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A formal framework to characterize and control/optimize the flow past permeable
membranes by means of a homogenization approach is proposed and applied to the wake
flow past a permeable cylindrical shell. From a macroscopic viewpoint, a Navier-like
effective stress jump condition is employed to model the presence of the membrane, in
which the normal and tangential velocities at the membrane are respectively proportional
to the so-called filtrability and slip numbers multiplied by the stresses. Regarding the
particular geometry considered here, a characterization of the steady flow for several
combinations of constant filtrability and slip numbers shows that the flow morphology
is dominantly influenced by the filtrability and exhibits a recirculation region that
moves downstream of the body and eventually disappears as this number increases.
A linear stability analysis further shows the suppression of vortex shedding as long
as large values of the filtrability number are employed. In the control/optimization
phase, specific objectives for the macroscopic flow are formulated by adjoint methods.
A homogenization-based inverse procedure is proposed to obtain the optimal constrained
microscopic geometry from macroscopic objectives, which accounts for fast variations
of the filtrability and slip profiles along the membrane. As a test case for the proposed
design methodology, a cylindrical membrane is designed to maximize the resulting drag
coefficient.
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1. Introduction

The behaviour of wake flows past permeable bodies and membranes is of considerable
interest owing to its large range of applications, in both nature and engineering. Several
insects, such as thrips and wasps, present bristled wings, offering a considerable
aerodynamic benefit when compared with impervious wings in terms of propulsion
efficiency per unit weight of the wing itself (Ellington 1980; Barta & Weihs 2006; Jones
et al. 2016). Owls are renowned for their silent flight, which stems from the particular
microscopic permeable structure of the hair composing the wings (Wagner et al. 2017;
Jaworski & Peake 2020). Dandelion seeds are transported in the air by a structure called
pappus, which behaves as a parachute. The presence of voids markedly decreases the
falling velocity and stabilizes the steady flow (Cummins et al. 2018; Ledda et al. 2019). At
smaller scales, thin permeable shells are of essential importance for unicellular organisms
as a key point in their displacement and feeding strategies (Asadzadeh et al. 2019). Within
the vascular system of plants, permeable microstructures called sieve plates are crucial for
sap translocation (Jensen et al. 2016).

In addition to these natural examples, there are several industrial applications
concerning flows through permeable structures with a plethora of microscopic properties
and pore sizes, ranging from millimetres for particle filtration to nanometres for
desalination (Fritzmann et al. 2007; Elimelech & Phillip 2011; Matin et al. 2011) and
wastewater recovery (Shannon et al. 2008; Rahardianto, McCool & Cohen 2010). At larger
scales, the flow around permeable bluff bodies, such as parachutes and nets, is gaining
more and more interest (Cummins et al. 2018; Labbé & Duprat 2019). Fog water harvesting
systems, particularly employed in arid climates (Olivier 2004; Labbé & Duprat 2019), are
built using either nets (Park et al. 2013) or harps (Shi et al. 2018; Labbé & Duprat 2019).

In these last examples, a deep understanding of aerodynamic flows investing permeable
structures is crucial and, for decades, the uniform flow past a solid or porous circular
cylinder has been the testing ground to train the understanding of flows around bluff
bodies. The flow past a solid circular cylinder is steady for low values of the Reynolds
number. The steadiness of the wake is broken at a critical Reynolds number of 46.7
(Jackson 1987; Provansal, Mathis & Boyer 1987), beyond which the flow undergoes
an instability that leads to a two-dimensional oscillatory flow characterized by the
alternate shedding of vortices, i.e. the renowned von Kármán vortex street (Williamson
1996). At larger Reynolds numbers Re ≈ 192, the two-dimensional wake becomes
unstable and three-dimensional structures develop, whose characteristic trace is still
the two-dimensional alternate shedding of vortices (Barkley & Henderson 1996). The
sequence of bifurcations that a flow may encounter can be approached in the context
of bifurcation theory and linear stability analysis (Chomaz 2005; Theofilis 2011). These
methods are now largely employed and their reliability in the prediction of instability
thresholds and shedding frequencies close to the threshold (Barkley 2006) is now
well assessed, spanning different length scales, from microfluidics systems (Bongarzone
et al. 2021) to bluff body aerodynamics (Meliga, Chomaz & Sipp 2009) and industrial
applications such as wind and hydraulic turbines (Iungo et al. 2013; Viola et al. 2014;
Pasche, Avellan & Gallaire 2017).

A largely investigated field in fluid dynamics is the control of flow instabilities. One of
the first studies of the control of the von Kármán vortex street via modifications of the solid
surface and velocity can be traced back to Prandtl, who controlled the flow past a circular
cylinder using the blowing effect of a small hole on the surface (Willert et al. 2019). Castro
(1971) studied experimentally the flow around perforated flat plates for Reynolds numbers
of order 104, finding that the vortex shedding was inhibited if the voids-to-material ratio
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(porosity) is sufficiently large. Two different regimes were distinguished: a solid behaviour
in which the von Kármán vortex street is present, with a downstream displacement of the
mean recirculation region and the vortex formation region, and a regime in which the
vortex shedding is quenched. Zong & Nepf (2012) performed an experimental study of
circular cylinders composed of arrays of smaller cylinders, for Reynolds numbers of order
104, showing that also in this case the von Kármán vortex street was inhibited for large
porosities, with results similar to those of the numerical study of Nicolle & Eames (2011).
Recently, Steiros & Hultmark (2018) developed a theoretical framework to evaluate the
drag coefficient behaviour for flat perforated plates, for Reynolds numbers of the order
of 103. In a similar investigation of circular perforated plates, Steiros et al. (2020) also
showed how variable distributions of holes may strongly modify the flow morphology and
the resulting aerodynamic forces. Other analytical investigations of the aerodynamic forces
on porous airfoils have been performed by Hajian & Jaworski (2017) and Baddoo, Hajian
& Jaworski (2021). In Hajian & Jaworski (2017) a potential flow model to evaluate the
aerodynamic forces on thin permeable airfoils was proposed. The presence of a porous
structure was described by a seepage flow rate through the permeable surface. Baddoo
et al. (2021) generalized this analysis to the unsteady case such as pitching and heaving
motion or gust loads. Other experimental investigations focused on the drag variation of
porous disks at low Reynolds numbers (Strong et al. 2019) and on the fluid–structure
interaction of porous flexible strips (Pezzulla et al. 2020), to name a few. Ledda et al.
(2018) performed a study of the effect of permeability on the stability of the steady
and two-dimensional flow around porous rectangles, obtaining a general permeability
threshold beyond which the wake is steady.

In the works cited above, two essentially different ways to model porous structures can
be distinguished. Pore-scale models should be preferred for their high reliability (Icardi
et al. 2014; Crabill, Witherden & Jameson 2018), but have the inconvenience of being very
expensive from a computational point of view, especially when one needs to characterize
the flow with respect to variations of the pore properties. An alternative to expensive
pore-scale simulations is the use of averaged models like the Darcy equation (Darcy
1856) or its Brinkman extension (Brinkman 1949). These models are computationally
less expensive than their full-scale counterparts and allow one to find a solution that is
equivalent to the full-scale solution in an averaged sense. However, one of their limitations
resides in the presence of free parameters, such as the permeability, which depend on the
microscopic properties of the structure. While these parameters were a priori unknown
in the seminal work of Darcy, we are now able, because of multiscale techniques such
as homogenization (Hornung 1997), to determine the values of the parameters from the
solution of closure pore-scale problems. For this reason, homogenization provided relevant
insights towards the modelling of multiscale fluid–structure interactions, extending the
classical Darcy model to treat inertia within the pores (Zampogna & Bottaro 2016;
Zampogna et al. 2016) and handling interfaces between porous and free-fluid regions
(Lācis & Bagheri 2017; Lācis, Zampogna & Bagheri 2017; Lācis et al. 2020). In Zampogna
& Gallaire (2020) homogenization revealed itself as a suitable tool to describe flows
around inhomogeneous microstructured permeable surfaces or membranes, opening the
path to a more formal approach in the characterization and design of membranes and
filters.

The flow modifications induced by permeable membranes may find several applications.
As mentioned above, the dandelion pappus, which can be modelled as a permeable
membrane, shows values of drag coefficient larger than if the pappus was completely
impervious (Cummins et al. 2018). Therefore, the modification of the permeability of a
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membrane is a strategy to control and optimize the flow morphology. Lagrangian-based
approaches are one category of optimization procedures, which have attracted much
interest in the fluid dynamics community, and are based on a variational formulation
that allows one to compute gradients at low cost through the use of the so-called adjoint
variables (Luchini & Bottaro 2014). Several studies were developed in a Lagrangian
framework, as in the case of the sensitivity to baseflow modifications (Marquet, Sipp &
Jacquin 2008), steady forcing in the bulk (Boujo, Ehrenstein & Gallaire 2013; Meliga
et al. 2014) or at solid walls by blowing and suction (Meliga, Sipp & Chomaz 2010; Boujo
& Gallaire 2014, 2015), for different objectives and flow configurations. Adjoint-based
sensitivity analysis tools can therefore be used as a building block for optimization
procedures, in steady (Camarri & Iollo 2010) and unsteady (Nemili et al. 2011; Lemke,
Reiss & Sesterhenn 2014) configurations. In Schulze & Sesterhenn (2013) an adjoint-based
optimization procedure to obtain the optimal permeability distribution for trailing-edge
noise reduction was proposed, in which the porous medium was modelled via the Darcy
law.

Despite the increasing interest in multiscale structures in fluid mechanics, systematic
approaches for the homogenization-based design and optimization of permeable
membranes are still lacking. In the present work, we aim to bridge this gap by linking the
obtained optimal profile of permeability to a real, realistic, full-scale structure (that can be
eventually built). For this purpose, we propose a formal framework for the optimization
of permeable membranes, applying it to the particular case of wake flows in the low-
to moderate-Reynolds-number regime. We exploit the concepts of stability analysis,
homogenization theory and gradient-based optimization so as to give a procedure to obtain
the full-scale structure satisfying user-defined macroscopic flow objectives. The paper is
structured as follows. In § 2, we introduce the mathematical formulation of the problem
and describe the homogenization-based design procedure. We then apply the procedure
by first studying, in § 3, the steady solutions of the flow equations and their linear
stability with respect to infinitesimal perturbations. Section 4 is devoted to the geometric
reconstruction of the microscopic geometry for salient cases and to the comparison with
the homogenized model. In § 5, we then move to a gradient-based optimization of a
membrane with variable properties, and in § 6, using a homogenization-based inverse
procedure, we retrieve the full-scale geometry of the considered membrane from the
optimal properties found in § 5 and eventually compare the properties of the full-scale
structure with those predicted by the homogenized model.

2. A formal framework to support the design of microstructured permeable surfaces

In this section, we introduce the main physical hypotheses, strategy and tools to aid
the design of microstructured membranes in order to tune their aerodynamic and
hydrodynamic properties.

2.1. Problem formulation and model description
We consider a two-dimensional permeable cylindrical shell of diameter D subject to an
incompressible flow of a Newtonian fluid of constant density ρ and viscosity μ, whose
free-stream velocity is U, as depicted in figure 1. The cylindrical shell is constituted of a
monodisperse repetition of solid inclusions, whose characteristic length scale is denoted
as �. Since � � D we can introduce a separation-of-scales parameter defined as the ratio
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Recirculation
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(b)

(a)

Figure 1. (a) Fluid flow configuration considered in the present work and its typical structure past the
cylindrical permeable shell (Γint, in red) of diameter D, where we denote the length of the recirculation region
LR and its distance XR from the rear of the body. The angle α is measured counterclockwise starting from the
rear. The superscript minus sign indicates that the generic variable f is evaluated in the outer fluid region while
the superscript plus sign refers to the inner fluid region. (b) Zoom on the shell to highlight its microscopic
structure in cylindrical coordinates, made by replication of solid inclusions denoted by M with boundary ∂M

and sketch of the elementary unit cell in dashed line, whose tangential-to-surface size is �. The fluid domain
within the unit cell is denoted by F while its upper and lower boundaries are indicated, respectively, with U

and D.

between the two length scales at play:

ε := �

D
� 1. (2.1)

Under this assumption, a homogenized model is employed to describe the flow through
the membrane (Zampogna & Gallaire 2020), which is macroscopically represented by a
smooth surface with zero thickness. In the outer and inner pure-fluid regions split by the
permeable shell, the incompressible Navier–Stokes equations hold. The velocity u∗ and
pressure p∗ fields are introduced, where the superscript ∗ denotes dimensional variables.
Introducing the Cartesian coordinate system (x1, x2) (figure 2), these equations read
(i, j = 1, 2)

ρ∂∗
t u∗

i + ρu∗
j ∂

∗
j u∗

i = −∂∗
i p∗ + μ∂∗2

jj u∗
i ,

∂∗
i u∗

i = 0.

}
(2.2)

The flow through the membrane is described by an effective stress jump model, consisting
of the discontinuity in the fluid stress and the continuity of velocity across the permeable
shell, denoted here with Γint (red line in figure 1). Labelling with the superscript − and +
variables evaluated respectively in the outer and inner fluid regions, as shown in figure 1,
the interface conditions at the membrane Γint read (i, j, k = 1, 2)

u∗
i = u∗+

i = u∗−
i ,

u∗
i = �

μ
M ij

(
Σ∗

jk
(

p∗−, u∗−) − Σ∗
jk

(
p∗+, u∗+))

nk,

⎫⎪⎬
⎪⎭ (2.3)
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Γlat

Γlat

Γout

Γint

Nint

x2

x2lat

x1outx1in

x1

N1N2N3N4

Γin

Figure 2. Computational domain considered in the present work. The regions denoted with Nj represent the
different mesh refinements used when approaching the permeable shell. At the inlet Γin a free-stream condition
with a Dirichlet boundary condition of the form u∗

1 = U and u∗
2 = 0 is imposed, while on the lateral boundaries

Γlat and at the oulet Γout the stress-free condition (−p∗δij + μ∂∗
j u∗

i )nj = 0 is used. On the interface Γint
conditions (2.3) are imposed.

where Σ∗
jk is the jkth component of the stress tensor defined as

Σ∗
jk

(
p∗, u∗) = −p∗δjk + μ(∂∗

j u∗
k + ∂∗

k u∗
j ), (2.4)

and the components of the tensor M ij (figure 1) are

M ij = L̄ttitj − F̄nninj, (2.5)

where L̄t, F̄n are evaluated by solving microscopic problems within the elementary unit
cell introduced in figure 1, in the local reference frame (t, n) = ((− sin(α), cos(α)),

(cos(α), sin(α))) (see Zampogna & Gallaire (2020) and § 4.2 for a detailed description
of these problems and their solution). We note that the generic tensor N ij of the original
condition developed in Zampogna & Gallaire (2020) is replaced here by −M ij since, in the
present work, we consider only solid inclusions which are symmetric with respect to Γint
and we assume that inertia is negligible within the pores.

By considering D and U respectively as reference length and velocity scales, we obtain
the following system of non-dimensional equations:

∂tui + uj∂jui = −∂ip + 1
Re

∂2
jjui,

∂iui = 0,

⎫⎬
⎭ (2.6)

where we introduce the Reynolds number as Re = ρUD/μ. The non-dimensional interface
condition on Γint reads

ui = u+
i = u−

i ,

ui = ReMij
(
Σjk

(
p−, u−) − Σjk

(
p+, u+))

nk,

}
(2.7)

Σjk( p, u) = −pδjk + 1
Re

(∂juk + ∂kuj), (2.8)

Mij = Ltitj − Fninj, (2.9)

where L = εL̄t and F = εF̄n are respectively labelled as slip and filtrability numbers.
The interface condition (2.7) thus states that the velocity at the membrane is proportional

927 A31-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

75
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.756


Homogenization-based design of microstructured membranes

to the Reynolds number and to the tensor Mij. According to Zampogna & Gallaire
(2020), the tensor Mij describes the geometry of the microscopic problem with negligible
inertial effects within the microscopic domain, in a non-dimensionalization which makes
the problem independent of the macroscopic Reynolds number. In the macroscopic
perspective, the relative importance between inertial and viscous effects is taken into
account by Re in (2.7). More specifically, the velocity locally tangential to the interface
is proportional to L, while the normal velocity is proportional to F . Therefore, the
filtrability and slip numbers denote the capability of the flow to pass through and
slip along the membrane, respectively. Different limiting behaviours of the interface
condition (2.7) are thus identified. When F = 0, the flow cannot pass through the
membrane but it can slip along it. This situation is analogous to the one outlined in
Zampogna, Magnaudet & Bottaro (2019) for rough surfaces, and the resulting boundary
condition is formally analogous to the so-called Navier slip condition. When L = 0,
a no-slip condition is imposed on the tangential velocity, while the normal one varies
in proportion to F . This situation can be interpreted as an averaged Darcy law
through the membrane, where the viscous effects and thus the slip at the interface
are neglected (Zampogna & Bottaro 2016). Other limiting cases occur for F = 0 and
L = 0, which corresponds to a solid wall condition, and for F → ∞ and L → ∞,
which corresponds to the imposition of the continuity of stresses across the microscopic
elementary volume whose size tends to zero, and thus to the absence of the solid
structure. Since the flow configuration is solved numerically, we refer to the caption
of figure 2 for an explanation of the boundary conditions imposed on the remaining
boundaries of the computational domain. These conditions, in non-dimensional form,
read u1 = 1, u2 = 0 at the inlet and (−pδij + (1/Re)∂jui)nj = 0 on the lateral and outlet
boundaries.

2.2. Homogenization-based design
In the existing literature, works on permeable bodies and membranes were focused on the
evaluation of the macroscopic parameters of the membrane (slip and filtrability) starting
from the microscopic geometry. Other works treated the above-mentioned macroscopic
quantities as free parameters in order to characterize, modify and optimize the fluid
flow surrounding the porous body, without providing an explicit link between these
parameters and the microscopic structure of the membrane. Here, we propose to fill the
gap between these two aspects by an inverse formulation of the homogenized model that,
on the one hand, is extremely efficient for parametric studies and, on the other hand,
allows one to deduce the microscopic geometry which realizes given distributions of L
and F .

The inverse formulation aims at deriving the microscopic characteristics of the
membrane based on the macroscopic features of the steady flow. In the present paper,
an efficient workflow for deducing full-scale structures starting from the homogenized
model is adopted (cf. the top frame of figure 3). The generic workflow therefore firstly
consists of an analysis where the homogenized model is employed. The implementation of
the homogenized model implies a decoupling between the microscopic structure and the
macroscopic effect on the flow. On the one hand, parametric studies and optimizations
are simplified owing to the reduced number of parameters; on the other hand, the
retrieval of the full-scale structure is performed in a second step, when the macroscopic
feedback embodied in the scalar parameters of the homogenized model is already
known.
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1

2

2

2

2

2

3

3

3

3

Homogenization
based

modelling

Analysis
based on

 supplementary tools
and theories

Stability
analysis

(section 3.2)

Retrieval of the
full-scale physics

Homogenization
based geometrical

reconstruction,
constant properties

(section 4.2)

Homogenization
based geometrical

reconstruction,
variable properties

(section 6.1)

Homogenized
model

(section 2.1)

Steady flow
characterization

(section 3.1)

Explicit
objective
selection

(section 4.1)
Microscopic tensors

Lagrangian based
optimization
(section 5)

Full-scale
design and
simulation

(section 6.2)

INVERSE PROCEDURE

DIRECT PROCEDURE

GENERIC WORKFLOW

(b)

(a)

(c)

Figure 3. (a) Generic workflow to efficiently analyse a flow configuration via homogenized models integrated
in classical analyses like, for instance, parametric studies, stability analysis or adjoint-optimization finalized to
identify configurations of interest. The retrieval of the full-scale physics for the identified configurations is done
in a last step leading to a substantial reduction of the complexity of the optimization problem. (b,c) The generic
workflow has been specialized in the present paper for the design of permeable membranes. Colours and red
numbers are used to correctly place each step of the procedure adopted in the present paper in the generic
workflow. A homogenized model is used to characterize a specific flow configuration in a direct formulation.
This allows one to identify a set of objectives and the corresponding values of the macroscopic parameters
realizing these objectives. Homogenization is then used in an inverse formulation to associate the values of the
macroscopic tensors with a specific microscopic geometry.

For illustration purposes, the workflow is specialized to analyse the flow configuration
shown in figure 1, leading to the following procedure:

(i) Using the homogenized approach described in the previous section, we perform a
parametric study for varying L and F , by solving the steady version of (2.6)–(2.7)
for different values of the Reynolds number.

(ii) We characterize the topological properties of the steady flow (e.g. the characteristic
dimensions of the recirculation region) and the aerodynamic/hydrodynamic
properties of the permeable shell, such as its drag coefficient.

(iii) The validity of the performed investigation, carried out assuming that the flow is
steady, is verified by linear stability analysis (Chomaz 2005; Theofilis 2011). The
latter has the advantage of characterizing the stability of the steady solution with a
computational cost comparable with that needed to compute steady solutions, thus
making it suitable for the performed parametric study.

(iv) Once the variety of possible steady solutions is reduced by excluding the unstable
configurations, for which the steady analysis would be inappropriate, the objective
to be optimized is defined, e.g. the maximum drag coefficient for a fixed Reynolds
number. Therefore, the values of L and F that maximize the objective function
are identified. This can be done by employing adjoint procedures for spatially
homogeneous membrane properties. However, since in this work we perform a
parametric study, the values are directly deduced from the latter.
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(v) We then move from the macroscopic perspective to the microscopic one, aiming
at identifying the geometry of the membrane that corresponds in macroscopic
terms to the optimal configuration previously identified. We therefore perform the
microscopic simulations described in Zampogna & Gallaire (2020) for a fixed
geometry by varying the fluid-to-solid ratio of the porous shell. We thus define the
microscopic geometrical parameters and ε.

(vi) We eventually verify the accuracy of the resulting structure by comparing the
full-scale simulations with the homogenized results.

The outlined technique has the great advantage of markedly reducing the complexity
of the problem and giving a parametric map of the properties of the flow by varying the
microscopic geometry of the membrane. An extension of this technique to treat the case of
a microscopic geometry that varies along the membrane is obtained by a gradient-based
optimization implemented via a Lagrangian approach, detailed in § 5.2. In particular, we
consider as a starting point the configuration, with constant slip and filtrability numbers,
that maximizes the drag coefficient. We evaluate the sensitivity of this predefined objective
function (drag maximization) with respect to spatial inhomogeneities of the properties
of the membrane and perform a gradient-based optimization. The resulting structure is
then obtained by following an inverse procedure based on the microscopic calculations of
Zampogna & Gallaire (2020), but extended to the case of variable properties along the
membrane.

We finally underline that the procedure, illustrated here for the specific case of a wake
flow, is of general validity and can thus be applied to a generic flow.

3. Case study: flow past a cylindrical porous shell

In this section, we report the results of the direct part of the procedure sketched in figure 3,
preparatory to the homogenization-based geometrical reconstruction and Lagrangian
optimization, constituting the inverse part of the procedure. We characterize the steady
flow in terms of the recirculation region and drag coefficient, and then we move to the
stability properties of the steady wake and the features of possible unsteady modes.

Equations (2.6) are numerically implemented via their weak formulation in the
finite-element solver COMSOL Multiphysics, using a domain decomposition method (e.g.
Quarteroni 2017) to couple the outer and inner flows. In this framework, the macroscopic
model (2.7) acts like an interface condition between two different fluid domains. In order
to exchange information from the outer to the inner domain, the stress jump condition is
implemented by exploiting the interface integral emerging from the weak formulation,
while, to exchange information from the inner to the outer domain, the continuity of
velocity is imposed via a Dirichlet boundary condition. We exploit the built-in solver
for nonlinear systems, based on a Newton algorithm. The spatial discretization is based
on the Taylor–Hood (P2-P1) triangular elements. The unstructured grid is made of five
different regions of refinement (figure 2), whose edge densities have been chosen after a
convergence analysis reported in Appendix A.

The eigenvalue problems resulting from the linear stability analysis carried out in
§ 3.2 are solved with the COMSOL Multiphysics built-in eigenvalue solver, based on the
ARPACK library; mesh convergence is checked also for this problem and it is reported in
Appendix A.
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Figure 4. Streamlines of the flow past the cylindrical permeable shell at Re = 50 for L = 10−4 and four
different values of F : (a) F = 10−4, (b) F = 10−3, (c) F = 10−2 and (d) F = 3 × 10−2.
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Figure 5. (a–d) Streamlines identifying the recirculation region past the cylindrical permeable shell at
Re = 50 for different values of F . Each panel corresponds to a single value of L.

3.1. Steady flow characterization
The steady wake past a circular solid cylinder is characterized by a recirculation region
that is symmetric with respect to the x1 axis. We denote with (U, P) the steady solution of
(2.6). Since, by construction, we do not introduce any further asymmetry, also the flow past
the permeable cylindrical shell is expected to be x1-symmetric. For this reason, we only
report the flow field in the region x2 > 0. For the present analysis, we introduce the length
of the recirculation region LR and its distance from the rear of the body XR as defined in
figure 1. In figure 4 we report the flow streamlines for different values of F when Re = 50
and L = 10−4. At low values of F , e.g. F = 10−4, the wake is similar to the solid case,
i.e. characterized by a recirculation region attached to the rear of the cylinder (XR ≈ 0).
As the value of F increases, the recirculation region detaches from the body and moves
downstream. A further increase in F implies a size reduction of the recirculation region
(LR), and at very large values of F , i.e. F = 3 × 10−2, the recirculation region eventually
disappears (LR = 0).

In figure 5 we report the variation of the recirculation region with F , for different slip
numbers L and for Re = 50. Independently of the value of the slip number, a behaviour
similar to that described in figure 4 is observed. For a fixed filtrability number, an increase
in L leads to a slight decrease of LR, while XR does not vary noticeably.
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Figure 6. (a–d) Streamlines identifying the recirculation region past the cylindrical permeable shell at
F = 10−2 and for different values of Re and L. Note that for L = 3 × 10−2 and Re = 110, recirculation is
suppressed.

A complete characterization of the flow morphology requires also the analysis of the
effect of the Reynolds number. In figure 6 we show the recirculation regions for fixed
filtrability number F = 10−2, for different values of L and for Re = 50, 75, 100 and 110.
For Re = 50, the flow is characterized by a recirculation detached from the body such
that LR ≈ 2. At Re = 75, the recirculation region moves downstream and LR increases.
This effect is enhanced at large values of the slip number. In the last case, Re = 110,
the recirculation region moves further downstream and LR decreases, and eventually
disappears for large values of L.

The evolution of LR and XR with L,F and Re is summarized in figure 7. The quantities
LR and XR have been deduced by a Matlab script which evaluates the position of the
zeros of the horizontal velocity field sampled on the line x2 = 0. In analogy with the solid
case, LR increases with Re (figure 7a). The curves are grouped in clusters. Each cluster
represents different values of Re, and each curve within the cluster a different value of L.
For Re = 25, LR decreases with F until the recirculation region disappears for F ≈ 10−2.
A similar trend is observed for Re = 50, but in this case the recirculation region disappears
for larger values of F . For Re > 50, interestingly, the recirculation region grows as the
filtrability number increases. The value of LR reaches a maximum and decreases, until the
recirculation region disappears for F ≈ 1.5 × 10−2. For all cases, an increase in L leads
to a slight decrease of LR, while the trend with F does not change.

As shown in figure 7(b), the distance between the body and the recirculation region,
XR, increases with F , reaching a maximum value approximately equal to 2 for Re = 100,
while the effect of L is negligible. An increase in Re leads to an increase in the distance
XR, but the trend with F remains unchanged.

The morphology analysis of the steady wake shows that LR and XR are controlled
by the slip and filtrability numbers. Large values of the filtrability number F strongly
influence the flow, implying detached and small recirculation regions, or even the absence
of recirculation. The slip number L slightly modifies the shape and distance of the
recirculation region, for fixed filtrability number, whilst the qualitative behaviour remains
unchanged. An increase in the Reynolds number, for large values of F , leads to an initial
increase in LR, followed by a decrease and eventually vanishing, while XR monotonically
increases. The outlined wake morphology strongly resembles that observed for the wake
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Figure 7. (a) Length of the recirculation region past the cylindrical permeable shell LR for F ∈ [10−3, 2 ×
10−2] and L ∈ [10−3, 2 × 10−2]. Each cluster represents a single value of Re. From top to bottom: Re =
100, 75, 50, 25. (b) Distance of the recirculation region from the rear of the body XR for the same values
of the parameters. From bottom to top: Re = 50, 75, 100.

of porous rectangles (Ledda et al. 2018), where the permeability plays a role similar to that
of the filtrability number.

When the Reynolds number increases, the inertia of the fluid increases and tends to
enlarge the recirculation region, whereas the flow can pass through the body more easily,
since the velocity at the membrane is proportional to Re (equation (2.7)). The result of this
competition is the non-monotonic behaviour of the recirculation region size with Re.

We conclude our characterization of the steady wake past a permeable cylindrical shell
by considering the drag coefficient:

CD = 2
∮

Γcyl

(
Σjk

(
P−, U−) − Σjk

(
P+, U+))

nkδ1j dΓ, (3.1)

i.e. the drag exerted by the fluid over the outer (−) and inner (+) sides of Γint. The drag
coefficient of a solid cylinder decreases with Re (Fornberg 1980). The same behaviour
is observed in the permeable case (cf. figure 8), where, at each value of Re, we observe
clusters of curves analogous to figure 7. While L produces slight variations in CD, the
trend in the variation with F depends on the Reynolds number considered and shows
two different types of behaviour. Up to Re = 15, the drag coefficient decreases with F .
From Re = 20, CD slightly increases with F , and this effect is more pronounced as Re
further increases. For larger values of Re, the curve representing CD against F is no longer
monotonic and for Re = 100, a clear peak is observed, for F ≈ 1.25 × 10−2. Surprisingly,
the maximum drag coefficient CD ≈ 1.34 is larger than that for the solid cylinder, CD ≈
1.06 (Fornberg 1980). Beyond this value of F , the drag coefficient decreases.

In the following, a physical insight into the described drag behaviour is provided. Since
the maximum is observed by varying the filtrability, while the slip does not have any
significant effect on this behaviour, we fix L = 10−4 and we focus on the effect of solely F
in the range [10−4, 5 × 10−2], for Re = 100. Note that the maximum of the drag coefficient
in this specific case is obtained for F � 1.2 × 10−2, which is inside the range considered
here. We perform an analysis of the different sources of drag, dividing them into a pressure
contribution, i.e. (�P)n1 = −(P− − P+)n1, and a viscous stress contribution (�Σv

1j)nj =
(Σv

1j(U
−) − Σv

1j(U
+))nj, where Σv

jk(U) = (1/Re)(∂jUk + ∂kUj). These contributions are
reported in figure 9(a,b). The global pressure and viscous contributions to the drag are
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Figure 8. (a,b) Variation of the drag coefficient CD with F for different values of L. Each cluster

corresponds to a different value of Re, as denoted in the figure.

the integrals of the corresponding curves in figure 9(a,b). Analysing the integral of
the pressure and viscous contributions we observe that (i) the viscous contribution is
approximately ten times smaller than the pressure one (except for the case F = 5 × 10−2)
and (ii) the viscous contribution increases with F , while the pressure contribution has
a maximum at 5 × 10−3 < F < 10−2. As a result, the non-monotonic behaviour of CD
versus F can be largely explained by investigating the sole pressure contribution. In the
almost-solid case, F = 10−4 (blue line), there is no fluid motion inside the cylinder, and
the inner pressure is constant, as shown in figure 9(c). Therefore, the inner pressure does
not contribute to the drag and the distribution of external pressure is alone responsible
for integral forces. Focusing on the upper half of the cylinder (x2 > 0), in the front
part, for (3/4)π < α < π, the pressure contribution is positive and becomes negative for
π/2 < α < (3/4)π. This suction region reduces the total drag since it acts on the front
part of the cylinder. In the rear of the cylinder, the pressure contribution is positive with
an almost constant negative value, which is the so-called base region. As the filtrability
increases, a fluid motion manifests in the inner region of the cylinder, which is associated
with a non-uniform distribution of inner pressure (see figure 9d). The pressure difference
in the upstream part of the cylinder decreases as the filtrability increases since the
membrane is progressively more permeable. Thus, an inner flow, oriented towards the
downstream face of the cylinder, is generated. As a result of the blockage represented
by the downstream cylinder face for the inner flow, the inner pressure increases moving
downstream, as indicated by the concavity of the streamlines (see figure 9c–e). At the
same time, the external base pressure in the downstream surface of the cylinder is not
significantly affected by F provided that F < 10−2. As a result, the contribution to drag
of the pressure difference in the downstream face of the cylinder is larger than for the solid
case for F < 10−2. Figure 9(a,b) supports this discussion from a quantitative viewpoint. In
particular, comparing cases with F < 10−2 it is possible to see that, as F increases, (i) the
suction at α � (3/4)π decreases (thus increasing the drag), (ii) the drag contribution of the
upstream face decreases and (iii) the drag contribution of the downstream face increases.
At low filtrabilities, (i) and (iii) dominate over (ii), while at larger values of F the term
(ii) becomes predominant. Concerning the viscous contribution, although more modest,
figure 9(a,b) shows that it monotonically increases with F .

Conversely, as F is further increased, see the case F = 5 × 10−2, the upstream
contribution markedly decreases due to the larger filtrability of the membrane. The
substantially higher velocities of the inner flow and the larger filtrability cause a very mild
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Figure 9. Pressure (a) and viscous stress (b) contributions to the drag following the cylinder surface. The
angle α is measured counterclockwise starting from the rear. The colours denote different values of F = 10−4

(blue), F = 5 × 10−3 (orange), F = 10−2 (yellow), F = 5 × 10−2 (purple). The slip number is kept fixed to
L = 10−4. (c)–(e) Streamlines (black bold lines) and iso-contours of the pressure for the steady flow around
and through the permeable circular membrane, for different values of F and L = 10−4.

increase of the inner pressure when approaching the downstream part of the membrane.
This is again shown also by the streamlines (see figure 9e) which are almost straight in
the inner region. Moreover, the larger flow across the downstream part of the membrane
decreases the pressure jump between external and internal flows in that area. As a
net result, the pressure contribution to drag, in comparison with the impermeable case
(here approximated by F = 10−4) decreases also in the downstream region. Although
the viscous contribution to the drag increases, the total drag decreases because it is
quantitatively dominated by the pressure, whose contribution rapidly decays.

In this section, we characterized the morphology of the steady flow, describing the effect
of the slip and filtrability numbers. However, not all steady solutions previously described
can be observed, as some of them may be unstable with respect to perturbations, thus
leading to unsteady configurations. Since conducting time-dependent simulations for every
studied case (far beyond 1000) is a monumental task, we perform a stability analysis,
well known to give very accurate predictions of the bifurcations for the case at issue in
computational times comparable with the ones of the steady analyses (Chomaz 2005;
Theofilis 2011). Thus, in the following we study the stability of the steady-flow solution as
L and F are varied.

3.2. Stability analysis of the steady flow
As mentioned in the previous section, to complete the analysis of the chosen flow
configuration, we now establish for which combinations of (Re,F ,L) the solution is

927 A31-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

75
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.756


Homogenization-based design of microstructured membranes

linearly stable with respect to perturbations and thus likely to be observed. The occurrence
of bifurcations of the flow leading to different configurations is studied in the framework
of linear stability analysis (Chomaz 2005; Theofilis 2011). We consider the flow solution
as the superposition of the steady solution denoted as [U(x, y), P(x, y)], outlined in
the previous section, and an infinitesimal unsteady perturbation. We thus introduce the
following normal mode ansatz:

ui(x, y, t) = Ui(x, y) + σ ûi(x, y) exp (λt) , p(x, y, t) = P(x, y) + σ p̂(x, y) exp (λt) ,

(3.2a,b)

where σ � 1. At O(1) the steady version of the flow equations is obtained, satisfied by
[U, P], and at O(σ ) the following system of equations is obtained:

λûi + ûj∂jUi + Uj∂jûi = −∂ip̂ + 1
Re

∂2
jj ûi,

∂iûi = 0,

⎫⎬
⎭ (3.3)

ûi = û+
i = û−

i ,

ûi = ReMij
(
Σjk

(
p̂−, û−) − Σjk

(
p̂+, û+))

nk,

}
(3.4)

together with the homogeneous Dirichlet boundary condition at the inlet Γin, û1 =
û2 = 0, and the stress-free condition on the sides Γlat and at the outlet Γout, (−p̂δij +
(1/Re)∂jûi)nj = 0.

Equations (3.3) and (3.4), together with the boundary conditions on Γin, Γlat and
Γout, define an eigenfunction problem with, possibly, complex eigenvalues λ = Re(λ) +
i Im(λ). The real part of the eigenvalue is the growth rate of the global mode, and
the imaginary part its angular velocity. We introduce the associated Strouhal number
defined as St = Im(λ)/2π. The flow is asymptotically unstable if there exists at least
one eigenvalue with positive real part; otherwise it is asymptotically stable. The absence
of unstable modes therefore ensures the occurrence of the steady solution, while their
presence gives useful information about the emerging unsteady flow configuration.

We turn now to describe the results of the linear stability analysis. The solid case exhibits
a Hopf bifurcation at Re = 46.7 that drives the flow to a state that is periodic in time,
characterized by the alternate shedding of vortices, the so-called von Kármán vortex street
(Barkley 2006). Ledda et al. (2018) showed the suppression of this vortex shedding mode
for large enough values of the permeability, in the case of porous rectangular cylinders. A
preliminary analysis of the permeable membrane shows that the above-described mode is
also the only one that destabilizes the steady wake in the range 10 < Re < 130. In figure 10
we report the marginal stability curves (i.e. the locus of points with Re(λ) = 0) in the
(F , Re) plane, for different values of L. The marginal stability curves define a stable and
an unstable region in the (F , Re) plane. At low values of F and L, the critical Reynolds
number Recr for the marginal stability coincides with the solid one, i.e. Recr = 46.7. An
increase in L leads to a slight increase in Recr that reaches a maximum approximately equal
to 50 for L = 0.02. For F > 10−3 the critical Reynolds number increases. We identify a
critical value of F = Fcr beyond which the steady solution is stable. This value depends
on the Reynolds and slip numbers. For fixed L, Fcr initially increases with Re, reaches
a maximum and decreases. Among all cases, the maximum value Fcr ≈ 1.08 × 10−2 is
achieved for L ≈ 10−4.

The imaginary part of the eigenvalue well approximates the oscillation frequency of
the nonlinear limit cycle in marginal stability conditions (Barkley 2006). In the inset of
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Figure 10. Marginal stability curves in the plane (F , Re). Each curve is associated with a different value of
slip number L = 10−4 (blue), L = 10−3 (orange), L = 10−2 (yellow), L = 2 × 10−2 (purple). The inset shows
a zoom in for large values of F . The coloured circles represent the values of the Strouhal number along the
marginal stability curve in the region depicted in the inset.
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Figure 11. Real part of the eigenvector û1 associated with the marginally stable eigenvalue for Re = 46.7,
L = 10−2 and F = 10−3 (a) and for Re = 87, L = 10−4 and F = 1.075 × 10−2 (b). The velocity eigenvectors
are normalized by their L2 norm.

figure 10, we report the value of the Strouhal number along the marginal stability curve.
We do not observe substantial variations in the Strouhal number with respect to the solid
case, i.e. St ≈ 0.116 (Norberg 2003).

In figure 11 we report the spatial distribution of Re(û1) for two different cases, in
figure 11(a) characterized by a recirculation region close to the cylinder and in figure 11(b)

characterized by a recirculation region far downstream. In both cases, the unstable mode
leads to a vortex shedding similar to that of the solid case, as already anticipated. As
the recirculation region moves downstream, the onset of the vortex shedding is displaced
downstream and the flow in proximity of the cylinder is almost steady.

The analysis of the stability properties of the steady wake shows the strong stabilization
effect of the filtrability number. The marginal stability curves strongly resemble those
outlined in Ledda et al. (2018, 2019). In particular, the vortex shedding is suppressed
for large enough values of the filtrability. This similarity is confirmed by the spatial
distribution of the unstable mode, which moves downstream with the recirculation region
of the steady flow. Indeed, the stability properties of the wake can be related to the extent
of the so-called absolute region of instability in a local stability analysis (i.e. performed
for the velocity profile at each streamwise location; see Monkewitz (1988) and Giannetti &
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Luchini (2007)) that roughly corresponds to the recirculation region. As shown in Ledda
et al. (2018), there is a critical value of the extent of the recirculation region beyond
which the flow becomes unstable. When large values of the filtrability are considered, the
recirculation region is small or even absent, and thus the vortex shedding is suppressed.
For fixed F ≈ 10−2 and L and increasing Re, the recirculation region initially increases
and then decreases its dimensions (cf. figure 6). Therefore, the first destabilization and
subsequent stabilization for fixed F and L are due to the non-monotonic behaviour of the
length of the recirculation region with Re, which crosses the critical value for the marginal
stability twice.

By comparing the marginal stability curve with the drag coefficient, we deduce that the
maximum of CD for the steady flow occurs for a stable configuration for all values of Re.
Interestingly, a permeable circular membrane exhibits a larger drag than the equivalent
solid one, and this maximum occurs when the steady flow is stable.

In the present section, we performed a parametric study under the framework of
bifurcation theory in order to exclude the unstable configurations from the variety of
steady solutions obtained in § 3.1. In the next section, we propose a methodology to obtain
the full-scale design of the structure by fulfilling some objectives on the macroscopic
behaviour of the steady flow, under the constraint of stable configuration.

4. From objectives to full-scale design

In the previous section, we performed a parametric study of the steady solution of (2.6)
and (2.7) and the stability properties of the resulting wake, considering L and F as free
parameters. In the present section, we outline a procedure for the objective-based full-scale
design of a permeable circular membrane. We first define macroscopic objectives to be
fulfilled and, performing microscopic simulations, we identify the geometry that best
satisfies the macroscopic requirements. We consider cylindrical permeable shells formed
by an array of elliptical inclusions, distributed with a constant angular distance, of axes lt
and ln (normalized with the microscopic characteristic length) aligned along the tangential
and normal directions to the membrane, respectively, in the range 0.02 < lt, ln < 0.98.

4.1. Choosing the design objective
An important macroscopic property is the drag exerted on the solid structure by the
incoming fluid. Several attempts of controlling this integral quantity, defined by (3.1),
by permeable surfaces have been carried out, some of them focused on minimizing the
drag (Garcia-Mayoral & Jiménez 2011; Abderrahaman-Elena & García-Mayoral 2017;
Gómez-de Segura & García-Mayoral 2019), others investigating the conditions for drag
maximization (Cummins et al. 2017, 2018).

We fix Re = 100 and we study the variation of CD with L and F . In figure 12 we
report the iso-contours of CD on the (F ,L) plane. The bold solid line corresponds to
the marginal stability boundary for Re = 100. Among all these possible solutions for
the drag coefficient, we select the maximum value of the drag coefficient (CD = 1.339),
which occurs at F = 1.25 × 10−2, L = 5 × 10−3 (denoted by � in figure 12) and in the
following is compared with the full-scale simulations. For the sake of completeness, we
select three other values of CD denoted by ©, 
,  in figure 12, to verify the faithfulness
of the homogenized model in the parameters space (F ,L) for constant L = 10−4. Note
that the case denoted with  is unstable, but we use it as an additional test case owing to
the large recirculation region that this configuration exhibits.
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1.30

CD

1.25

1.20
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1.10
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1.00
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10–2

L

F

Unstable

Stable

Figure 12. Iso-contours of CD for Re = 100 in the (F ,L) plane. Symbols identify the configurations listed in
table 1. The marginal stability curve for the value of Re considered is represented by a bold solid line (all cases
on the right-hand side of the curve are stable).

4.2. Linking microscopic geometry to macroscopic properties: elliptical inclusions
We now turn to describe the procedure for the determination of the microscopic geometry
based on the macroscopic flow properties identified in the previous subsection. We first
perform microscopic simulations in the domain depicted in figure 13(a) (dashed rectangle)
whose lengths are non-dimensionalized with the microscopic length �, so that the results
do not depend on the separation-of-scales parameter ε = �/D, according to Zampogna &
Gallaire (2020). Within this domain, two different microscopic problems need to be solved
to calculate F̄n and L̄t; they read respectively

−∂iQ + ∂2
llFi = 0, in F,

∂iFi = 0, in F,

Fi = 0, on ∂M,

Σnn (Q, F ) = −1, on U,

Σnn (Q, F ) = 0, on D,

Fi, Q, periodic along t,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.1)

and
−∂iR + ∂2

llLi = 0, in F,

∂iLi = 0, in F,

Li = 0, on ∂M,

Σtn (R, L) = −1, on U,

Σtn (R, L) = 0, on D,

Li, R, periodic along t,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)

where i, l = t, n, i.e. the equations are written in the local frame of reference of the cylinder
surface. We refer to figure 13(a) for a definition of F, M, U and D. In the microscopic
problems (4.1) and (4.2) the scalar fields R and Q appear. They relate the value of the
pressure on Γint to the upward and downward fluid stresses and do not contribute to the
determination of the macroscopic flow through the membrane (see Zampogna & Gallaire
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Figure 13. (a) Sketch of the membrane (red dashed line) with a zoom on the microscopic elementary cell
used to calculate L̄t and F̄n. The tangential- and normal-to-interface axes of the solid inclusion are respectively
denoted with lt and ln and normalized by �. Iso-contours of F̄n = F/ε (b) and L̄t = L/ε (c) on the plane
(lt, ln), in logarithmic scale. Blue-to-red colours indicate positive values of F̄n and L̄t while grey-scale refers
to negative values of L̄t. The lines identify the iso-contours of the possible couples (ln, lt) whose symbols
correspond to different couples (F ,L) of figure 12. Each point on those lines is a good candidate to realize the
desired value of F and L, upon adjustment of the value of ε. The selected values of lt and ln are labelled with
white arrows for each case.

(2020) for a detailed explanation). For the purpose of the present work, we are not directly
interested in microscopic fields representing the solution of these problems, but we need
only to know the quantities F̄n and L̄t which appear in the macroscopic model via (2.9),
where the symbol ·̄ denotes the spatial average used in Zampogna & Gallaire (2020), i.e.

·̄ = lim
U→D

1
|F ∪ M|

∫
F

· dx = 1
|Γ F

int ∪ Γ M

int |
∫

Γ F

int

· dx, (4.3)

with Γ F

int and Γ M

int the fluid and solid parts of Γint within the unit cell, as sketched in
figure 13(a). The linear problems (4.1) and (4.2) are numerically solved for each couple
(lt, ln), 0.02 < lt, ln < 0.98 (with a step of 0.01), via their weak formulation implemented
in the finite-element solver COMSOL Multiphysics. The spatial discretization is based
on the Taylor–Hood (P2-P1) triangular elements for F -L and R-Q, respectively. We refer
to Zampogna & Gallaire (2020) for further details about the solution of the microscopic
problems.
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After averaging the solution of the microscopic problems, we deduce F̄n and L̄t, whose
iso-contours are reported in figure 13(b,c) as functions of the two axes ln and lt.

The parameters F and L are then calculated by a renormalization of F̄n and L̄t with
respect to the macroscopic length scale, i.e.

F = εF̄n and L = εL̄t. (4.4a,b)

While in a direct approach the parameters defining the full-scale geometry lt, ln and ε

are given and the corresponding filtrability and slip numbers are evaluated, in the inverse
procedure they need to be determined based on the choice of a given property that has
to be satisfied by the fluid flow. Actually, there is no one-to-one relation linking F and
L to the microscopic geometry. Once filtrability and slip are chosen, one has potentially
full freedom in the choice of the microscopic structure. This choice is essentially related
to the geometrical shape of the microscopic inclusions, in this case ellipsoidal ones with
variable axes, and to their relative size with respect to the macroscopic length, as outlined
in figure 13(b,c), where several configurations satisfy the desired values of F and L, each
one associated with a value of ε. For the sake of clarity we list the steps to follow in
order to determine these geometrical parameters which allow us to define the microscopic
geometry of the permeable shell:

(i) According to the previous subsection, we identify a pair (F ,L) = (F∗,L∗) of
interest.

(ii) We find in the lt–ln plane the possible pairs of (lt, ln) that can give the correct set
(F∗,L∗). These values are found by evaluating the ratio F∗/L∗, which does not
depend on ε (since Fn and Lt are proportional to ε). The potential values of ln and
lt are those associated with the black solid lines in figure 13(b,c), which realize C∗

D
upon renormalization by the proper value of ε that is still undetermined.

(iii) Among the potential candidates, the final value of ε and thus the values of (lt, ln)
can be chosen based on other constraints (like, for instance, the minimization of
microscopic anisotropy, i.e. lt ≈ ln, the minimization of ε or the satisfaction of
geometrical properties of the medium like the fluid-to-solid ratio).

(iv) Once the value of ε is selected, there is only one couple (lt, ln) that satisfies the
macroscopic values of F∗ = εF̄n and L∗ = εL̄t. We then deduce F̄n and L̄t, and
eventually lt and ln.

The values of ε, lt and ln are deduced for each case highlighted by the symbols in
figure 12. Table 1 shows the values found for each case, corresponding to the white pointers
in figure 13(b). For the cases denoted by ©, 
 and � the values of (lt, ln) have been chosen
so as to obtain a value of ε of order 10−1, while for the case  the value of (lt, ln) guarantees
minimal anisotropy with the constraint ε ≤ 0.045.

The final full-scale geometries are thus obtained by distributing the inclusions along the
membrane centreline Γint, with a constant angular distance among them given by �φ =
2πε/π�, with ·� the integer part in order to have an integer number of inclusions along
the cylindrical shell. Two examples of microscopic geometries obtained are depicted in
figure 14, where 69 and 32 inclusions are employed. Once the full-scale geometry is built,
the reliability of the inverse procedure is verified as explained in the next section.

4.3. Comparison between homogenized and full-scale results
We verify the faithfulness of the homogenization approach and the subsequent retrieval of
the microscopic geometry by comparing the results obtained using the equivalent model
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N ε lt ln F L CD CEQ
D LR LEQ

R XR XEQ
R

 69 4.49 × 10−2 0.08 0.24 5.0 × 10−3 1.0 × 10−4 1.264 1.259 7.386 7.358 0.431 0.421
� 32 9.82 × 10−2 0.12 0.06 1.25 × 10−2 5.00 × 10−3 1.338 1.339 — — — —

 31 1.01 × 10−1 0.02 0.38 1.2 × 10−2 1.0 × 10−4 1.350 1.334 — — — —
© 10 3.14 × 10−1 0.02 0.50 3.0 × 10−2 1.0 × 10−4 1.365 1.239 — — — —

Table 1. Relevant geometrical and physical parameters for the cases chosen in figure 12; N indicates the
number of inclusions forming the membrane, the superscript EQ denotes quantities calculated using model
(2.7) on Γint while the absence of superscript denotes quantities evaluated from the full-scale solution.
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Figure 14. Comparison between full-scale and equivalent model for cases  and � identified in figure 12. The
microscopic geometry forming the cylindrical shell, sketched for each case in the grey insets on the left, is the
result of the inverse procedure explained in § 4.2. (a,d) Flow streamlines for the full-scale case (black dashed
lines) and for the macroscopic model (blue solid lines). (b,c,e, f ) Horizontal and vertical velocities U1 and U2
sampled on the cylindrical shell using the angle α measured counterclockwise starting from the rear. Dashed
lines represent the full-scale model, blue lines the macroscopic model and red stars the average of the full-scale
model, calculated applying a discrete version of the integral in (4.3), based on a 1-point Gaussian rule, to the
velocity profile in each microscopic elementary cell forming the membrane. Numerical values of ε, F , L and
other representative values of the fluid flow (CD, XR, LR) are listed in table 1 for each case.

with the feature-resolved flow past the full-scale permeable shell. To deduce the full-scale
flow, the Navier–Stokes equations are solved in the full-scale domain, where each solid
inclusion forming the membrane is explicitly taken into account in the fluid domain and
thus in the mesh. The full-scale problem is solved by the finite-element solver COMSOL
Multiphysics, using the same numerical set-up as for the macroscopic flow solution. In
order to have spatially converged results, mesh M1 (see Appendix A) has been modified
in the vicinity of the full-scale structure. A circular refinement region of diameter 1.1L
has been added with a resolution chosen in order to guarantee at least 102 cells between
two adjacent solid inclusions whose boundary has been discretized using at least 50
segments. The boundary conditions on Γin, Γout and Γlat are the same as in the case of

927 A31-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

75
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.756


P.G. Ledda, E. Boujo, S. Camarri, F. Gallaire and G.A. Zampogna

–0.15

–0.10

–1.0 –0.5 0

Im (λ)

R
e 

 (λ
)

0.5 1.0

–0.05

0

0.05

0.10

–0.15

–0.10

–1.0 –0.5 0

Im (λ)

0.5 1.0

–0.05

0

0.05

0.10

(b)(a)

Figure 15. (a,b) Comparison between the homogenized and full-scale results of the stability analysis. The
crosses and the circles denote the eigenvalues obtained from the full-scale structure and from the homogenized
model, respectively, for the two reported cases.

the macroscopic model (2.7), while we impose a no-slip condition on the walls of each
microscopic inclusion, i.e. ui|Γ∂M

= 0.
In figure 14 we report two sample comparisons of the flow fields obtained with the

homogenized model and with the full-scale simulations (cases  and � identified in
figure 12), together with the velocities at the membrane. In both cases, we observe a
good agreement between the two approaches, with an error on the velocities along the
membrane of the order of ε, as expected.

In table 1 we report the reference values (CD, LR, XR) for all cases identified in figure 12.
Also in this case, we observe an overall good agreement, even for extremely large values
of ε, which are far beyond the rigorous domain of validity of the theory. Only for the
case denoted by © are the differences in CD non-negligible, suggesting that a maximum
value of ε beyond which macroscopic model (2.7) is no more applicable lies between
10−1 and 3.5 × 10−1. A complete validation also requires the comparison of the stability
properties of the flow between homogenized model and full-scale simulations, reported
in figure 15. We observe a good agreement between the spectra, and in particular the
leading eigenvalues are well described by the homogenized model. Considering the one
with largest real part, the relative errors on the absolute value are 0.25 % for the case 

(λ = 0.076 + 0.64i) and 0.6 % for the case � (λ = −0.039 + 0.72i). We finally stress the
importance of the validation described above, since it constitutes a strong proof of the
faithfulness of the model developed in Zampogna & Gallaire (2020) in the case of flows
with non-negligible macroscopic inertia.

In this section, we outlined a method for the geometrical reconstruction of the
microscopic geometry based on the macroscopic properties of the membrane, thus
concluding the first branch of the scheme described by figure 3. We note that the
homogenized model, combined with the stability analysis technique, allows us to perform
a parametric study spanning a very large range of possible geometries with extremely fast
outputs. The flow through the resulting microscopic structure shows a good agreement
with the homogenized model, thus giving confidence in the parametric study carried out
in § 3. We verified the validity of the homogenized model through permeable membranes
for Reynolds numbers of the order of 102. The error on the final solution is of order ε, thus
degrading the solution when extremely large values of ε are considered. Nevertheless,
the homogenized model gives also in these cases fairly reasonable results that can be
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used as guidelines in a first parametric study, before optimizing the resulting microscopic
structure.

The previous analysis was focused on membranes with monodisperse and identical
microscopic inclusions along the centreline of the membrane. In the following, we
analyse the opportunity to exploit membranes of variable permeability by employing a
Lagrangian-based optimization, i.e. we focus on the second branch of the diagram of
figure 3, in the inverse procedure part.

5. Adjoint-based optimization of membranes of variable properties

The purpose of the present section is to find profiles of F and L which are optimal with
respect to a given objective, here specifically the maximization of the drag coefficient. To
accomplish this task, a variational approach is used.

5.1. Sensitivity with respect to variations of the slip and filtrability numbers
In this section, we introduce the theoretical framework for the adjoint-based optimization
of the structure of the membrane. We recall that, at the interface, we denote with
superscript plus sign the variables evaluated in the inner part of the cylinder and with
superscript minus sign those evaluated in the outer part. Any small modification δMij of
the tensor component Mij (i.e. variations of F or L) induces a perturbation (δu, δp) on
the flow field such that (u, p) = (U + δu, P + δp). The drag coefficient, i.e. the objective
in the Lagrangian framework, is written as follows:

CD = 2
∮

Γcyl

(
Σjk

(
p−, u−) − Σjk

(
p+, u+))

nkδ1j dΓ. (5.1)

The modification δMij thus perturbs the drag by δCD according to

δCD = 2
∮

Γcyl

(
Σjk

(
δp−, δu−) − Σjk

(
δp+, δu+))

nkδ1j dΓ =
∮

Γcyl

∇MijCDδMij dΓ.

(5.2)

The quantities (δu±, δp±) are the solution of (B3) reported in Appendix B, where a formal
derivation of the sensitivity functions (i.e. the functions describing the variations of the
objective CD with respect to the control variable F and L) is carried out. In the Lagrangian
framework, the sensitivities of the drag coefficient with respect to variations of L and F
are

∇FCD = −Reu††
i

(
Σjk

(
P−, U−) − Σjk

(
P+, U+))

ninjnk (5.3)

and
∇LCD = Reu††

i
(
Σjk

(
P−, U−) − Σjk

(
P+, U+))

titjnk, (5.4)

where the Lagrange multipliers (u†, p†, u††), also called adjoint variables, are the solution
of the following linear problem:

∂iu
†
i = 0, u†

j ∂iUj − Uj∂ju
†
i = ∂ip†+ 1

Re
∂2

jju
†
i in Ω,(

Σik

(
−p†−, u†−

)
− Σik

(
−p†+, u†+

))
nk − u††

i = 0 on Γint,

u†+
i = u†−

i on Γint

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.5)
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Figure 16. (a) Variation of the drag coefficient with F , for L = 5 × 10−3, directly evaluated from
macroscopic model (2.6), (2.7) (black circles) and predictions of the gradient via the sensitivity approach
(coloured lines) carried out around the configurations identified by coloured circles. (b) Distribution of
sensitivity with respect to F along the y > 0 part of the cylinder, i.e. 0 < α < π, for the configurations denoted
with colours in (a).

and

u††
i = Re−1M−1

ji

(
u†−

j − 2δ1j

)
on Γint, (5.6)

together with the adjoint boundary conditions u†
i = 0 at the inflow, ∂2u†

1 = u†
2 = 0 at the

transverse boundaries and Σik(−p†, u†)nk + uknku†
i = 0 at the outflow. At this point, it

is clear that in order to understand how the control variables F and L influence the
objective function CD via (5.3), (5.4), the linear problem (5.5) has to be solved, without
the necessity of explicitly evaluating the perturbed state (u, p) = (U + δu, P + δp). The
linear adjoint problem presents an advantage in terms of computational time with respect
to the nonlinear problem for (u, p), and is suitable for a gradient-based optimization with
a progressive update of the distribution of the membrane properties.

In figure 16(a) we report the variation of the drag coefficient with F , for fixed L =
5 × 10−3 (black dots), together with the prediction given by the sensitivity analysis (solid
lines), close to the configuration of maximum CD identified by the � symbol in figure 12.
Note that, at this stage, we keep F uniform along the membrane. A good agreement is
observed, in the vicinity of the points where the sensitivity is evaluated, i.e. δF ≈ 0.01F .
The deviation becomes more important for variations larger than δF ≈ 0.01F , showing a
rather strong effect of nonlinearities close to the point of the maximum drag coefficient.
In figure 16(b) we show the distribution of sensitivity along the upper part of the cylinder,
for three cases. The distribution exhibits a non-monotonic behaviour, with positive values
in the front and in the middle of the membrane, and negative values close to the rear of the
cylinder.

The same analysis is performed for uniform variations of L (figure 17). In this case,
we observe a monotonic behaviour, and the variations of the drag coefficient with L are
considerably smaller than those observed when varying F . The distribution, at low values
of L ≈ 5 × 10−3, shows a peak at α ≈ 130◦, which decreases with L, and is negative in
the other regions of the membrane.

In this section, we derived the sensitivity of the drag coefficient with respect to
variations of F and L. In the following, we exploit the sensitivity analysis to introduce a
gradient-based optimization for the geometry of the membrane, when both the filtrability
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Figure 17. (a) Variation of the drag coefficient with L, for F = 0.03, directly evaluated from macroscopic
model (2.6), (2.7) (black circles) and predictions of the gradient via the sensitivity approach (coloured lines)
carried out around the corresponding coloured circles. (b) Distribution of sensitivity with respect to L along
the y > 0 part of the cylinder, 0 < α < π.

and slip numbers are varied together, so as to find the optimal distribution of F and L to
maximize the drag coefficient.

5.2. Optimal distribution of the properties of the membrane
The sensitivity functions found in the previous section are used here to obtain the optimal
distributions of F and L that maximize the drag coefficient. The starting profiles of
F and L for the gradient-based optimization are uniform. We chose different values of
the initial guess, among which F (0) = 1.25 × 10−2 and L(0) = 5 × 10−3, i.e. the values
that maximize CD when the permeable membrane is formed by a repetition of a single
microscopic inclusion (case denoted by the � symbol in figure 12). We implement a
gradient-ascent iterative procedure, using as initial guess F (0) and L(0). At each iteration
(i), the values of the gradients ∇(i)

F CD and ∇(i)
L CD are evaluated by the adjoint analysis

proposed above. We thus update the distribution of F and L in the direction of the gradient
as follows:

F (i+1) = F (i) + ∇(i)
F CDδF and L(i+1) = L(i) + ∇(i)

L CDδL, (5.7a,b)

with fixed step sizes δF = 10−2F (0) and δL = 10−2L(0). During the optimization
procedure, the values of F and L have to remain strictly positive, to avoid non-physical
values. Besides, too small or too large values jeopardize the inverse procedure, since
large differences in the dimensions of the microscopic inclusions are difficult to handle
without considering large values of the parameter ε, which degrade the accuracy of
the homogenized model. Typical procedures to regularize the problem are based on the
introduction of auxiliary variables to transform the inequality conditions into equality ones
(Schulze & Sesterhenn 2013), or on the truncation of the gradient when the threshold
values are reached (Lin 2007). In this work, for the sake of simplicity, we apply the
latter procedure and we restrict the research of the optimal profiles to the intervals
10−3 < F , L < 1.5 × 10−2. At each iteration, values of F or L larger (smaller) than the
threshold value, due to an increase (decrease) along the gradient direction, are imposed
to be equal to the threshold value. The iterative procedure is stopped when the relative
difference between two successive evaluations of the drag coefficient is less than 10−4.
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Figure 18. Results from the gradient-based optimization. Final distribution of (a) F and (b) L, when both F
and L are optimized for different initial guesses (coloured lines) and when only variations of F are considered
with initial guess F (0) = 0.0125 and L(0) = 0.005 (red dashed line). The various initial guesses are F (0) =
0.0125 and L(0) = 0.005 (blue), F (0) = 0.005 and L(0) = 0.0125 (orange), F (0) = 0.0025 and L(0) = 0.0025
(yellow), F (0) = 0.005 and L(0) = 0.005 (purple), F (0) = 0.01, L(0) = 0.01 (green).

In figure 18 we report the optimal distribution of F and L along the semi-cylinder
found via the iterative algorithm, for the optimization with both F and L, with different
initial guesses. Note that, depending on the initial value, a different number of iterations is
needed to achieve convergence. While the final distribution of F does not show significant
variations with the initial guess, the profiles of L are different. In the rear part, 0 < α <

π/2, L remains constant and equal to the initial value. For α ≈ π/2, all distributions
collapse to the lower threshold value, and in the front part they assume different values.
However, the effect of the slip number on the final value of the drag coefficient (figure 19a)
is small and the differences are below 0.5 %. Therefore, the effect of the filtrability is
predominant and the optimal distribution of F is weakly influenced by L. We thus consider
the case in which the slip number is kept fixed, while the optimization is performed only
on F . The resulting distribution (red dashed line in figure 18a) is very similar to the other
ones optimized with respect to both F and L. Both approaches converge to a similar value
of CD (figure 19b), which is ≈ 6 % larger than the maximum drag obtained with uniform
membrane properties. We therefore conclude that the optimization procedure leads to
significantly larger values of CD, in which the effect of the filtrability is predominant,
with a weak dependence on the initial guess.

The increase of drag in the optimal configuration can be related to the previous
observations in the case of constant filtrability. The optimization procedure tends to
increase the filtrability in the front part (α ≈ π) of the cylinder and at α ≈ π/2, while
it tends to decrease it at α ≈ π/4 and α ≈ (3/4)π. Compared with the constant filtrability
case, the curvature of the streamlines is enhanced, thus leading to a more marked
recompression in the inner part of the downstream portion of the membrane. This effect,
leading to an increase of global drag, is enhanced in the optimal configuration since
the flow is more constrained to pass through the front and the streamlines leave the
cylinder through a narrower region, at α ≈ π/2, owing to the large values of filtrability in
these regions. This constraint further magnifies the effects of the inner pressure gradients
presented in the constant properties case. The analysis of the distributions of slip number
shows that the drag is not influenced by variations of slip in the rear part of the cylinder.

In this section, we performed an adjoint-based optimization of the flow with respect to
the drag. The typical computational time for one step of the optimization is equivalent
to that of a steady calculation of the nonlinear Navier–Stokes equations, i.e. around
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Figure 19. (a) Variation of the drag coefficient during the optimization procedure, for different initial guesses,
as a function of the iteration number rescaled by the total number of iterations required to reach convergence.
(b) Variation of the drag coefficient during the iterative procedure of the gradient-based optimization, when
both F and L (blue dots) and only F (orange dots) are varied, with initial guess F (0) = 0.0125 and L(0) =
0.005. In the insets, we report the distributions of F for different iterations, the horizontal and vertical axes of
the insets corresponding to 0 < α < π and 0 < F < 1.55 × 10−2, respectively.

one minute for a common laptop computer. Since on average 30–60 iterations were
needed to achieve convergence, with the presented simple algorithm, one optimization
lasts for 30–60 minutes. The decoupling between microscopic properties and macroscopic
effects on the flow allows one to move from a generic shape optimization problem to
an optimization problem for the two scalar distributions F(α) and L(α), making the
optimization procedure straightforward to implement compared with a full-scale case.
Once the distribution of membrane properties is known, the inverse procedure has to be
applied to choose the microscopic structure. In the following, we aim at retrieving an
optimal full-scale structure of the membrane starting from the optimal profile of F found
in the present section.

6. Full-scale design of membranes of variable properties

In order to fulfil the inverse procedure introduced in figure 3, we link the optimal
distribution of filtrability and slip found in § 5.2 to a real full-scale structure of the
permeable shell where the microscopic solid inclusions vary in shape and/or size. Since
the effective stress jump condition developed by Zampogna & Gallaire (2020) has not been
initially considered for membranes formed by solid inclusions of variable shape along the
membrane, the first step to reach our objective is to modify and prove the validity of the
macroscopic model for this case.

6.1. Application of the effective stress jump model to the case of membranes with
fast-varying microscopic geometry

The easiest way to compute the microscopic tensors within the homogenization framework
is to assume that the solid structure consists of a periodic repetition of a given unit cell
(for a review, see Hornung (1997)). To relax this assumption one may assume that the
variations of the microscopic structure are slow (e.g. Dalwadi, Bruna & Griffiths 2016) and
hence solve the microscopic periodic problems (4.1) and (4.2) over each periodic unit cell
and then compute the effective macroscopic tensors by averaging the microscopic solution
over each cell. In the context of the present work, since fast variations of F and L can
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be noticed in the optimal distributions of figure 18, we need a model to link the effective
properties to the microscopic geometry, without any assumption about the nature of the
variations of the inclusions along the membrane. The macroscopic model of Zampogna &
Gallaire (2020) is adapted here so as to describe this case when the following hypotheses
are valid:

(i) the permeable shell is the surface of a rotational body, whose radius is R;
(ii) the constraint �/D � 1 is still valid.

Under such assumptions, the macroscopic curvature is neglected in the microscopic
domain as also done in Zampogna & Gallaire (2020) and the microscopic problems (4.1)
and (4.2) are solved in the entire cylindrical shell, Ftot, sketched in figure 20(b), defined as

Ftot = ∪N
i=1Fi, (6.1)

where Fi is the fluid domain within the ith unit cell sketched in figure 20(b) and N the
total number of solid inclusions on the shell. On the left and right sides of Ftot, we impose
periodic boundary conditions as we are dealing with the surface of a rotational body.
With these modifications, i.e. solving the microscopic problems (4.1) and (4.2) over Ftot
instead of over each Fi, the assumption of slow variations of the microscopic geometry
is superfluous and a fast-varying microscopic geometry can be studied and associated
with the optimal profile of F found in the previous subsection. To validate the model,
we first calculate the microscopic quantities associated with two different distributions
of solid inclusions along the membrane, D1 and D2. They represent an example of
slow-varying (D1) and fast-varying (D2) microscopic geometries (see Appendix C). The
distribution D1 is represented in the Cartesian frame of reference in figure 20(a) and
in the local frame of reference of the cylinder in figure 20(b). The values of F and
L for distributions D1 and D2 are shown in figures 21(a,b) and 21(c,d), respectively.
While blue stars represent the values extracted from the solutions computed within Ftot
by averaging over each unit cell, the light-blue circles represent the values of F and L
deduced by classical calculations over each periodic unit cell Fi. In the case of slow
variations of the microscopic structure, the periodic problems (4.1) and (4.2) over the
unit cell provide acceptable results for the effective tensors. Conversely, the important
discrepancies between the blue and light-blue profiles represented in figure 21(c,d) show
that fast variations of the microscopic geometries affect in a relevant way the values of the
effective quantities F and L and microscopic problems (4.1) and (4.2) have to be computed
over the entire microscopic domain Ftot.

The last statement is supported by the comparison between the full-scale and the
equivalent model that can be done once the effective values of F and L have been found.
As shown in figure 22, the macroscopic velocities evaluated over the membrane are in
perfect agreement with the full-scale profile for the case D1 of slow-varying geometries.
The drag coefficient computed from the equivalent solution, CEQ

D , is equal to 1.225, with
a relative error with respect to the full-scale solution of ≈ 1.5 %, in the order of the
approximation. No substantial differences are noticed using the values of the effective
tensor extracted from Ftot or from each periodic unit cell Fi. In contrast, when distribution
D2 is considered (figure 22c,d), the use of the effective tensor calculated within Ftot allows
us to markedly reduce the error between the full-scale simulation and the macroscopic
model.
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(b)

(a) x2

n
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x1

α

tot

i-th unit cell    i

Figure 20. (a) Example of a cylindrical shell formed by variable microscopic inclusions, corresponding to
distribution D1 in Appendix C. (b) Sketch of the microscopic domain, Ftot, built by ‘unrolling’ the cylindrical
shell (red and blue unit cells correspond to their ‘rolled’ counterpart in a). In order to deduce averaged profiles
of Fn and Lt, the solution is averaged within each cell over the green dashed line.
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Figure 21. Values of F and L along Ftot (blue stars) and corresponding values computed within each cell Fi
(light-blue circles) for distributions D1 (a,b) and D2 (c,d) described in Appendix C.

6.2. Retrieving the full-scale microscopic geometry from the optimal F–L profiles
In the previous subsection we showed that the effective stress jump condition of Zampogna
& Gallaire (2020) is reliable also in the case of fast-varying microscopic geometries
when the adequate precautions described above are taken into account to formulate
microscopic problems (4.1) and (4.2). We thus apply it to link the optimal distributions
of effective filtrability and slip profiles found in § 5.2 to a distribution of microscopic solid
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Figure 22. Comparison between the full-scale solution and the macroscopic model for distributions D1 (a,b)
and D2 (c,d). All quantities are evaluated over the equivalent membrane Γint. Dashed lines represent the
full-scale model, blue lines the macroscopic model where the values of the effective tensors have been
calculated in Ftot, light-blue dot-dashed lines correspond to the macroscopic model where the values of the
effective tensors have been calculated in each periodic unit cell Fi and red stars represent the average of the
full-scale model.
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Figure 23. Variation of the optimal F profile with α. Blue lines correspond to the values of F found in § 5.2
while red squares to the values of F reconstructed from the microscopic problems in Ftot. Black dashed lines
correspond to the profiles reconstructed via a piecewise cubic interpolation of the red-square profile. (a) A
total of 23 inclusions have been placed on the cylindrical shell (ε = 0.1369); (b) 47 inclusions have been used
(ε = 0.0667). A larger number of inclusions allows us to better reconstruct the F profile.
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Figure 24. Flow past the optimal cylindrical structure deduced from the profile of F computed in § 5.2. A
total of 23 solid inclusions (sketched in dark grey in d– f ) have been placed on the cylinder leading to a value
of ε equal to 0.137. (a–c) Comparison between full-scale and macroscopic solution. (a) The flow streamlines
for the full-scale simulation (black lines) and for the macroscopic model (blue lines). (b,c) The horizontal and
vertical velocities over Γint. Black dashed lines represent the full-scale solution, blue lines the macroscopic
model, where F and L are evaluated using the reconstructed profiles (see figure 23), and red stars the averaged
full-scale profile. Iso-contours of pressure (d), horizontal velocity (e) and vertical velocity ( f ) around the
cylindrical shell. In (d) also flow streamlines within the shell have been represented to better appreciate the
flow behaviour.

inclusions in order to design an optimal cylindrical membrane for drag maximization.
For the sake of simplicity, we consider the case in which the optimization procedure is
performed only on the value of F , letting L vary according to the microscopic calculations.
This allows us to focus our attention only on circular (rather than elliptical) inclusions
of variable radius. As a consequence, the profile of L is unequivocally defined once
the F profile is retrieved. This simplifying assumption has a marginal effect on the
resulting optimal drag since the latter is only weakly affected by L. Nevertheless, the
following procedure can be straightforwardly generalized to variable distributions of both
F and L, by considering for instance elliptical inclusions as in § 4.2. The numerical
implementation is based on a bisection method (see Appendix C), where at each iteration
the value of the radius of each inclusion is adjusted so as to reach the aimed values
of F up to a relative tolerance of 1 %. For the iterative procedure to be well defined,
an initial guess has to be made. A good candidate is the value of F given by the
case of perfectly periodic microstructures. The separation-of-scales parameter ε is a free
parameter and has to be chosen to unequivocally define the radius of the solid inclusions.
The resulting distributions are sketched in figure 23 for two different values of ε = 0.1369
and 0.0667, corresponding to 23 and 47 solid inclusions over the cylinder, respectively.
We reconstruct the continuous F and L profiles via a piecewise-cubic interpolation (black
dashed lines in figure 23) of the piecewise-constant values obtained from the solution of
the microscopic problems averaged in each unit cell (red squares); however, we verified
that the following results were not affected by a different choice of the interpolation.
As a last check, we perform macroscopic and full-scale simulations in order to
(i) confirm the validity of the model in this case and (ii) check that the full-scale geometry
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Figure 25. Same as figure 24 for a total number of 47 solid inclusions on the cylinder, leading to ε = 0.066.

actually maximizes the drag coefficient, as predicted in the Lagrangian-based optimization
procedure. Figures 24 and 25 provide qualitative and quantitative information about the
flow past the two retrieved full-scale optimal structures. According to figures 24(a–c)
and 25(a–c), for both values of ε the full-scale solution reproduces well the behaviour
and properties of the macroscopic flow calculated using the optimal profile of F . The
drag coefficients calculated over the two full-scale structures are Cε=0.1369

D = 1.427 and
Cε=0.0667

D = 1.412, while the corresponding one estimated by the macroscopic model is
equal to 1.414, exhibiting an error of about 1 % in the worst case. The variability of
the microscopic inclusions is shown in figures 24(d– f ) and 25(d– f ), where a focus on
the pressure and velocity fields across the cylindrical shell reveals the presence of local
microscopic flow structures that become less and less important as ε decreases. We refer
to Appendix C for the geometrical data used to build each full-scale structure and for their
visualization.

These last findings accomplish the procedure sketched in figure 3. As previously
shown, the inverse procedure admits multiple solutions, whose number can be further
reduced by imposing other kinds of geometrical or functional constraints to the problem
considered.

7. Conclusions and perspectives

In this work, we proposed an approach for the homogenization-based optimization of
permeable membranes. We considered as a test case the wake flow past a permeable
circular cylinder. The first part of the procedure was a parametric study of the steady-flow
configurations and their stability with respect to perturbations. In this framework, the
membrane was modelled by the effective stress jump interface condition developed in
Zampogna & Gallaire (2020), for symmetric configurations with respect to the centreline
of the membrane. Under these conditions, the membrane properties are described by
two scalars, the filtrability and the slip numbers, the former representing the ability
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of the fluid to pass through the membrane while the latter its ability to flow along
the tangential-to-membrane direction. The flow morphology strongly resembles the one
outlined in Ledda et al. (2018). The recirculation region past the cylinder detaches from the
body and moves downstream, becomes smaller and disappears, as the filtrability number
was increased. An increase in the slip number showed a decrease in the dimensions of
the recirculation region. Interestingly, for large values of the filtrability number, the drag
coefficient presents a maximum that is substantially larger than the drag coefficient of
an impermeable cylinder. A bifurcation diagram was identified via the stability analysis,
which unravelled the stabilization of the steady wake for large values of filtrability,
a situation similar to the one outlined in Ledda et al. (2018). The unstable mode
leads to a vortex shedding whose onset region moves downstream as the filtrability is
increased.

Once the unstable configurations were excluded from the analysis, the second part of
the work was focused on the reconstruction of the membrane based on the values of
filtrability and slip numbers, identified to obtain proper macroscopic characteristics of
the flow. We considered different test cases, among which the conditions that maximize
the drag coefficient. We also outlined a procedure to recover the microscopic geometry
that satisfies the constraints of filtrability and slip numbers, for elliptical inclusions. The
agreement between the homogenized model and the full-scale simulations was very good,
proving not only the faithfulness of the inverse procedure, but also the accuracy of the
effective stress jump condition which was initially tested in Zampogna & Gallaire (2020)
only in the Stokes flow regime.

The third part of the work was devoted to the optimization of a membrane whose
filtrability and slip numbers were allowed to vary along the cylinder and to the
reconstruction of the corresponding microscopic structure. As a test case, we considered
as optimal objective the maximization of the drag coefficient. We first evaluated the
sensitivity with respect to variations of the filtrability and slip numbers and thus performed
a gradient-ascent optimization, using as initial guess the values of filtrability and slip
numbers that maximize the drag in the case of constant membrane properties. In this
test case, we obtained an increase in the drag coefficient of 6 % with respect to the case
with constant membrane properties, and thus of 34 % with respect to the solid case.
We then introduced a procedure to recover the microscopic structure that satisfies an
optimal filtrability distribution, focusing on circular inclusions. The introduction of a new
modified domain of validity of the microscopic problems associated with filtrability and
slip numbers allowed us to correctly link these quantities to a full-scale geometry. Also
in this case the agreement was fully satisfactory, thus validating the proposed approach
for both constant and variable distributions of filtrability and slip numbers along the
membrane.

This work aims at giving a rationale to the application of homogenized models
to design membranes in the context of flow control, providing fast and accurate
predictions and the opportunity to directly link macroscopic characteristics of the
membrane to microscopic geometries. Because of the generality of the macroscopic
model, real three-dimensional permeable shells can be handled at the cost of adding
only one more parameter, representing the ability of the fluid to flow along the second
tangent-to-membrane direction, much lower than the cost of adding approximately
1/ε degrees of freedom due to the meshing of a real full-scale three-dimensional
membrane. The potential of the method stems from the decoupling between microscopic
properties and macroscopic effects on the flow, which allows one to have a plethora of
possible microscopic configurations giving the same macroscopic flow. This decoupling
markedly simplifies the adjoint-based optimization procedure, allowing one to obtain
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a single distribution of membrane properties which can be satisfied by an infinite
number of possible microscopic geometries; the number of corresponding microscopic
geometries can be further reduced by imposing other constraints. Despite the theoretical
and analytical complexity of the homogenization technique, the final result consists
of a simple boundary condition for the macroscopic flow model that enables the
exploration of a vast range of geometrical configurations, with the great advantage of
a marked reduction of the complexity and computational times needed to carry out the
solution.

This work may be extended in several ways. The procedure explained here is a first
step towards a rational design of membranes; if integrated with a model describing the
equivalent transport of diluted substances across a permeable wall it represents a potential
answer to the necessity identified in Park et al. (2017) to find the right balance of filtrability
between a fluid and a diluted substance. The comparisons considered in the present paper
show that the homogenized model well reproduces the flow behaviour in the case of
inertial flows. The differences with respect to the full-scale solution are larger for cases
in which the microscopic Reynolds number, Remicro = U�/ν, is large (for instance the
case denoted by © in table 1 where Remicro ≈ 25). This pushes us to proceed towards
an extension of the model for high-Re flows, where the inertia of the flow within the
membrane cannot be neglected (Zampogna & Bottaro 2016).

We conclude by observing that the interweaving of homogenization theory, bifurcation
analysis and adjoint optimization methods showed great potential, opening up the path to a
rational design of complex structures that can find a wide and varied range of applications
in fluid dynamics.
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Appendix A. Mesh convergence

In this appendix, we report the results of the mesh convergence. We considered the case
Re = 100, F = 1.25 × 10−2 and L = 5 × 10−3. We verified both the convergence with
respect to the size of the domain and with respect to the number of elements. The results
are reported in table 2, for the drag coefficient and for the unstable eigenvalue studied
in § 3.2. We initially increased the number of elements for the mesh M1, verifying the
convergence. We therefore increased the domain size to verify its effect. We conclude that
the number of elements and the size of the domain have a small impact on the base flow
and global stability results, two significant digits remaining constant for every measured
quantity. The mesh M1 (shown in figure 26) is suitable for the study and it has been used
throughout the work.
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Mesh x1in x1out x2lat N1 N2 N3 N4 Nint No. elements CD Re(λ) Im(λ)

M1 −30 90 25 1 1.25 5 13.3 31.9 144 008 1.339894 −0.03687 0.71985
M2 −30 90 25 1.25 1.55 6.3 16.7 39.8 161 896 1.339888 −0.03685 0.71980
M3 −30 90 25 1.5 1.9 7.5 20 47.8 187 498 1.339888 −0.03678 0.71986
M4 −30 90 25 2 2.5 10 26.7 63.7 241 094 1.339886 0.03673 0.71999

M1B −45 120 37.5 1 1.25 5 13.3 31.9 164 918 1.333833 −0.03831 0.71867
M1C −60 180 50 1 1.25 5 13.3 31.9 193 202 1.334047 −0.03843 0.71878

Table 2. Results of the mesh convergence. The edge densities are denoted with N, for different regions as
depicted in figure 2.

–25
–20 0 20

x1

x2

40 60 80

–20

–15

–10
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0

5
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20

25

Figure 26. Overview of the mesh denoted by M1 in table 2 used for the macroscopic computations. In each
coloured inset recursive magnifications approaching the cylinder are shown. In the light-blue inset prismatic
layers adjacent to the fictitious interface Γint can be noticed; they have been added in order to well evaluate the
normal-to-membrane fluid stress and integral quantities like the drag force acting on the cylinder.

Appendix B. Derivation of the sensitivity of the drag coefficient with respect to
variations of the membrane properties

We propose here an extensive derivation of the sensitivity functions briefly introduced in
§ 5.2. For the sake of clarity, we recall that, at the interface, we denote with plus and minus
sign superscripts the following limits:

f − = lim
xi→Γ −

int

f and f + = lim
xi→Γ +

int

f , (B1)

with Γ −
int and Γ +

int the outer and inner sides of Γint. The drag coefficient, i.e. the objective
in the Lagrangian framework, is defined in (5.1). According to this equation, any small
modification of the tensor component Mij modifies the drag by δCD according to

δCD = 2
∮

Γcyl

(
Σjk

(
δp−, δu−) − Σjk

(
δp+, δu+))

nkδ1j dΓ =
∮

Γcyl

∇MijCDδMij dΓ,

(B2)
where (δu±, δp±) is the linear perturbation to the base solution induced by the variation
of the membrane tensor, whose governing equations can be deduced by substituting the
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perturbed variables (u = U + δu, p = P + δp) in (2.6), (2.7) and read

∂iδui = 0, δuj∂jUi + Uj∂jδui = −∂iδp + 1
Re

∂2
jjδui in Ω,

δu+
i = δu−

i = δui on Γint,

δui = ReMij
(
Σjk

(
δp−, δu−) − Σjk

(
δp+, δu+))

nk

+ReδMij
(
Σjk

(
p−, u−) − Σjk

(
p+, u+))

nk on Γint,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(B3)

together with boundary conditions δui = 0 at the inlet and Σjk(δp, δu)nk = 0 at the
outflow.

We introduce the Lagrange multipliers (u†, p†, u††) referred to as the adjoint solution,
and define the functional

J
(

u, p, u†, p†, u††,M
)

= CD

−
∫

Ω

p†∂iui dΩ

−
∫

Ω

u†
i
(
uj∂jui − ∂jΣij ( p, u)

)
dΩ

−
∮

Γint

u††
i

[
ui − ReMij

(
Σjk

(
p−, u−)

−Σjk
(

p+, u+))
nk

]
dΓ, (B4)

whose gradient with respect to any variable f is

∂J
∂f

δf = lim
ε→0

J ( f + εδf ) − J ( f )
ε

. (B5)

The variation of the drag coefficient thus reads

δCD = ∂J
∂ (u, p)

δ (u, p) + ∂J
∂Mij

δMij, (B6)

since the gradient of the functional with respect to the adjoint variable is zero as long as
the state equation is satisfied. The gradient with respect to (u, p) is

∂J
∂ (u, p)

δ (u, p) = 2
∮

Γint

(
Σij

(
δp−, δu−) − Σij

(
δp+, δu+))

njδ1i dΓ

−
∫

Ω

p†∂iδui dΩ

−
∫

Ω

u†
i
(
Uj∂jδui + δuj∂jUi − ∂jΣij (δp, δu)

)
dΩ

−
∮

Γint

u††
i

[
δu−

i −ReMij
(
Σjk(δp−, δu−) − Σjk(δp+, δu+)

)
nk

]
dΓ.

(B7)

Integrating by parts and using the divergence theorem, we obtain analogous boundary
terms at Γint for the inner and outer problems, to which we add those of the interface
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Figure 27. Adjoint field for Re = 100, F = 1.25 × 10−2, L = 5 × 10−3. (a) From top to bottom: u†
1, u†

2, p†;
(b) u††

1 (blue curve) and u††
2 (orange curve) evaluated over Γint for α ∈ [0, π].

condition:
∂J

∂ (u, p)
δ (u, p) =

∮
Γint

Σij
(
δp−, δu−)

nj

(
2δi1 − u†−

i + u††
k ReMki

)

+
(
Σij(−p†−, u†−)nj + Uknku†−

i − u††
i

)
δu−

i dΓ

−
∮

Γint

Σij
(
δp+, δu+)

nj

(
2δi1 − u†+

i + u††
k ReMki

)

+
(
Σij(−p†+, u†+)nj + (Uknk) u†+

i

)
δu+

i dΓ

+
∮

∂Ω

−Σij (δp, δu) nju
†
i +

(
Σij(−p†, u†)nj + Uknku†

i

)
δui dΓ

+
∫

Ω

∂iu
†
i δp dΩ

−
∫

Ω

u†
j ∂iUj − Uj∂ju

†
i −∂ip†− 1

Re
∂2

jju
†
i δui dΩ. (B8)

Exploiting the relation δu = δu+ = δu−, cancelling the surface term on Ω and the
boundary terms on Γint and ∂Ω , we define (u†, p†) as the solution to the adjoint linear
equations

∂iu
†
i = 0, u†

j ∂iUj − Uj∂ju
†
i = ∂ip†+ 1

Re
∂2

jju
†
i in Ω,(

Σik

(
−p†−, u†−

)
− Σik

(
−p†+, u†+

))
nk − u††

i = 0 on Γint,

u†+
i = u†−

i on Γint,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(B9)

with

u††
i = Re−1M−1

ji

(
u†−

j − 2δ1j

)
on Γint, (B10)
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i D1 D2 D3 D4

1 0.10 0.10 0.070 0.0300
2 0.11 0.40 0.130 0.0320
3 0.12 0.12 0.280 0.0750
4 0.13 0.40 0.370 0.1170
5 0.14 0.14 0.090 0.2100
6 0.15 0.40 0.043 0.2750
7 0.16 0.40 0.050 0.3000
8 0.17 0.17 0.050 0.2300
9 0.19 0.40 0.390 0.0550
10 0.20 0.19 0.015 0.0150
11 0.22 0.40 0.063 0.0090
12 0.23 0.22 0.062 0.0135
13 0.22 0.40 0.062 0.0140
14 0.20 0.22 0.063 0.0110
15 0.19 0.40 0.015 0.0060
16 0.18 0.19 0.390 0.0500
17 0.17 0.40 0.050 0.3200
18 0.16 0.17 0.050 0.3300
19 0.15 0.40 0.043 0.0008
20 0.14 0.15 0.090 0.0085
21 0.13 0.40 0.370 0.0132
22 0.12 0.13 0.280 0.0149
23 0.11 0.40 0.130 0.0160
24 — — — 0.0160

Table 3. Values of the radius of the ith solid inclusion, non-dimensionalized with the microscopic length, for
i = 1, . . . , 24 for distributions D1, D2, D3 and D4. Note that, in distribution D4, 47 solid inclusions are present
and the radius of the jth inclusion for j = 25, . . . , 47 is equal to the radius of the ith inclusion, satisfying the
formula j = 47 − i + 1.

together with adjoint boundary conditions u† = 0 at the inflow and Σik(−p†, u†)nk +
Uknku†

i = 0 at the outflow and lateral boundaries of the domain Γlat. We thus have

δCD = ∂J
∂Mij

δMij =
∮

Γint

u††
i ReδMij

(
Σjk

(
P−, U−) − Σjk

(
P+, U+))

nk dΓ. (B11)

Since Mij = Ltitj − Fninj, we are able to evaluate the sensitivities with respect to F and
L separately. Specializing (B11) for F we obtain

δCD = ∂J
∂F δF = −

∮
Γint

u††
i ReδFninj

(
Σjk

(
P−, U−) − Σjk

(
P+, U+))

nk dΓ. (B12)

The sensitivity with respect to F thus reads

∇FCD = −Reu††
i ninj

(
Σjk

(
P−, U−) − Σjk

(
P+, U+))

nk, (B13)

while, applying the same procedure with respect to L, we obtain

∇LCD = Reu††
i titj

(
Σjk

(
P−, U−) − Σjk

(
P+, U+))

nk. (B14)

It is finally clear that the gradients of CD can be evaluated only if the solution of the adjoint
problem (B9) is known. As a matter of example, in figure 27 we report the adjoint fields
(u†, p†, u††) for Re = 100, F = 1.25 × 10−2 and L = 5 × 10−3.
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Figure 28. Visualization of the whole full-scale membrane geometry for configurations (a) D1, (b) D2,
(c) D3 and (d) D4.

Appendix C. Geometrical data associated with the full-scale structures analysed in
§ 6

In § 6 different full-scale geometries with arbitrary varying solid inclusions have been
proposed. Table 3 lists the parameters needed to build the cylindrical shell for each case.
Distributions D1 and D2 correspond to test cases 1 and 2 that lead to the profiles of F and
L depicted in figure 21, while distributions D3 and D4 correspond to the optimal full-scale
structures found in § 6.2 with ε equal to 0.1369 and 0.0667, respectively. Each entry of
the table contains the value of the radius of the ith circular solid inclusion, normalized
by �. The ith inclusion is positioned at an angle α = (2π/N)(i − 1), where N = 23 for
distributions D1, D2 and D3 and N = 47 for distribution D4. To have a visual idea of which
kind of structures we are dealing with, in figure 28 a visualization of the corresponding
full-scale membrane geometries is presented for the distributions listed in table 3.

For the sake of clarity we list the main steps of the bisection algorithm used to
reconstruct the inclusions’ distributions D3 and D4 listed in table 3. We denote with
R(m)

i the radius of the ith inclusion forming the membrane, non-dimensionalized with the
microscopic length, according to table 3. The superscript (m) is used here to denote the
mth iteration of the bisection method.

(i) Two initial guess values are taken respectively equal to Rper
i − εRper

i and Rper
i +

εRper
i , where Rper is the radius of the inclusion which realizes the value Fopt

i
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as if the lattice was periodic, with Fopt
i the optimal filtrability evaluated in the

ith cell.
(ii) At each iteration (m) and for every i the quantity F (m)

i is evaluated by solving the
microscopic problem (4.1) on the whole cylinder as explained in § 6.

(iii) If F (m)
i − Fopt

i < 0 the radius of the ith inclusion at iteration (m) is decreased by a
quantity 0.5|R(m)

i − R(m−1)
i |.

(iv) If F (m)
i − Fopt

i > 0 the radius of the ith inclusion at iteration (m) is increased by a
quantity 0.5|R(m)

i − R(m−1)
i |.

(v) The procedure is repeated until convergence, i.e. when |F (n)
i − Fopt

i |/|Fopt
i | < tol,

where tol = 0.01.
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