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Highly resolved, two-component velocity measurements were made near the centreline
of turbulent pipe flow for Reynolds numbers in the range 102 ≤ Reλ ≤ 411 (1800 ≤
Reτ ≤ 24 700). These unique data were obtained with a nanoscale cross-wire probe and
used to examine the inertial subrange scaling of the longitudinal and transverse velocity
components. Classical dissipation rate estimates were made using both the integration
of one-dimensional dissipation spectra for each velocity component and the third-order
moment of the longitudinal structure function. Although the second-order moments and
one-dimensional spectra for each component showed behaviour consistent with local
isotropy, clear inertial range similarity and behaviour were not exhibited in the third-order
structure functions at these Reynolds numbers. When corrected for the effects of radial
inhomogeneities at the centreline following the generalized expression of Danaila et al.
(J. Fluid Mech., vol. 430, 2001, pp. 87–109), re-derived for the pipe flow domain, the
third-order moments of the longitudinal structure function exhibited a clearer plateau
per the classical Kolmogorov ‘four-fifths law’. Similar corrections described by Danaila
et al. (J. Fluid Mech., vol. 430, 2001, pp. 87–109) applied to the analogous equation
for the mixed structure functions (i.e. the ‘four-thirds law’) also yielded improvement
over all ranges of scale, improving with increasing Reynolds number. The rate at which
the ‘four-fifths’ law and ‘four-thirds’ law were approached by the third-order structure
functions was found to be more gradual than decaying isotropic turbulence for the same
Reynolds numbers.

Key words: pipe flow, turbulence theory

† Email address for correspondence: mkfu@caltech.edu

© The Author(s), 2021. Published by Cambridge University Press 919 A21-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

38
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:mkfu@caltech.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.382&domain=pdf
https://doi.org/10.1017/jfm.2021.382


C.P. Byers, M. Hultmark, I. Marusic and M.K. Fu

1. Introduction

Kolmogorov’s similarity hypothesis (Kolmogorov 1941a,b, to be called K41) and his
refined hypothesis (Kolmogorov 1962, to be called K62) laid a foundation for turbulence
research over the past 80 years. These hypotheses are one of the few instances in the
study of turbulence in which an exact solution is found. The resulting ‘four-fifths law’
(hereafter 4/5 law) from K41 was predicted for isotropic turbulence in an inertial range,
where viscous diffusion is negligible:〈

(�u)3
〉
= −4

5εr, (1.1)

where �u = u(x + (r/2)) − u(x − (r/2)) is the velocity increment for separation r in
the direction of longitudinal (streamwise) velocity u, ε is the mean dissipation rate
and the angle brackets represent ensemble averaging. The nth-order moments of these
velocity increments 〈(�u)n〉 are termed the structure functions by Monin & Yaglom
(2013). Comparison of this third-order structure function to the dissipation in the flow
requires an accurate measure of ε, which has long been the aim of research in turbulence.
Obtaining that measurement is not straightforward for any arbitrary flow configuration,
since calculation of the dissipation includes contributions from all velocity fluctuation
gradients. Assumptions and simplifications are therefore utilized to obtain flows that
allow a more straightforward and practical measure of ε. The most common and useful
assumption is that of local isotropy of the smallest scales. In addition to this restriction,
many of the estimates presented below further assume a discernible inertial range.

By requiring an inertial range in the derivation of K41, an inherent assumption is
that the energy-containing scales do not influence the dissipative scales (Antonia &
Burattini 2006). While this scale separation is achieved with asymptotically large Reynolds
numbers, these desired limits are rarely, if ever, reached in either laboratory experiments
or numerical simulations. To achieve isotropic turbulence over a range of scales and
Reynolds numbers is a difficult task; thus, flow configurations outside of the typical grid
turbulence experiments are utilized to test K41. However, these configurations often entail
shear and other inhomogeneities being present in the flow. It is therefore necessary to
adjust equation (1.1) to include these potential contributions to the energy balance. As
demonstrated by Lindborg (1999), decaying grid turbulence requires inclusion of the
time-dependent term omitted by K41 to account for intermittency, even at large Reynolds
number. They conclude that fully developed pipe and channel experiments would provide
a more ideal environment due to the stationary and homogeneous conditions imposed by
the flows’ symmetry. This consideration, however, comes at the expense of mean strain
in the bulk of the flow and influences from the boundary condition. Antonia & Burattini
(2006) show that the 4/5 law is more rapidly approached in forced turbulence, but the
Taylor Reynolds number Reλ should exceed 1000 to see the constant 4/5 value. Similarly,
Saddoughi & Veeravalli (1994) found that one decade of an inertial range was present
in mean shear flows only when Reλ > 1500, and Saddoughi (1997) found local isotropy
in shear flows only when Reλ > 2000. To account for the lower Reynolds number effects,
namely inhomogeneities in the transverse direction of flow, Danaila et al. (2001) developed
a generalization of the 4/5 law. This inclusion of additional terms resulted in the constant
4/5 being obtained for a wider range of separation r as well as for lower Reynolds number
studies. Additionally, Danaila et al. (2001) developed a generalized 4/3 law expression
based on Antonia, Zhou & Romano (1997), which is an extended form of the 4/5 law that
includes all velocity components. When measuring off the centreline of a symmetric flow
(such as a channel, pipe or jet), additional terms will arise such as shear-stress production
or pressure fluctuations that influence the balance. This was shown by Sadeghi, Lavoie &
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Isotropy and approach to inertial subrange at pipe centreline

Pollard (2016) in a round jet off centreline, where inclusion of five additional integral terms
was necessary for the third-order moment equation. It is therefore essential to consider and
derive what potential contributions are necessary to include in the generalization of (1.1)
in a pipe flow along the centreline.

Here, we leveraged recent multi-component velocity measurements obtained in the
Princeton Superpipe facility (Fu, Fan & Hultmark 2019) to explore both the development
of the inertial subrange in pipe flow and extent of the local isotropy assumption up to
Reτ ≤ 24 700. Conveniently, our choice of the pipe centreline allowed us to explore inertial
range behaviour within a statistically stationary and streamwise homogeneous turbulent
flow with zero local mean shear and Reynolds shear-stress components. Similarly, with the
recent development of the nanoscale cross-wire probe, it was possible to simultaneously
measure both the longitudinal and transverse velocity components with high spatial and
temporal resolutions within our high Reynolds number facility.

First, through analysis of the longitudinal velocity measurements near the pipe
centreline, we will provide updated understanding to the comparable results of Morrison,
Vallikivi & Smits (2016) who considered solely single-component hot-wire measurements
at the pipe centreline. Although excellent quantitative agreement was found between the
two data sets, our study elicited different behaviour in the normalized moments of the
structure functions through a different choice of dissipation rate. Importantly, this analysis
was extended to a larger number of predictions through the inclusion of transverse velocity
measurements which have never before been obtained in this flow facility at this resolution.
The observed behaviour in the transverse velocity was largely consistent with that of the
longitudinal velocity. Finally, using the generalized formulation of K41 derived by Danaila
et al. (2001), we found that including a correction for radial inhomogeneity provided a
significant improvement to both the classic K41 4/5 law and the analogous 4/3 law. These
findings highlight the role of large-scale effects that depend on the flow configuration. This
extension will show how previously derived relationships in a channel flow by Danaila
et al. (2001) can be extended to a new flow geometry. A full derivation of the generalized
4/5 law in a pipe is included in Appendix A to demonstrate the equivalence to the channel
flow result.

1.1. Isotropic dissipation relations
One test of scale separation and thus an indication of an inertial range and isotropic
turbulence is with the use of the dissipation estimate of Taylor (1935),

ε = A
u3

s

l
, (1.2)

where us and l are the appropriate velocity and length scale, respectively, for the given flow
configuration. While A is argued to be a universal constant, initial studies in both decaying
and forced homogeneous turbulence found asymptotic behaviour with Reynolds number,
where the constant obtained was dependent on the large-scale forcing (Sreenivasan 1998).
A more recent study by Sinhuber, Bodenschatz & Bewley (2015) found the value of A in
high Reynolds number decaying grid turbulence to be constant to within a few per cent. An
extensive review by Vassilicos (2015) summarizes these and many more studies, in which
it is concluded that the constant A may be dependent on the flow configuration, but not the
Reynolds number. However, the flow configurations studied were decaying grid turbulence
and wakes, not forced flows such as channels and pipes. In contrast to these findings,
Morrison et al. (2016) showed a monotonic increase in A with Reλ at the centreline
of fully developed pipe flow using both (1.1) and the isotropic dissipation estimate of
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Taylor (1935), in which only a single gradient of the turbulent velocity component is
necessary to calculate ε

ε = 15ν

〈[
∂u′

∂x

]2
〉

= 15
2

ν

〈[
∂v′

∂x

]2
〉

, (1.3)

which shall be denoted with

εu = 15ν

〈[
∂u′

∂x

]2
〉

, (1.4a)

εv = 15
2

ν

〈[
∂v′

∂x

]2
〉

, (1.4b)

where ν is the kinematic viscosity of the fluid, and u′ and v′ are the velocity fluctuations
in the x (longitudinal) and y (transverse) directions, respectively. Although only capable
of measuring equation (1.4a) with a single nanoscale velocity probe, the analysis from
Morrison et al. (2016) indicates that mean shear, large-scale interactions and viscosity may
all continue to play a role in the centreline of a turbulent pipe flow, even up to Reλ = 1000.

The ability to push to higher Reynolds numbers and the advent of sensors that
can simultaneously obtain multiple velocity components enable the measurement and
estimation of dissipation through multiple methodologies. Equation (1.4a) is useful
for experimentalists, as the measurement of u′ (and thus u) is straightforward with
conventional hot-wire anemometry, and the spatial gradient in x is often estimated from the
velocity time series by applying Taylor’s frozen field hypothesis. The use of a cross-wire
allows the simultaneous measurement of the transverse (radial in the pipe) component
of velocity fluctuations, v′ (and thus v), and therefore application of (1.4b) can also be
utilized. The method of calculating these isotropic estimates for dissipation will be through
the integration of the corresponding dissipation spectra, which for (1.4a) and (1.4b) are,
respectively

εu = 15ν

∫ ∞

0
k2

xφuu(kx) dkx, (1.5a)

and

εv = 15
2 ν

∫ ∞

0
k2

xφvv(kx) dkx, (1.5b)

where φuu and φvv correspond to the one-dimensional spectrum function in the
longitudinal (u) and transverse (v) directions, respectively, and kx is the longitudinal
wavenumber. Equations (1.5a) and (1.5b) are identically equal to (1.4a) and (1.4b),
respectively, in isotropic turbulence. Since local isotropy relies on a wide separation of
scales in the turbulence, the consistency of these measurements of εu and εv will serve as
an indication of an inertial range in the flow.

Another measure of isotropy that is easily obtained with cross-wires is the comparison
of the radial and streamwise spectra (see Batchelor 1953; Van Atta 1991; Chamecki &
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Isotropy and approach to inertial subrange at pipe centreline

Dias 2004)

φvv(kx) = 1
2

(
φuu(kx) − kx

dφuu(kx)

dkx

)
, (1.6)

and
φvv(kx)

φuu(kx)
= 4

3
. (1.7)

Equation (1.6) provides a means of comparing the measured radial spectrum to a calculated
value from the streamwise spectrum under the assumption of local isotropy, while (1.7)
should be satisfied in the inertial subrange.

1.2. Structure functions
To compare with the integrated spectrum of the two velocity gradients, the structure
function of K41 will be used to evaluate the dissipation through rearranging (1.1)

ε〈(�u)3〉 = −5
4

〈
(�u)3〉

r
. (1.8)

This expression, although derived under the assumption of the existence of an inertial
range (thus in the limit of high Reynolds number), is often applied to finite Reynolds
number flows. A recent review by Antonia et al. (2019) indicated that this 4/5 law has
not been experimentally verified, as the original hypothesis of Kolmogorov (1941a,b) has
been violated by calculating (1.8) at finite Reynolds numbers.

While comparisons of different isotropic measures of dissipation will be performed, a
direct evaluation of an isotropic structure function relation can be utilized to check for any
departure from local isotropy. The following isotropic relation (Hill 1997; Chamecki &
Dias 2004) 〈

(�v)2
〉
=
(〈

(�u)2
〉
+ r

2
d
dr

〈
(�u)2

〉)
, (1.9)

will allow an additional comparison of direct measurements of the transverse velocity with
an isotropic estimate.

Equation (1.8) provides a third direct measurement of the dissipation in comparison to
(1.5a) and (1.5b), but the derivation of K41 had neglected the non-stationarity term in the
isotropic relation of von Kármán & Howarth (1938), which is appropriate for sufficiently
large Reynolds number or small separations (Antonia et al. 2019). Nonetheless, effects of
the finite size and non-stationarity or inhomogeneities of the large scales in experiments
often interact with the inertial range scales, leading to deviations in the 4/5 law. To account
for the inhomogeneities in a flow, Danaila et al. (2001) proposed a generalization to (1.1),
which, at the centreline of fully developed channel flow, takes the form

−
〈
(�u)3〉

ε r︸ ︷︷ ︸
Term I

+ 6ν

ε r
d
dr

〈
(�u)2

〉
︸ ︷︷ ︸

Term II

+ 6
ε r5

∫ r

0
s4

(
−∂

〈
v(�u)2〉
∂y

)
ds

︸ ︷︷ ︸
Term III

= 4
5
, (1.10)

where s is a dummy variable for integration. In this expression, Term I is the third-order
structure function of (1.1), Term II is the viscous diffusion term from the original
derivation of K41, often neglected in an inertial range, and Term III is the contribution
due to inhomogeneities in the transverse direction. Note that (1.10) has been normalized
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by εr. Antonia & Burattini (2006) had shown that Term III differs between forced and
decaying turbulence and thus reflects the rates in which these flows approach 4/5 in
isotropic turbulence. Although (1.10) was originally derived to account for wall-normal
gradients at the centreline of a channel, it can be shown that this equation takes the same
form at the centreline of turbulent pipe flow as well. Following Danaila et al. (2001);
Danaila, Antonia & Burattini (2004) and Monin & Yaglom (2013) in their method for
deriving the structure function equation, the following expression can be obtained for the
central region of a turbulent pipe:

−
〈
(�u)3〉

ε r︸ ︷︷ ︸
Term I

+ 6ν

ε r
d
dr

〈
(�u)2

〉
︸ ︷︷ ︸

Term II

+ 6
ε r5

∫ r

0
s4

(
−∂

〈
v(�u)2〉
∂y

)
ds

︸ ︷︷ ︸
Term III

− 6
4ε r5

∫ r

0
s4 〈�u�v〉 dU

dy
ds + 6

4ε r

∫ r

0
〈�u�v〉 dU

dy
ds︸ ︷︷ ︸

Term IV

= 4
5
. (1.11)

In (1.11), Terms I, II and III are all retained, as is the constant 4/5, but a new
non-homogeneous contribution, or quasi-production Term IV is found. Along the pipe
centreline, both the mean shear and the mixed second-order structure function should
be zero, allowing Term IV to be dropped and recovering (1.10). This confirms that the
generalized expression from Danaila et al. (2001) is applicable along the centreline in both
channel and pipe flows. A full derivation of (1.11) can be found in Appendix A. Related
single-point approximations were further deduced by Danaila et al. (2001) based solely on
the large scale contributions, corresponding to

εLS,iso = −3
2

∂

∂y

〈
uv2

〉
, (1.12)

and

εLS,hom = −1
2

∂

∂y

〈
uu2

i

〉
, (1.13)

which rely on isotropic and homogeneous assumptions, respectively. Following
convention, the i in (1.13) indicates an index-wise summation over each of the velocity
components.

1.3. Empirical relations for dissipation
In addition to the exact expressions derived under local isotropy, several estimates use
assumptions regarding the inertial subrange behaviour to relate the dissipation to the
structure functions (Lundgren 2002; Chamecki & Dias 2004). Common relations are

ε〈(�u)2〉 = C−3/2
2

〈
(�u)2〉3/2

r
, (1.14)

ε〈(�v)2〉 =
(

4
3

C2

)3/2 〈(�v)2〉3/2

r
, (1.15)

and

ε〈(�u)3〉 = −1
C3(Reλ)

〈
(�u)3〉

r
, (1.16)
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with the spectral equation as

εk = (Cκ)−3/2 φ3/2
uu k5/2

x , (1.17)

where, in contrast to the 4/5 law, the coefficients C2, C3 and Cκ are empirically determined
with C2 ≈ 2, Cκ = C2/4.017 and C3 being dependent on Reynolds number and given by
the function C3 = 0.8–8.45Re−2/3

λ (Lundgren 2002). The uncertainty in Cκ is estimated
to be approximately ±0.055 by Sreenivasan (1995). Chamecki & Dias (2004) found that
agreement between (1.14) and (1.16) was well supported over the range of cases studied,
where their regression analysis indicated the spectral estimate consistently over-predicted
the second-order structure function by approximately 10 %. Studies consistently show that
these values for Cκ , C2, and C3 will vary by experiment, and their variability can be
attributed to the contribution of anisotropy in the flow, in particular due to the third-order
structure functions, and the presence of mean shear in the turbulence (Sreenivasan 1995;
Hill 1997; Chamecki & Dias 2004).

2. Experimental methods

The above predictions were evaluated using measurements of longitudinal and transverse
velocity acquired near the centreline of the Princeton Superpipe facility up to Reτ =
Ruτ ν

−1 = 24 700. Here, uτ denotes the friction velocity given by uτ =
√

τwρ−1 with τw
and ρ denoting the wall shear stress and fluid density, respectively, and R the pipe radius.
The facility utilized compressed air as the working fluid to achieve high Reynolds numbers
within a 64.9 mm radius pipe. The pipe surface (root mean square roughness krms =
0.15 μm) was shown to be hydraulically smooth for all of the experiments conducted here
(McKeon et al. 2004). The measurement station was located approximately 196 diameters
downstream from pipe entrance, and a linear traverse was used to position the instruments
along the radius of the pipe. The fully developed region of the pipe immediately upstream
of the measurement station was outfitted with 20 static wall pressure taps (0.8 mm
diameter) that were separated by 165.1 mm streamwise increments to determine the
streamwise pressure drop. The pressure at each tap was measured using a MKS differential
pressure transducer (1333 Pa range) relative to the measurement station and fit to a
linear function to compute the mean pressure gradient. The fluid temperature and gauge
pressure within the facility were monitored with a thermocouple (Omega K-type, ±0.1 ◦C
accuracy) and pressure gauge (Omega PX303, 500 psig range with ±0.08 % full-scale
accuracy) and found to be constant within the accuracy of the respective transducers
during the experiments presented here. The pressure gradient, temperature, and gauge
pressure measurements were used to compute ρ, μ, τw and uτ for each of the experiments.
Additional specifications and validation of the pipe flow facility can be found in Zagarola
& Smits (1998).

The present results were derived using the data previously reported by Fu et al. (2019)
with the relevant parameters of the experimental conditions enumerated in table 1. The
two velocity components were acquired simultaneously using a novel cross-wire probe
with a measurement volume of 42 μm × 42 μm × 50 μm. The two wires in the probe,
shown in figure 1, were positioned orthogonal to each other and at 45◦ relative to the pipe
axis. The probe, dubbed the X-NSTAP, was based on the nanoscale thermal anemometry
probe (NSTAP) design of Vallikivi & Smits (2014) and Bailey et al. (2010) used for
measurements of longitudinal velocity. Here, two modified NSTAPs were fixed in close
proximity with a 50 μm separation following the sandwiching procedure of Fan et al.
(2015). The two wires were operated using separate channels of a Dantec Dynamics
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Reτ Pabs Ucl νu−1
τ uτ l/η luτ /ν

−1 TsampUclR−1 Reλ = 〈
u′2〉 √ 15

νεu
Line

(bar) (m s−1) (μm) (m s−1)

1850 1.01 10.7 35.0 0.43 0.28 1.7 18 000 102
3400 1.01 21.1 19.0 0.80 0.45 3.2 36 000 151

12 400 13.2 6.37 5.25 0.22 1.22 11.4 11 000 287
20 000 13.2 10.6 3.25 0.35 1.75 18.4 15 000 361
24 700 13.2 13.5 2.63 0.44 2.10 22.8 19 000 411

Table 1. Experimental parameters for X-NSTAP measurements of turbulent pipe flow at high Reynolds
numbers. Here, Pabs is the absolute pressure in the facility and Ucl is the centreline velocity.

60 µm

Figure 1. Scanning electron microscopy image of the X-NSTAP probe sensing elements. The two platinum
sensing elements are shown perpendicular to each other to form an ‘X’. Each ribbon is 60 μm long, 2 μm wide
and 100 nm thick. The wires are separated by a 50 μm thick spacer. The mean flow proceeds from left to right
with the pipe radius aligned with the page vertical.

StreamLine Constant Temperature Anemometer circuit. The nominal overheat ratios were
Rw/R0 ≈ 1.2, where Rw and R0 represent the electrical resistances of the wires with
and without Joule heating induced by the anemometry circuit, respectively. The resulting
frequency response was estimated in still air using a square-wave test and found to exceed
150 kHz for each individual sensor. The velocity sensitivity of the probe was calibrated in
situ using a Pitot tube (inner diameter of 0.89 mm). The static pressure at the streamwise
location at the tip of the Pitot tube was measured using two pressure taps (0.40 mm
diameter) located in the pipe wall. The local velocity at the Pitot tube was computed from
the difference in pressure between the Pitot and static ports (Validyne DP15 transducers
with 1379 Pa and 8618 Pa ranges). The angle sensitivity of the probe was determined with
the stress-calibration method of Zhao, Li & Smits (2004) using at least 10 data points
obtained in the core of the pipe. Corrections to the velocity calibration associated with
the size of the Pitot tube diameter, turbulence intensity and velocity gradients outlined
by McKeon et al. (2003) were applied but found to have a minimal effect on the data
presented here. Measurements were acquired simultaneously from each wire at 300 kHz
(National Instruments PCI-6123) and filtered using an analogue 8-pole Butterworth filter
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(Krohn-Hite Corporation) at 150 kHz. The acquisition period for each Reynolds number
was at least Tsamp = 90 s, corresponding to TsampUclR−1 ≥ 10 × 103 for all Reynolds
numbers presented here.

Measurements reported here were acquired at a radial location 0.03R from the
centreline, the closest location available in the data set. Radial gradients were
approximated using statistics computed at the adjacent radial measurement location 0.05R
from the centreline. The radial positioning of the probe was first determined with a depth
microscope (Titan Tool Supply Inc., positioning accuracy of ±1 μm) and then tracked
with a linear optical encoder (SENC50 Acu-Rite Inc., positioning accuracy of ±0.5 μm).
An electrical limit switch was also employed to ensure repeatable positioning of the probe
between each test.

Importantly, the wire length in the sensor, � = 60 μm, is only slightly larger than twice
the Kolmogorov length scale, η = (ν3/εu)

1/4, for the largest Reynolds number considered
here. Following the procedure of Morrison et al. (2016) and Vallikivi (2014), the errors
in the spectral dissipation computed from (1.5a) and (1.5b) were estimated by assuming
Kolmogorov scaling to be valid across all Reynolds numbers. Examining the deviations
of the experimental spectra in Kolmogorov scaling, the errors were found to increase with
Reτ up to approximately 4 % for all but the highest Reynolds number examined here. The
highest Reynolds number was found to have up 9 % error due to additional electrical noise
in one of the signals during that acquisition. This level of attenuation is consistent with
the 1 %–7 % error suggested by the exponential fit of Sadeghi, Lavoie & Pollard (2018) for
a single component wire and the criteria outlined for a conventional X-wire by Wyngaard
(1968, 1969) to ensure less than 10 % error in both calculations of (1.5a) and (1.5b).

3. Results

3.1. Dimensionless dissipation estimates
The measurements of the current two-component data set were first validated against the
corresponding single-component NSTAP measurements, showing excellent consistency
with the analysis from Morrison et al. (2016). There, a Reynolds number dependence
on the dimensionless dissipation rate, A = εR/u3

τ , was calculated from the two different
isotropic estimates of ε (namely (1.5a) and (1.8)) and shown in figure 2. While the data
from Morrison et al. (2016) were restricted to just the longitudinal velocity component
measurements obtained with an NSTAP, the present study obtained both longitudinal and
transverse velocity measurements. In figure 2(a), the dissipation rate estimated from the
integration of longitudinal spectra ((1.5a)) and transverse spectra ((1.5b)) were consistent
with one another, indicating a measure of local isotropy at the small scales. In all cases, the
transverse velocity estimate remained consistently higher, indicating that a small degree
of error was likely introduced from the stress-calibration method. This discrepancy was
largest for the two lower Reynolds number cases, up to 12 %, likely due to increased
thermal ‘cross-talk’ between the two wires associated with their close proximity. However,
for Reλ > 200, both estimates were within 5 % of each other and the single-component
measurements of Morrison et al. (2016). Furthermore, the results of Morrison et al.
(2016) demonstrated a behaviour consistent with the X-NSTAP results, giving an almost
linear increase in A with Reλ. Similarly, the estimated dissipation from the K41 4/5 law
followed an increasing trend and also agreed very well with Morrison et al. (2016). This
underestimation from the 4/5 law was consistent with the recent findings of Antonia
et al. (2019), in which it was found that over a range of experimental configurations
and Reynolds numbers, the 4/5 law would not be achieved due to the influence of large
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Figure 2. Non-dimensional dissipation rate A = εRu−3
τ . Shown in (a) are: �, the integration of longitudinal

spectra (εu) using (1.5a); �, the integration of transverse spectra (εv) using (1.5b); �, K41 4/5 law (ε〈�u3〉)
given by (1.8). Filled symbols are results from the present data set and hollow/white symbols represent the
corresponding parameter from Morrison et al. (2016). The hollow symbols are also repeated in (b) for reference.
Shown in (b) are �, ε〈(�u)2〉 using (1.14) and empirical coefficient C2 = 2; �, ε〈(�v)2〉 using (1.15) and empirical
coefficient C2 = 2; ♦, modified K41 4/5 law (εC3) given by (1.16) to account for finite Reynolds number
effects; ◦, generalized 4/5 law of Danaila et al. (2001) using (1.10); ×, isotropic dissipation estimate from large
scales (εLS,iso) of Danaila et al. (2001) given by (1.12); +, homogeneous dissipation estimate from large scales
(εLS,hom) of Danaila et al. (2001) given by (1.13). Corresponding parameters in (b) from Morrison et al. (2016)
were not reported.

scales and viscosity in the inertial range. Nonetheless, the longitudinal measurements from
the present study, the NSTAP results of Morrison et al. (2016), and estimates from the
transverse velocity were in good agreement.

These isotropic dissipation estimates were compared with several empirical estimates
of dissipation, shown in figure 2(b). These estimates for A include the single-point
approximations of Danaila et al. (2001) for large-scale contributions ((1.12) and (1.13)),
the empirical relations for the second-order structure functions ((1.14) and (1.15)), and
modified third-order structure function ((1.16)). The empirical relations demonstrated
remarkable consistency with one another, despite the relatively modest values of Reλ.
Conspicuously, these three empirical estimates fell between the values provided by the
integrated spectrum and the third-order longitudinal structure functions. One potential
explanation could be that each of these expressions utilizes an empirical coefficient,
often argued as universal. If the ‘universal’ coefficient actually contains a dependency
on Reynolds number, or if it is affected by the inhomogeneities and intermittency in the
flow, then this would explain the discrepancy (see, for example, Antonia et al. 2019). It
could be argued that these estimates of ε from (1.14), (1.15) and (1.16) seemed to approach
the estimates of the integrated spectra as Reλ increases, potentially indicating the lack of
universality in the empirical constants, yet validating the need for higher Reλ to have truly
inertial behaviour with local isotropy. This could additionally be argued by the lack of
inertial range due to the limited Reλ, resulting in an underestimate of ε, and thus a lower
value of A predicted by the 4/5 law, while the second-order structure functions will more
closely approach the actual dissipation for the same limited Reλ. This was demonstrated in
Antonia et al. (2019) where the empirical C2 = 2 for the second-order structure functions
was found to hold at lower Reynolds numbers compared to the requirement for the 4/5 law
(cf. figure 7 in their paper).
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Isotropy and approach to inertial subrange at pipe centreline

For completeness, we included a dissipation estimate calculated from inertial range
value using the generalized Kolmogorov formulation proposed by Danaila et al. (2001) in
(1.10) in figure 2(b). This refined analytic estimate surprisingly appears to agree well with
the myriad of empirical estimates for dissipation derived from the second- and third-order
structure functions, but still deviates from the more rigorous and common estimates
plotted in figure 2(a). This lends further credence to the need for refining estimates of
dissipation by including the contribution from non-homogeneous terms often neglected in
the derivation of the popular estimates.

The behaviour of the above estimates differed noticeably from the large-scale dissipation
estimate of Danaila et al. (2001) in each case. For the isotropic large-scale estimate,
corresponding to (1.12), the estimates were consistently 10 %–30 % larger than even the
integrated spectra estimate for all but the lowest Reynolds number. However, the agreement
was considerably improved for the homogeneous large-scale estimate from (1.13), which
was within 10 % of the integrated spectra estimate. The magnitude and trend of this
behaviour was quantitatively similar to the experimental measurements presented by
Danaila et al. (2001) for a channel flow, however, no clear Reynolds number trend in these
quantities was evident.

3.2. Second-order structure functions
Figure 3 shows both the second-order moments of the longitudinal and transverse velocity
structure functions normalized according to (1.14) and (1.15) following K41 for each of
the different Reynolds numbers. In contrast to Morrison et al. (2016) where the classic 4/5
law ((1.8)) was used to estimate the dissipation, here, both the longitudinal and transverse
velocity structure functions are normalized with isotropic dissipation estimates determined
from integrating their one-dimensional spectra, εu and εv , respectively. In each case,
for separations r < 10η, the behaviour of the structure functions is determined almost
exclusively by viscous dissipation, consistent with the predictions of Kolmogorov (1941a).
In the inertial range (e.g. 10 < r/η ≤ 0.1L/η), where L was the integral length scale,
there was a clear growth in the peak value of both dimensionless second-order structure
functions with Reynolds number approaching 2 in the longitudinal case, and 8/3 in the
transverse case. Note the transverse data in figure 3 have been scaled by a constant to
show both longitudinal and transverse components trending towards the same values.
Kolmogorov (1941a) suggested that these constants are Reynolds number independent
and high Reynolds number measurements would presumably yield a broader plateau
approaching these values. Such behaviour is hinted at in the longitudinal case at the highest
Reynolds number, while the transverse lags in the magnitude for the same Reynolds
numbers. This again is consistent with the discussion from Chen et al. (1997) regarding
the slower approach of the transverse velocity structure functions towards universality. In
both cases, no definitive asymptotic value or plateau wider than a decade in the inertial
range is observable in the current data set. Additionally, the growth with Reynolds number
towards these values stands in contrast to the observations of Morrison et al. (2016),
who observed a clear Reynolds number dependence in the peak value of the longitudinal
structure function, but neither a monotonic trend nor plateau in the inertial range. Most of
this discrepancy is perhaps due to the choice of the authors to normalize their structure
functions with the dissipation estimate determined from the K41 4/5 law, in contrast with
the integrated spectral estimate for εu and εv used here. Additionally, the peak values of the
longitudinal and transverse structure function occur at different abscissae, which results in
their ratio never approaching a constant.
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Figure 3. Comparison of the normalized second-order structure functions: (coloured solid lines), longitudinal
structure function of longitudinal velocity (

〈
�u2〉 /(εur)2/3); (coloured dashed lines), longitudinal structure

function of transverse velocity (3
〈
�v2〉 /(4(εvr)2/3)); (black solid line), small-scale dissipation estimate of

longitudinal structure function (
〈
�u2〉 = εur2/(15ν)); (black thin dashed line), small-scale dissipation estimate

of longitudinal structure function (
〈
�v2〉 = εvr2/(10ν)); (black thin dotted line), 2.
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Figure 4. Ratio of the isotropic estimate,
〈
(�v)2〉

iso determined by (1.9) using
〈
(�u)2〉, and the measured

value for the second-order transverse velocity structure function at the pipe centreline.

In addition to the inertial range behaviour of the second-order structure functions,
local isotropy constrains the relationship between the longitudinal and transverse velocity
structure functions with (1.9). Figure 4 shows the ratio of the isotropic estimate of the
transverse velocity structure function from (1.9) and the actual measured

〈
(�v)2〉

act as
a function of longitudinal separation, r/η. It is observed that at the pipe centreline, the
isotropic estimate remains valid over two decades of separation r/η for all Reynolds
numbers in this study. This provides a clear indication that the assumption of local isotropy
for the second-order structure functions holds along the pipe centreline, even at moderate
Reynolds numbers.
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Figure 5. Compensated longitudinal wavenumber spectrum. (a) Kolmogorov scaling and (b) outer unit
scaling. The vertical dashed lines indicate the approximate ordinate up to which spectral collapse is observed,
namely (a) kxη > 0.05 and (b) kxR < 5.

3.3. One-dimensional wavenumber spectra
Shown in figures 5 and 6 are the normalized longitudinal and transverse spectral
measurements in both their inner and outer scaling, given by the following equations:

f1(kx) = φuuε
−2/3
u k5/3

x , (3.1a)

g1(kx) = φvvε
−2/3
v k5/3

x . (3.1b)

Here, the streamwise wavenumber, kx, is obtained using Taylor’s frozen field hypothesis
with kx = 2πf /Ucl, where f is the spectral frequency. The longitudinal spectra of (3.1a)
when plotted in both inner (viscous) and outer scaling (see figure 5) show behaviour
that is consistent with Morrison et al. (2016), where no exact 5/3 region was found.
From the positive slope found in this compensated spectra, the observed slope in the
inertial range is shallower than a k−5/3

x and closer to k−1.6
x , consistent with Rosenberg

et al. (2013) and comparable to the empirical fit of Mydlarski & Warhaft (1996) for
the spectral exponent in grid turbulence (−5/3 + 5.23Re−2/3

λ ). Additionally, the spectral
bump at kxη ≈ 0.05 was also present, as described by McKeon & Morrison (2007)
and Morrison et al. (2016). Similar behaviour was observed in the transverse spectra in
figure 6 where the slope in the inertial region remains shallower than the predicted k−5/3

x .
The behaviour in this region was further obscured by a more prominent spectral bump
around kxη ≈ 0.08. Compensating the one-dimensional spectra for spatial intermittency
according to Kolmogorov (1962) was also conducted similar to the analysis performed by
Morrison et al. (2016). However, consistent with Morrison et al. (2016), this compensation
did not improve the collapse in the longitudinal and transverse components and was
therefore not included in this manuscript.

The ratio of the isotropic estimate of the transverse spectrum and the measured spectrum
is shown in figure 7 in both inner and outer coordinates. In the low Reynolds number data,
there is no evidence of an inertial range in the spectrum, with the ratio trending below 0.9 at
high wavenumber. As Reλ increases there is a discernible plateau spanning nearly a decade
of an inertial range. However, similar to the lower Reynolds numbers, even the higher
Reynolds numbers trend to slightly less than unity (0.9–0.95) for kxη > 0.1. This contrasts
with figure 4, which showed slightly better agreement across a range of scales with the
structure functions. The deviation towards the smaller scales from isotropic behaviour is
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Figure 6. Compensated transverse wavenumber spectrum. (a) Kolmogorov scaling and (b) outer unit scaling.
The vertical dashed lines indicate the approximate ordinate up to which spectral collapse is observed, namely
(a) kxη > 0.1 and (b) kxR < 10.
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Figure 7. Ratio of wall-normal spectra (φvv) and the isotropic estimate of φvv from the streamwise spectra
given by K41 in (1.6). A value of unity implies isotropy at that the wavenumber. Inner scaling shown in (a),
outer scaling in (b).

due to the angle calibration leading to a slight error in the estimation of energy in each
component. This is evidenced in figure 2(a), where εv slightly exceeds εu. Additionally,
the ratio of measured longitudinal and transverse spectra in figure 8 showed no inertial
range for low Reλ, but a growth with Reynolds number to nearly a decade of inertial range
behaviour at Reλ = 411. This behaviour agrees with Chamecki & Dias (2004), who found
that a finite inertial range in the spectrum led to a smaller interval of inertial range in the
structure functions.

3.4. Third-order structure functions
While the second-order structure functions demonstrated a trend toward inertial range
behaviour as the Reynolds number increases, it was apparent that there was insufficient
scale separation to elicit an inertial plateau. This can be seen in the third-order structure
function 〈(�u)3〉 in figure 9, where none of the test cases exhibited a clear plateau at the
centreline for all ranges of r/η and the peak values fall well short of the 4/5 law.

Growth in the value of the structure function was consistent with the observations
of Antonia et al. (2019). Comparison of Term I in figure 9 to Antonia et al. (2019)
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Figure 8. Ratio of wall-normal spectra (φvv) and the streamwise spectra (φuu) given by (1.7). From
Kolmogorov (1941a), the ratio between the spectra should be 4/3 in the inertial region where we expect to
see the k−5/3

x behaviour. Inner scaling shown in (a), outer scaling in (b).
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Figure 9. Third-order structure functions 〈(�u)3〉 and the terms from (1.10): (coloured solid lines), the inertial
contribution, Term I; (small coloured dashed lines), the viscous contribution, Term II; (coloured dashed lines),
the non-homogeneous component, Term III. The sum of the three terms is given by the thicker, darker lines.
The constant 4/5 is shown by the thin dashed line.

(cf. their figure 3a) showed the predicted behaviour of the 4/5 law matching the cases
shown in this study. These results stand in contrast to the comparable results of Morrison
et al. (2016) where all normalized third-order moments of the structure function followed
a similar curve, approaching a peak value of 0.6–0.7 at rη−1 ≈ 40. Again, some of
this discrepancy is likely due to the authors’ choice of normalizing the moments by a
dissipation estimate derived from the structure functions. This current study normalizes
the third-order moments with the spectral dissipation estimate given by εu and exhibits
excellent collapse in the viscous range and a clear growth in the peak value with increasing
Reynolds number. Additionally, the dimensionless third-order moments remain non-zero
over an increasingly wide range of r/η with increasing Reynolds number.

Improvements to the third-order structure function behaviour are found through
including the neglected corrections over the range of scales which were unavailable in
the data used by Morrison et al. (2016). Shown in figure 9 are the additional terms of the
generalized 4/5 law of Danaila et al. (2001) from (1.10). Term I is the original 4/5 law,
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Figure 10. Generalized expression for the third-order structure functions given by (3.2): (coloured solid lines),
the inertial contribution, Term I; (small coloured dashed lines), the viscous contribution, Term II; (coloured
dashed lines), the non-homogeneous component, Term III. The sum of the three terms is given by the thicker,
darker lines, and the constant 4/3 is shown as a thin dashed black line.
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Figure 11. Approach to inertial range behaviour for the 4/5 and 4/3 laws. All values are normalized to approach
unity. The relationship of Lundgren (2002) for decaying isotropic turbulence is represented by the solid blue
line corresponding to C3 = 0.8 − 8.45Re−2/3

λ from (1.16). Circles represent the maximum value of
〈
(�u)3〉

in this study with a power law fit following the blue dashed line given by C3 = 0.8 − 3.712Re−0.46
λ . Squares

represent the maximum values of
〈
(�u)(�ui)

2〉 and a power law fit following the red dashed line given by
C3 = 1.33 − 10.55Re−0.52

λ .

Term II is the viscous contribution, which dominates the small scales, and Term III is the
influence of inhomogeneity within the flow, which comes to dominate the large scales as
r increases. Note that Term IV from (1.11) is not included due to the analysis taking place
near the centreline, and calculations at all Reynolds numbers found it to be negligible
across all scales. The sum of these three terms should add to 4/5 and is also shown in
figure 9. By choosing εu as the dissipation scale, the agreement between the different
Reynolds numbers through the inclusion of the non-homogeneous term was evident. With
the exception of the lowest Reynolds number, each of the curves collapses to a value ≈ 0.7.
As the separation r increases, the non-homogeneous term dominates and exceeds 0.8 for
the two lowest Reynolds numbers. These large values likely stem from a combination of
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Isotropy and approach to inertial subrange at pipe centreline

lower statistical convergence of the non-homogenous term at larger values of r amplified
by the small radial separation of the measurement points used to compute the gradients.

Similar to the expanded 4/5 law, Danaila et al. (2001) developed a generalized
expression for the third-order structure functions

−
〈
(�u)(�ui)

2〉
εr︸ ︷︷ ︸

Term I

+ 2ν

εr
d
dr

〈
(�ui)

2
〉

︸ ︷︷ ︸
Term II

+ 2
εr3

∫ r

0
s2
(

−∂(v(�ui)
2)

∂y

)
ds︸ ︷︷ ︸

Term III

= 4
3
. (3.2)

Equation (3.2) provides additional insight into the behaviour of the flow, as it has not fully
utilized the isotropic relations to simplify the summation over i. Figure 10 shows the terms
of (3.2), with Term I representing the third-order structure functions, Term II representing
the viscous contribution and Term III representing the large-scale inhomogeneities. The
sum of the three terms is also shown. As was the case with figure 9, the third-order
terms did not reach a plateau of 4/3 alone, but did exhibit a trend towards the plateau
with increasing Reλ. Inclusion of the viscous and non-homogeneous terms improved the
estimate, but good agreement was not found, contrary to the case in figure 9. For all
Reynolds numbers, it appeared that the generalized expression was not as close to 4/3
over the range of separation r compared with how well the longitudinal terms added to
4/5 in figure 9. However, the sum more closely approaches 4/3 for wider ranges of rη−1

with increasing Reynolds number.
The rate of convergence towards an inertial range can be seen in figure 11, which plots

the peak values of the longitudinal and mixed structure functions. They are compared to
the empirical coefficient C3 of Lundgren (2002), which describes the rate of convergence
towards inertial range behaviour of the longitudinal structure functions. This coefficient
was found for the tangent line to their matched asymptotic expansion of the 4/5 law.
The data for

〈
(�u)3〉 exhibit a slower approach to 4/5 than the C3 curve, with a

dependence closer to Re−0.46
λ . Although these measurements comparatively exceed those

for
〈
(�u)(�ui)

2〉 in their approach to inertial range behaviour at each Reynolds number, the
measurements of

〈
(�u)(�ui)

2〉 exhibit a similar Reynolds number dependence following
Re−0.52
λ .

4. Discussion

In estimating the dissipation through isotropic relations, figure 2(a) clearly indicates
that measurements of both longitudinal and transverse velocity are largely matching and
corroborating the findings of Morrison et al. (2016). It also demonstrates that the 4/5
law in its classical form under-predicts dissipation, as expected. This is consistent with
the analysis by Chamecki & Dias (2004), who found a lack of validity in the third-order
isotropic relations over their range of cases (6800 < Reλ < 14 000) and an underprediction
of the dissipation rate compared with the spectral estimates. The current results shown in
figure 2(a) demonstrate a similar discrepancy, but figure 2(b) shows how the modified
equation from Danaila et al. (2001) reduces this discrepancy from the 4/5 law estimate.
Additionally, the modified 4/5 law results in the dissipation calculations closely matching
the empirical expressions of Lundgren (2002) and Chamecki & Dias (2004). While it is
apparent that this modified 4/5 law still does not match the spectral estimate, accounting
for the large-scale inhomogeneities improves the estimate considerably. This discrepancy
indicates the assumption of a fully inertial range is not appropriate for the Reynolds
numbers studied here, and could be due to terms neglected in the isotropic assumptions

919 A21-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

38
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.382


C.P. Byers, M. Hultmark, I. Marusic and M.K. Fu

in deriving (1.10) that become relevant at these lower Reynolds numbers. The continued
influence of outer boundary conditions is indicated by the increasing value of A in figure 2,
consistent with Morrison et al. (2016). While A is claimed to be a constant in the inertial
range, the present results align with previous findings which show that an inertial range is
not present until Reλ > 1000, or even 2000 in shear flow cases (Saddoughi & Veeravalli
1994; Saddoughi 1997; Antonia & Burattini 2006).

The behaviour of the second-order structure functions also indicates that the small
scales are isotropic while the inertial behaviour is continuing to evolve. Figure 3 clearly
shows classical dissipative range behaviour where the structure functions match the
Kolmogorov (1941a) isotropic estimate for r < 10η in both longitudinal and transverse
velocities. Figure 4 further shows how the isotropic estimate of the second-order transverse
structure function closely matches the actual measurement. However, at larger separations,
the peak value of the second-order structure functions continues to grow as Reynolds
number increases, indicating that the inertial range behaviour is not yet universal. This
is further evident by the lack of a −5/3 region in both the longitudinal and transverse
spectra, consistent with Morrison et al. (2016) for their longitudinal measurements. The
consistency across components is yet another indication that, while isotropy of the small
scales is holding for the dissipation estimates, fully inertial behaviour has not been
obtained.

These results from the spectral data and second-order structure functions emphasize the
need for utilizing the modified 4/5 law approach of Danaila et al. (2001) for a correct
interpretation of the third-order structure functions. Comparing figures 9 and 10 provides
clear evidence of improved behaviour and wider ranging validity of the 4/5 and 4/3
laws when including viscous and non-homogeneous contributions. The modified 4/5 law
developed by Danaila et al. (2001) results in a larger range of rη−1 for which the third-order
longitudinal moment approaches a plateau, and the overall accuracy considerably improves
for increasing Reλ, with the highest Reynolds number case nearly matching 4/5 for the
entire range of scales. The errors at these large separations are decreasing for increasing
Reλ, both due to the increase in independent samples and the approach towards inertial
range behaviour.

A better understanding of this need for correction can be found from the results of
the generalized 4/3 equation, which shows a further deviation from the constant value
compared with the 4/5 equation. It was demonstrated by Shen & Warhaft (2000) that
significant anisotropy exists in the higher-order odd moments, even while the second-order
moments have the predicted isotropic behaviour. This holds consistent with second-order
moments shown in figure 3, and indicates that the transverse components are clearly not
contributing sufficiently towards the 4/3 law as would be assumed under local isotropy.
This results in the sum of the terms of (3.2) not matching 4/3 as closely, but the consistent
trend of increased accuracy for larger Reλ is present. Further evidence that accounting
for inhomogeneities and anisotropic contributions at these lower Reynolds numbers is
necessary can be drawn from the study of Chen et al. (1997), who found that the
longitudinal and transverse velocity increments cannot behave the same, as the transverse
increment �v has a larger flatness value over all ranges of separation r, indicating a greater
intermittency. Therefore, these higher-ordered mixed structure functions will have a slower
approach towards their inertial range behaviour, consistent with our results. Higher values
of Reλ must be achieved to obtain accurate estimates of the 4/3 law vs the 4/5 law.

Comparing figure 10 with the results of Burattini, Antonia & Danaila (2005), who
analysed a version of the modified 4/3 law in a turbulent round jet at Reλ = 363, shows
our results under-predicting the 4/3 value compared with theirs. The range of rη−1
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with the greatest deviation from Burattini et al. (2005) corresponds to the location
of non-homogeneous contributions, including a production term not present in (3.2).
However, general trends in the behaviour of comparable terms are in agreement across the
studies. The non-homogeneous component is found to be dominant for larger separations,
and a comparison of our case to Reλ = 361 shows that the separation of rη−1 > 100
(corresponding to rλ−1 > 3) is comparable to their conclusion on the dominance of the
non-homogeneous contribution in a round jet. In addition to the transverse third-order
structure functions not sufficiently contributing to the balance, deviation from the modified
4/3 law could be due to the omission of components neglected in the derivation of (3.2)
(and likewise (1.10) for the 4/5 law). The assumption of isotropy inherently neglects the
pressure correlation terms, and although they cannot be measured in this experimental
set-up, it is possible they account for some of the deviations at these lower Reynolds
numbers (see Sadeghi et al. 2018). Additionally, there are derivative terms that become
negligible with local homogeneity that may need to be retained in the derivation for
these lower Reynolds numbers (see Danaila et al. 2001). Nonetheless, the trend shows
an approach to 4/3 and decreasing influence of the non-homogeneous component with
increasing Reλ.

The approach toward an inertial range as depicted in figure 11 provides a summary of all
of the previous discussion. It is apparent that the peak of the 4/5 law (and corresponding
4/3 law) grows with Reynolds number, and the behaviour in the pipe indicates a slower
growth than the theoretical analysis of Lundgren (2002), which did not include mean shear
in the flow. Their work utilized matched asymptotics to derive a composite expansion
for

〈
(�u)3〉, and the empirical fit of the tangent line to their expression gave the rate at

which the 4/5 law is approached. This asymptotic expansion was for the Kármán–Howarth
equation (von Kármán & Howarth 1938) and therefore did not account for any large scale
inhomogeneities. The slower approach of

〈
(�u)3〉 from the pipe flow therefore conforms

with expectations that shear flow and anisotropy will lead to deviations from the 4/5 law
(Hill 1997; Chamecki & Dias 2004). While the deviation of the mixed structure functions
from the 4/3 law was found to be larger at the same Reynolds numbers than those in the 4/5
law, the power on the Reλ dependence indicates a similar rate of approach. However, the
limited range of data prevents any significant insight being drawn on these fit exponents.

5. Conclusions

We have applied the generalized 4/5 and 4/3 laws near the centreline of turbulent pipe
flow and found that accounting for inhomogeneities provides significant improvement
to the approach towards 4/5 (and 4/3), consistent with Danaila et al. (2001). This study
adds pipe flow to the body of flow configurations in which the generalized approach has
been successfully applied, including a wide range of flow configurations such as channels
(Danaila et al. 2001), decaying turbulence (Antonia & Burattini 2006) and jets (Burattini
et al. 2005; Sadeghi et al. 2018).

By using a combination of a high pressure facility and nanoscale, two-component
hot-wires, we were able to probe the behaviour of the inertial subrange and local isotropy
assumption near the centreline of turbulent pipe flow up to Reλ = 411. Measurements
of multiple velocity components with wire lengths only slightly larger than twice the
Kolmogorov length scale facilitated the evaluation of the local isotropy assumption as
well as the influence of inhomogeneities in the generalized Kolmogorov balance with
minimal effects from spatial filtering. The derivation of the generalized equation in a
pipe flow results in (1.11), which simplifies along the pipe centreline to the expression of
Danaila et al. (2001), allowing use of (1.10). Although local isotropy cannot be evaluated
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entirely, as that task requires the complete strain-rate tensor, the majority of isotropic flow
relations evaluated in this study were found to be satisfied for second-order statistics.
This study complements the results of Morrison et al. (2016) by adding measurements
of an additional velocity component due to the use of the X-NSTAP. Importantly, the
new transverse measurements show similar behaviour that results in a constant increase
in the supposed universal value of the factor A, when scaled with uτ and R. Additionally,
the K41 estimate for dissipation tracks their estimate, corroborating this constant increase
in A. Comparing these results to the generalized expression of Danaila et al. (2001) and
empirical estimates of dissipation shows consistency between each calculation, and also
demonstrates an improvement on the K41 estimate alone. However, these inertial range
estimates do not obtain the same value of A that both isotropic spectral measurements
give.

The analysis of Danaila et al. (2001) was extended to the pipe geometry, where we found
consistency with their derived budget and results. The additional pseudo-production term
derived in the pipe geometry is negligible near the centreline, allowing the use of the
generalized 4/5 equation of Danaila et al. (2001). Further analysis indicates a lack of local
isotropy in the third-order structure functions. Contributions from the non-homogeneous
terms are found to be necessary when considering the energy budget near the centreline.
However, even accounting for these effects does not yield a 4/5 or 4/3 range within
the inertial range at the Reynolds numbers in this study. The generalized 4/5 equation
has better behaviour over the range of separations compared to the generalized 4/3
equation, indicating that the assumptions applied in deriving these equations may not
hold. This could be due to inhomogeneities stemming from the mean shear in pipe flow
preventing local isotropy from being attained in the third-order structure functions until
significantly higher Reynolds numbers (Hill 1997), unlike decaying isotropic turbulence
behind a grid. Additionally, the intermittency of the transverse component could prevent
isotropic behaviour until significantly higher Reynolds numbers. Another breakdown in
the assumptions behind (1.10) would be if the pressure–velocity correlations are non-zero,
which would account for a contribution that cannot be evaluated in this current data set.
This potential effect was discussed by Sadeghi et al. (2018) in their extended budget
in a round jet, where additional production and diffusion terms were accounted for off
centreline but deviations from the predicted sum still persisted. Lastly, the rate at which
the 4/5 and 4/3 laws were approached by the third-order structure functions was evaluated
and found to be more gradual than decaying isotropic turbulence for the same Reynolds
numbers. In each case, the approach to the predicted asymptotic decayed approximately
as Re−0.5

λ in contrast to the decaying grid turbulence (Re−2/3
λ ) or forced turbulence

(Re−5/6
λ ) (Antonia & Burattini 2006). A potential measure to provide more accurate

dissipation measurements through higher-order statistics could be performed by estimating
the dissipation through axisymmetric relations (see Anselmet, Antonia & Ould-Rouis
2000), but the current X-NSTAP measurements are not able to extract the fourth velocity
derivative needed. Establishing an extensive inertial range in the 4/5 and 4/3 laws requires
higher Reynolds number investigations which are achievable in the Princeton Superpipe.
However, more specialized probes and measurement techniques are required to achieve the
necessary small-scale resolution.
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Appendix A. Generalized Kolmogorov equation for centreline pipe flow

To derive (1.11), the process outlined in Danaila et al. (2001) or Burattini et al. (2005)
will be used. Starting with the incompressible Navier–Stokes equations at two different
longitudinal points, denoted by x and x+, decomposing the velocities and pressures into
a mean plus a fluctuation and assuming the mean at both points is the same based on the
idea of longitudinal homogeneity and small changes off the centreline of the pipe, then
subtracting the two equations from each other results in

∂

∂t
(�ui) + �

(
Uj

∂ui

∂xj

)
+ �

(
uj

∂Ui

∂xj

)
+ u+

j
∂+

∂xj
(�ui) + uj

∂

∂xj
(�ui)

= −
(

∂

∂xi
+ ∂+

∂xi

)
�p
ρ

+ ν

(
∂2

∂x2
j

+ ∂2+

∂x2
j

)
(�ui) , (A1)

where Ui is the mean velocity in the i direction, ui is the velocity fluctuation in the i
direction and the velocity increment is denoted as �ui = ui(x+) − ui(x). The fourth and
fifth terms on the left-hand side of (A1) are a result of the independence of ui from x+

j and
u+

i from xj. Next, add and subtract the term uj(∂
+/∂xj)(�ui) to the left-hand side of (A1)

and combine terms to get

∂

∂t
(�ui) + �

(
Uj

∂ui

∂xj

)
+ �

(
uj

∂Ui

∂xj

)
+ (

�uj
) ∂+

∂xj
(�ui) + uj

[
∂+

∂xj
+ ∂

∂xj

]
(�ui)

= −
(

∂

∂xi
+ ∂+

∂xi

)
�p
ρ

+ ν

(
∂2

∂x2
j

+ ∂2+

∂x2
j

)
(�ui) . (A2)

Next, multiply (A2) by �uk and treat it in the same way the Reynolds stress equation is
derived by taking a copy of that expression, swapping the indices i and k, then adding
them together, which allows the combination of most every term due to the fact that they
are expanded product rules of derivatives

∂

∂t
(�ui�uk) + (�uk) �

(
Uj

∂ui

∂xj

)
+ (�ui) �

(
Uj

∂uk

∂xj

)
+ (�uk)�

(
uj

∂Ui

∂xj

)

+ (�ui) �

(
uj

∂Uk

∂xj

)
+ (

�uj
) ∂+

∂xj
(�ui�uk) + uj

[
∂+

∂xj
+ ∂

∂xj

]
(�ui�uk)

= − (�uk)

(
∂

∂xi
+ ∂+

∂xi

)
�p
ρ

− (�ui)

(
∂

∂xk
+ ∂+

∂xk

)
�p
ρ

+ν�uk

(
∂2

∂x2
j

+ ∂2+

∂x2
j

)
(�ui) + ν�ui

(
∂2

∂x2
j

+ ∂2+

∂x2
j

)
(�uk) . (A3)

This expression can be significantly simplified by applying a few assumptions. Equation
(A3) is ensemble averaged, statistical stationarity and local isotropy are assumed,
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and the continuity equation allows terms 6 and 7 on the left-hand side to have their velocity
increments to be brought into the derivatives. Therefore, (A3) is now〈

(�uk)�

(
Uj

∂ui

∂xj

)〉
+
〈
(�ui)�

(
Uj

∂uk

∂xj

)〉
+
〈
(�uk) �

(
uj

∂Ui

∂xj

)〉

+
〈
(�ui) �

(
uj

∂Uk

∂xj

)〉
+ ∂+

∂xj

〈
�uj�ui�uk

〉+ [
∂+

∂xj
+ ∂

∂xj

] 〈
uj�ui�uk

〉

= ν

〈
�uk

(
∂2

∂x2
j

+ ∂2+

∂x2
j

)
(�ui)

〉
+ ν

〈
�ui

(
∂2

∂x2
j

+ ∂2+

∂x2
j

)
(�uk)

〉
. (A4)

Under the assumption of local homogeneity (see Hill 1997) spatial derivatives are written
with respect to the separation between points. It can be shown that

∂

∂xk
= − ∂

∂rk
; ∂

∂x+
k

= ∂

∂rk
, (A5a,b)

which allows (A4) to be written as〈
(�uk)�

(
Uj

∂ui

∂xj

)〉
+
〈
(�ui)�

(
Uj

∂uk

∂xj

)〉
+
〈
(�uk) �

(
uj

∂Ui

∂xj

)〉

+
〈
(�ui) �

(
uj

∂Uk

∂xj

)〉
+ ∂

∂rj

〈
�uj�ui�uk

〉+ [
∂+

∂xj
+ ∂

∂xj

] 〈
uj�ui�uk

〉
= 2ν

∂2

∂r2
j

〈�ui�uk〉 − 4
3
εδi,k. (A6)

Note that the viscous terms on the right-hand side of (A6) are a result of local homogeneity
and isotropy to obtain the expression for dissipation. Also note that, with the exception of
the fifth term on the left-hand side of this equation, the remaining derivatives are not
transformed into derivatives with respect to separation. This is due to these terms being a
result of large-scale inhomogeneities.

Up to this point, the math and process is similar to the initial steps taken in Danaila
et al. (2001) for the channel flow or Burattini et al. (2005) for the jet. The remainder of
the derivation follows their steps but has an additional large-scale inhomogeneous term
as a result of the pipe flow geometry. It is to these large-scale inhomogeneities that the
remainder of this derivation will focus on. Terms 1 and 2 on the left-hand side of (A6) can
be combined, resulting in:〈
(�uk) �

(
Uj

∂ui

∂xj

)〉
+
〈
(�ui) �

(
Uj

∂uk

∂xj

)〉
=
〈
U+

j
∂+

∂xj
(�uk�ui)

〉
−
〈
Uj

∂

∂xj
(�uk�ui)

〉
.

(A7)
For the system of a fully developed turbulent pipe, longitudinal homogeneity, azimuthal
homogeneity and zero axial velocity require

Ux
∂

∂x
= Uθ

r
∂

∂θ
= Ur

∂

∂r
= 0. (A8)

Therefore, in this system, the two terms on the right-hand side of (A7) are identically zero
in all points in the flow.
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The exact same process of expanding terms is applied to terms 3 and 4 on the left-hand
side of (A6), where we can see the following:〈

(�uk)�

(
uj

∂Ui

∂xj

)〉
+
〈
(�ui)�

(
uj

∂Uk

∂xj

)〉
= 〈

�uk�uj
〉 ∂Ui

∂xj
+ 〈

�ui�uj
〉 ∂Uk

∂xj
. (A9)

In a fully developed pipe flow, if the displacements between xj and x+
j are simply in

the longitudinal direction, which is often the direction of separation in the evaluation
of structure functions, the mean gradient is therefore a constant. Furthermore, in the
fully developed pipe, the only mean shear that exists is the longitudinal velocity in the
radial direction, which means the terms in (A9) that are not j = 2 or i = k = 1 terms are
identically zero

〈
�uk�uj

〉 ∂Ui

∂xj
+ 〈

�ui�uj
〉 ∂Uk

∂xj
= 2 〈�u�v〉 dU

dy
. (A10)

Additionally, recognizing that the sixth term on the left-hand side of (A6) must be applied
with the separation between xj and x+

j occurring in the longitudinal direction allows them
to combine due to longitudinal homogeneity. Therefore, plugging (A10) into (A6) will
result in

2 〈�u�v〉 dU
dy

+ ∂

∂rj

〈
�uj�ui�uk

〉+ 2
∂

∂xj

〈
uj�ui�uk

〉 = 2ν
∂2

∂r2
j

〈�ui�uk〉 − 4
3
εδi,k.

(A11)
Both term 2 on the left-hand side and term 1 on the right-hand side of (A11) can be

simplified significantly through the use of isotropic relations. As laid out in chapters 13
and 22 of Monin & Yaglom (2013), these two terms can each be expressed as a single
scalar function. Projecting the separation along the longitudinal direction and summing
over matched indices, the following expression can be found for the second-order structure
function:

2ν
∂2

∂r2
j

〈�ui�uk〉 = 10ν
d2

dr2

〈
(�u)2

〉
+ 2νr

d3

dr3

〈
(�u)2

〉

= 2ν

r4
d
dr

(
r5 d2

dr2

〈
(�u)2

〉)
, (A12)

and for the third-order structure function

∂

∂rj

〈
�uj�ui�uk

〉 = 5
3

d
dr

〈
(�u)3

〉
+ r

3
d2

dr2

〈
(�u)3

〉

= 1
3r4

d
dr

(
r5 d

dr

〈
(�u)3

〉)
. (A13)

Note that the indices have ended up becoming restricted to i = k = 1 in the assumption of
the longitudinal direction of separation and application of isotropic tensors.

Treatment of term three of (A11), or the second non-homogeneous term, follows
the arguments of Danaila et al. (2001) in which they assumed then demonstrated the
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non-homogeneous term behaves in a similar manner to the second-order structure function
(cf. (2.10)–(2.12) of Danaila et al. 2001). That allows the following simplification:

2
∂

∂y
〈v�ui�ui〉 = 2

[
3

∂

∂y

〈
v (�u)2

〉
+ r

d
dr

∂

∂y

〈
v (�u)2

〉]

= 2
r2

d
dr

(
r3 ∂

∂y

〈
v (�u)2

〉)
, (A14)

since longitudinal homogeneity and axial symmetry mean there are no x or z derivatives
of mean quantities. Note that the separation r is in the longitudinal direction, while y is
radial/wall normal, and therefore they are independent of one another. Also, Danaila et al.
(2001) had shown that this non-homogeneous term does indeed behave in a quasi-isotropic
manner and that (A14) is a function of r.

Putting together (A11), (A12), (A13) and (A14) produces the following expression:

2 〈�u�v〉 dU
dy

+ 1
3r4

d
dr

(
r5 d

dr

〈
(�u)3

〉)
+ 2

r2
d
dr

(
r3 ∂

∂y

〈
v (�u)2

〉)

= 2ν

r4
d
dr

(
r5 d2

dr2

〈
(�u)2

〉)
− 4

3
ε. (A15)

Multiplying (A15) by r4, integrating from 0 to r and then multiplying by 3 gives

NHterm1 + r5 d
dr

〈
(�u)3

〉
+ NHterm2 = 6νr5 d2

dr2

〈
(�u)2

〉
− 4

5
εr5. (A16)

Obviously, at this point, K41 can be recovered by ignoring the non-homogeneous
contributions. Dropping those two terms, dividing by r5, integrating from 0 to r and some
final rearranging will give

−
〈
(�u)3

〉
+ 6ν

d
dr

〈
(�u)2

〉
= 4

5
εr. (A17)

A.1. Dealing with the extra non-homogeneous terms
Now we need to address the non-homogeneous terms, which were dropped to find the
classic K41 result. The first non-homogeneous term is

NHterm1 = 6
∫ r

0
s4 〈�u�v〉 dU

dy
ds, (A18)

and the second non-homogeneous is

NHterm2 = 6
∫ r

0
s2 d

ds

(
s3 ∂

∂y

〈
v (�u)2

〉)
ds, (A19)

where s is a dummy variable for integration. The next step in deriving K41 had divided by
r5 then integrated once, which for (A18) results in

NH1 =
∫ r

0

(
6

s̃5

∫ s̃

0
s4 〈�u�v〉 dU

dy
ds

)
ds̃, (A20)
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where s̃ is a second dummy variable of integration. Performing the integration by parts,
this expression becomes ∫ r

0

(
6

s̃5

∫ s̃

0
s4 〈�u�v〉 dU

dy
ds

)
ds̃

= −3
2

1
r4

∫ r

0
s4 〈�u�v〉 dU

dy
ds + 3

2

∫ r

0
〈�u�v〉 dU

dy
ds. (A21)

This same process is applied to the second non-homogeneous term, where (A19) is
divided by r5 and then integrated, giving

NH2 =
∫ r

0

6

s̃5

[∫ s̃

0
s2 d

ds

(
s3 ∂

∂y

〈
v (�u)2

〉)
ds

]
ds̃, (A22)

where again s and s̃ are dummy variables of integration. Performing integration by parts
on this expression (where the term in square brackets is u and the 6/s̃5 ds̃ is dv) results in

NH2 = −3
2

1
r4

∫ r

0
s2 d

ds

(
s3 ∂

∂y

〈
v (�u)2

〉)
ds

+3
2

∫ r

0

1
s2

d
ds

(
s3 ∂

∂y

〈
v (�u)2

〉)
ds. (A23)

Equation (A23) can be expanded out by taking the derivative inside the integral

NH2 = − 3
2

1
r4

∫ r

0
s4 ∂

∂y

〈
v (�u)2

〉
ds︸ ︷︷ ︸

term 1

− 3
2

1
r4

∫ r

0
s5 d

ds
∂

∂y

〈
v (�u)2

〉
ds︸ ︷︷ ︸

term 2

+ 3
2

∫ r

0

∂

∂y

〈
v (�u)2

〉
ds︸ ︷︷ ︸

term 3

+ 3
2

∫ r

0
s

d
ds

∂

∂y

〈
v (�u)2

〉
ds︸ ︷︷ ︸

term 4

. (A24)

Integrating term 4 by parts results in

3
2

∫ r

0
s

d
ds

∂

∂y

〈
v (�u)2

〉
ds = 3

2
r

∂

∂y

〈
v (�u)2

〉
− 3

2

∫ r

0

∂

∂y

〈
v (�u)2

〉
ds, (A25)

and integrating term 2 by parts gives

3
2

1
r4

∫ r

0
s5 d

ds
∂

∂y

〈
v (�u)2

〉
ds = 3

2
r

∂

∂y

〈
v (�u)2

〉
−3

2
1
r4

∫ r

0
5s4 ∂

∂y

〈
v (�u)2

〉
ds.. (A26)

Combining (A24), (A25) and (A26) allows most terms to cancel, resulting in

NH2 = −3
2

1
r4

∫ r

0
s4 ∂

∂y

〈
v (�u)2

〉
ds + 3

2
1
r4

∫ r

0
5s4 ∂

∂y

〈
v (�u)2

〉
ds

= 6
r4

∫ r

0
s4 ∂

∂y

〈
v (�u)2

〉
ds. (A27)

Having utilized the assumption of local isotropy (or less restrictive cases as explained
by Hill 1997), and allowing for large-scale non-homogeneous contributions to the balance,

919 A21-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

38
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.382


C.P. Byers, M. Hultmark, I. Marusic and M.K. Fu

the total velocity increment equation will result in a modified version of K41. Combining
(A16) (after dividing by r5 and integrating once more in r) with (A21) and (A27) will give

−
〈
(�u)3

〉
︸ ︷︷ ︸

Term I

+ 6ν
d
dr

〈
(�u)2

〉
︸ ︷︷ ︸

Term II

− 6
r4

∫ r

0
s4

(
∂
〈
v(�u)2〉
∂y

)
ds

︸ ︷︷ ︸
Term III

− 3
2r4

∫ r

0
s4 〈�u�v〉 dU

dy
ds + 3

2

∫ r

0
〈�u�v〉 dU

dy
ds︸ ︷︷ ︸

Term IV

= 4
5
ε r. (A28)

This both conforms to the findings of Danaila et al. (2001) which introduced Term III,
and adds in an additional contribution from the mean shear in a fully developed pipe,
similar to Hill (1997), which is Term IV. This quasi-production term will be identically
zero along the centreline of the pipe, but will contribute to the balance in the bulk of
the flow. The assumption of local isotropy of the small scales means the near-wall region
is likely to deviate from this expression, and pressure–velocity correlations will become
non-negligible. Normalization of (A28) by ε r will result in (1.11).
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