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SUMMARY
Parallel kinematic machines (PKMs) and, in particular lina-
pods, are being increasingly used in the industrial workplace.
The complex control required for various linapod kinematics,
each having different numbers and types of Degrees-of-
Freedom (DOF), require corresponding transformations to be
generated. This paper introduces a general form of transfor-
mation that can be adapted to a wide range of linapods. The
approach is illustrated by an example and the concept of
a five-DOF linapod for the milling process is proposed.
Furthermore, the advantages from the two types of three-
DOF Linapods are discussed, and it is shown how the position
accuracy can be increased.
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I. INTRODUCTION
Since the early 1970s, researchers have investigated the
characteristics and abilities of PKMs. Their main structural
advantages, compared to serial kinematic machines, are
increased stiffness and load carrying capability. These
advantages are accompanied by better dynamics due to a
lower moved mass. However, these advantages are faced
with the limitation of a poor ratio between the installation
space to workspace. This mainly results in collisions of the
moving elements.

One group of PKMs have struts with a fixed length. Moving
the mounting point of these struts effects the movement of
the platform. These PKMs are known as linapods and are
discussed in this paper. Linapods can be found with different
DOF.

Three-DOF linapods, those with a Prismatic-Spherical-
Spherical (PSS) configuration, have been described in several
papers. These machines are pure translational linapods,
realized by using pairs of parallel struts to avoid the tilting
of the platform. The V1001 is a three-DOF industrial turning
machine and the URANE SX1 (Renault Automation), the
QUICKSTEP2 (Krause & Mauser) and the Pegasus3 are
examples of milling machines used in industry. Another lin-
apod, the Prismatic-Rotational-Universal (PRU) three-DOF
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Ecospeed, is introduced in reference[4], and has one trans-
lational DOF and two rotation DOFs.

A four-DOF linapod with six struts is introduced in
reference [5], which is able to move in three translational
directions and one rotational direction. Finally, there are
several six-DOF linapods that are designed and realized in
several laboratories. These are, for example, the Dynamil6,
the Paralix7 and the Hexaglide.

For each linapod with a different number of DOF, a special
transformations has to be calculated. This is especially true
for those that are based on kinematic constraints, as these are
controlled by complex calculations that have to be formulated
for each linapod. In reference [8] a transformation for a three-
DOF linapod is explored, which can only be used with this
single linapod, having one translational and two rotational
DOFs. A transformation will now be presented that is capable
of controlling all of the above mentioned linapods. This
transformation also provides the possibility to control a five-
DOF linapod and will be more precisely explained.

II. THE BASIC ANALYSIS OF THE LINAPOD
Many of the mentioned types of linapod have in common the
fact that they have six struts. The linapods with three legs,
like the Ecospeed, can also be expressed as a special form
of a six-legged linapod with two struts representing one leg.
The main difference is the number of drives, which is equal
to the number of DOFs.

To design and analyze linapod kinematics a general
transformation, accompanied by a set of analysis tools, has
to be available. These can be achieved by the following
approach:

The inverse transformation is the operation that can be
used to calculate from a known tool center point (TCP) the
position of the corresponding drive positions. For linapods,
it can be calculated by closing six vector chains which are
declared as a drive loop and illustrated in Fig. 1. A single drive
loop consists of a position vector of the moving platform, a
position vector of a single platform joint, a position vector of
the drive direction’s mounting point, a drives direction vector
and a known length of the strut
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Fig. 1. Vector chain of a drive loop.

This equation is solvable in an analytical way, and for this it
is also possible to differentiate it in an analytical way. The
partial differentiation of the drive coordinates with respect
to the generalized coordinates is called the inverse Jacobian
matrix. It is defined as:

J−1 = ∂q

∂x
. (3)
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The inverse Jacobian Matrix can be used either for the iterat-
ive forward transformation, or for the assessment of a kine-
matical design. For design decisions either the eigenvalues
are calculated or the singularity values of the Jacobian matrix
are calculated. These are defined as:

σ = eig(J−1J
−1T

). (5)

The higher the quotient is of the smallest and highest
singularity values, the better conditioned the linapod
kinematic is. This is caused by the fact that the kinematic is
not close to a singularity. This will happen when a singularity
value is zero or infinite.

III. PROPOSAL OF A NEW TRANSFORMATION
FOR THE DRIVE COMBINATION
In the following we present the transformation in which
several drive pairs can be combined so that two struts are
mounted on a single drive. Carrying on with this concept the
normal six-DOF linapod can be reconfigured to combinations
with less than six-DOF, all of which have the same transform-
ation. Schematic examples are shown in Fig. 2. The figure

Fig. 2. Linapods with different DOF.

shows that the system’s structure itself does not change dra-
matically. However, for each DOF less than six, the inverse
transformation gains one more constraint. This results in the
TCP having one less DOF. For each constraint one DOF of the
TCP has to be fixed. The calculation of the TCP’s-fixed DOF,
is the key issue of the drive combination transformation.

For a linapod with less than six-DOFs, a constraint applies
that at least two drives have to be connected together. Thus,
the distance between the drives (i,j) has to remain constant.
With this constraint fulfilled, the two drives can be treated as
a single drive. The constraint can be declared as:

qi − qj = const = �qij . (6)

In order to satisfy this constraint, one DOF of the TCP is
no longer controllable. Instead a translational or rotational
position of the DOF is dictated. One way to describe the
TCP position in space is to declare its Euler-coordinates
(x,y,z,α,β,γ ). By combining two struts on one drive, the k-th
DOF is directly related to the constraint (6). It can be cal-
culated by the above mentioned (3) Jacobian matrix:

xk = xk + (qi − qj )
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The differentiation ∂xk

∂qi
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drive coordinates must be calculated by inverting the terms
from the analytically calculated inverse jacobian matrix J−1
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and J−1
k,j .

Considering that more than one strut pair should be
attached to a drive, (6) and (7) have to be expanded to tensors:
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The deviation Jacobian matrix D is calculated by sub-
tracting the Jacobian i-th row from the j-th row in the k-th
column. This forms a square k × k matrix:
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Fig. 3. Six-DOF Linapod versus two five-DOF Linapods.

The inverse transformation (3) can be expanded iteratively
by this process. By using this convention, a single DOF can
be freely chosen and fixed. These fixed DOFs of the TCP
are generally not zero. To reduce the number of iterations
per cycle, which is of relevance to control systems, the
current position vector can be used as the start vector for
the following iteration. This method help to ensure real-time
performance.

The calculation of the singularity values is no longer
possible using the inverse Jacobian matrix as described in (4),
because all coordinates of the TCP position are now
dependent on one another. However, the reduced Jacobian,
which is defined as:

Jr = ∂x

∂qr

(10)

can be calculated. The reduced Jacobian is, in general terms,
a 6 × n matrix. The term ∂qr is the number of reduced drives.
The matrix itself can be calculated by using the inverse of (4)
of the non-reduced system and then adding the i-th and j-th
columns of the combined drive joints:

Jr = �(Ji,n + Jj,n)Jk �=ij,n�for k = 1..6 ∩ n = 1..6. (11)

The reduced Jacobian matrix is not square anymore. This is
caused by the reduced number of drives. It is still possible
to calculate the singularity values of this matrix as in (5),
because the quotient of the smallest and largest singularity
values of an inverse Jacobian matrix is equal to that of the
original matrix. The quotient provides the magnitude of the

velocity ratio. For each combined drive pair the number of
singularity values is reduced by one. This also means that the
number of possible singularities is reduced. For thats reason
it is worth decreasing the number of DOFs at the TCP that
are required for the desired manufacturing process.

IV. EXAMPLE OF FIVE-DOF MANIPULATOR
Based on the principle that the milling process is rotationally
symmetric, the kinematic structure moves the cutter in three
translational directions (x, y, z), and two rotational directions
(α,β). Using the introduced transformation, it is possible to
use a five-axes linapod for this process. This configuration
is evidently well suited to combine two legs on one drive.
In Fig. 3 three different configurations can be seen. The first
configuration (a) is based on the classic linapod. All its legs
are mounted on separate drives and enables the platform to
be move freely throughout the entire workspace. The second
combination (b) is similarly configured as in (a), with the only
difference being that the lower two legs are both mounted on
one drive. In the third combination (c), the combined legs
are mounted on the drive at the same point. This means that
both legs must now be considered as a single part. The two
combined legs form now a PUR configuration but does not
influence the general transformation. In Fig. 3(d, e, f), below
each configuration, the x-y plane of the usable workspace can
be seen, and the quotient of the singularity value is plotted. A
value of zero could have been caused by a singularity or by
the workspace being bounded by a collision of the moving
elements. For each point in the x-y plane the spindle was tilted
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Fig. 4. Two types of three DOF Linapods (a) three translational DOF (b) one translational two rotational DOF.

Fig. 5. Calibration of a tripod with a standard transformation.

from 0 to 90◦ about the x-axis, and the smallest quotient was
plotted. The result of this particular investigation shows that
not only the workspace enlarges by combining two legs on
one drive, but also the area of well conditioned singularity
values is enlarged. It follows that the correction angle around
the z-axis of the spindle does not have a negative effect on
the behavior of the linapod. It has to be mentioned that a
six-axis machine can be controlled in a manner to achieve
the same results as configuration (b), but the sixth drive is
not necessary for these results. By combining the two legs
into one, as in configuration (c), and mounting it on one
drive, we can achieve an even better result. This result can
be seen in Fig. 3(f). The area of well conditioned singularity
values is again enlarged compared to the combination (b)
with the best quotient of the singularity values rising to
0.27. This combination cannot be realized with a six-axis
machine, because both joints must be mounted at a single
point.

V. EXAMPLE FOR THREE-DOF MANIPULATOR
The three-DOF configurations is much more common
in an industrial environment. Two types of three-DOF
manipulators were described in the introduction Figure 4.
In terms of control, they both have completely different
transformations. We will now describe some of their char-
acteristics. The Tripod (Figure 5a) achieves its pure trans-
lational movement by mounting three pair of struts on three
drives, with the kinematical constraints, that all of these pairs
must be parallel to each other. As a result, the tolerances
have to be very tight and, furthermore, during the installation
one of the joints has to be able to be adjusted in order
to align the struts. Last but not least, it will not be
possible to completely fulfil all the constrains. Using the
standard transformation for the Tripod, it is assumed, that
the platform will never tilt or yaw. The designer is not aware
of how different tolerances will effect the swivelling of the
TCP.
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Fig. 6. Simulated calibration of a tripod with the new transformation.

Using the introduced transformation, a direct yaw and
tilting angle for the chosen tolerance of kinematical errors
will be obtained according to the TCP position. This can
be used to find useful values for the tolerances, as we can
directly interpret their influence on the TCP. On the other
hand, using the transformation in the control system, it will be
possible to determine the yaw and tilt angles of the platform.
Of course, the transformation cannot prevent the swivelling
of the platform, but it will reflect the system better than the
standard transformation, which is based on pure translational
movement.

A common way to identify the kinematical parameters
is done by calibration as introduced in reference [3]. The
calibration is based on a measurement of the TCP and of
the drive positions in special positions. The error of the
calculated TCP position and the one of the real system,
must be compensated by the calibration algorithm. This
means that the used transformation is able to reflect the
real system. In Figures 5 and 6 the results of calibrations
with the standard transformation and the new transformation
can be compared. The circular test shows that the standard
transformation is able to reduce the error, but it is not able to
compensate it completely, whereas the new transformation
could compensate the position errors completely (Figure 6).
In the very left plots of Figures 5 and 6 the tilting errors can
be seen, which are not possible to compensate. These errors
can only be reduced by better manufactured tolerances.

The transformation is also very useful for the 3 DOF
kinematics which can be seen in Figure(b). It is used, for
example, as an additional processing head in five-axis milling
machines for pocket milling. With this configuration, it is
possible to move the platform in the z-Direction and tilt it
about the A and B axis. However, tilting and yawing of the
platform is always combined with a translational movements
in x- and y-directions. These have to be compensated for
by the serial kinematics of the base. For this purpose it

is not necessary nor possible to prevent the translational
movement, but it is evidently important to know the exact
translational movement. To calculate this motion of the
Linapod platform, the dimentions of the structure have to
be precisely known. The current way is to use a simplified
transformation, which is built on symmetric conditions of the
kinematic as introduced in reference [8]. Therefore, small
deviations of the symmetry cannot be accounted for by
the transformation. This can only be done by the presented
transformation which calculates the constraints.

For the mentioned example, the variation of the identified
parameters will reflect those of the real system. With these
parameters the actual position of the swivelling head can be
calculated more exactly.

VI. CONCLUSION
In this paper a method was introduced which makes it
possible to calculate a transformation for all linapod struc-
tures based on six legs. The number of DOFs of the entire
kinematics can be reduced from six to five, four or three
DOFs simply by mounting pairs of struts on a single drive.
It is shown that special five DOF configurations have no
disadvantages compared to the equivalently configured six
axes linapods. Moreover the drive combination positively
affects the workspace and singularity behavior.

For special combinations, like the mentioned five DOF
parallel kinematics, the combining of struts to a single drive
not only reduces the number of drives needed, but also
positively effects the singularity conditions of the workspace.
For three DOF kinematics the introduced transformation
is able to reflect the real kinematics much better than a sim-
plified symmetrical model. Manufacturing and assembling
errors can be accounted for much better than in the actual
standard model.
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7. H. Böhler, J. O. Hestermann and N. Plischke “Leistungen
und Grenzen des, PARALIX – eine innovative Werkzeug-
maschine,” Fortschritt-Berichte VDI, 2: Fertigungstechnik 62,
15–22 (2002).

8. F. Xi, W. Han, M. Verner and A. Ross, “Development of a
sliding-leg tripod as an add-on device for manufacturing”,
Robotica 19, part 3, 285–294 (2001).

https://doi.org/10.1017/S0263574704001249 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574704001249

