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We introduce adaptive learning behavior into a general-equilibrium life-cycle economy
with capital accumulation. Agents form forecasts of the rate of return to capital assets
using least-squares autoregressions on past data. We show that, in contrast to the
perfect-foresight dynamics, the dynamical system under learning possesses equilibria that
are characterized by persistent excess volatility in returns to capital. We explore a
quantitative case for theselearning equilibria. We use an evolutionary search algorithm to
calibrate a version of the system under learning and show that this system can generate
data that matches some features of the time-series data for U.S. stock returns and
per-capita consumption. We argue that this finding provides support for the hypothesis
that the observed excess volatility of asset returns can be explained by changes in investor
expectations against a background of relatively small changes in fundamental factors.
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1. INTRODUCTION

1.1. Overview

We present a general-equilibrium economy in which the fact that agents are learn-
ing can imply persistent volatility in the economy’s state variables. The structure of
our model is closely related to many models in use in general-equilibrium macro-
economics today. We argue that our findings provide a plausible explanation for the
observed cross-correlations and levels of volatility in economic data coming from
markets where expectations seem to play a large role, such as financial markets.
Economists have long argued over whether the data in such markets are consistent
with fundamental factors, or whether observed prices are instead consistently devi-
ating from the prices implied by underlying fundamentals. Our approach provides
a way to frame this debate within the context of standard capital theory.

The environment we examine is a general-equilibrium life-cycle economy with
capital accumulation and exogenous growth. Agents live for many periods, and we
use standard specifications for preferences and technology. In this environment,
agents face amultistep-ahead forecast problem, one that has not been studied often
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in the learning literature to date. Agents learn by running least-squares regressions
using data that are endogenously generated by the economy in which they operate;
they form forecasts of future rates of return using their least-squares rule, and then
they take optimal actions, given their forecast. The use of a least-squares rule is
a common choice in the learning literature, but its effects have not been studied
widely in models with capital accumulation.

To make our system as stark as possible, and to maintain relative simplicity, we
eliminate all exogenous uncertainty from the economy we study. The volatility
that we isolate is thus entirely due to the effects of learning on the system; in the
absence of learning, the rate of return to capital in a stationary equilibrium would
be a constant that was completely pinned down by unchanging economic funda-
mentals. Thus, our volatile return to capital is part of the endogenous fluctuation
of the economy under learning—the fluctuations arise because expectations are
continually being revised in the face of new data. Volatility can persist because
agents’ expectations affect actual outcomes, and these outcomes in turn feed back
into agents’ expectations.

We begin by considering a simple benchmark perfect-foresight version of the
model and characterize the equilibrium of this system. We then introduce least-
squares learning and describe the dynamic system that characterizes the economy
under this learning assumption. We show that it is possible to partition the parameter
space into two sets—one in which the equilibrium is stable under least-squares
learning and one in which it is unstable. In parameter regions where instability
arises, we show that a neighborhood of the steady state can contain complicated
limiting dynamics for the system under learning. These are the excess volatility or
learning equilibriaof our model. We are able to characterize the situations in which
these dynamics arise in terms of a vector of parameters that govern specifications
of tastes and technology.

We then consider a more realistic version of our model and explore the possibility
of a quantitative case for the learning equilibria that we are able to isolate. We use an
evolutionary search algorithm to find interesting calibrations of the economy under
least-squares learning. We compare the data generated by these artificial economies
to actual data concerning the relationship between per-capita consumption and
asset returns in the United States over the past century. Perhaps the most salient
feature of the U.S. data is that the percentage standard deviation of returns to capital
is large relative to the percentage standard deviation of per-capita consumption
growth. We show that under a learning assumption, the model is able to generate
data that approach the U.S. data on this dimension, whereas this result is not
possible in the perfect-foresight version of the model. We also provide a detailed
discussion of other facets of the fit between the model under learning and the
data.

This research provides support for the hypothesis that much of the observed
volatility in capital asset returns may be due to expectations that are continually
being revised, against a backdrop of fundamental factors that are not changing
in quantitatively important ways. Our approach provides one method of making
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this type of argument rigorous and quantifiable, and brings it into contact with
a large literature on the nature of asset pricing. Although our model is sparse
in some obvious ways that enable us to simplify matters considerably (e.g., all
assets pay the same rate of return), in many respects the quantitative fit that we
obtain is impressive and suggests that other persistently volatile phenomena (such
as business cycles or exchange-rate fluctuations) also might be characterized, in
whole or in part, by such learning system dynamics. At a methodological level, we
demonstrate how one might go about comparing alternative hypotheses concerning
the root causes of asset price volatility to more standard hypotheses, in a manner
that allows economists to evaluate the relative merits of each explanation.

1.2. Related Literature

Timmerman (1993, 1996), Arthur et al. (1997), and Brock and Hommes (1998) are
among those who have examined whether adaptive learning behavior might help
to explain excess volatility in asset market returns. Arthur et al. and Timmerman
study learning in the context of the standard, efficient-markets “present-value”
model, where the price of a stock is equal to the expected present discounted
value of future dividends. In these models, the process governing dividends is
exogenously given and therefore is unaffected by the fact that agents are learning.
Similarly, Brock and Hommes (1997) study the implications of learning behavior
using a version of the cobweb model with exogenously given demand-and-supply
schedules. Although the idea we pursue in this paper is similar to this earlier work,
our approach differs in that we introduce adaptive learning behavior into a standard
general-equilibriummacroeconomic model and we explore the implications of our
model from a quantitative-theoretic viewpoint.

Sargent (1993), Marimon (1997), and Evans and Honkapohja (1999) survey the
literature on learning in macroeconomic models. Grandmont (1998) provides a
general discussion of the stability of rational expectations equilibria under adaptive
learning behavior and also addresses the possibility of complicated dynamics under
learning in general-equilibrium models. Hommes and Sorger (1998a,b) also study
the possibility of model consistent endogenous fluctuations due to learning. Bullard
(1994) has demonstrated the possibility of endogenous fluctuations under the least-
squares learning dynamic that we consider here for a class of general equilibrium
endowment economies. One contribution of this paper is to extend this result to
production economies.

A number of researchers have recently used adaptive learning models to help
explain empirical macroeconomic phenomena. For instance, Arifovic (1996) pro-
poses an adaptive learning explanation of exchange-rate fluctuations, Marcet and
Nicolini (1998) suggest that learning may be responsible for recurrent hyperinfla-
tionary episodes; Sargent (1999) models the recent history of U.S. inflation and
monetary policy as a learning process on the part of monetary policy authorities;
and Arifovic et al. (1997) build a learning-based explanation of world growth and
development patterns. Here, we go a step beyond these qualitative comparisons and

https://doi.org/10.1017/S1365100501019071 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100501019071


LEARNING AND EXCESS VOLATILITY 275

directly examine how well a calibrated version of our model fits several features
of the U.S. data on per-capita consumption and returns to capital.

There is a large literature that addresses the excess volatility of stock prices rela-
tive to changes in fundamentals, which is surveyed in Shiller (1989) and Campbell
et al. (1997). West (1988) evaluated much of the literature on stock price volatility
tests and concluded that excess volatility is a robust empirical phenomenon that
is unlikely to be accounted for by standard present-value models. He [along with
others, e.g., Shiller (1989)] also dismisses rational bubble explanations as unlikely
and argues that the kind of na¨ıve behavior exhibited in “noise trader” models [e.g.,
DeLong et al. (1990)] does not play a substantial role in the determination of actual
stock prices. West concludes that it might be useful to consider some other models
of the determination of excess returns, preferably parametric models, “so that the
model potentially could be rejected because of implausible parameter estimates or
painfully large test statistics.” This paper can be viewed as following up on these
suggestions.

Many papers, for example, Poterba and Summers (1988), have reported a large
forecastable component to real stock returns at long horizons, even though the pre-
dictable component at shorter horizons is relatively small. The equilibria we study
have this property, as real returns orbit about a constant mean. Campbell (1991)
and Campbell and Ammer (1993) used the forecastability result to decompose
stock market volatility into the portions attributable to changing forecasts of stock
returns, dividend growth, and real (risk-free) interest rates. Of these, the changing
forecasts of real stock returns were by far the most important factor in explaining
stock market volatility. Our model is consistent with this evidence on expectations-
driven volatility, as our fluctuating learning equilibria involve changes in investor
sentiment as the sole driving force.

2. THE ENVIRONMENT

2.1. Preferences and Endowments

Time t is discrete and takes on integer values on the real line. At every datet , a
new generation of agents is born. These agents live forn periods, wheren≥ 2 is
a positive integer. The size of each new generation of agents grows at a constant
gross rateψ ≥ 1, where the size of the timet = 0 generation is normalized to
unity. There is a single, perishable good that is both consumed and used as input
to production, which we call capital, and an unbacked outside asset issued by
the government. The representative agent of a generation born at timet seeks to
maximize discounted lifetime utility given by

U =
n−1∑
i=0

δi ct (t + i )1−ρ

1− ρ , (1)

whereδ >0 is the per-period discount factor,ρ >1 is a preference parameter
describing the inverse of the intertemporal elasticity of substitution, andct (t + i )
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denotes the timet + i consumption of the agent born at timet . Agents are endowed
with one unit of leisure in every period along with an effective labor productivity
coefficient,ei , wherei indexes the period of life. Agents inelastically supply their
unit of leisure in every period in exchange for the competitive market wage rate.
Their income is the wage rate multiplied by their labor productivity coefficient.
The lifetime sequence of effective labor coefficients,{ei }ni=1, ei ≥ 0, is the same
for all agents.

2.2. Production Technology

The economy contains a number of perfectly competitive firms that all have access
to the same constant-returns-to-scale production technology. Aggregate output,
Y(t), is determined according to

Y(t) = λ(t−1)(1−α)K (t)αL(t)1−α, (2)

whereλ≥ 1 denotes the exogenous gross rate of labor productivity growth,α ∈
(0,1) denotes capital’s share of output,K (t) denotes the aggregate capital stock at
time t , andL(t) denotes the aggregate effective labor supply at datet . This latter
quantity is given by

L(t) =
n−1∑
j=0

ψ t− j−1ej+1. (3)

Denoting the ratio of capital to effective labor ask(t)= K (t)/L(t), the marginal
products of capital and labor determine the rental rate,r (t), and the wage rate,
w(t), as

r (t) = λ(t−1)(1−α)αk(t)α−1,

w(t) = λ(t−1)(1−α)(1− α)k(t)α. (4)

2.3. Government

A government that endures forever plays only one role, which is to supply unbacked
liabilities to the economy at a constant growth rateθ ≥ λψ . These liabilities pay
no interest. The aggregate, timet stock of this outside asset, denotedH(t), evolves
according to

H(t) = θH(t − 1). (5)

The government’s real revenue from seigniorage is endogenously determined by
g(t)= [H(t)− H(t − 1)]/P(t), whereP(t) denotes the price of the consumption
good in terms of the outside asset at timet . Substituting the rule for government
liabilities into the expression forg(t), we can rewrite real government revenue as

g(t) =
(
θ − 1

θ

)
H(t)

P(t)
. (6)

It is assumed that government revenue leaves the economy.
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The unbacked government liabilities can be interpreted as unbacked government
debt paying zero nominal return, combined with the monetary base. Since the
supply of these liabilities is assumed to grow at a gross rateθ that exceeds the
growth rate of the economy, the price level will rise over time, so that the unbacked
liabilities will pay a low real rate of return equal toP(t)/P(t + 1). Arbitrage will
force capital to pay the same real return as these unbacked liabilities, and thus by
construction we are going to end up with a counterfactually low mean return to
capital. This could be remedied, at the cost of some complication, by the inclusion
of a simple form of costly financial intermediation for capital in the model, so
that the real returns to capital would be higher than the real returns to unbacked
government liabilities by a constant sufficient to make the mean return to capital
match the data.1

2.4. Rates of Return

Agents can rent capital to firms, borrow or lend in the consumption loan market, and
hold government liabilities. The gross real return from renting capital or making
consumption loans at timet is R(t)= 1+ r (t + 1)−µ, whereµ is the constant
depreciation rate. Arbitrage ensures that the gross rate of return from holding non-
interest-bearing government liabilities at timet , P(t)/P(t + 1) (the inverse of the
gross inflation rate), equalsR(t) for all t .

Since we consider the behavior of our model under an adaptive learning assump-
tion in which agents lack perfect foresight, we want to draw a sharp distinction
between past rates of return that are known at each datet and expected rates of return
that must be forecast. We use the notationR(t − i − 1)= P(t − i − 1)/P(t − i ),
i = 0, 1, . . . , to define pastrealizedgross rates of return. For futureexpectedgross
rates of return, we need to keep track of the date at which these expectations were
formed because when agents are learning, forecasts can change from one date to
the next. We imagine that agents forecast the future grossinflation rate, and we use
the notationβt−1(t − i + j ) to denote the commonly held expectation, formed at
datet − i , of the gross inflation rate at timet − i + j , wherei, j = 0, 1, . . . ,n− 2.
The expected gross inflation rate is the inverse of the expected gross rate of return
in this economy.

2.5. The Household’s Problem

The representative agent born at timet faces the following sequence of budget
constraints, one for each of then periods of life:

ct (t) ≤ w(t)e1− at (t),

ct (t + i ) ≤ w(t + i )ei+1− at (t + i )+ at (t + i − 1)βt (t + i − 1)−1, (7)

ct (t + n− 1) ≤ w(t + n− 1)en + at (t + n− 2)βt (t + n− 2)−1,
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for i = 1, 2, . . . ,n− 2. Here,at (t + i ) denotes asset holdings accumulated by the
agent born at timet as of periodt + i . These constraints can be combined into the
single lifetime constraint,

ct (t)+
n−1∑
i=1

ct (t + i )
i−1∏
j=0

βt (t + j ) ≤ w(t)e1+
n−1∑
i=1

w(t + i )ei+1

i−1∏
j=0

βt (t + j ). (8)

The household’s problem is to maximize (1) subject to (8).

2.6. Perfect-Foresight Equilibria

We first consider the case in which households have perfect-foresight knowledge
of rates of return. The perfect-foresight case serves as a useful benchmark for later
comparison with the results we obtain for the same model under a learning assump-
tion and allows us to characterize the conditions under which a rational expectations
equilibrium exists. Under perfect foresight, we do not need to draw a distinction
between past realized gross rates of return and future expected rates of return. For
this reason, in this section, we replace the notation of expected gross inflation with
the perfect-foresight realization; that is, we setβt−i (t − i + j )= R(t − i + j )−1 for
all i, j . Thus, under perfect foresight, the representative agent’s budget constraint
can be rewritten as

ct (t)+
n−1∑
i=1

ct (t + i )
i−1∏
j=0

R(t + j )−1≤w(t)e1+
n−1∑
i=1

w(t + i )ei+1

i−1∏
j=0

R(t + j )−1.

(9)

Solving the representative agent’s problem, we can determine each generation’s
consumption demand at timet in terms of interest rates and wage rates. Rewriting
wage rates as a function of interest rates, we can determine each generation’s asset
holdings at datet as a function of interest rates alone. Aggregate asset holdings,
A(t), is then given byA(t)= ∑n−2

t=0 ψ
t−i−1at−i (t). This expression is a compli-

cated function of interest rates dating fromt − n+ 2 to t + n− 2.
The asset-market-clearing condition is that aggregate asset holdings equal the

real stock of unbacked liabilities plus the capital stock,

A(t) = H(t)

P(t)
+ K (t + 1). (10)

Combining (5) and (10) yields the equilibrium condition

A(t)− K (t + 1) = R(t − 1)θ [ A(t − 1)− K (t)]. (11)

Since both A(t) and K (t + 1) can be written as functions of interest rates,
equation (11) is a 2n− 3 order difference equation inR(t). We define asta-
tionary, competitive, perfect-foresight equilibriumas any stationary sequence of
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values{R(t)}+∞t=−∞ such that equation (11) holds at every datet . We restrict at-
tention to the class of stationary perfect-foresight equilibria for which aggregate
asset holdings consist of positive holdings of both private capital and the out-
side government asset. The existence condition for this steady-state equilibrium
[which is readily apparent from (11)] is a stationary value ofR= λψθ−1 such that
A(t)− K (t + 1)>0 for all t . In this steady state, total asset holdings,A(t), as well
as the capital stock,K (t), both grow at the gross rate of growth of output,λψ .
We study a neighborhood of this steady-state equilibrium in the remainder of the
paper.

2.7. Learning

We now relax the perfect-foresight assumption and consider the case in which
agents learn using a least-squares learning rule. Letβt (t) denote the timet fore-
cast of the gross inflation rate between timet and timet + 1, so that the forecasted
future price level,P(t + 1)=βt (t)P(t). We imagine that agents estimate gross in-
flation by running a first-order autoregression on price data available through time
t − 1. The implied regression coefficient can be recursively updated according to
the equation2

βt+1(t + 1) = βt (t)+ γ (t)
{
θ [ A(t − 1)− K (t)]

A(t)− K (t + 1)
− βt (t)

}
, (12)

where the gain,γ (t), also can be defined recursively as

γ (t + 1) =
((
γ (t)−1

{
θ [ A(t − 1)− K (t)]

A(t)− K (t + 1)

}−2

+ 1

))−1

. (13)

This least-squares specification for agent learning behavior is a standard choice in
the macroeconomic learning literature.

The agents in this model live for many periods, and so, they need to forecast many
periods into the future to decide how much to consume and save in for all the present
period. The autoregression that we have specified implies thatβt−i (t − i + j )=
βt−i (t − i ) ∀ i, j > 0; that is, the agent extrapolates the predicted one-step-ahead
inflation rate to all future periods for which a forecast is required. This feature of
the first-order autoregression means that we can denote the forecast valueβt (t + j )
more simply by the date at which it is made; that is, we can denoteβt (t + j ) by
β(t) ∀ j . Of course, in the next period, a new piece of information will be available,
namely, the price levelP(t), and so, a new forecast will be made that takes account
of this additional information; this new forecast will then be extrapolated into the
future by all agents who need to forecast one or more periods ahead.

Using this simplified notation, we can use the definition of the marginal product
of capital, given in (4) to write the aggregate capital stock at timet under learning as
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K (t) = λt−1

[
β(t − 1)−1+ µ− 1

α

] 1
α−1 n−1∑

j=0

ψ t− j−1ej+1. (14)

Notice that sinceK (t) was determined by decisions made at timet − 1, K (t) is a
function ofβ(t − 1). On the other hand, expected future values of the capital stock
at date tdepend on the current value ofβ(t):

K (t + i ) = λt+i−1

[
β(t)−1+ µ− 1

α

] 1
α−1 n−1∑

j=0

ψ t+i− j−1ej+1, (15)

for all i > 0. By the same logic, the wage rate at datet is given by

w(t) = (1− α)λt−1

[
β(t − 1)−1+ µ− 1

α

] α
α−1

, (16)

and expected future wage rates at datet are given by

w(t + i ) = (1− α)λ(t+i−1)

[
β(t)−1+ µ− 1

α

] α
α−1

, (17)

for all i > 0. Accordingly, at timet , we can write all future expected wage rates as
a function of next period’s expected wage rate,w(t + 1):

w(t + i ) = λi−1w(t + 1), (18)

for i ≥ 1.
Although all agents form optimal consumption plans at timet on the basis

of the inflation forecastβ(t), when agents lack perfect foresight, these inflation
forecasts generally will be incorrect. Therefore, agents will want toreoptimizetheir
consumption decisions for the remainder of their lives at every date, taking into
account the new inflation forecast that is available at every date. For this reason,
it is important to keep close track of the inflation forecasts that are being used in
agents’ consumption and savings decisions.

Let us begin by rewriting the consumption decision of the agent born at time
t , using the simplified notation whereβt (t + j )=β(t) for j = 1, 2, . . . n− 2. We
have

ct (t) =
w(t)e1+

n−1∑
i=1

w(t + i )ei+1β(t)
i

n∑
i=1

δ
i−1
ρ β(t)

(i−1)(ρ−1)
ρ

. (19)
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The asset holdings of this agent can be written as

at (t) = w(t)e1−
w(t)e1+

n−1∑
i=1

w(t + i )ei+1β(t)
i

n∑
i=1

δ
i−1
ρ β(t)

(i−1)(ρ−1)
ρ

. (20)

Agents who were born prior to periodt , in periodt − k, k= 1, 2, . . . ,n− 2, have
additional timet income from existing asset holdings brought over from the pre-
vious period. These agents make current consumption and savings decisions on
the basis of the current forecast of inflation,β(t). The fact that they use this new
value forβ(t) implies that they reoptimize at datet , choosing a new consumption
plan for the remainingn− k periods of their lives. For these agents, we have

at−k(t) = w(t)ek+1+ R(t − 1)at−k(t − 1)

−
w(t)ek+1+

n−k−1∑
i=1

w(t + i )ek+iβ(t)
i + R(t − 1)at−k(t − 1)

n−k∑
i=1

δ
i−1
ρ β(t)

(i−1)(ρ−1)
ρ

. (21)

Define the terms

Dk(t) =
n−k∑
i=1

δ
i−1
ρ β(t)

(i−1)(ρ−1)
ρ (22)

and

Wk(t) =
w(t)ek+1+

n−k−1∑
i=1

w(t + i )ek+i+1β(t)
i

Dk(t)
. (23)

The expression forWk(t) can be written entirely as a function ofβ(t − 1), β(t) by
using our definition for the real wage rates because onlyw(t) depends onβ(t − 1):

Wk(t) =
(1− α)λt−1

[
β(t − 1)−1+ µ− 1

α

] α
α−1

ek+1

Dk(t)

+

n−k−1∑
i=1

(1− α)λt+i−1

[
β(t)−1+ µ− 1

α

] α
α−1

ek+i+1β(t)
i

Dk(t)
. (24)

Then, we can write
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at (t) = w(t)e1−W0(t),
(25)

at−k(t) = w(t)ek+1−Wk(t)+ R(t − 1)

[
1− 1

Dk(t)

]
at−k(t − 1),

for k= 1, . . . ,n− 2. It follows that

at−k(t − k) = w(t − k)e1−W0(t − k) (26)

and

at−k(t − j ) = w(t − j )ek− j+1−Wk− j (t − j )

+ R(t − j − 1)

[
1− 1

Dk− j (t − j )

]
at−k(t − j − 1) (27)

for all j < k.
Using the above definitions, and noting thatA(t)= ∑n−2

i=0 ψ
t−i−1at−i (t), we

deduce an expression for aggregate asset holdings at datet as a function of expec-
tations,β, formed at timet and at dates in the past, and of past realized rates of
returnR:

A(t) =
n−2∑
i=0

ψ t−i−1[w(t)ei+1−Wi (t)]

+ R(t − 1)
n−3∑
i=0

ψ t−i−2[w(t − 1)ei+1−Wi (t − 1)]

[
1− 1

Di+1(t)

]

+ R(t − 1)R(t − 2)
n−4∑
i=0

ψ t−i−3[w(t − 2)ei+1−Wi (t − 2)]

×
2∏

j=1

[
1− 1

Di+ j (t + j − 2)

]

+ R(t − 1)R(t − 2)R(t − 3)
n−5∑
i=0

ψ t−i−4[w(t − 3)ei+1−Wi (t − 3)]

×
3∏

j=1

[
1− 1

Di+ j (t + j − 3)

]

+ · · · +
n−2∏
j=1

R(t − j )ψ t−n+1[w(t − n+ 2)e1−W0(t − n+ 2)]

×
n−2∏
j=1

[
1− 1

Dj (t + j − n+ 2)

]
. (28)
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Next, we note that the equilibrium condition (11) can be written more generally as

R(t − `− 1) = A(t − `)− K (t − `+ 1)

θ [ A(t − `− 1)− K (t − `)] , (29)

for `= 0, 1, . . . ,n− 3. Using (29), we can substitute out forR(t − `− 1) in the
above expression forA(t). Collecting terms inA(t), we have a recursive expression
for aggregate asset holdings at timet :

A(t) =

n−2∑
i=0

ψ t−i−1[w(t)ei+1 −Wi (t)]

1−
n−2∑
i=1

n−i−2∑
j=0

ψ t− j−i−1 [w(t − i )ej+1 −Wj (t − i )]

θ i [ A(t − i )− K (t − i + 1)]

i∏
k=1

[
1− 1

D j+k(t + k− i )

]

−

n−2∑
i=1

n−i−2∑
j=0

ψ t− j−i−1

[
K (t + 1)[w(t − i )ej+1 −Wj (t − i )]

θ i [ A(t − i )− K (t − i + 1)]

] i∏
k=1

[
1− 1

D j+k(t + k− i )

]

1−
n−2∑
i=1

n−i−2∑
j=0

ψ t− j−i−1 [w(t − i )ej+1 −Wj (t − i )]

θ i [ A(t − i )− K (t − i + 1)]

i∏
k=1

[
1− 1

D j+k(t + k− i )

] .

(30)

This expression for aggregate asset holding under learning is quite useful be-
cause it depends only on expectations formed at timet and earlier and on past
values of aggregate asset holdings. We can therefore combine equation (30) with
equations (12) and (13) to define a dynamic system under learning. By substitut-
ing appropriately, we can create a first-order nonlinear system in whichβ(t + 1),
γ (t + 1), andA(t) are all functions of past values of these same three variables. We
seek to understand the dynamic behavior of this system in a neighborhood of the
steady state whereβ = θ(λψ)−1, γ = 1− [θ/(λψ)]−2, andA= Ā (a complicated
expression we do not display here), under the existence conditionA− K > 0.

2.8. Learning Equilibria

The steady state of the system under learning coincides with the steady state of
the system under perfect foresight. We now consider the local stability of this
steady state under learning. In particular, we show that the parameter space for
which the steady state exists can be divided into two regions, one in which the
steady state is locally stable under learning, and another in which it is locally
unstable under learning. In the parameter regions where instability arises, we later
show (numerically) that the system under learning possesses complicated limiting
dynamics (strange attractors), which we refer to as the learning equilibria of the
model following Bullard (1994) and Grandmont (1998). We can discuss the local
stability of the steady state under learning and show where learning equilibria are
likely to exist most simply in then= 2 period version of the model; the analysis
for higher values ofn is similar.
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Consider the version of the two-period model in which the productivity profile
{e1, e2}= {1, 0} and in which five of the seven deep parametersδ, ρ, λ, ψ , and
µ are all set equal to 1, leaving the two parametersα andθ free to vary. This
much-simplified version of the model merely serves to facilitate our illustration
of stability analysis as will become clear below. In this simple case, under least-
squares learning, the aggregate capital stock and asset holdings are given by

K (t) = [αβ(t − 1)]
1

1−α , (30)

A(t) = 1− α
2

K (t)α. (31)

The steady state where both inside and outside assets are held is one in which
β(t)= θ for all t , such thatA− K > 0. Keepingθ ≥ 1, this steady-state existence
condition can be written as 1≤ θ ≤ (1−α)/2α, with α ∈ (0, 1). Note that in the
limiting case in whichθ = 1, this condition implies thatα <1/3. Let us define the
set of free deep parameters for which the steady state exists in this special case as
E ={θ, α | θ ∈ [1, (1− α)/2α], α ∈ (0, 1/3)}.

The system under least-squares learning consists of equations (12) and (13)
in this simple case [becauseA(t) is not recursive unlessn≥ 3]. Substituting the
definitions forK (t) and A(t) given in (31) and (32) into (12) and (13), we can
write the two-equation, least-squares learning system entirely in terms of present
and past values ofβ andγ . For stability analysis, it is useful to have a first-order
representation of this dynamical system. Whenn= 2, we can write the system
under least-squares learning in the following first-order form as

β(t + 1) = f [β(t), β(t − 1), β(t − 2), γ (t)],

β(t) = β(t),
(32)

β(t − 1) = β(t − 1),

γ (t + 1) = g[β(t), β(t − 1), β(t − 2), γ (t)].

Lettingϕ(t)= [β(t + 1), β(t), β(t − 1), γ (t + 1)], we can express the dynam-
ical system under learning more compactly asϕ(t)=M [ϕ(t − 1)], where M is
defined by the right-hand side of the system (33). The steady state where both in-
side and outside assets are held occurs at ¯ϕ=M(ϕ̄), whereϕ̄= [θ, θ, θ,1− θ−2]′.
The stability of the system under learning can be assessed by linearizing the system
and evaluating the resulting Jacobian matrix at a steady state. Despite the simplic-
ity of the two-period special case that we consider here, the analytic eigenvalues
are quite complicated. Therefore, we pursue the following numerical approach to
conduct our stability analysis.

Recall that, in the special version of the two-period model that we are consid-
ering,E describes the set of free parameters for which the steady state where both
inside and outside assets are held exists. We therefore consider a grid of values
for α andθ that covers this entire set. For each (α, θ ) pair in E , we calculate the
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FIGURE 1. Stability frontier for the simplified, two-period economy. A diamond is plotted
if a randomly selected (α, θ ) pair is associated with a set of eigenvalues whose maximum
modulus is less than one, creating the gray area in the figure. Thus, whenα and θ are
sufficiently small, the system will be locally stable under least-squares learning. The region
where learning equilibria may exist occurs when the modulus of the largest eigenvalue
crosses the unit circle, which lies in a neighborhood along the border between the stable
and unstable regions, labeled the stability frontier.

maximum of the modulus of the four numerically determined eigenvalues for the
linearized system evaluated at the steady state. Local stability of the system under
least-squares learning requires that all four eigenvalues have modulus less than
unity. If the maximum modulus is less than unity, we plot a diamond in Figure 1.
We see that these diamonds all lie in the southwest region of the parameter space
and represent only a fraction of the region of the parameter space in which an
equilibrium with inside and outside assets exists. Hence, we find that there are
parameter regions in which the equilibrium is stable and there are regions in which
it is unstable under least-squares learning, and there is a well-defined “stability
frontier” between these two regions, as noted in Figure 1. This figure indicates that
asα increases toward the upper bound of 1/3, the range ofθ values under which
the least-squares learning system is locally stable shrinks steadily. Similarly, as
θ increases beyond the lower bound of 1, the range ofα values for which the
least-squares learning system is locally stable also shrinks.3 Learning equilibria,
if they exist, will arise in a region of the parameter space with nonzero measure
that lies along the border between the stable and unstable regions of the parameter
space.4 Bullard (1994) has shown that, for two-period-endowment overlapping
generations economies similar to the production economy studied here, learning
equilibria correspond to the existence of a Hopf bifurcation in the learning-system
dynamics. These bifurcations occur in a neighborhood that is very close to the
stability frontier of the system under least-squares learning. For the production
economy examined in this paper, the dimension of the dynamical system under
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learning is larger than in the endowment economy, and as a consequence, it is not
possible to establish the existence of learning equilibria analytically. Instead, we
use a straightforward numerical simulation strategy to find these equilibria in a
more complicated version of our model (as set forth below).

Our computational strategy can be described briefly as follows: Suppose the
system under learning is initialized at the steady state. If we then perturb the
system by adding a small shock to the steady-state value ofβ, we can observe
the resulting response of the dynamical system. If the system returns to the steady
state, then it is locally stable under learning; otherwise, the steady state is locally
unstable. In the latter case, if the system does not explode—that is, if the dynamics
remain bounded—then we have reason to believe that we have found a learning
equilibrium. If the forecast errors are stationary and have not diminished to zero,
as is the case throughout this paper, then the learning equilibrium is not a perfect-
foresight equilibrium.5

3. COMPUTATIONAL STRATEGY

3.1. Overview

We now turn to the question of whether the learning equilibria discussed in the
preceding section can be isolated in a more realistic context, where agents live for
more than two periods. The multiperiod version of the model allows us to interpret
each period as a length of time that is conducive to a more realistic calibration of the
model, as will become clear later. Our strategy is to conduct an evolutionary search
over a well-defined parameter space, in an attempt to locate parameter regions in
which the implied dynamics under learning are complicated and generate data that
match several aspects of the actual data collected on the U.S. economy over the
past 100 years.

3.2. Model Parameterization

We interpret larger values ofn as allowing individuals to update their consumption
and savings plans more frequently over their lifetimes. We consider a version of the
model in which agents live forn= 11 periods. Assuming that a typical individual’s
productive lifetime is approximately 55 years, we can interpret each period in our
model as comprising an interval of 5-years. Thus, although we continue to refer to
“periods” in model time, the reader should bear in mind that each period in model
time consists of 5-year increments in real time. The parameters of our model are
chosen with this interpretation in mind.6 The 11-period model is computationally
feasible and captures the essential insight of modeling learning in a multiperiod
context, namely, that agents frequently reoptimize over their lifetimes, taking into
account new information that was unavailable to them when they were younger.
Such reoptimization by individual agents is not possible in the standard two-period
environment.
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The lifetime sequence of labor productivity coefficients,{ei }11
i=1, is assumed to

be the same for all agents. The 11-period productivity profile we chose is based
on data from Hansen (1993) and is hump-shaped. Hansen reports relative hourly
earnings from two different samples for seven different age-gender groupings. We
use weighted averages of the age-gender groupings and then fit a polynomial func-
tion, which provides us with a smooth endowment profile for{ei }11

i=1. Since we use
a model with inelastic labor supply, we need to impose some retirement period on
the agents. We do this by settingei = 0 for the last few periods of life.7

Our strategy is to keepn and{ei } fixed and conduct our search over the remaining
parameters of the model, which mainly govern tastes and technology. As suggested
by the two-period example, changes in any of these parameter values can cause the
dynamics of the system under learning to undergo phase changes. In principle, we
want to allow these parameters to vary across the entire domain in order to have the
best chance of finding a parameter vector that best achieves the goals of our search.
However, we also want to search in a reasonable parameter range, in part as a way to
speed up the search process. Accordingly, we restrict the range over which we allow
variation in each of the parameters of the deep-parameter vector. Table 1 provides
the parameter ranges that we adopted for each of the seven model parameters.
Our choices for theθ parameter, which governs the growth rate of the outside
asset, are based on the following considerations: To ensure that the capital stock
is positive, we require that the steady-state gross inflation rateθ/λψ <1/(1−µ).
On the other hand, we also require that the steady-state gross inflation rate satisfies
θ/λψ >1. Since the implied restrictions onθ depend on the choices made for
λ,ψ, andµ, we chose a value forθ after choices for these other three parameters
had been made. In particular, for given values ofλ,ψ, andµ, we set

θ = λψ + θpct[1/(1− µ)− 1] λψ,

whereθpct ∈ (0, 1). This formula forθ ensures that the above restrictions always
hold. In searching for parameterizations of our model, we chose values forθpct

rather thanθ , and then obtained a value forθ using the preceding formula. Thus,
in Table 1, we provide the ranges forθpct rather than forθ . Althoughθpct can take

TABLE 1. Ranges for model parametersa

Model
parameter 1-year range 5-year range

δ 0.90–1.10 0.59–1.61
ρ 1.01–10.0 same
α 0.15–0.30 same
µ 0.05–1.00 0.22–1.00
λ 1.0025–1.0300 1.0126–1.159
ψ 1.001–1.020 1.005–1.040
θpct 0.00001–0.50 same

aThe allowed parameter ranges are expressed in annual terms in
the second column and in 5-year terms in the third column.
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on values between zero and one, we found by experimenting with our system that
lower values tended to be the most relevant, and so, for much of our analysis, we
restrictedθpct to relatively low values in order to speed up our search.

3.3. Data Targets

An artificial economy is a tuple{δ, ρ, α, µ, λ,ψ, θpct} in our framework, which
we sometimes refer to as acandidate vector. We wish to choose values for these
vectors such that the implied behavior of the dynamic system under learning has
aspects that match corresponding aspects of the U.S. data. Before we can assess the
properties of the simulated data associated with a candidate parameter vector, this
vector must meet two necessary conditions: (1) the parameterization must be such
that there exists a steady state where both inside and outside assets are held, and
(2) there is persistent volatility in the simulated asset returns, that is, the system
has achieved some kind of complicated attractor. The first objective was achieved
by calculating the values ofA andK at the steady state whereR=β−1= λψ/θ for
each candidate vector of parameter values. A steady state with inside and outside
assets exists ifA− K > 0. The second objective was achieved by checking whether
the time path for real returns following a initial displacement from the steady state
was asymptotically converging toward the steady state, or exhibiting explosive
behavior; in either of these two cases, the objective of persistent volatility was
judged to be unsatisfied.

If these two necessary conditions were met, we moved on to assessing the can-
didate vector’s performance on dynamics. For this purpose, we chose to identify
the returns to capital in the model economy with the volatile returns to equity
in the U.S. economy. The time-series evidence that we use to assess the per-
formance of our model is based on Robert Shiller’s updated version of the data
set used by Grossman and Shiller (1981), which provides annual data on stock
prices and dividends as well as per-capita consumption for the United States
from 1890 to 1997. This is the standard data set used in the macrofinance lit-
erature. Using these data, we constructed real stock returns (which include real
dividends) and real per-capita consumption growth rates at 5-year, nonoverlap-
ping frequencies, covering the period 1890–1994, for a total of 21 observations.
The four statistics from these data that we will use to assess the performance of
our model are presented in Table 2.8 We chose these particular statistics because
they capture several important features of the data that effectively characterize
what is commonly called excess volatility. In particular, the standard deviation
of real stock returns is more than six times the standard deviation in real per-
capita consumption growth. Furthermore, the first-order serial correlation of real
per-capita consumption growth is somewhat negative whereas the contemporane-
ous correlation between real stock returns and per-capita consumption growth is
somewhat positive. The picture painted by these statistics is one in which fun-
damental factors, typically taken to be represented by real per-capita consump-
tion growth, do not vary as much as real stock returns, and there is apparently
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TABLE 2. U.S. data on returns to capital and per-capita consumption growth,
1890–1994a

Statistic Value

Standard deviation of real stock returns 55.2
Standard deviation of real per-capita consumption growth 8.75
First-order serial correlation of real per-capita consumption growth −0.24
Contemporaneous correlation between real stock returns 0.24

and per-capita consumption growth

aWe use 5-year, nonoverlapping time intervals.

very little in the way of a relationship between these two variables.9 The four
statistics in Table 2 serve as targets for the 11-period model that we seek to cali-
brate.

The last of our seven objectives concerns the endogenously determined forecast
errors, defined for the contemporaneous case by

e(t) = β(t)−1− R(t).

The hallmark of learning equilibria is that these forecast errors do not tend to
zero as time tends to±∞.10 A reasonable restriction to place on the learning
equilibria that we isolate through our parameter search is that the forecast errors
associated with these equilibria are notsystematic; instead, they are sufficiently
random that agents will be led to conclude that their linear least-squares forecasting
model is consistent with the world in which they live. We operationalized this by
considering the correlations betweene(t) ande(t − j ), where j = 1, 2, . . . ,10.11

If the forecasts are sufficiently random, then forecast errors at 1–10 lags should
be uncorrelated with one another. We note that, since our learning specification
is a first-order autoregression, our objective regarding forecast errors is somewhat
more rigorous than one might expect least-squares learners to adopt. For each
parameterization, we calculated the correlation betweene(t) ande(t − j ) using
the 21-observation sample that we drew from the artificial time series generated
by the model. We focused on the maximum of these 10 correlation coefficients in
absolute value, setting a target of zero for this maximum.

Given our two necessary conditions and our five targets, and given the seven
restricted parameter value ranges of Table 2, we developed and implemented a
genetic algorithm to conduct the search for a parameter vector that could come as
close as possible to meeting our objectives and data targets. A genetic algorithm
is a population-based, stochastic, directed search algorithm that incorporates ba-
sic principles of population genetics.12 The algorithm works on a population of
“strings.” Each string encodes one candidate solution to some well-specified prob-
lem. In our application, each string is a seven-element parameter vector for our
model. At the beginning of every “generation,” all strings are evaluated according
to some fitness criterion. In our application the fitness criterion is how close the
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candidate system came to meeting all our objectives and data targets. Following
the principle of survival of the fittest, strings with a higher fitness level have a
greater probability of advancing to the next generation of candidate solutions. The
strings that are selected to be retained in the population of candidate solutions
undergo, with some fixed probabilities, naturally occurring genetic operations of
crossover and mutation, which serve to advance the search for increasingly higher
fitness levels. We chose to use a genetic algorithm to conduct our search for
a parameterization of our model because these algorithms are known from the
artificial intelligence literature to be efficient searchers of large and rugged land-
scapes, such as the 11-period model we are considering here. Indeed, Holland
(1975) has shown that genetic algorithms optimize on the trade-off between ex-
ploration of new solutions and exploitation of the best solutions discovered in
the past. A more detailed discussion of this search algorithm is given in the
Appendix.

4. MAIN FINDINGS

4.1. Dynamics of Artificial Economies

The results that we report are based on searches of the parameter space using a
genetic algorithm. Despite our use of a rather sophisticated technology, we found
this search to be a difficult one, in the sense that separate searches beginning with
randomly chosen candidate parameter vectors tended to end up in different portions
of the parameter space.13 As a countermeasure, we chose to search the parameter
space a number of times and here we report results from several of the interesting
economies that we found. We believe that these results fulfill our primary purpose,
which is to demonstrate that learning equilibria provide an empirically plausible
explanation for the observed excess volatility of financial markets, even though
there may exist economies that match the data even more closely than those re-
ported here within the same parameter space. We begin by examining the dynamics
of these artificial economies, and then we turn to a discussion of the individual
parameter vectors.

We report five illustrative best-of-generation strings—the ones with the best
fitness values—from searches that we conducted and, for simplicity, we refer to
these five cases as economies 1, 2, 3, 4, and 5. In Figure 2, we display one view of
the attracting sets of these economies. These are the limiting dynamics of systems
simulated for 1,000 periods following a small shock. We have plotted the deviation
of the real return to capital from its mean at timet against the same deviation at time
t − 1 in order to give a two-dimensional view of the limiting dynamics. It is clear
from the figure that Economy 2 has particularly simple dynamics, a three-period
cycle. Economies 1 and 5 follow motion on relatively complicated closed curves,
whereas Economies 3 and 4 possess more complicated attracting sets.

In Table 3, we report the time-series statistics associated with each of these
five artificial economies, as compared to the U.S. data. Economies 1 and 2 are
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FIGURE 2. Attracting sets for five artificial economies viewed in two dimensions. These
figures plot the deviation in the real rate of return to capital (R) from its mean value at time
t against the same deviation at timet − 1, for each of the five artificial economies.
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TABLE 3. Data statistics associated with artificial economies compared to those
from the U.S. data, in terms of 5-year time periods

Artificial economya
U.S.

Statistic data 1 2 3 4 5

Standard deviation 55.2 43.8 55.2 24.6 26.5 20.3
of returns to capital

Standard deviation of per-capita 8.75 8.63 21.9 8.17 18.9 8.29
consumption growth

Serial correlation of per-capita −0.24 −0.32 −0.53 −0.61 −0.47 −0.29
consumption growth

Contemporaneous correlation 0.24 0.95 0.99 0.43 0.26 .20
between returns to capital and
per-capita consumption growth

Maximum correlation coefficient, — 0.92 1.00 0.75 0.63 0.68
forecast errors at 1 to 10 lags

aWe used a sample size of 21 for the artificial economies, which is the number of data points in the actual data.

what we callhigh-volatility economies, because the returns to capital in these
cases are about as volatile as in the U.S. data, in fact exactly so in the case of
Economy 2. We refer to Economies 3, 4, and 5 aslow-volatility economies. If
we consider the standard deviation of per-capita consumption growth, we see
that for Economies 1, 3, and 5, the volatility of this variable is close to the U.S.
data, and in most cases substantially less than the volatility of returns to capi-
tal. These statistics show that this general-equilibrium model under least-squares
learning can capture an essential feature of the excess volatility phenomenon,
namely the much greater variation in real returns to capital compared with under-
lying fundamentals as captured by per-capita consumption growth rates. However,
in terms of relative volatility (the ratio of the standard deviation of returns to
that of consumption growth) in these two variables, our model comes up a little
short. None of the artificial economies has a relative volatility of more than about
5, and most are considerably smaller, whereas the relative volatility in the U.S.
data is about 6.3. Thus, although this model generates excess volatility, it does
not generate enough excess volatility to precisely match our chosen benchmark
data set.

The first-order serial correlation of per-capita consumption growth is negative
in the U.S. data, and is also negative in each of the five artificial economies.
In two cases, Economies 1 and 5, this correlation is relatively close to the U.S.
data. The contemporaneous correlation between the returns to capital and per-
capita consumption growth is somewhat positive, 0.24, in the U.S. data. The high-
volatility economies that we reporthave far too high a correlation on this dimension
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to match the U.S. data. The low-volatility economies do better, with Economy 4
coming particularly close to target.

Our volatile learning equilibria are driven by expectational errors. Agents are
using first-order autoregressions to predict the future, and they make mistakes that
do not vanish asymptotically. In the last row of Table 3, we report the maximum
correlation for forecast errors at 1 to 10 lags. This statistic provides one means of
assessing the randomness of the forecast errors in our model. For the two high-
volatility economies, this maximum correlation is very high, and in the case of
Economy 2, it is actually 1.0. Recall that Economy 2 follows a three-period cycle,
so that every third forecast error is exactly the same. The other economies follow
more complicated trajectories, with forecast errors that are not perfectly correlated
within 10 lags. It appears that the low-volatility economies have forecast errors that
are not obviously systematic, so that agents in these economies would be unable
to distinguish these errors from random errors within the 21-observation sample
that we consider.

We can pursue this matter further and ask whether agents who were actually
situated in our model would adopt this same view. Suppose that agents were con-
cerned about possible misspecification of their least-squares regression model and
used a simple diagnostic test, such as the Durbin–Watson test statistic, to detect
for the presence of serially correlated errors.14 Using our sample of 21 end-of-run
forecast errors, we calculated the Durbin–Watson test statistic for each of our five
artificial economies. This statistic,d, was 2.61, 2.99, 1.60, 1.54, and 1.50, respec-
tively, for Economies 1, 2, 3, 4, and 5. A plot of the associated forecast errors
for Economies 1, 3, 4, and 5 (Economy 2 has perfectly systematic errors and has
been omitted) is given in Figure 3. With 21 observations and 1 regressor, the lower
and upper bounds at the 5% significance level aredL = 1.132 anddU = 1.420.15

Let us suppose that the agents first test a null hypothesis of no serial correlation
against the alternative of positive serial correlation. For Economies 1–5, the calcu-
lated Durbin–Watson statistics all lie above the upper bound and, therefore, agents
would not reject the null hypothesis of no positive serial correlation. If agents
tested for negative serial correlation, the corresponding test statistic values would
be 4− d, or 1.39, 1.01, 2.40, 2.46, and 2.50 for economies 1, 2, 3, 4, and 5, re-
spectively. For Economy 2—the perfectly cyclical economy—the null hypothesis
of no negative serial correlation is rejected as 1.01< dL , and for Economy 1, the
test is inconclusive. For the three low-volatility economies, however, a null hy-
pothesis of no negative serial correlation cannot be rejected, and so, in these three
cases, agents would conclude that there was little evidence of serially correlated
errors.

We note further that the system we are examining is completely deterministic,
an extreme assumption that we made in part for tractability but also to keep the
nature of our results clear. If we were to add a reasonable amount of noise to the
system, for instance by making output subject to stochastic shocks, the forecast
errors generated by our system might appear to be even more complicated to the
agents in our model.
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TABLE 4. Parameter vectors for artificial economies reported in terms of 5-year
time periods

Economy δ ρ α µ λ ψ θpct

1 1.176 2.809 0.1849 0.8940 1.031 1.019 0.01815
2 1.752 3.850 0.1827 0.8630 1.139 1.021 0.02515
3 1.392 1.292 0.1553 0.7507 1.140 1.073 0.07121
4 1.571 1.036 0.1518 0.8033 1.132 1.081 0.08228
5 1.418 1.022 0.1511 0.6616 1.181 1.105 0.08898

4.2. Other Characteristics of the Artificial Economies

We turn next to an evaluation of other aspects of the artificial economies, based
on the best-of-generation parameter vectors at the end of our searches. These
parameter vectors, for which growth rates should be interpreted in terms of 5-year
time periods, are listed in Table 4. Of course, we have already tried to use our seven
parameters to meet existence and volatility objectives, as well as five data-based
targets, and to ask the model to perform well on a number of additional dimensions
is pushing the envelope somewhat. A better approach would be to consider models
with more realistic features in order to try to address more aspects of the data.
Nevertheless, we think that our economies fall short of a completely convincing
demonstration of the existence of empirically plausible learning equilibria, mainly
because our economies involve capital-share parameters that are too low, and
depreciation rates that are too high.16 However, we stress that we are only taking
a first step in this paper as a means of illustrating the potential of our approach,
and that in many respects our parameter vectors are quite reasonable.

In evaluating the parameter vectors presented in Table 4, we want to think in
terms of modern developed economies, even though we restricted our comparisons
to U.S. data in the preceding section. The rate of technological change,λ, and the
rate of population growth,ψ , are expressed in gross rates over 5-year intervals.
Thus, theannualrate of technological change across the five economies ranges
from about 0.5% to 3.4%. These values are within the range that one might expect
for modern developed economies.17 The rate of population growth, on an annual
basis, ranges from about 0.4% to about 2%. Again, these values are within the
range of observed values for modern economies. The value forθpct has no direct
interpretation, but can be related to the inflation rates observed for these economies.
The steady-state inflation rates for the five economies range from about 1.1% up
to about 22%, which is consistent with average inflation rates observed in OECD
economies during the postwar era. Economy 1 has a steady-state inflation rate of
4%, the U.S. postwar average.

Regarding preferences, Table 4 reveals that the curvature parameter,ρ, which
can be interpreted as the coefficient of relative risk aversion, ranged from about
1—logarithmic preferences—up to 3.85. These values are consistent with those
used in much macroeconomic research. The discount factor,δ, was consistently
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above unity. On an annual basis, the rate of time preference, as conventionally
measured, ranged from−3.2% to−8.6%. As is well known, in overlapping gen-
erations models, this parameter plays a quite different role from that played in
representative-agent models and, in particular, there is no requirement that it take
on a positive value. Negative values are consistent with a number of empirical es-
timates, including those of Hurd (1989), who estimated the difference between the
real interest rate facing agents and the rate of time preference as 4.1%. Typically,
the real interest rate is taken as the rate on short-term government debt, which (in
the postwar U.S. data) averages about 1%, or as the after-tax rate, which averages
about 0%. These figures imply an estimate of the rate of time preference of around
−3 or−4%. Hurd’s (1989) alternative estimate of the difference between the rate
of time preference and the real interest rate was even larger at 6.1%.

The least satisfactory aspect of our artificial economies is that capital’s share of
output is too low to be consistent with estimates of the capital share for the U.S.
economy, and the depreciation rate is too large. Most capital share calibrations in
the real-business-cycle literature use values of one-third or higher, based princi-
pally on inclusion of consumer durables in the measure of the capital stock. Even
if one does not include consumer durables in the measured capital stock, capital’s
share of output is around one-fourth in the postwar U.S. data, higher than in any
of our five economies. Estimates of the annual depreciation rate in the U.S. data
range from about 4 to 12%. In contrast, the five economies listed in Table 4 have
annual depreciation rates ranging from a minimum of more than 19% up to 36%.
These depreciation rates are outside the range of U.S. experience. We leave it as a
challenge for future research to develop models with learning equilibria that can
perform more satisfactorily on these dimensions.

4.3. Remark on Interpretation

So far, we have behaved like econometricians in locating a best-fit parameter
vector for our model, and interpreting that fit. However, there remains an important
unanswered question concering our approach: What is it that drives economies to
the region of the parameter space where learning equilibria exist, e.g. the stability
frontier outlined in Figure 1? A satisfactory answer to this question lies beyond
the scope of our analysis because we have not attempted to model an endogenous
process that would keep these economies on that frontier. Instead, we have appealed
to the data and have argued that the equilibria we describe are the ones that provide
the closest match. Nevertheless, we give here a heuristic argument as to why we
might observe economies in the volatile region as opposed to, say, in the stable
region where the steady state would obtain.

Suppose that all parameters are given by nature with the exception of the policy
parameterθ , which is set by the government so as to maximize government revenue
before setting other explicit taxes. In this scenario, the government movesθ to as
large a value as possible. All else equal, larger values ofθ will tend to move our
systems closer to the stability frontier, and will tend to make observed dynamics
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more volatile. A government pursuing such a policy would pushθ higher but would
stop near the stability frontier. At that point, revenue would be maximized on
average, but would be volatile. If the government tried to raise still more revenue,
the dynamics would collapse (the system would move too far into the unstable
region). On the other hand, a lower value ofθ would produce lower average
revenue. Thus, one might expect certain types of politico-economic equilibria to
exist on the stability frontier, and not to exist elsewhere in the parameter space.
Although we have not attempted to construct such equilibria formally, we think
that our heuristic argument is at least suggestive on this score.

5. CONCLUSIONS

Observed levels of volatility in markets where expectations seem to play a large
role, such as capital markets, have long been a puzzle for economists. The data
we use reveal that the standard deviation in annual returns to equity in the United
States over the past century is around 18%. Changes in fundamentals, on the other
hand, do not seem to be nearly so pronounced. For instance, the postwar quarterly
standard deviation of technological change as measured by the Solow residual is
only about 2.4% [R´ıos-Rull (1996)] and the standard deviation of annual aggregate
per-capita consumption growth over the past century is only about 3%. Most other
processes fundamental to economic value, such as demographics, government
policy, or preferences, are usually viewed either as constant or as slowly changing,
low-volatility variables. If economic fundamentals are not changing very much
from year to year, why are capital asset returns so volatile? Questions such as this
have led economists to debate whether the data in such markets are consistent with
fundamental factors, or whether observed returns are instead consistently deviating
from the returns one might expect on the basis of fundamentals alone.

We have explored the feasibility of the latter answer to this question—that
observed returns are not closely related to changes in fundamentals, and are instead
mainly driven by changes in investor sentiment. In our framework, the deviations
of returns from those suggested by fundamental factors arise from the fact that
agents must learn about the environment in which they operate. The result is a
system in which expectational error is a driving force behind economic volatility.
To illustrate our ideas most vividly (and to keep the analysis relatively simple), we
have set up an environment that is very stark: There is no uncertainty whatsoever in
the underlying model. In the absence of learning, the steady-state return to capital
would be completely pinned down by unchanging fundamentals, and therefore
would exhibit a standard deviation of zero. We have shown that a calibration of our
model with learning exists that can deliver time-series data that match some of the
essential features of the U.S. data on real stock returns and per-capita consumption
growth. In particular, our model comes close to capturing the observed excess
volatility in the data.

As we have emphasized, the learning equilibria we isolate do not provide a
perfect fit to the features of the data that characterize excess volatility in capital
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markets. Our results must therefore be regarded as a first step in an effort to provide
a learning equilibrium explanation of the excess volatility phenomenon. We think
that further research on quantitative learning equilibria (e.g., as an explanation of
business cycles or exchange-rate fluctuations) is warranted, and we believe that
we have suggested a reasonable approach in pursuing this line of research.

NOTES

1. Our decision to include a stock of unbacked government liabilities that grows at a constant rate
was made in order to keep the model very close to the class of economies studied by Bullard (1994)
in which learning equilibria were isolated. By studying a related class of economies, we had some
confidence that the excess volatility equilibria we sought to isolate would actually exist in the version
of the model we consider here with capital accumulation and production—otherwise we would be left
with little guidance as to where and how to find such learning equilibria.

2. See, e.g., Ljung and S¨oderström (1983) for a derivation of the recursive least-squares updating
equations used here.

3. In an effort to provide a clear diagram, we have not included the entire feasible parameter set in
Figure 1.

4. Later, in Section 4.3, we give some heuristic reasoning on forces that we think would drive our
system to this region of the parameter space.

5. That is, we can easily differentiate between learning equilibria and perfect-foresight cycles.
Perfect-foresight cycles are unlikely to exist when, as is the case here, preferences are close to being
logarithmic and output is generated by a Cobb–Douglas production technology.

6. Ideally, we would like to consider a 55-period version of our model so that each period can be
interpreted as a single year. However, we have found that our search strategy for the 55-period version
of the model is not feasible given our current computational resources.

7. In some economies, we set the productivity profile to zero in the last three periods, whereas in
others we set it to zero during the last two periods. We did not find any qualitative differences in the
results that were dependent on this feature of the model.

8. These same statistics, calculated at 1-year horizons using our data set, are very similar to those
reported by Campbell (1999) for annual U.S. data from 1890 to 1992.

9. In our model, there is a sharper definition of fundamental factors, namely preferences, technology,
and government policy. We have specified all of these factors to be constant or growing at a constant
rate, and not subject to stochastic shocks, so that from this perspective the fundamentals of our model
are unchanging over time. Nevertheless, as long as the context is clear, we refer interchangeably to
“the fundamentals” of the model economy as either the implied sequence of consumption growth rates
or as the unchanging preferences and technology.

10. Hence, learning equilibria may be easily distinguished from perfect-foresight cycles.
11. Agents only live for 11 periods, and so, we consider all of the correlations between forecast

errors that occur over agents’ lifetimes.
12. See, e.g., Michalewicz (1994) for an introduction to genetic algorithms.
13. In part, this may reflect our inability (because of resource constraints) to allow the genetic

algorithm to search for a sufficiently long period of time. How long such a search might take is
unknown, however.

14. Bray and Savin (1986) used a Durbin–Watson test as a guide to misspecification in an econo-
metric learning model.

15. The lower bound for the Durbin–Watson test statistic when there is no intercept term in the
regression (as in our case) comes from the tables reported by Farebrother (1980). The upper bound is
not affected by the absence of an intercept term.

16. When we tried to limit our genetic algorithm search to relatively high-capital share, low-
depreciation cases we found that it was difficult or impossible to meet our existence check for equilibria
in which agents hold both inside and outside assets.
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17. We note that, in the model, these rates are constant, but an econometrician evaluating the rate of
technological progress would have to estimate it from the volatile data produced by these economies,
and these estimates would be subject to some uncertainty. This same caveat also applies to the other
parameters of the model.

18. We also experimented with further penalizing strings that yielded values forθ j outside the
target range [θ j , θ̄ j ] by adding a quadratic term to the penalty point function, whenθi j values were
outside these bounds. However, this modification appeared to make little difference for our results, and
so, we adopted the simpler, linear penalty point mechanism described earlier.
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APPENDIX: THE SEARCH ALGORITHM

The search algorithm proceeds in the following sequence of steps: First, a population of
N parameter vectors, or strings, is randomly initialized. We typically setN= 30, 50, or
100, based on suggestions from the literature on genetic algorithms. Each string has seven
elements—the seven parameters of our model:δ, ρ, α, µ, λ,ψ, θ . Denote each of the seven
elements of stringsi byφi j , so thatφi 1 is the value for the parameterδ of stringsi . The initial
parameter values for allN strings were drawn with uniform probability from the parameter
ranges specified in Table 2.

Second, the values ofA and K at the steady state whereR= λψ/θ are calculated for
each parameter string. IfA− K ≤ 0, then the parameter vector is assigned a large number
of penalty pointsand no further calculations are made for this string. If, on the other hand,
A− K > 0, so that the steady state of interest exists, the string is assigned zero penalty
points for this step in the algorithm. This step constitutes our existence check. In our search
algorithm, high fitness is associated with an absence of penalty points, and so, a string with
a large number of penalty points is not likely to remain long in the population of candidate
solutions, as will become clear below.

If a string passes the existence check, the next step is to simulate the system formaxit
iterations using the candidate parameter vector. We found that we could get effective
simulations by setting the number of iterations as low as 250, but we generally used
higher values such as 300, 500, or 1,000. The system is initialized at the steady state
and then the initial valueβ(0) is perturbed by a small amount. If the resulting dynamic
path forβ is determined according to simple criteria to be explosive or convergent, the
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simulation is stopped (so as to save time) and the candidate string is again assigned a
number of penalty points that are inversely related to the number of periods the simu-
lation was continued before being terminated. If the checks for explosive or convergent
behavior are satisfied, the model is simulated formaxit periods and earns zero penalty
points. This check fulfills our objective of having persistently volatile behavior in asset
returns.

If a string passes both the existence and persistent volatility checks, we then take the
last 21 observations from themaxit simulated observations on rates of return, per-capita
consumption amounts, and forecast errors for this string and we use this sample of 21
observations to construct the statistics that we will then compare with our target values and
ranges. In particular, we calcualte the standard deviation of returns, the standard deviation of
the growth rates of per-capita consumption, the serial correlation of per-capita consumption
growth, and the correlation between returns to capital and per-capita consumption growth.
Finally, we calculate the maximum correlation coefficient of the forecast errors at 1–10
lags. We limit our sample to 21 observations because that is the number of observations
from the U.S. data that we have on nonoverlapping 5-year returns and 5-year growth rates
of per-capita consumption.

The fitness assigned to a string that passes both the existence and volatility checks is zero.
This fitness value may then be altered further according to how well the string performs
with respect to the five statistical targets. Each of the five data statistics gets an equal weight
in further altering the fitness of a string. Letsit denote the candidate parameter vectori at
generationt , and letθi j t denote each of the five data statistics( j = 1, . . . ,5) that result from
simulating the economy with parameter stringsit and analyzing the final 21 observations.
Denote the target value for eachθ j by θ̂ j and the upper and lower bounds byθ̄ j andθ j .
Then, the fitness of stringsit is given by

F(sit) =
5∑

j=1

pi j t ,

where

pi j t =
{
(θi j t − θ̂ j )/(θ j − θ̂ j ) if θi j t < θ̂ j ,

(θi j t − θ̂ j )/(θ̄ j − θ̂ j ) otherwise.

Given this fitness definition, parameter vectors that come closest to generating data that
match the desired targets will have lower fitness values and a vector that delivers an exact
fit on all five targets will have a fitness of zero.18 Once fitness values have been determined
for all N strings in the population, we apply genetic operators that constitute the heart of
the genetic algorithm.

First, a selection tournament is held. Two strings are randomly chosen with replacement
from the population of strings, and their fitness values are compared. The string with the
better fitness value wins the tournament and a copy of this string is placed in the next
“generation,”G(t + 1), of candidate strings. This binary selection tournament is conducted
N− 1 more times so thatG(t + 1) consists of a population ofN strings. The purpose of
this selection operation is to direct the search process toward increasingly fit strings. The
remaining operations of the genetic algorithm, crossover and mutation, inject the population
with new, untried parameter vectors, so as to advance the search for highly fit strings.
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These operators work on the strings inG(t + 1), the strings that have won a selection
tournament.

The crossover operation is conducted as follows. TheN strings inG(t+1) are considered
two at a time,si,t+1, si+1,t+1. With probabilitypc, crossover is performed on two vectors; oth-
erwise, crossover is not performed. If crossover is performed, we use one of three methods
with equal probability. Each of these methods has been shown to have certain strengths in
tackling difficult, nonlinear search spaces and therefore we chose to use all three methods to
conduct our search. The first method is single-point crossover in which an integerI is chosen
uniformly from the set [1,. . . , 5]. The two strings are then cut at integerI and the elements
of the two strings,φi j andφi+1, j to the right of this cut point, that is,j > I , are then swapped.
The second method, shuffle crossover, involves draws from a binomial distribution. If the
j th draw is a one, then thej th elements of the two strings,φi j andφi+1, j are swapped; oth-
erwise, thej th elements are not swapped. In the third and final method, arthmetic crossover,
a random real number a∈ [0, 1] is chosen and this number is used to create two new vec-
tors that are linear combinations of the original two strings:asi,t+1 + (1−a)si+1,t+1 and
asi+1,t+1 + (1−a)si,t+1.

Mutation is performed on the strings inG(t + 1) following the application of the crossover
operation [i.e., on the recombined strings ofG(t + 1)]. The mutation operator makes use
of the upper and lower bounds for each of the seven parameter elements of a string,φ̄ j , φ j

,
that we specified in Table 2, and is applied with probabilitypm to every element of every
string ofG(t + 1). If mutation is to be performed on elementφi, j,t+1, then two real numbers,
r1 andr2, are drawn from [0,1]. The new, mutated value ofφi, j,t+1 is given by

φ′i, j,t+1 =


φi, j,t+1 +

(
φ̄ j − φi, j,t+1

)[
1− r (

1− t
T )

b

2

]
if r1 > 0.5,

φi, j,t+1 −
(
φi, j,t+1 − φ j

)[
1− r (

1− t
T )

b

2

]
if r1 < 0.5,

whereb is a parameter governing the degree to which the mutation operation is nonuni-
form. This mutation operation is such that the probability of choosing a new parameter
element far from the existing value diminishes ast→ T , whereT is the maximum num-
ber of generations. The purpose of this nonuniform mutation operation is to ensure that,
with the passage of time (i.e., following many generations), the genetic algorithm samples
more intensively from the neighborhood of existing parameter values because, in the lat-
ter stages of a search (close to timeT), the parameter vectors should be approaching the
optimum.

Following crossover and mutation, the strings ofG(t + 1) are once again evaluated for
their fitness, which involves simulating the economy implied by eachsi,t+1 ∈G(t + 1). The
genetic algorithm selection tournament was conducted anew, followed by another applica-
tion of the crossover and mutation operators on the winners. This process was repeatedly
conducted for some maximum number of generations, which we typically set to 500. The
genetic-algorithm parameter values that we used werepc= 0.95, pm= 0.20, andb= 2.
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