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Liquid crystal elastomers present features not found in ordinary elastic materials, such as semi-

soft elasticity and the related stripe domain phenomenon. In this paper, the two-dimensional

Bladon–Terentjev–Warner model and the one-constant Oseen–Frank energy expression are

combined to study the liquid crystal elastomer. We also impose two material constraints,

the incompressibility of the elastomer and the unit director norm of the liquid crystal. We

prove existence of minimiser of the energy for the proposed model. Next we formulate the

discrete model, and also prove that it possesses a minimiser of the energy. The inf-sup values

of the discrete linearised system are then related to the smallest singular values of certain

matrices. Next the existence and uniqueness of the Lagrange multipliers associated with the

two material constraints are proved under the assumption that the inf-sup conditions hold.

Finally numerical simulations of the clamped-pulling experiment are presented for elastomer

samples with aspect ratio 1 or 3. The semi-soft elasticity is successfully recovered in both

cases. The stripe domain phenomenon, however, is not observed, which might be due to

the relative coarse mesh employed in the numerical experiment. Possible improvements are

discussed that might lead to the recovery of the stripe domain phenomenon.

Key words: Liquid crystal elastomer; Semi-soft elasticity; Variational methods; Mixed finite

element method; Inf-sup condition.

1 Introduction

Liquid crystal elastomer (LCE) is an elastic material containing nematic liquid crystal

molecules. Rotation of these liquid crystal molecules may lead to unique mechanical,

optical and electrical properties, which are not observed in ordinary elastic materials.

By properly exploiting these special properties, one might be able to manufacture new

devices, such as artificial muscles [23].

The stripe domain formation and the semi-soft elasticity property are two special

phenomena exhibited by LCEs [34]. They have been observed in the clamped-pulling

experiment, in which a piece of rectangular LCE is clamped and pulled in the direction

perpendicular to the initial uniform orientation of the liquid crystal directors. The stripe

domain phenomenon refers to the formation of stripes with alternating director angles

during the pulling process. In each stripe, the directors align along the same direction,

while the directors in adjacent stripes align symmetrically about their middle line. For
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square-shaped polysiloxane LCE, it is observed [25, 35] that during the pulling process,

the stripe domain first occurred in the centre of the domain and then broke into two,

which then migrated towards the two clamped ends. The semi-soft elasticity refers to the

unusual stress–strain relationship during the pulling process. The LCE is first hard, in

a regime such that the stress grows almost linearly with strain; then it reaches the soft

regime, in which the stress remains almost constant while the strain increases; then the

LCE becomes hard again upon further increase of the strain [12, 26].

Several models [3, 6, 7, 18, 33] have been proposed to explain the special behaviours

of LCE. A very successful one is that proposed by Bladon, Terentjev and Warner

(BTW) [3] that predicts the stripe domain phenomenon and the soft elastic response of the

elastomer. However, the stress–strain relationship computed with the BTW model is ideally

soft [34]. That is it lacks the initial hard regime typically observed in experiments. Several

approaches have been proposed to modify the BTW and fully capture the experimental

results. The Verwey–Warner–Terentjev model [33] extends the BTW model by adding a

term related to the cross-linking state, and successfully recovers the semi-soft phenomenon.

Other models [6, 7, 18] extend the BTW model by adding liquid crystal elastic energy

terms, such as Oseen–Frank [21], Ericksen [19] and Landau–de Gennes energy terms [15].

Unlike the Verwey–Warner–Terentjev model, the latter ones involve first derivatives of

the director field.

There are, however, relatively few works in the literature about the numerical simulation

of LCEs. This may be due to the complexity caused by the coupling between the

displacement of the bulk and the orientation of the liquid crystal directors. An important

work on numerical simulation of LCE is that of Conti et al. [14], who did 3D finite element

simulation based on the BTW model. They eliminated the orientation field n from the

BTW model by taking it to be the minimiser of the energy for fixed displacement field. The

resulting energy as a functional of displacement field was non-convex, and so, they took

its polyconvex envelope as the energy functional to analyse. Their simulation successfully

recovered the stripe domain phenomenon. However, their model inherited the features of

the BTW model, and only recovered ideally soft elasticity. In later work, the same authors

applied a similar approach to the Verwey–Warner–Terentjev model and did successfully

recover the semi-soft elasticity property [13].

In this paper, we extend the BTW energy by adding the Oseen–Frank energy and do fi-

nite element simulation for the full model on a 2D rectangular domain. We use the clamped

pulling as a benchmark problem to check whether our numerical method can recover the

special behaviours of LCE, such as stripe domain phenomenon and semi-soft elasticity.

The paper is organised as follows. In Section 2, we list the notations that we employ.

In Section 3, we investigate the continuous problem and proceed to study the discrete

one in Section 4. In Section 5, we present the numerical results, and in Section 6, we give

the conclusions of the work. Finally in Section 7, we discuss possible improvements of

current work to fully capture the stripe domain phenomenon.

2 Notations

In this paper, in addition to the standard notations of Sobolev spaces [1], such as Wm,p,

L2, H1, H1
0 and H−1, we let

H1
0|Γ (Ω) = {u ∈ H1(Ω) : u = 0 on Γ ⊂ ∂Ω}. (2.1)
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We use H1
g|Γ (Ω) to denote g + H1

0|Γ (Ω), and H1
g|Γ (Ω) to represent its vector version. We

use H−1
Γ (Ω) to denote the dual space of H1

0|Γ (Ω). We let 〈·, ·〉 represent the dot product of

two vectors, the inner product in Hilbert spaces or the action of a linear functional on a

function. Its actual meaning is made clear by the context.

We let �m×n denote the space of real m× n matrices. For any matrix F , we denote its

transpose by FT . For any square matrix A, det(A) denotes the determinant, tr(A) denotes

the trace and cof(A) represents the cofactor matrix, whose (i, j) entry is equal to (−1)i+j

times the determinant of the submatrix obtained by eliminating row i and column j of

the matrix A. For any matrix F , we use ∂ det
∂F

to denote ∂ det(F)
∂F

, which can be shown to be

exactly cof(F). We let A : B represent the inner product of the two matrices, that is

A : B = tr(ATB) =
∑
i,j

AijBij .

For any matrix F , we let |F | denote its Frobenius norm, that is

|F | = (F : F)1/2.

3 Existence and well-posedness of the continuous problem

In this section, we present our analytical results on the continuous problem. We first

introduce the energy functional and prove existence of minimiser. Then we derive the

Euler–Lagrange equations for the energy and obtain the corresponding linearised system.

Finally we reduce the linearised system to a standard saddle point framework and discuss

its well-posedness.

3.1 The energy functional and the minimisation problem

In this sub-section, we introduce the energy density as a combination of 2D BTW energy

and the Oseen–Frank energy and prove existence of minimiser.

Throughout this paper, analysis and computation are carried out in 2D domains. This

is justified as follows. In the experiment by Finkelmann et al. [25,35], the elastomer has a

very thin, rectangular shape, and consequently, it can be assumed that the director vectors

lie in the same plane. If the elastomer were compressed, it might buckle, with the directors

tilting out of the plane. However, in the pulling experiment, the elastomer sample remains

planar. If in addition, we look for configurations with director field confined in that plane,

then a 2D model and analysis may be appropriate.

We use X = (X1, X2)
T to denote a point in the reference configuration, and

x(X ) = (x1, x2)
T the corresponding point in the deformed configuration. We define

the displacement field as u(X ) = x − X . The deformation gradient tensor is F = ∂x
∂X

and

satisfies F = I+∇u. We assume the elastomer is incompressible, thus F satisfies det(F) = 1.

We denote the director field as n(X ) = (n1, n2)
T , which is a unit vector representing the

average orientation of the relevant liquid crystal molecular units at each point.

The BTW stored energy for LCE, in the form derived by DeSimone et al. [16–18], can

be written as

WBTW = µ(|F |2 − (1 − a)|FTn|2 − 2a1/2), (3.1)
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where µ is an elasticity constant. The dimensionless constant a satisfies 0 < a < 1 and is a

measurement of interaction between the bulk displacement u and the director orientation

n. In the limit a → 1, the BTW model degenerates to the neo-Hookean model, and there is

no interaction between u and n. On the other hand, in the limit a → 0, there is maximum

interaction between u and n. Note that the reference configuration (the one with u = 0)

for (3.1) is not the stress-free state. If we take the stress-free state as the reference state,

the BTW energy will be in a slightly more complicated form. We will elaborate on this

issue in the coming sections.

The Oseen–Frank stored energy [21], in its simplest form, can be written as

WOF = b|∇n|2. (3.2)

The energy (3.2) penalises change in the director field, and the prescribed constant b > 0

measures the strength of the penalisation.

The non-dimensionalised energy functional is the following:

Π(u, n) =

∫
Ω

(|F |2 − (1 − a)|FTn|2) + b|∇n|2

−
∫
Ω

f · u −
∫
Γ

g · uda, (3.3)

where f is a prescribed body force, and g is an applied boundary traction on Γ ⊂ ∂Ω.

The admissible set for the displacement u is

K = {u ∈ H1(Ω,�2) : det(I + ∇u) = 1 a.e. in Ω, u = u0 on Γu ⊂ ∂Ω}, (3.4)

and, the admissible set for the director n is

N = {n ∈ H1(Ω,�2) : |n| = 1 a.e. in Ω, n = n0 on Γn ⊂ ∂Ω}. (3.5)

We let A = K × N. The admissible set A is non-empty as long as u0 and n0 are both

Lipschitz continuous functions [22].

The problem of energy minimisation is formulated as follows:

Find (u, n) ∈ A minimising Π(u, n) in A. (3.6)

Next we prove existence of minimiser for (3.6).

Prior to the proof of existence, we summarise several lemmas, some of them well-known

in the literature. We include them here for the purpose of self-completeness.

Lemma 1 Assume 0 < a < 1, |n| = 1 and det(F) = 1. Then the BTW energy (3.1) is

always non-negative. It is zero if and only if eig(FFT ) = {a1/2, a−1/2} and n is an eigenvector

corresponding to the eigenvalue a−1/2.

Proof Let the eigenvalues of FTF be λ2
1 and λ2

2 and satisfy 0 � λ2
1 � λ2

2, and let v1, v2

denote the corresponding (unit) eigenvectors. Also assume that

n = α1v1 + α2v2.
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Since |n| = 1, and v1, v2 are orthonormal, we have

α2
1 + α2

2 = 1.

Thus, we can rewrite the BTW energy as

WBTW = µ(tr(FFT ) − (1 − a)nTFFTn − 2a1/2)

= µ
(
λ2

1 + λ2
2 − (1 − a)

(
α2

1λ
2
1 + α2

2λ
2
2

)
− 2a1/2

)
.

Since 0 � λ2
1 � λ2

2, the values α2
2 = 1 and α2

1 = 0 minimise WBTW . So, n is parallel to v2.

Consequently,

WBTW � µ
(
λ2

1 + λ2
2 − (1 − a)λ2

2 − 2a1/2
)

= µ
(
λ2

1 + aλ2
2 − 2a1/2

)
.

Since det(FFT ) = 1, we have that

λ2
1λ

2
2 = 1. (3.7)

Therefore

WBTW � µ
(
2

√
λ2

1 · aλ2
2 − 2a1/2

)
= µ(2a1/2 − 2a1/2)

= 0,

hold. The equality is satisfied if and only if λ2
1 = aλ2

2. Combining it with (3.7) yields

eig(FFT ) = {a1/2, a−1/2}. (3.8)

�

Lemma 2 Assume |n| = 1 and 0 < a < 1. Then

|F |2 − (1 − a)|FTn|2 � a|F |2. (3.9)

Proof Let λ2
1 and λ2

2 be as in Lemma 1. Since |n| = 1, by the proof of Lemma 1, we have

|F |2 − (1 − a)|Fn|2 � λ2
1 + aλ2

2

� a
(
λ2

1 + λ2
2

)
= atr(FFT )

= a|F |2.

�

Lemma 3 Assume |n| = 1, and 0 < a < 1. The function

L(F) = |F |2 − (1 − a)|FTn|2 (3.10)

is convex with respect to F .
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Proof Let

A(n) = I − (1 − a)nnT . (3.11)

So,

L = tr(FAFT ). (3.12)

For any matrices F1, F2 ∈ �2×2 and 0 � α � 1, we have

[αL(F1) + (1 − α)L(F2)] − L(αF1 + (1 − α)F2)

= αtr
(
F1AF

T
1

)
+ (1 − α)tr

(
F2AF

T
2

)
− tr[(αF1 + (1 − α)F2)A(αF1 + (1 − α)F2)

T ]

= α(1 − α)tr[(F1 − F2)A(F1 − F2)]

= α(1 − α)
(
|F1 − F2|2 − (1 − a)|(F1 − F2)

Tn|2
)

� α(1 − α)a|F1 − F2|2

� 0,

where we have used Lemma 2. Hence, the result follows. �

Next we quote the following theorem on non-linear elasticity.

Theorem 4 (Ball, [2]) Let Ω be a non-empty, bounded, open subset of �d.

• If d = 2, suppose we have uk ⇀ u in W 1,s with s > 4
3
, then we have det(I + ∇uk) →

det(I + ∇u) in D′(Ω);

• If d = 3,

◦ suppose we have uk ⇀ u in W 1,s with s > 3
2
, then we have adj(I+∇uk)ij → adj(I+∇u)ij

in D′(Ω);

◦ suppose we have uk ⇀ u in W 1,s, and adj(I + ∇uk) ⇀ adj(I + ∇u) in Lq(Ω; �3) with

s > 1, q > 1 and 1
s
+ 1

q
< 4

3
, then we have det(I + ∇uk) → det(I + ∇u) in D′(Ω).

Now we are ready to prove the main theorem of this section.

Theorem 5 There exists solution to the problem (3.6).

Proof Let m be the infimum of Π in A, and let (uk, nk) ∈ A be a minimising sequence

of Π . Note that m < +∞. Thus Π(uk, nk) is bounded above by some constant C . By
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Lemma 2,

C � Π(uk, nk) �

∫
Ω

a|(I + ∇uk)|2 + b|∇nk|2dx

− ‖f‖L2(Ω)‖uk‖L2(Ω) − ‖g‖L2(Γ )‖uk‖L2(Γ )

�

∫
Ω

a|(I + ∇uk)|2 + b|∇nk|2dx

−
(

1

ε
‖f‖2

L2(Ω) + ε‖uk‖2
L2(Ω)

)
−

(
1

ε
‖g‖2

L2(Γ ) + ε‖uk‖2
L2(Γ )

)

�

∫
Ω

C1|(I + ∇uk)|2 + C2|∇nk|2dx− C3, (3.13)

where ε > 0 is small and Ci > 0, i = 1, 2, 3 are constants. In the last step, we have applied

the generalised Poincaré inequality ([9], p. 281) and the Trace Theorem ([20], p. 258). By

(3.13), Fk = I + ∇uk and ∇nk are bounded in L2. Since ∇(uk − u0) is bounded in L2, by the

Poincaré inequality, uk is bounded in H1. On the other hand, since ∇nk is bounded in L2

and |nk| = 1 a.e. in Ω, nk is bounded in H1. Now since H1 is a reflexive Banach space and

uk and nk are bounded in H1, we can find a subsequence of uk and a subsequence of nk
such that they are weakly convergent in H1. We still denote them as (uk, nk), and assume

uk ⇀ u, nk ⇀ n.

Since uk ⇀ u in H1, by Theorem 4, det(I + ∇uk) → det(I + ∇u) in D′(Ω). Moreover,

since det(I + ∇uk) = 1 a.e., it follows that det(I + ∇u) = 1 a.e. in Ω as well1. On the

other hand, weak convergence in H1 implies strong convergence in L22, thus we can

find a subsequence of nk that converges point-wise almost everywhere. Therefore we have

|n| = 1 a.e. in Ω. Finally since uk − u0 ∈ H1
0|Γu , which is a closed linear sub-space of H1,

by the Mazur’s Theorem, it is weakly closed. Therefore u − u0 is also in H1
0|Γu , implying

u = u0 on Γu. Similarly, n = n0 on Γn holds. Therefore (u, n) ∈ A.

By Lemma 3, the following function:

L(F, n, P ) = (|F |2 − (1 − a)|FTn|2) + b|P |2

1 This is because, by definition,

〈det(I + ∇uk), φ〉 → 〈det(I + ∇u), φ〉

in �, for any φ ∈ D(Ω). Since det(I + ∇uk) = 1 a.e. in Ω for any k,

〈det(I + ∇u) − 1, φ〉 = 0, ∀φ ∈ D(Ω)

holds. Thus det(I + ∇u) = 1 a.e. in Ω.
2 This is because the embedding I : W 1,p → Lp is compact for 1 � p � ∞ ([20], p. 274), while for

any compact operator A : V → W with V and W Banach spaces, uk ⇀ u in V implies Auk → Au

in W ([9], Theorem 7.1-5 on p. 348).
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is a convex function of F and P . Therefore by Theorem 1 of Section 8.2 of [20], Π is

weakly lower semi-continuous. Thus

Π(u, n) � lim inf
k→∞

Π(uk, nk)

= m.

Since m is the infimum of Π on A, we conclude that

Π(u, n) = m. (3.14)

That is (u, n) is the minimiser of Π on A. �

3.2 Equilibrium equation and stress-free state

In this section, we derive the weak form of the equilibrium equation satisfied by the energy

minimiser. After discretisation, this equilibrium equation can be regarded as a non-linear

equation satisfied by the degrees of freedom (DOF) of the energy minimiser, which can

then be solved by a non-linear solver, such as Newton’s method. We also discuss, in this

sub-section, the solution corresponding to the stress-free state.

A common way to convert a constrained minimisation problem to an unconstrained

one is by the method of the Lagrange multipliers. In this way, the constraints are moved

from the admissible set to the objective function. We gain the flexibility at the cost of

solving a larger system. After introducing the Lagrange multipliers, the objective energy

functional becomes

E(u, n, p, λ) =

∫
Ω

(|F |2 − (1 − a)|FTn|2) + b|∇n|2

− p(detF − 1) + λ(|n|2 − 1) −
∫
Ω

f · u −
∫
Γ

g · u, (3.15)

where p ∈ L2(Ω) is the Lagrange multiplier for the incompressibility constraint det(I +

∇u) = 1, which can be interpreted as pressure, while λ ∈ L2(Ω) is the Lagrange multiplier

for the unity constraint |n| = 1. The admissible set for (u, n, p, λ) is

S = H1
u0|Γu(Ω) × H1

n0|Γn(Ω) × L2(Ω) × L2(Ω). (3.16)

Next we use variational principle to derive the weak form of the equilibrium equation,

also known as the Euler–Lagrange equation. Assume (u, n, p, λ) ∈ S minimises the energy

(3.15). Then for any test function v ∈ H1
0|Γu(Ω), the 1D function E(ε) = E(u + εv, n, p, λ)

has a minimum at ε = 0. Thus it follows that

0 =
dE
dε

∣∣∣∣
ε=0

,
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which simplifies to the following equation:

0 =

∫
Ω

2(F : ∇v − (1 − a)〈FTn,∇vTn〉) − p
∂ det

∂F
: ∇v

−
∫
Ω

f · v −
∫
Γ

g · vda.

Similarly by taking the variations n → n + εm, p → p + εq or λ → λ + εµ, we obtain the

following Euler–Lagrange equations:

0 =

∫
Ω

2(F : ∇v − (1 − a)〈FTn,∇vTn〉) − p
∂ det

∂F
: ∇v

−
∫
Ω

f · v −
∫
Γ

g · vda, (3.17)

0 =

∫
Ω

−2(1 − a)〈FTn, FTm〉 + 2b∇m : ∇n + 2λ〈n,m〉, (3.18)

0 =

∫
Ω

−q(detF − 1), (3.19)

0 =

∫
Ω

µ(〈n, n〉 − 1), (3.20)

where the solution (u, n, p, λ) belongs to S, while the test function (v,m, q, µ) is in the

space H1
0|Γu × H1

0|Γn × L2(Ω) × L2(Ω).

The corresponding equations in the strong form are derived using integration by parts,

as long as u and n are smooth enough. The resulting system of partial differential equations

is

divσ + f = 0 in Ω, (3.21)

b div(∇n) + (1 − a)nTFFT − λnT = 0 in Ω, (3.22)

detF − 1 = 0 in Ω, (3.23)

|n|2 − 1 = 0 in Ω, (3.24)

σν = g on ∂Ω\Γu, (3.25)

∂n

∂ν
= 0 on ∂Ω\Γn, (3.26)

where ν denotes the unit normal vector on the boundary, and

σ = 2(I − (1 − a)nnT )F − p
∂ det

∂F
(3.27)

is the Piola–Kirchhoff stress tensor.

Note that when f = 0 and g = 0, the reference configuration u ≡ 0 is not a stress-free

state. The reason is as follows. At the reference configuration, F = I , so

σ = (2 − p)I − 2(1 − a)nnT . (3.28)
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The matrix (2−p)I has rank 0 or 2 according to whether p = 2 or p� 2, while the matrix

2(1 − a)nnT has rank 1 for 0 < a < 1. Thus the Cauchy stress σ cannot be zero3.

However, the stress-free state can be achieved by a uniform stretch of the reference

state. It is easy to check that the system has zero stress in the case that

F =

(
a1/4 0

0 a−1/4

)
, (3.29)

n ≡ (0, 1)T , p = 2
√
a and λ = (1 − a)/

√
a.

3.3 Linearised system and well-posedness

In this section, we derive the linearised system of the equilibrium equations and discuss

its well-posedness. This system is closely related to the matrix derivative in Newton’s

method. Also, the well-posedness of the linearised system is closely related to the stability

of the numerical scheme.

To linearise the original system, we fix a solution (u, n, p, λ), and letting (w, l, o, γ) be

a small perturbation, we carry out the corresponding Taylor expansions in equations

(3.17)–(3.20) about the given solution, retaining the linear terms. The resulting linearised

system is

a1(w, v) + a2(l, v) + b1(o, v) = L1(v), (3.30)

a2(m,w) + a3(l,m) + b2(γ,m) = L2(m), (3.31)

b1(q,w) = L3(q), (3.32)

b2(µ, l) = L4(µ), (3.33)

where a1, a2, a3, b1 and b2 denote bi-linear forms depending on the solution (u, n, p, λ), and

L1, L2, L3 and L4 are linear functionals of the test functions. The perturbation (w, l, o, γ) is

supposed to satisfy the linearised system (3.30)–(3.33) for any test function (v,m, q, µ). Both

the perturbation and the test function belong to the space H1
0|Γu × H1

0|Γn × L2(Ω) × H−1
Γn

.

The bi-linear forms are defined by the following equations:

a1(w, v) =

∫
Ω

2 ∇w : ∇v − 2(1 − a)〈∇wTn,∇vTn〉

− p

(
∂2 det

∂F2
∇w

)
: ∇v, (3.34)

a2(m, v) =

∫
Ω

−2(1 − a)〈FTm,∇vTn〉 − 2(1 − a)〈FTn,∇vTm〉, (3.35)

a3(l,m) =

∫
Ω

−2(1 − a)〈FT l, FTm〉 + 2b∇m : ∇l + 2λ〈l,m〉, (3.36)

b1(q,w) =

∫
Ω

−q ∂ det

∂F
: ∇w, (3.37)

3 If a = 1, and p = 2, we indeed get zero stress. In this case, p = 2 corresponds to the hydrostatic

pressure of a neo-Hookean material.
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b2(µ, l) =

∫
Ω

2µ〈l, n〉. (3.38)

The linearised system (3.30)–(3.33) can now be reduced to a standard saddle point system.

In fact, adding (3.30)–(3.31) together, and (3.32)–(3.33) together as well, yields

a(w̃, ṽ) + b(õ, ṽ) = L̃1(ṽ), (3.39)

b(q̃, w̃) = L̃2(q̃), (3.40)

where w̃ = (w, l), ṽ = (v,m), õ = (o, γ) and q̃ = (q, µ). Moreover

a(w̃, ṽ) = a1(w, v) + a2(l, v) + a2(m, v) + a3(l,m), (3.41)

b(q̃, ṽ) = b1(q, v) + b2(µ,m), (3.42)

L̃1(ṽ) = L1(v) + L2(m), (3.43)

L̃2(q̃) = L3(q) + L4(µ). (3.44)

The system (3.39) and (3.40) exhibits a saddle point structure. Its well-posedness is shown

in the theorem by Ladyzenskaya–Babuska–Brezzi that we describe next as presented

in [32].

Theorem 6 (Ladyzenskaya–Babuska–Brezzi) Consider the following saddle point problem:

a(u, v) + b(p, v) = LV (v) ∀v ∈ �, u ∈ �, (3.45)

b(q, u) = LP (q) ∀q ∈ �, p ∈ �, (3.46)

with � and � given Hilbert spaces, LV and LP belonging to �′ and �′, respectively.

Moreover, a and b are continuous bi-linear forms defined on �×� and �×�, respectively.

Define the operators

B :� → �′

v �→ Bv such that 〈Bv, q〉 = b(q, v) ∀q ∈ �

A :KerB → (KerB)′

w �→ A w such that 〈A w, v〉 = a(w, v) ∀v ∈ KerB

Then the operator B is onto if and only if the spaces � and � satisfy the following inf-sup

condition:

inf
q∈�,‖q‖=1

sup
v∈�,‖v‖=1

b(q, v) � β > 0. (3.47)

Moreover, the mixed problem is well-posed if and only if B is onto and A is invertible.

According to the Ladyzenskaya–Babuska–Brezzi theorem, the well-posedness of the saddle

point system requires both B being onto and A being invertible. Moreover B being onto

is equivalent to the inf-sup condition (3.47) being satisfied. What is the corresponding

equivalent condition that guarantees the invertibility of A ? It turns out that A being

invertible is also equivalent to an inf-sup condition, namely the inf-sup condition of a(·, ·)
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on the space KerB,

inf
w∈KerB,‖w‖=1

sup
v∈KerB,‖v‖=1

a(w, v) � α > 0. (3.48)

This can be easily proved using the Ladyzenskaya–Babuska–Brezzi theorem, and the fact

that a linear operator A on a Hilbert space H is invertible if and only if A is onto and

Ker(A) = 0 ([31], p. 104). Therefore the well-posedness of a standard saddle point system

amounts to the verification of the two inf-sup conditions (3.47) and (3.48). In practice,

the inf-sup condition (3.48) is often replaced by the following stronger yet easier to verify

ellipticity condition:

inf
v∈KerB,‖v‖=1

a(v, v) � α > 0. (3.49)

However, in most situations the spaces � and � are different, and so, the inf-sup condition

(3.47) cannot be replaced with a stronger ellipticity condition, and it may be very difficult

to verify analytically.

For the LCE problem that we study, the bi-linear form b(q̃, ṽ) = b1(q, v) + b2(µ,m) is

the sum of two decoupled bi-linear forms. We prove that the inf-sup condition for b(q̃, ṽ)

is actually equivalent to the inf-sup conditions for both b1 and b2.

Theorem 7 The inf-sup condition for b(q̃, ṽ) = b1(q, v) + b2(µ,m) is satisfied if and only if

the corresponding inf-sup conditions for b1(q, v) and b2(µ,m) hold.

Proof Assume the bi-linear form b1(q, v) is defined on � × � and b2(µ,m) is defined on

Λ× �, where �,�, Λ,� are Hilbert spaces.

First assume the inf-sup condition for b(q̃, ṽ) is satisfied. Then it follows from Theorem

6 that the operator

B :� × � → �′ × Λ′

(v,m) �→ B(v,m) such that 〈B(v,m), (q, µ)〉 = b1(q, v) + b2(µ,m) ∀(q, µ) ∈ � × Λ

is onto. Therefore the operators

B1 :� → �′

v �→ B1v such that 〈B1v, q〉 = b1(q, v) ∀q ∈ �

and

B2 :� → Λ′

m �→ B2m such that 〈B2m, µ〉 = b2(µ,m) ∀µ ∈ Λ

are both onto. Hence, if follows from Theorem 6 that the inf-sup conditions for b1(q, v)

and b2(µ,m) are satisfied.

Conversely let us assume the inf-sup conditions b1(q, v) and b2(µ,m) are both satisfied.

Then it follows that B1 and B2 are both onto, and so is the operator B. Therefore by

Theorem 6, b(q̃, ṽ) = b1(q, v) + b2(µ,m) satisfies the inf-sup condition. �
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Consequently to verify the inf-sup condition for b(q̃, ṽ) = b1(q, v) + b2(µ,m), it is

sufficient to verify the inf-sup conditions for b1(q, v) and b2(µ,m) individually. We point

out that the bi-linear form b1(q, v) in (3.37) corresponds to that of the incompressible

elasticity problem [32], while b2(µ,m) in (3.38) corresponds to that of the harmonic map

problem [24].

We observe that the inf-sup condition for b1(q, v) is at least satisfied at the strain-free

and the stress-free states. In fact, at the strain-free state, F = I , it reduces to that of the

Stokes problem (for the proof, see for example [29]):

inf
q∈L2(Ω)

sup
v∈H1

0|Γu (Ω)

〈q, div(v)〉
‖q‖0‖v‖1

� β1 > 0. (3.50)

On the other hand, since the stress-free state has constant F matrix, the inf-sup condition

for b1(q, v) can be verified by change of variables [29]. In the general case that u � 0 and

F is not a constant, analytical verification of such a condition can be very challenging.

The inf-sup condition for b2(µ,m) holds provided n is sufficiently smooth. This is

established in the following theorem, whose proof is a slight modification of that in [24].

The details can be found in [29].

Theorem 8 Assume n ∈ H1
n0|Γn(Ω)

⋂
W 1,∞(Ω), then the inf-sup condition for b2(µ,m) holds.

That is

inf
µ∈H−1

Γn
(Ω)

sup
m∈H1

0|Γn (Ω)

〈2n · m, µ〉
‖m‖1‖µ‖−1

� β2 > 0. (3.51)

Finally to establish the ellipticity condition for the bi-linear form a(w̃, ṽ) is, in general,

very complicated due to the complication of the expressions of a1(·, ·), a2(·, ·) and a3(·, ·).
We found that it actually does not hold at the stress-free state (see [29]). However, this

does not imply that the linearised system (3.30)–(3.33) is ill-posed, since as previously

mentioned, ellipticity is a sufficient condition instead of a necessary condition.

Although in many situations, the rigorous proof of the inf-sup conditions or ellipticity

conditions is not available, the numerical ‘verification’ may be straightforward. We added

quotation marks because numerical verification is not a rigorous argument and therefore

cannot replace the analytical proof. However it may provide some insights when the

analytical proof is not available. We will elaborate on this in later sections.

4 Existence and well-posedness of the discrete problem

In this section, we investigate the existence and well-posedness of the discrete problem.

Unlike the usual approach of simply replacing continuous spaces by finite element spaces,

following Hu et al. [24], we include an interpolation operator in the discrete formulation.

This operator plays an important role in the proof of existence and well-posedness of the

discrete problem.

In this section, we first prove existence of minimiser of the discrete problem. We

then derive the Euler–Lagrange equations and the corresponding linearised system. We

also explain how to numerically compute the constants in the inf-sup and ellipticity
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conditions as a way of verifying the well-posedness of the linearised system. Next we

prove the existence and uniqueness of the Lagrange multipliers as a consequence of

the inf-sup conditions for the discrete problem being satisfied. Finally we discuss some

implementation issues, such as how to deal with the interpolation operator in the software

package FEniCS, and how to numerically assemble the H−1 norm.

4.1 The discrete problem and existence of minimiser

As indicated in previous sections, the problem of finding (u, p) is very similar to the case of

the incompressible elasticity, while finding (n, λ) bears an analogy with the harmonic map

problem. Thus we choose the P2 × P1 finite element spaces for (u, p), as in incompressible

elasticity, and P1 × P1 for (n, λ), following the harmonic map problem.

We let Vh denote the space of continuous piecewise linear functions and, Vh,g|Γ = {v ∈
Vh ∩ H1 : v = g on Γ }. The symbols Vh and Vh,g|Γ refer to the corresponding vector

version. We use πh as the nodal interpolation operators onto the spaces Vh and Vh. We

let Wh denote the space of continuous piecewise quadratic functions and, Wh,g|Γ = {w ∈
Wh ∩ H1 : w = g on Γ }. The symbols Wh and Wh,g|Γ denote the corresponding vector

version as well.

The energy functional is still defined as

Π(u, n) =

∫
Ω

(|F |2 − (1 − a)|FTn|2) + b|∇n|2

−
∫
Ω

f · u −
∫
Γ

g · uda. (4.1)

We define the admissible set

Ah = Kh × Nh, (4.2)

where

Kh =

{
uh ∈ Wh,0|Γu + u0h,

∫
Ω

qh(det(I + ∇uh) − 1)dx = 0, ∀qh ∈ Vh

}
, (4.3)

and

Nh =

{
nh ∈ Vh,0|Γn + n0h,

∫
Ω

µhπh(|nh|2 − 1)dx = 0, ∀µh ∈ Vh,0|Γn

}
. (4.4)

Notice that any piecewise linear function nh belongs to Nh if and only if the function

πh(|nh|2 − 1) ∈ Vh,0|Γn is identically 0, which means |nh| = 1 at all the mesh nodes.

Our discrete formulation of the minimisation problem is

Find (uh, nh) ∈ Ah, minimising Π in Ah. (4.5)

Before proving existence of minimiser, we first establish the following lemma.

Lemma 9 Assume n ∈ Nh and 0 < a < 1, then for any matrix F ∈ �2×2

|F |2 − (1 − a)|FTn|2 � a|F |2 (4.6)

holds.
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Proof Take any point x ∈ Ω, and suppose it is inside the triangle �P1P2P3. Since n ∈ Nh,

we have

n(x) = λ1n(P1) + λ2n(P2) + λ3n(P3),

where λi, i = 1, 2, 3 are barycentric coordinates. As indicated above, n ∈ Nh if and only if

|n| = 1 at all the mesh nodes. Thus it follows that

|n(x)| = |λ1n(P1) + λ2n(P2) + λ3n(P3)|
� λ1|n(P1)| + λ2|n(P2)| + λ3|n(P3)|
= λ1 + λ2 + λ3

= 1.

If |n(x)| = 0, then the conclusion follows trivially. In the following, we assume that

|n(x)| > 0.

Let n̂ = n(x)/|n(x)|, then |n̂| = 1. So

|F |2 − (1 − a)|FTn|2

= |F |2 − (1 − a)|n(x)|2|FT n̂|2

� |F |2 − (1 − a)|FT n̂|2

� a|F |2,

where we have used Lemma 2 in the last step. �

Now we establish the following existence theorem.

Theorem 10 There exists a solution to the discrete minimisation problem (4.5).

Proof Take any (uh, nh) ∈ Ah. It follows from Lemma 9 that

Π(uh, nh) �

∫
Ω

a|(I + ∇uh)|2 + b|∇nh|2dx

− ‖f‖L2(Ω)‖uh‖L2(Ω) − ‖g‖L2(Γ )‖uh‖L2(Γ )

�

∫
Ω

a|(I + ∇uh)|2 + b|∇nh|2dx

−
(

1

ε
‖f‖2

L2(Ω) + ε‖uh‖2
L2(Ω)

)
−

(
1

ε
‖g‖2

L2(Γ ) + ε‖uh‖2
L2(Γ )

)

�

∫
Ω

C1|(I + ∇uh)|2 + C2|∇nh|2dx− C3,

where ε > 0 is small, and Ci > 0, i = 1, 2, 3 are constants. In the last step, we have applied

the generalised Poincaré inequality ( [9], p. 281) and the Trace Theorem ([20], p. 258).

Thus Π(uh, nh) → ∞ as ‖uh‖1 or ‖nh‖1 goes to ∞. Hence its minimum must be achieved

in a bounded subset of Ah.
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On the other hand, the admissible set Ah is closed. The reason is as follows. Let

ϕj, j = 1, . . . , N be a basis of Vh, and ψj, j = 1, . . . ,M be a basis of Vh,0|Γn , and define

gj(uh, nh) =

⎧⎨
⎩

∫
Ω
ϕj(det(I + ∇uh) − 1)dx 1 � j � N,∫

Ω
ψj−Nπh(|nh|2 − 1)dx N + 1 � j � N +M.

(4.7)

Then gj is a continuous function on (Wh,0|Γu + u0h) × (Vh,0|Γn + n0h). Therefore Ah can be

written as the intersection of reciprocal images of 0 by the continuous functions gj , so it

is a closed set.

Since Π(uh, nh) is a continuous function on a closed, bounded finite-dimensional set, the

Weierstrass Theorem guarantees the existence of (uh, nh) ∈ Ah minimising Π in Ah. �

4.2 Equilibrium equations and linearised system

Similar to the continuous problem, we convert the constrained minimisation problem to

an unconstrained one by including the Lagrange multipliers. After that we derive the

equilibrium equations and their linearisation. These equations are analogous to those of

the continuous problem, except for the presence of the interpolation operator πh.

After including the Lagrange multipliers, the discrete energy functional is given by

E(u, n, p, λ) =

∫
Ω

(|F |2 − (1 − a)|FTn|2) + b|∇n|2

− p(det(F) − 1) + λ(πh〈n, n〉 − 1)

−
∫
Ω

f · u −
∫
Γ

g · uda, (4.8)

where F = I + ∇u.

Taking the first variation of the functional (4.8), we obtain the following equilibrium

equations (Euler–Lagrange equations):

0 =

∫
Ω

2(F : ∇v − (1 − a)〈FTn,∇vTn〉) − p
∂ det

∂F
: ∇v

−
∫
Ω

f · v −
∫
Γ

g · vda, (4.9)

0 =

∫
Ω

−2(1 − a)〈FTn, FTm〉 + 2b∇m : ∇n + 2λπh〈n,m〉, (4.10)

0 =

∫
Ω

−q(detF − 1), (4.11)

0 =

∫
Ω

µπh(〈n, n〉 − 1), (4.12)

where the solution (u, n, p, λ) ∈ Wh,u0|Γu × Vh,n0|Γn × Vh × Vh,λ0|Γn , and the test function

(v,m, q, µ) ∈ Wh,0|Γu × Vh,0|Γn × Vh × Vh,0|Γn .
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Linearisation around a solution (u, n, p, λ) yields the system

a1(w, v) + a2(l, v) + b1(o, v) = L1(v), (4.13)

a2(m,w) + a3(l,m) + b2(γ,m) = L2(m), (4.14)

b1(q,w) = L3(q), (4.15)

b2(µ, l) = L4(µ), (4.16)

where both the perturbation (w, l, o, γ) and the test function (v,m, q, µ) belong to Wh,0|Γu ×
Vh,0|Γn × Vh × Vh,0|Γn . Here the bi-linear forms a1, a2, a3, b1 and b2 depend on the solution

(u, n, p, λ). Moreover a1, a2 and b1 are as in the continuous case, while a3 and b2 are

slightly different and are given by

a3(l,m) =

∫
Ω

−2(1 − a)〈FT l, FTm〉 + 2b∇m : ∇l + 2λπh〈l,m〉, (4.17)

and

b2(µ,m) =

∫
Ω

2µπh〈n,m〉. (4.18)

4.3 Well-posedness of the linearised system

As in the continuous case, verifying the well-posedness of the linearised system (4.13)–

(4.16) can be reduced to verifying the inf-sup conditions for b1(q, v), b2(µ,m) and a(w̃, ṽ) =

a1(w, v) + a2(l, v) + a2(m, v) + a3(l,m).

The inf-sup condition for b1(q, v) is also satisfied at least at the strain-free and stress-free

state. In fact, at the strain-free state, F = I , this condition can be formulated as

inf
q∈Vh

sup
v∈Wh,0|Γu

〈q, div(v)〉
‖q‖0‖v‖1

� β1 > 0, (4.19)

which is exactly the inf-sup condition for the Stokes problem with the Taylor–Hood

element P2 ×P1 (proof of this inf-sup condition can be found, for example in Proposition

6.1 of [5]). The verification of the condition b1(q, v) at the stress-free state follows as in

the continuous case.

The proof of the inf-sup condition for b2(µ,m) is similar to the one in [24]. The only

difference is that, in our case, the test functions µ,m are zero only on part of the boundary.

A slight modification of the proof in [24] gives us the following. (The detailed proof can

be found in [29].)

Theorem 11 Assume n ∈ H1
n0|Γn(Ω)

⋂
W 1,∞(Ω), and nh ∈ Vh,n0|Γn satisfies |nh| � C > 0 and

‖nh − πhn‖1 � γ/| log(h)|1/2. Then there is a positive constant β2, independent of h, such that

inf
µ∈Vh,0|Γn

sup
m∈Vh,0|Γn

〈πh[nh · m], µ〉
‖µ‖−1‖m‖1

� β2. (4.20)

Theorem 11 states that, if the true solution n is smooth, the approximate solution nh
is close to it, and its norm is bounded below, then the inf-sup condition for b2(µ,m) is

always satisfied.
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For the inf-sup condition for a(w̃, ṽ) and the inf-sup conditions for b1 and b2 in general

cases, analytical verification may turn out to be very difficult. However, in the discrete

case, the inf-sup values and the ellipticity constants can be computed numerically. We

can compute the inf-sup values for a series of finer and finer meshes. If these inf-sup

values are bounded below by a positive constant, we infer some evidence that the inf-sup

condition might be satisfied for all meshes. This type of verification known as inf-sup

test [8] provides a convenient way to get information when analytical results are not

available. However the inf-sup test cannot replace the analytical proof, because we cannot

apply the test on infinite number of meshes.

For a general inf-sup condition, the inf-sup value

βh = inf
q∈�h,||q||=1

{
sup

v∈�h,||v||=1

b(q, v)

}
(4.21)

turns out to be related to the smallest singular value of certain matrix. The following

theorem summaries the results from [5].

Theorem 12 Let the matrices S , T , B be defined by the following equations:

‖qh‖2 = qTSq, (4.22)

‖vh‖2 = vTT v, (4.23)

b(qh, vh) = qTBv, (4.24)

where q, v are the DOF of qh and vh, respectively. Then the inf-sup value βh in (4.21) is

equal to the smallest singular value of the matrix S− 1
2BT− 1

2 .

In our case, we also want to compute the inf-sup value or ellipticity constant for the

bi-linear form a(·, ·) on Ker(Bh), where Bh : �h → �′
h is defined by b(q, v) = (q,Bhv) for

any q ∈ �h and v ∈ �h. That is we want to compute the inf-sup value β̂h in

β̂h = inf
u∈Ker(Bh),‖u‖=1

sup
v∈Ker(Bh),‖v‖=1

a(u, v) (4.25)

and the ellipticity constant α̂h in

α̂h = inf
v∈Ker(Bh),‖v‖=1

a(v, v). (4.26)

We prove the following result, which is similar to Theorem 12.

Theorem 13 Let n and m be the dimensions of �h and �h, respectively. Let the matrices

T , A, B be defined by the following equations:

‖vh‖2 = vTT v,

a(uh, vh) = uTAv,

vh ∈ Ker(Bh) ⇔ Bv = 0,
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where u, v are the DOF of uh and vh, respectively. Assume that B is full rank, and let the

matrix Q be defined by the QR decomposition of (BT−1/2)T

(BT−1/2)T = Q

(
R

0

)
.

Then the inf-sup value β̂h in (4.25) and the ellipticity constant α̂h in (4.26) are, respectively,

equal to the smallest singular value and the smallest eigenvalue of the matrix A1, where A1

is the lower right (n− m) × (n− m) submatrix of the matrix QTT−1/2AT−1/2Q.

Proof First, let x = T
1
2 u, y = T

1
2 v. So

β̂h = inf
x∈Ker(B̃)

sup
y∈Ker(B̃)

xT Ãy√
xTx

√
yTy

, (4.27)

where B̃ = BT−1/2, and Ã = T−1/2AT−1/2.

Since B̃ is full rank, the matrix R ∈ �m×m in the QR decomposition

B̃T = Q

(
R

0

)
(4.28)

is non-singular. Let

QTx =

(
wx

zx

)
, (4.29)

where wx ∈ �m and zx ∈ �n−m. Then it is easy to verify that

x ∈ Ker(B̃) ⇔ wx = 0.

Thus there is no constraint on zx. Therefore

inf
x∈Ker(B̃)

sup
y∈Ker(B̃)

xT Ãy√
xTx

√
yTy

= inf
zx

sup
zy

zTx A1zy√
zTx zx

√
zTy zy

, (4.30)

where A1 is the lower right (n−m)× (n−m) corner of the matrix QT ÃQ. Thus by Theorem

12, β̂h is equal to the smallest singular value of the matrix A1.

Similarly we can show that α̂h is equal to the smallest eigenvalue of the matrix A1. �

Remark The matrix B is full-rank if and only if the operator Bh is onto, which is true

if and only if the following inf-sup condition holds

inf
q∈�h,||q||=1

{
sup

v∈�h,||v||=1

b(q, v)

}
� βh > 0. (4.31)
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4.4 Existence and uniqueness of the Lagrange multipliers for the discrete system

For the incompressible elasticity problem, Le Tallec [27] proved existence and uniqueness

of the Lagrange multiplier p given that the inf-sup condition for b1(q, v) is satisfied. In

this sub-section, we use similar arguments to prove existence and uniqueness of p and λ

given that the inf-sup conditions for b1(q, v) and b2(µ,m) are both satisfied. The proof

uses the following result of Clarke [10, 11].

Theorem 14 Let J denote a finite set of integers. We suppose that the following are given:

E a Banach space, g0, gj(j ∈ J) locally Lipschitz functions from E to �, and C a closed

subset of E. We consider the following problem:

Minimise g0(x)

subject to x ∈ C, gj(x) = 0, ∀j ∈ J. (4.32)

If x̄ is a local solution of (4.32), then there exist real numbers r0, sj not all zero, and a

point ξ in the dual space E ′ of E such that

ξ ∈ r0∂g0(x̄) +
∑
j

sj∂gj(x̄), −ξ ∈ Nc(x̄), (4.33)

where Nc(x̄) is the normal cone at C in x̄, and ∂gj is the generalised gradient of gj(x).

Next we use Theorem 14 to prove the existence and uniqueness of p and λ.

Theorem 15 Suppose (uh, nh) ∈ Kh × Nh, and at (uh, nh), the inf-sup conditions for b1 and

b2 are both satisfied. Then there exist a unique ph ∈ Vh and a unique λh ∈ Vh,λ0|Γn such that

(uh, nh, ph, λh) is a solution of the discrete equilibrium equations (4.9)–(4.12).

Proof Let us denote

E = C = (Wh,0|Γu + u0h) × (Vh,0|Γn + n0h) (4.34)

g0(x) = Π(vh,mh), gj(x) = gj(vh,mh), (4.35)

where the functions gj were defined in (4.7). It is easy to see that

NC(x̄) = NE(x̄) = (0, 0). (4.36)

Notice that

∂Π(uh, nh) ⊂
{
Dg1

0 + Dg2
0

}
, (4.37)

where Dg1
0 and Dg2

0 are in [(Wh,0|Γu + u0h) × (Vh,0|Γn + n0h)]
∗. We have

Dg1
0(uh, nh) · (vh,mh) =

(
f1(vh)

f2(mh)

)
,
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where

f1(v) =

∫
Ω

2
(
Fh : ∇v − (1 − a)〈FTh nh,∇vTnh〉

)
,

and

f2(m) =

∫
Ω

−2(1 − a)〈FTh nh, F
T
h m〉 + 2b∇m : ∇nh.

Also

Dg2
0(uh, nh) · (vh,mh) =

(
−

∫
Ω

f · vh −
∫
Γ

g · vhda

0

)
.

We also observe that gj(vh,mh) is continuously differentiable in (Wh,0|Γu + u0h) ×
(Vh,0|Γn + n0h) and that

∂gj = {Dgj}, (4.38)

Dgj(uh, nh) · (vh,mh) =

(∫
Ω

−ϕj ∂ det
∂F

(I + ∇uh) : ∇vh

0

)

for 1 � j � N, (4.39)

Dgj(uh, nh) · (vh,mh) =

(
0∫

Ω
ψj−N πh(2nh · mh)dx

)

for N + 1 � j � N +M. (4.40)

Therefore applying Theorem 14, we have that there exists real numbers r0, sj , not all zero,

such that

0 ∈ r0∂Π(uh, nh) +

N+M∑
j=1

sj∂gj(uh, nh). (4.41)

Using (4.37) and (4.38), equation (4.41) becomes

r0{Dg1
0(uh, nh) + Dg2

0(uh, nh)} +

N+M∑
j=1

sjDgj(uh, nh) = 0,

in [(Wh,0|Γu + u0h) × (Vh,0|Γn + n0h)]
∗. (4.42)

Assume now r0 = 0. By the linearity property, and using (4.39) and (4.40), we rewrite

(4.42) as follows:

∫
Ω

⎛
⎝ N∑

j=1

sjϕj

⎞
⎠ ∂ det

∂F
(I + ∇uh) : ∇vhdx = 0, ∀vh ∈ Wh,0|Γu , (4.43)

∫
Ω

⎛
⎝ M∑

j=1

sN+jψj

⎞
⎠ πh(2nh · mh)dx = 0, ∀mh ∈ Vh,0|Γn . (4.44)
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Since at least one sj is non-zero, at least one of the equations (4.43) or (4.44) is in

contradiction with the inf-sup conditions. Thus r0 cannot be zero. We can then divide

(4.42) by r0 to get

Dg1
0(uh, nh) · (vh,mh) + 1/r0

M∑
j=1

sjDgj(uh, nh) = −Dg2
0(uh, nh) · (vh,mh),

∀(vh,mh) ∈ [(Wh,0|Γu + u0h) × (Vh,0|Γn + n0h)]. (4.45)

That is

f1(vh) −
∫
Ω

ph
∂ det

∂F
(I + ∇uh) : ∇vhdx =

∫
Ω

f · vh +

∫
Γ

g · vhda, (4.46)

f2(mh) +

∫
Ω

λhπh(2nh · mh)dx = 0, (4.47)

where we have denoted

ph =

⎛
⎝ N∑

j=1

sjϕj

⎞
⎠ /

r0, (4.48)

λh =

⎛
⎝ M∑

j=1

sN+jψj

⎞
⎠ /

r0. (4.49)

Equations (4.46) and (4.47) are precisely (4.9) and (4.10). Since (uh, nh) ∈ Kh × Nh, we

conclude that (uh, nh, ph, λh) is a solution of (4.9)–(4.12).

Finally if there were two distinct values ph, their difference would violate the inf-sup

condition for b1. Likewise if there existed two distinct values λh, their difference would

also violate the inf-sup condition for b2. So we have the uniqueness of both ph and λh.

�

4.5 Some implementation issues

In this sub-section, we discuss issues related to the implementation of our numerical

scheme, such as how to solve the non-linear problem using the software package FEniCS,

how to deal with the interpolation operator πh in FEniCS and how to assemble the H−1

norm when we assess the rate of convergence.

FEniCS [28] is an open source finite element package. It is very convenient to solve

variational problems such as

a(u, v) = L(v), ∀v ∈ � (4.50)

using FEniCS. To use FEniCS with C++, we just need to specify the finite element space

�h, the expressions for the bi-linear form a(u, v) and the linear form L(v) in a form file

such as ‘Poisson.ufl’, and compile the form file into a C++ header file ‘Poisson.h’. Then

in the C++ source file ‘main.cpp’, we specify the boundary conditions and let FEniCS

proceed with the work, which includes assembling the matrix (a(φi, φj)) and the right-hand
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side (L(φj)), and calling solvers for the linear system4. To use FEniCS with Python is even

simpler. The form file and the boundary conditions can be specified in the same Python

script, and we can call FEniCS interactively in the Python shell.

Our problem (4.9)–(4.12), however, is a non-linear variational problem, and we cannot

directly apply the above procedure in FEniCS. We explain here how to solve our non-linear

problem using FEniCS. LetN be the dimension of the space Wh,0|Γu×Vh,0|Γn×Vh×Vh,0|Γn for

the test function (v,m, q, µ). Equations (4.9)–(4.12) can be regarded as a system of N non-

linear equations for the DOF of the solution (u, n, p, λ). We can solve it using a non-linear

solver such as Newton’s method. It turns out that each iteration of Newton’s method is

equivalent to solving the following linear variational problem for the increment (w, l, o, γ):

a((w, l, o, γ), (v,m, q, µ)) = L(v,m, q, µ), (4.51)

where the bi-linear form is

a((w, l, o, γ), (v,m, q, µ)) = a1(w, v) + a2(l, v) + a2(m,w) + a3(l,m)

+ b1(o, v) + b1(q,w) + b2(γ,m) + b2(µ, l),
(4.52)

and the linear form is

L(v,m, q, µ) = − (F1(v) + F2(m) + F3(q) + F4(µ)) . (4.53)

Here F1, F2, F3 and F4 are the right-hand sides of (4.9)–(4.12), respectively. The above

observation can be verified by computing the derivative matrix and the right-hand side

of Newton’s method, and comparing them with the matrix and the right-hand side of the

above linear variational problem.

Another complication is that FEniCS does not support the interpolation operator πh
in their form file, at least not for the version 11.02 that we have used. We overcomed this

issue in the following way: we first let FEniCS assemble the matrix and the right-hand side

without the πh terms, then we manually assembled those terms and updated the matrix

and the right-hand side. It turns out that we do not have to do numerical integration

ourselves, instead we can compute those πh terms using the DOF of nh and λh, and the

matrix S = (〈ϕi, φj〉), where the ϕi’s denote the basis functions for the finite element space

Vh of piecewise linear functions. The details can be found in [29].

Finally to compute the order of convergence, we need to compute the H−1 norm for any

function in Vh,0|Γn . In the rest of this sub-section, we explain how to assemble theH−1 norm.

We first relate the H−1
Γn

norm of a function in Vh,0|Γn to the H1 norm of some other

function in Vh,0|Γn . For any function vh in Vh,0|Γn , we can define a linear functional g on

H1
0|Γn by

g(w) = 〈vh, w〉L2 , ∀w ∈ H1
0|Γn .

The H−1
Γn

norm of vh is the same as the norm of the functional g. By the Riesz Represent-

ation Theorem, we can find v ∈ H1
0|Γn such that

g(w) = 〈w, v〉H1 , ∀w ∈ H1
0|Γn .

4 Here we have used φi to denote basis function of the finite element space �h.
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Thus the norm of g is just the H1 norm of v. Therefore we get

‖vh‖H−1
Γn

= ‖v‖H1 . (4.54)

Let v̂h be the L2 projection of v into Vh,0|Γn , then the H1 norm of v can be approximated

by the H1 norm of v̂h.

Next we explain how to calculate the H1 norm of v̂h, which can be used to approximate

the H−1
Γn

norm of vh. Let {ϕi, i = 1, . . . , n} be a basis of Vh,0|Γn . We want to assemble the

matrix S such that

‖vh‖H−1
Γn

≈ ‖v̂h‖H1 = vTSv,

where v ∈ �n is the DOF for vh.

Theorem 16 Let A and B be the matrices that satisfy

‖vh‖L2 = vTAv,

‖vh‖H1 = vTBv,

for any vh in Vh,0|Γn , where v ∈ �n is the DOF for vh. Then the matrix S = AB−1A.

Proof Let f : H−1
Γn

→ Vh,0|Γn be the map taking any vh ∈ Vh,0|Γn to v̂h ∈ Vh,0|Γn , and let

ϕ̂i = f(ϕi). It is easy to see that

Sij = 〈ϕ̂i, ϕ̂j〉H1 . (4.55)

By definition of ϕ̂i, we have

∫
ϕiϕj =

∫
Dϕ̂iDϕj +

∫
ϕ̂iϕj ∀1 � i, j � n. (4.56)

Since ϕ̂i ∈ Vh,0|Γn , we can write

ϕ̂i =
∑
k

Gikϕk.

Substituting it into (4.56) gives

∫
ϕiϕj =

∑
k

Gik

(∫
Dϕk · Dϕj +

∫
ϕkϕj

)
.
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Figure 1. The elastomer is clamped and pulled on both sides.

That is A = GB, or G = AB−1. Therefore

S = (〈ϕ̂i, ϕ̂j〉H1 )

= (〈Dϕ̂i, Dϕ̂j〉 + 〈ϕ̂i, ϕ̂j〉)

=

(∑
p,q

GipGjq[〈Dϕp, Dϕq〉 + 〈ϕp, ϕq〉]
)

=

(∑
p,q

GipBpqG
T
qj

)

= GBGT

= (AB−1)B(B−1A)

= AB−1A.

�

Remark For any vh in Vh,0|Γn , although vTSv only gives approximate estimate of its H−1

norm, the difference goes to zero when h goes to 0.

5 Numerical results

In this section, we present results of the numerical simulation of the clamped-pulling

experiment.

The simulation setup is as follows (Figure 1). The LCE is initially rectangular shaped

and the directors align in the vertical direction. It is then clamped on the left and right

edges and pulled in the horizontal direction.

As previously pointed out, in our model the stress-free state is different from the

reference state. In the model and subsequent computation, u represents the displacement

relative to the reference domain. However the LCE should be in the stress-free state before

it is clamped and pulled. This is not a big issue, because the stress-free state actually

has constant deformation gradient matrix F , which means that it can be achieved by a

uniform stretch from the reference state. Thus at both the reference and the stress-free
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states, the LCE is rectangular, and displacements relative to the reference state or the

stress-free state can be easily converted into each other. We take our reference domain to

be the rectangle [0, L] × [0, 1]. It can be verified that for the aspect ratio at the stress-free

state to be AR, we should take

L =
1√
a
AR. (5.1)

We give the following starting values for (u, n, p, λ) so that they correspond to the stress-free

state:

uX = (a1/4 − 1)(X − 0.5L), (5.2)

uY = (a−1/4 − 1)(Y − 0.5), (5.3)

n ≡ (0, 1)T , (5.4)

p = 2
√
a, (5.5)

λ = (1 − a)/
√
a, (5.6)

where uX and uY are the components of u.

The physics of ‘clamped-pulling’ can be modelled by the following boundary conditions:

at the two clamped edges, uY and n remain at the starting values, while uX decreases or

increases uniformly (that is, independent of Y ). Although our model was not formulated

as a time-dependent problem, we can still obtain information on the dynamical behaviour

by solving a series of static problems, each of which only differ slightly from the previous

one in the uX boundary condition.

Notice that the problem is completely symmetric about the two centre lines X = 0.5L

and Y = 0.5. Therefore we only need to do the computation on the upper-right quarter

of the reference domain. The solution on the rest of the domain can be obtained by

reflection.

Based on the discussion above, we list here the boundary conditions on the computation

domain [0.5L,L] × [0.5, 1]. Fist, to model the clamped-pulling set up, we impose the

following Dirichlet boundary conditions at the clamped edge X = L:

uX = 0.5L[a1/4(1 +Mt) − 1], (5.7)

uY = (a−1/4 − 1)(Y − 0.5), (5.8)

n = (0, 1)T . (5.9)

That is both uY and n remain at their starting values, while uX varies with t. Here

t ∈ [0, 1] is the percentage of the loading. When t = 1, the LCE reaches its maximum

elongation 1+M, where elongation is defined as the current length divided by the starting

length (length at the stress-free state). Note that, by symmetry, the vertical centre line

remains at X = 0.5L, while the horizontal centre line stays at Y = 0.5. Also by symmetry,

the directors at these centre lines must be either strictly vertical or strictly horizontal.

We assume that the directors change continuously during the pulling process, thus the

directors at the two centre lines must stay at their starting values. Therefore we impose
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Table 1. The numerical errors and orders of convergence

AR = 1 AR = 3

N = 8 N = 16 N = 32 N = 8 N = 16 N = 32

‖eu‖0 8.39E-04 2.69E-04 6.99E-05 1.51E-03 5.18E-04 1.41E-04

order - 1.64 1.95 - 1.55 1.88

‖eu‖1 2.02E-02 7.66E-03 3.32E-03 2.14E-02 8.35E-03 3.57E-03

order - 1.40 1.21 - 1.36 1.23

‖en‖0 3.05E-02 8.25E-03 2.12E-03 3.79E-02 1.16E-02 3.20E-03

order - 1.88 1.96 - 1.71 1.86

‖en‖1 1.19E+00 6.23E-01 3.14E-01 1.48E+00 7.64E-01 3.81E-01

order - 0.93 0.99 - 0.95 1.00

‖ep‖0 2.38E-02 8.99E-03 3.34E-03 2.14E-02 8.22E-03 2.79E-03

order - 1.41 1.43 - 1.38 1.56

‖eλ‖−1 1.51E-03 5.22E-04 1.70E-04 1.95E-03 6.15E-04 1.92E-04

order - 1.54 1.62 - 1.66 1.68

the following boundary conditions at the two centre lines:

uX = 0 on X = 0.5L, (5.10)

uY = 0 on Y = 0.5, (5.11)

n = (0, 1)T on X = 0.5L and Y = 0.5. (5.12)

Finally to ensure that |n| = 1 at all the mesh nodes, we need to impose Dirichlet boundary

condition for λ on the same boundary as n. Thus the boundary condition for λ is

λ = (1 − a)/
√
a on X = 0.5L,X = L and Y = 0.5. (5.13)

In our computation, we take a = 0.6, b = 0.0015 and M = 0.4. We slowly increase

‘load’ t from 0 to 1 in a step size �t = 0.01. We take the initial aspect ratio AR to be

either 1 or 3. We use uniform mesh of size (AR · N) × N, where N is an integer. Each

small rectangle of the mesh contains two triangles, which are split by the lower-left to

upper-right diagonal.

Table 1 lists the numerical errors and orders of convergence. Here eu, en, ep and eλ are

the numerical errors for u, n, p and λ, respectively. And ‖ ·‖0, ‖ ·‖1 and ‖ ·‖−1 represent the

L2, H1 and H−1 norms, respectively. The numerical errors are calculated for the solutions

of adjacent meshes. For instance let us consider eu. We first compute the solution u(N)

and u(2N) on the mesh N and 2N, respectively, next we interpolate the solution u(N) to the

mesh 2N, and finally, we compute the difference of that interpolation with the solution

u(2N) and obtain eu. The order of convergence is calculated in the usual sense. Take ‖eu‖0,

for example the order of convergence is calculated by

log
(
‖eu‖(N/2)

0 /‖eu‖(N)
0

)
log(2)

.
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Table 2. The inf-sup values and ellipticity constants

AR = 1 AR = 3

t = 0 N = 4 N = 8 N = 16 N = 4 N = 8 N = 16

β1 0.5875 0.5879 0.5880 0.5877 0.5879 0.5880

β2 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000

β 2.70E-04 5.69E-05 1.62E-04 1.61E-04 1.21E-05 3.60E-05

α −1.27E-02 −1.78E-02 −1.21E-02 −7.87E-02 −5.42E-02 −5.32E-02

t = 1 N = 4 N = 8 N = 16 N = 4 N = 8 N = 16

β1 0.6431 0.6287 0.6163 0.6229 0.6125 0.6025

β2 1.9503 1.9065 1.8711 1.8737 1.7804 1.7517

β 1.20E-03 5.82E-04 4.88E-05 3.48E-04 1.46E-04 2.55E-04

α −2.58E-03 −5.82E-04 −4.88E-05 −2.50E-03 −3.09E-03 −3.34E-03

Table 1 shows that the L2 errors of u and n converge at rates close to 2, while their H1

errors converge at rates close to 1. The L2 error of p and the H−1 error of λ converge at

rates of at least 1.

Table 2 lists the inf-sup values and the ellipticity constants at both the initial state

(t = 0) and at the final state (t = 1) of the pulling process. Here β1 and β2 are the

inf-sup values of the bi-linear forms b1(·, ·) and b2(·, ·), respectively, while β and α are the

inf-sup value and ellipticity constant, respectively, of the bi-linear form a(·, ·) on Ker(B).

The eigenvalue decomposition, singular value decomposition and QR decomposition were

done using the open source library ALGLIB 2.6 [4]. Notice that for all cases in Table 2,

the α’s are negative, while β1, β2 and β’s are all positive. This means that, in all these cases,

although the ellipticity conditions for a(·, ·) are not satisfied, the inf-sup conditions for

b1(·, ·), b2(·, ·) and a(·, ·) are all satisfied, and therefore, the linearised system is well-posed.

Furthermore, for both t = 0 and t = 1, the inf-sup values β1 and β2 do not seem to

change very much as the mesh refines. This suggests that the inf-sup values for b1(·, ·) and

b2(·, ·) might have a constant positive lower bound during the whole pulling process, for

all uniform meshes. On the other hand, this is not the case for the inf-sup value β. There

is no obvious constant positive lower bound for β. In the case that AR = 1 and t = 1,

the β values even seem to go to zero as the mesh keeps on refining.

Next we check the stress–strain curve for semi-soft elasticity. Figures 2 and 3 show the

stress–strain curves for AR = 1 and AR = 3. In these figures, the x-axis is the strain,

which is calculated by Mt, while the y-axis is the nominal stress, which is calculated by∫
Γ

σ(t)ν · νda, (5.14)

where Γ is the clamped edge X = L, and ν is the normal vector on Γ . In both figures,

the LCE is first hard, then soft, then hard again. Therefore we have successfully recovered

the semi-soft elasticity.

To check how the soft regime changes with the meshes, we list in Table 3 the endpoints

of the soft regime. Since the hard regimes have relatively small curvature, while the soft

regimes have relatively large curvature, we choose the endpoints of the soft regime to be
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Figure 2. Nominal stress versus strain for AR = 1. Mesh size N = 32. The empty circles

correspond to the soft regime [0.076, 0.264], which is determined using a curvature criteria.
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Figure 3. Nominal stress versus strain for AR = 3. Mesh size N = 32. The empty circles

correspond to the soft regime [0.036, 0.292], which is determined using a curvature criteria.
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Table 3. The endpoints of the soft regime

AR = 1 AR = 3

N = 4 N = 8 N = 16 N = 32 N = 4 N = 8 N = 16 N = 32

left 0.096 0.076 0.076 0.076 0.048 0.040 0.036 0.036

right 0.288 0.272 0.264 0.264 0.276 0.288 0.292 0.292

Figure 4. (Colour online) The solutions for AR = 1 with mesh size N = 16. From top-left to

bottom-right, the strains are 0.040, 0.100, 0.264, 0.400. The domain is coloured by the BTW energy

where blue corresponds to low BTW energy, while red corresponds to high BTW energy.

those strain values when |κ| is first and last bigger than 1, where κ is the curvature of the

stress–strain curve. The curvature κ is calculated by

κ =
f′′

(1 + f′2)3/2
,

where f′ is the first derivative approximated using forward difference, while f′′ is the

second derivative approximated using central difference. From Table 3, we can see that

as the mesh refines, the soft regime for AR = 1 converges to [0.076, 0.264], while the soft

regime for AR = 3 converges to [0.036, 0.292].

To see what the solutions in different regimes of the stress–strain curve look like, we

plot some typical solutions in Figures 4 and 5. In both figures, the top-left is a solution
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Figure 5. (Colour online) The solutions for AR = 3 with mesh size N = 16. From top-left to

bottom-right, the strains are 0.020, 0.060, 0.292, 0.400. The domain is coloured by the BTW energy

where blue corresponds to low BTW energy, while red corresponds to high BTW energy.

in the first hard regime, the top-right is a solution at the start of the soft regime, the

bottom-left is a solution at the end of the soft regime, while the bottom-right is a solution

in the second hard regime. We can see that the solutions in the first hard regime have most

directors vertical, the solutions in the second hard regime have most directors horizontal,

while the solutions in the soft regime have directors rotating from vertical to horizontal.

This suggests that the soft regime in the stress–strain curve might be related to the rotating

of the directors. Also, we can see that the solutions in the soft regime maintain relative

low BTW energy, while the solutions in the second hard regime have much higher BTW

energy.

Finally we see from Figures 4 and 5 that stripe domain is not observed in these

solutions. Instead, the solutions look very smooth. This might be due to the relatively

coarse meshes that we have used. Due to the intrinsic high DOF of our model, the finest

mesh we have used has N = 64, which might still be too coarse for the development of

stripe domains. Another possible reason is that b = 0.0015 might be relatively too large,

which penalises the changing in n, thus prevents the formation of stripe domains.

6 Conclusion

In this paper, we modelled the LCE using 2D BTW energy and one-constant Oseen–Frank

energy. We imposed the constraint of incompressibility of the bulk, and the unity of the

directors to the admissible set of (u, n). We proved the existence of minimiser for this

energy minimisation problem. Then we converted the constrained minimisation problem

to an unconstrained minimisation problem, by introducing Lagrange multipliers p and λ.
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Next we derived the equilibrium equation and its linearisation. We reduced the linearised

system to a standard saddle point system, and verified the well-posedness for some simple

cases.

Next we proposed the corresponding discrete problem, which used the P2 × P1 Taylor–

Hood element for the (u, p) combination and the P1×P1 element for the (n, λ) combination.

We also imposed the constraints that the L2 projection of det(F)−1 is zero and that |n|−1

is zero at all the mesh nodes. We proved the existence of minimiser for this discrete energy

minimisation problem. Similar to the continuous case, we then introduced the Lagrange

multipliers p and λ, derived the equilibrium equation and its linearisation, and reduced

the linearised system to a standard saddle point system. We verified the well-posedness

for some simple cases. For the general cases, we explained how to reduce the verification

of inf-sup conditions to the computation of smallest singular value of certain matrices.

Next we proved the existence and uniqueness of the Lagrange multipliers p and λ, under

the condition that both inf-sup conditions are satisfied.

Finally we used finite element method on our model to simulate the clamped-pulling ex-

periment, for elastomer samples with aspect ratio AR = 1 or 3. The orders of convergence

and inf-sup values were listed. The stress–strain curves were plotted. For both AR = 1

and 3, the semi-soft elasticity was observed. However the stripe domain phenomenon was

not observed, which might due to the relative coarse meshes in the computation and the

relative large Oseen–Frank coefficient b = 0.0015.

7 Discussion

Although we have successfully recovered the semi-soft elasticity phenomenon, the exclu-

sion of the stripe domain phenomenon is tentative. This is mainly because we only applied

computation for meshes with size up to N = 64. That is the ratio of the edge length of

the triangular elements to the edge length of the domain is around 10−2. However in the

experiment of Finkelmann et al. [25, 35], the ratio of the width of the stripe domains to

the edge length of the domain was around 10−3. Thus our mesh might be too coarse to

resolve the stripe domains. We did not use finer mesh because the computational cost was

already very high. Even for the mesh N = 64, we have 50,182 DOF to solve in the case

AR = 1, and 149,510 DOF to solve in the case AR = 3. Another possible reason is that

the Oseen–Frank coefficient b = 0.0015 was too large. The zig-zag pattern of the stripe

domain phenomenon naturally has very rapid change of n across the domain. However

a relatively large b value penalises such rapid change, and suppresses the occurrence of

stripe domains. We did not take much smaller b values than 0.0015, because that would

require much finer mesh and much smaller �t to stabilise, which was computationally

too demanding.

Stripe domain phenomenon might still be observable with our current model, if we

try some more sophisticated numerical techniques. As remarked above, the main obstacle

might be the computational cost. One way to get around this obstacle is to use adaptive

mesh refinement. Since the stripe domains only occur in part of the elastomer domain,

while n in the rest of the domain is quite smooth, we can save computational cost by

refining the mesh only on part of the domain. Another way to reduce the computational

cost is to replace n by (cos(θ), sin(θ))T , where θ is the azimuthal angle of the director. This
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is perfectly fine because our model is in 2D. In this way, we can reduce a 2D variable to

a 1D variable, and also eliminate the need to use the Lagrange multiplier λ.

Another direction is to replace the Oseen–Frank model by more advanced models

such as Ericksen model [19] or Landau–de Gennes model [15]. Oseen–Frank energy only

allows point defects, while Ericksen and Landau–de Gennes model allow line and surface

defects, as well [30]. The stripe domains might have line or surface defects in the transition

area between the stripes, thus using Ericksen or Landau–de Gennes model might have a

better chance of capturing the stripe domain phenomenon.
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