? and v = (v3)zen be a WH gradient
Young measure supported on

K CP:={X = (Xij)i<i,j<2: X11 + Xo22 =0, X12 + Xo1 = 0}.
Then v is a laminate.

Proof. Let (uY)) be a bounded sequence in W% (2, R?) and let (Vu(9)) generate
the Young measure v. Therefore, dist(Vul?), K) — 0 in LP(§2) for all p < co and
hence

ugji—i—ug%—>0 and uy%—i—ugi—>0 in LP(£2) for all p < oo.
Let

(7) (7)
Vuld) — < EJ; 25) , uﬁf)g(:v) = 88 ~ud)(z), 1<a, B<2,
Ug1 Uz 2 “8
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and u) X g in WH°(£2,R?). Then the centre of mass satisfies
Uy := (Vy,id) = Vu(z) for a.e.z € 0.

Now consider

T— % G _11> € 50(2)

s:%(} _11>€SO(2) ((1) _01>

Define v\9) : T(2) — R? by ) (T2) := Sul)(x). Then Vo) (Tz) = SVul) (z)T~?
and it is easy to see that the non-diagonal terms in the gradient matrix Vo)
converge to zero strongly in LP(T(£2)) for all p < co. Assume that vU) = v in
We(T(£2),R?). Let pu= (uy)yer(o) be the Young measure generated by the
sequence (Voul)). The centre of mass satisfies i, = Vu(y) and p is supported
on the 2 x 2 diagonal matrices. Hence, by [9, theorem 2], y is a laminate. Now
we need to show that v is also a laminate. Let f : M2*2 — R be a rank-one con-
vex function. Then the function g : M?*? — R, defined by g(X) := f(SXT), is
also rank-one convex. By the fundamental theorem of Young measures [1], and by
passage to a subsequence, for any U CC {2, we obtain

and

/ g((uy,id>)dy</ {1y, 9) dy
T(U)

)

= lim g(Vo (y)) dy
i—oo )

= lim [ ¢(Vo9(Tz))dx

Jj—o0 U

= lim [ ¢(SVu) (z)T1)dz

J—oc Ju

= lim [ f(VuY(2))dz

Jj—o0 U

:/U(I/w,f>dx.

By a change of variables and by the definition of g, we have

[ aenay= [ f(vuto)ar,
T(U) U

and the proof is finished. O
LEMMA 2.2. Any gradient Young measure supported on

P.={X = (Xij)i<i,j<2: X11 + Xoa = ¢, X12+ X201 =0}, ¢#0,
is a laminate.

Proof. This follows from the change of variables u(x) — u(z) + (0, —cz2). O
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3. Proof of theorem 1.1

CAsE I: D > 0. Without loss of generality, we can assume that D = 1, that the
Young measure v = (v )zecq is homogeneous and that 2 = (0,1)2. Let (Vu)) C
Whoo(02,R?*?), generate the Young measure v, ul¥) = o in W (2,R?) and
suppv = K C Hp,. Since K is compact,

K CK:=BrN{X €8”?%: Xy, >c¢>0} forsomeR >0,

where Br := {X € M?*? : |X| < R}. Since K is a compact convex set and

dist(Vu), K) — 0 in LP(£2) for all p < oo, by proposition 1.3, there exists a

sequence (v)), with uniformly bounded Lipschitz constant, such that (Vo)) gen-

erates the same measure v and | dist(Vo@), K)||c — 0 as j — oo. Hence we
1

can assume that our original generating sequence (u(j)) satisfies ugj% 2 5c and

|Vu9)| < 2R. By the Ascoli-Arzela theorem, u¥) — u uniformly on {2. Since v
is supported on Hp,, it is easy to see that det(Vu())(z)) +1 and ugjg - ug% con-
verge to zero strongly in LP({2) for all p < co. Now our idea is to obtain a new
sequence of uniformly bounded Lipschitz functions on some suitable domain which
generates a new Young measure j, supported on the set P defined in lemma 2.1.
Then, by lemma 2.1, such a measure p will be a laminate and finally we will argue
in a similar way as in the proof of lemma 2.1 to show that the original measure v

is a laminate. This will be obtained through the following steps.

STEP 1 (change of variables). As in [4], consider the maps TW), T : 2 — R2
defined by

T(j)(ml,xg) = (Ugj)(iﬂ),l’g) and T(zy,xs9) := (uy(x),x2),

respectively. Since ugj)(-,t) and wuq (-, t) are strictly monotonically increasing on
(0,1) for each 0 < t < 1, the maps TU) : 2 — TU(2) and T : 2 — T(N) are
bi-Lipschitz, where

TO@R) = {(y1.92) - 0 (0,92) < iy <’ (Ly2), 0 <2 < 1}
and
T(2) ={(y1,92) 1 w1 (0,92) <y1 <wa(l,y2), 0 <y2 <1}
Hence there exist Lipschitz maps gU) : T (02) — R? and g : T(£2) — R? such that

o1 =g () (@), 22),  ud(2) = o () (2), 22) (3.1)
and
1 = g1(u1(z), z2), uz(z) = ga(u1(x), z2). (3.2)

From the definition of 7U), T and differentiating (3.1) with respect to 1, x2, we
obtain, for a.e. x,

(3) (4)
Ny — [win(@) wrz(@) _ (wa(z) ()
VT()(;E)_<1B 121 ) VT(m)—(lg " )
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and ) j )
1= 91{1 (T(J)(m))ulﬂ(m)a
0= gV} (TD (@) ul) (@) + g)(TD (x))
4) ) j ) (3'3)
“2{1 (z) = 92{1 (T(J)(m))uﬁl(m),
u§(x) = g9 (T (@)ul)(x) + g¥H T (2))

From (3.3), we have

(9)
, , 1 1 —ui5(x)
Vg(J)(T(J)(m)) =— <u(j) 121 ) ’ (3.4)
2,1

and similarly, from (3.2), we obtain

1 1 —ug o(x)
Vy(T(x)) = @) <u271(m) det Vu(m)) for a.e. x € §2. (3.5)

Now observe that
‘ ‘ ‘ 1 0
V(g9 o TW)(z) = Vg (TW) (2)) VTV (2) = < G) ) )
21( ) Us, 5(7)

and hence, from (3.5), we conclude that V(g0 o TU)) X V(g o T) in Lo°(£2, M?*?).
From (3.1) and (3.2), it follows that gi) o TU) X go T in Wh°(2, R?).

STEP 2 (domain selection). Define
v (t) = ugj)(a,t) and  vq(t) :=ui(a,t) for «=0,1o0n (0,1).

Since u(J)( ) = 4c on £2, it follows that U(J)( t) — v(()j)(t) >2c¢>0 on (0,1) and,
from the uniform convergence of (u¥)), we have

inf t) —up(t)) = Le.
tel(r(lLl)(vl() vo(t)) 2C

Choose
0<e< =< inf t) — vp(t)).
€ tel(n71)(vl( ) — vo(t))
Then, for sufficiently large jo,
Ver={(y1,52) tvo(y2) +e <y1 <vilye) =€, 0<y2 <1}CNTY(2),  (3.6)

and, trivially, V. C T'(§2). Define U9 = ¢l@) |v.. We need to prove that the sequence
(f(j)) is uniformly Lipschitz on V.. Observe that, for y € V., there exists () € 2
such that y = 7V (20)), so

Vf(j)(y) - Vg(j)(T(j)(:E(j))) - v(g(j) o T(J’))(m(j))(VT(j)(m(j)))fl
Hence, from step 1 and from the fact that u(J ) —c it follows that

||f(J)||W1,OQ(VE7R2) <M for some M > 0.
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Suppose that f0) 2 fin W1 (V,,R?). We prove that f = g on the smaller domain
Ve i={(y1,y2) 1 vo(y2) + e < g1 <vi(y2) — e, 0<yp < 1}C V..

Lety = Tx € V. C T(£2) for some x € §2. Then, by the definition of V,, T (z) € V..
Since fU) is uniformly Lipschitz on V. and T\) — T on 2, we get

lim (fO) o TW (z) — f9) o T(z)) = 0. (3.7)

Jj—oo

From step 1 and (3.7), we obtain

f(T(2)) = lim f9(Tz)

J—0

= lim ¢U)(Tx)

= jllggo[g(j) (T9 (@) + (9V(Tx) = g(TV()))]
= 9(T(x)),

and hence f =g on V.

STEP 3 (transformed Young measure). Let p = (uy)yev, be the Young measure
generated by the sequence (V f G )) obtained in step 2. Suppose that F is the support
of the measure . Now observe that, for any p < oo,

im0 8 au =t [ 1o+ ol ay

< lim 199) + 95217 dy
i—o0 )16 ()

— lim |g<J><T<J>< ) + g53(TY) (@) [Puf’) (x) dz

Jj—oo

< M lim | det Va9 (z) + 1|7 da
j—oo S

=0,
and similarly, we can show that
i [ 150+ 9 ay = o.
i—oo Jy,
Thus the support E of p is contained in
P :={X = (Xij)i<i,j<2 : X11+ Xo2 =0, X9+ X9y =0}
and hence, by lemma 2.1, p is a laminate.

STEP 4 (conclusion of the proof). Define

Mixz ={X = (Xij)lgi,j<2 € M?*2; X11 >0}
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and consider the map @ : Miw — Miw,

-1 (1 —Xo
P(X) = 5 (le - X). (3.8)

From the definition of the map &, it follows that & = $~!, and, by using the formula
det(A — B) = det(A) — Cof(A) : B+ det(B) for 2 x 2 matrices A, B, one obtains

det(B(X) — B(Y)) = —

det(X —Y) for any matrices X,Y € M2,
XuYn
Hence rank(X —Y) = 1 if and only if rank(®(X)—®(Y)) = 1. Since det : M?>*? — R
is linear along any rank-one direction, by direct computation it follows that

AX11 > (1=MYn

PAX+ (=AY = =7 o, X+ (1 VY1,

oY)

for any X,V € M7*?, rank(X —Y) =1 and 0 < A < 1. Let h : M®>*2 — R be a
rank-one convex function and define h : szz — R by

h(X) = X1 h(P(X)) for X € MP*2.
Now we show that h(X) is rank-one convex on M2, Let

AX 1
AXq1 + (1 — >\)Y11 '

X, Y e MZ*%, det(X —Y)=0 and A:=

Then (3.8) and the rank-one convexity of A imply that

X + (1= N)Y) = (AX11 + (1= N)Y1)h(AD(X) + (1 = N)B(Y))
S AX1h(P(X)) + (1 =AY h(2(Y))
= M(X) + (1= NA((Y).
It is well known that rank-one convex functions are locally Lipschitz (see [3, p. 157]).

Since [ V£9lo < R, then [|h] o () < M, where By = {X € M?*2 : |X| < R}.
Recall the definitions

Ve ={(y1,92) 1 vo(y2) + Se <y1 <vi(y2) — 36, 0 <y <1}
and
T(2) ={(y1,y2) - u1(0,92) < y1 <ui(l,92), 0 <yz <1}

It follows that £2(T(£2)\V.) — 0 as € — 0. Since  is a laminate and the generating
sequence satisfies Vf(J)(y) € Miw a.e. y € V., we have, for a.e. y € V¢,

MV () = h({py,id)) < (g, ). (3.9)
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Hence, for any 0 < € < % inf;e(0,1)(v1(t) — vo(t)), we have
[ By = 1 [ RO dy

e 1700 JV

= lim | A(VgY(y))dy

j—oo )y,

— lim / W(Vg D (y)) dy — / E(Vg“)(y))dy}
J—oo LJT6)(0) TG (2)\Ve

< lim / h(VgW (y)) dy + ML*(TY (2 }
T(j)(_Q)
\

j—oo |

~ Jim | / h(Vg (T (@) uf) de + MLHTD(2) )}
2

Jj—oo|

V.
= lim / h(@(VulD (2)))ul) dz + MLHTY) (02 }
9]

Jj—oo|

= lim / h(Vu(j)(m))dm+M£2(T(j)(9)\f/ﬁ)}
9]

Jj—oo|
— [ hy o+ MA@\ )
7
= (v, h) + ML (T (2)\ V) (3.10)
Therefore, from (3.9) and (3.10), for sufficiently small e,

| Vot ay= [ HViw)dy < o) + MEAT@)\ Vo),
V. V.

e €

and hence, by passing to the limit e — 0, we obtain
/ h(Vg(y))dy < (v, h). (3.11)
T(2)

On the other hand, by a change of variables, the definition of h and @, and by using
V(T (x)) = ¢(Vu(x)), we obtain

[ Vo) dy= [ 1T s d = hid)). (3.12)
T(2) 0

Hence theorem 1.1 follows from (3.11) and (3.12).

Casg II: D = 0. In this case, we follow the same steps as for D > 0, In step 1,
equation (3.5) becomes

- 1 1 —ULQ(:L’)
VQ(T(iU)) B Ui 1(£E) (u271 (:E) 0 > ,

and step 2 remalns unchanged. The only difference to be noticed in step 3 is
that [, |f(J) —|—f22 — 1|7 — 0, instead of [, |f(J) f(J)|p — 0. This shows that
the Young measure p, generated by the sequence (V @ ), is supported on

P ={X = (Xjj)1<i, j<2 : X1+ Xo2 =1, X124+ Xo1 =0},
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and hence, by lemma 2.2, p is a laminate. By step 4, it again follows that the
original measure is laminate.
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