J. Plasma Phys. (2019), vol. 85, 925850301 (© Cambridge University Press 2019 1
doi:10.1017/S002237781900031X

TUTORIAL

Practical gyrokinetics

Peter J. Cattot
Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

(Received 21 November 2018; revised 18 March 2019; accepted 19 March 2019)

Thousands of gyrokinetic papers have been published since the introduction of the
gyrokinetic change of variables. The intent here is not to review the field, but
rather the goal is to present a tutorial providing insight into why gyrokinetics is
an appropriate description of turbulent transport. The focus is on turbulent transport
in axisymmetric tokamaks, but many of the ideas and techniques are applicable
to stellarators and other magnetic fusion devices with nested surfaces of constant
pressure. Besides the origins of gyrokinetics and recent insights, gyrokinetic orderings
and gyrokinetic variables are summarized. Then a compact, but careful, derivation of
the simplest electrostatic gyrokinetic equation for tokamaks is presented, along with
a brief mention of gyrokinetics for stellarators. The advantages of assuming scale
separation between the finer spatial scales and faster time variation of the turbulence
and the global behaviour and slow temporal evolution of the background are
stressed. Moreover, the procedure for removing the adiabatic or Maxwell-Boltzmann
response is emphasized. Scale separation allows the near Maxwellian behaviour
of the background and the rapid variation of the turbulence to be described by
separate, local gyrokinetic equations. The turbulent fluctuations are found by solving
the nonlinear gyrokinetic equation for the non-adiabatic portion of the fluctuating
distribution function. Also, generalizations of the gyrokinetic equation so that it
retains electromagnetic and flow modifications are considered in detail along with
some symmetry properties. In addition, ambipolarity, particle transport and heat
transport are addressed, along with a discussion of the complications associated with
describing momentum transport and profile evolution.
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1. Early history

The term gyrokinetics was first used by Catto & Tsang (1977) slightly before the
gyrokinetic change of variables was introduced by Catto (1978). Catto & Tsang (1977)
derived a linearized collision operator for perpendicular wavelengths comparable
to a gyroradius by using a radial WKB (Wentzel-Kramer—Brillouin) or eikonal
approximation for the waves. Their procedure made use of the electrostatic efforts
of Rutherford & Frieman (1968) and Taylor & Hastie (1968) that treated small
perpendicular wavelengths by using an eikonal technique rather than employing a
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gyrokinetic change of variables. However, the Catto (1978) gyrokinetic change of
variables streamlined these earlier treatments of magnetized plasmas and was adopted
and appreciated even in the era before codes (BC) since it avoided the need for
complicated trajectory integral solutions of the kinetic equation. Indeed, the new
gyrokinetic variables retained gyration and drift effects while removing fast time
variation associated with gyrofrequency effects. Moreover, the gyrokinetic equation
reduced to the Hazeltine (1973) drift kinetic equation in the long wavelength limit.

The gyrokinetic change of variables removes the gyrophase as a velocity space
variable by averaging out the rapid gyration motion associated with
gyrofrequency time scales. It allows elongated structure along magnetic field lines for
low frequency fluctuations as observed in magnetically confined and space plasmas,
while allowing short, gyroradius wavelengths across the magnetic field lines. The
remaining two velocity space variables enter as the magnetic moment adiabatic
invariant and a near constant of the motion energy for typical analytic calculations,
while turbulence simulations normally employ a parallel velocity variable along with
the magnetic moment. The gyrokinetic orderings are consistent with equilibrium
descriptions, low frequency electromagnetic stability, and the evaluation of collisional
fluxes, as well as turbulent transport. Recent advances are allowing some simulations
to be performed on the much longer turbulent and collisional transport time scales
needed to evolve radial profiles with momentum transport retained to properly
determine the axisymmetric radial electric field in a tokamak.

An early electromagnetic gyrokinetic treatment neglecting compressional effects
appeared shortly after gyrokinetic variables were introduced (Hitchcock & Hazeltine
1978), and soon after fully electromagnetic linear descriptions appeared, both
without the use of gyrokinetic variables (Antonsen & Lane 1980) and with the
use of gyrokinetic variables (Catto, Tang & Baldwin 1981). In addition, nonlinear
electromagnetic treatments appeared that employed unperturbed gyrokinetic variables
in tokamak geometry (Hitchcock & Hazeltine 1978; Frieman & Chen 1982), and
nonlinear electrostatic formulations in slab geometry (Lee 1983) retaining perturbed
gyrokinetic variables (Dubin et al. 1983). Hahm, Lee & Brizard (1988) extended the
perturbed gyrokinetic variables to nonlinear electromagnetics in a uniform magnetic
field B, and Hahm (1988) and Brizard (1989) made nonlinear generalizations to
tokamak geometry.

Two early codes appeared in the 1980s as well. The first was the linear continuum
eigenvalue gyrokinetic code FULL (Rewoldt, Tang & Chance 1982), and the second
was the nonlinear gyrokinetic particle-in-cell (PIC) code of Lee (1983) in slab
geometry. Years later, Kotschenreuther, Rewoldt & Tang (1995) built the first initial
value, fully implicit linear delta f gyrokinetic code in tokamak geometry GKS
(for GyroKinetic Stability), with delta f indicating that only the correction to a
Maxwellian was being found gyrokinetically. GKS was extended by Dorland et al.
(2000) to become the first electromagnetic nonlinear continuum delta f gyrokinetic
tokamak turbulence code GS2. GS2 also retained trapped and passing particles and
was fully parallelized.

The earliest nonlinear delta f flux tube PIC codes were electrostatic (Sydora 1995;
Dimits et al. 1996). The later work developed the code that became PG3EQ and
discovered an important discrepancy between gyrokinetic and gyrofluid descriptions
of ion temperature gradient (ITG) turbulence. It revealed the key role of zonal
flow, which is a robust, temporally varying E x B or electric field E drift due to
an axisymmetric radial electric field with strong radial variation, but no poloidal
variation. It became apparent that zonal flow acts to regulate and limit ITG turbulent
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transport, especially near marginal stability. This insight led to the understanding that
short wavelength turbulence gives rise to nonlinear beating that deposits some energy
into the axisymmetric radial electric field variation whose poloidal variation damps
to a residual steady state level to become the zonal flow. Further insights into zonal
flow behaviour (absent from gyrofluid codes of the time) came from code simulations
and comparisons (Dimits et al. 2000), leading to an understanding that there is a
nonlinear Dimits shift away from the ITG linear stability threshold. The Dimits shift
occurs because the generated zonal flow nonlinearly suppresses ITG turbulence near
marginality. As a result, the onset of large turbulent transport is delayed and shifted
to a nonlinear threshold value higher than the linear prediction.

An analytic linear initial value check was developed by Rosenbluth & Hinton (1998)
to verify whether the ion polarization effects associated with magnetic drift are being
properly retained in gyrokinetic codes. It yields a non-zero residual level of radial
electric field (and thereby zonal flow) when the electric field is linearly perturbed.
Later, Sugama & Watanabe (2006) successfully described the transient damping of
poloidal variation by geodesic acoustic modes (GAMs) to a residual steady state zonal
flow. Other local delta f gyrokinetic continuum codes soon became available, like
GYRO (Candy & Waltz 2003), GENE (Dannert & Jenko 2005), GKV (Sugama &
Watanabe 2006) and GKW (Peeters er al. 2009), and even global PIC codes such as
ELMFIRE (Heikkinen et al. 2001). Additional global delta f PIC codes like GTC (Lin
et al. 2002), GEM (Chen & Parker 2003), GTS (Wang et al. 2006) and ORBS5 (Jolliet
et al. 2007), were developed soon after GS2, PG3EQ and ELMFIRE.

2. Recent theoretical insights

Intrinsic ambipolarity means that the radial electric field cannot be determined
from (V - J) =0, or, upon integrating, from (J - Vi) = 0, since this constraint
is automatically or intrinsically satisfied within a flux function in the electrostatic
potential that is determined by momentum transport. Here J is the current density
and (---) denotes a flux surface average with i the poloidal flux function. Sugama
et al. (1996) demonstrated that neoclassical and turbulent transport are separately
intrinsically ambipolar in a tokamak. Although their treatment is fully electromagnetic,
some details relied on using a quasilinear treatment and Krook collision operator.
These limitations where removed electrostatically by Parra & Catto (2009). Appendix
A of Sugama & Horton (1998) also showed intrinsic ambipolarity electromagnetically
in a tokamak with sonic toroidal flow within a quasilinear treatment of the Onsager
symmetry. Intrinsic ambipolarity implies that the radial electric field is set by the
need to satisfy toroidal angular momentum conservation in an turbulent tokamak as
suggested by Catto et al. (2008) and verified by Parra & Catto (2008), as well as
the need to satisfy important symmetry properties of the gyrokinetic equation (Parra,
Barnes & Catto 2011; Sugama et al. 2011).

Until 2008 it was widely assumed that the gyrokinetic equation and quasineutrality
were all that was required to obtain a complete electrostatic solution. However, by
much more carefully verifying the suggestion of Catto et al. (2008), Parra & Catto
(2008) demonstrated that much greater care was required to describe momentum
transport in a tokamak, and that very small errors would lead to fake torques (Parra
& Catto 2010b,c) and result in unphysical momentum transport. The controversy that
ensued seems to have subsided as the result of more general gyrokinetic descriptions
of turbulent momentum transport (Parra & Catto 2010a,b; Parra et al. 2011; Parra
et al. 2012; Parra & Barnes 2015a,b). However, the numerical implementation of a
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completely general description of momentum transport to the requisite order remains
incomplete. The remaining subtlety is that delta f descriptions rely on scale separation,
and therefore, require certain global features in the vicinity of a flux surface (Parra
& Barnes 2015a). Full f descriptions avoid scale separation, but cannot yet be
formulated to high enough order in the gyrokinetic variables (Parra et al. 2012). For
example, they are roughly equivalent to trying to solve the short mean free path,
long wavelength limit of the gyrokinetic equation to very high order to avoid using
a Chapman-Enskog approach.

3. Kinetic equation in a tokamak

To keep the presentation as simple as possible while retaining geometric effects, the
electrostatic limit of an axisymmetric tokamak is considered first. The magnetic field
is taken as

B=Bb=IV{+Vx VY=V —qgd)x Vi =Vax Vy, 3.1)

with i, ¢ and ¢ the poloidal flux function (with 2wy the poloidal flux), the toroidal
angle variable, and ¢ the poloidal angle variable in straight field line coordinates (B -
V® =1/gR?), and where g = q(v) is the safety factor and I = I(y/) = RB,. Here R
is the major radius and B, is the toroidal magnetic field. The Clebsch representation
uses o =¢ — qv.

The Fokker—Planck equation written in the spatial and velocity space variables r, v, t
is

f=0f/ot+v-Vf+ (Ze/M)(~VP +c'vxB)-V,f=C, (3.2)

where f =f(r, v, 1) is the distribution function, E = —V @ is the electric field in the
electrostatic limit, and C denotes the Fokker—Planch collision operator. Also, Z is the
charge number and M is the mass, with e the charge on a proton and c the speed of
light. The mass ratio difference implies that it is usually convenient to think of the
kinetic equation as being for the ions as electrons more closely follow field lines.

The axisymmetry of the magnetic field means that it will at times be convenient to
employ the canonical angular momentum (—Ze,/c) in the form

Vo=V — (Mc/Ze)R*V - v=v0+ 2 'vxb- Vi — v/, (3.3)

where 2 =ZeB/Mc and vy =b-v. A departure of @ from axisymmetry means that
Y, is no longer a constant of the motion since

V. =cod/dc, (3.4)

where a - V(R*V{) -a =0 for an arbitrary vector a is used. The unperturbed vector
potential A is related to the flux function by ¥ =y (r,1)=—R*V¢ A and V¢ x Vi =
V x A.

Similarly, the total energy,

E=Mv*/2+ Ze®, (3.5)
is not a constant of the motion because of the time variation of @, which gives
E=2Zedd/ot. (3.6)

The Fokker—Planck kinetic equation is the starting point of all gyrokinetic (and drift
kinetic) treatments.
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4. Gyrokinetic orderings and assumptions

The gyrokinetic orderings assume a strongly magnetized plasma so the ion
gyroradius p; is small compared to the minor radius a of the device, that is,

pi K a, 4.1)

with p; = v;/92;, v; = (2T;/M;)'/* the ion thermal speed and £2; = ZeB/M;c the ion
cyclotron frequency. The minor radius a is assumed to be a typical radial scale length,
and is normally assumed much larger than the poloidal gyroradius p,; = Bv;/B,$2; >
qRp;/a. The electrons are even more strongly magnetized.

In addition, for turbulent and collisional transport in tokamaks the frequencies, w,
of interest are normally assumed to be small compared to the ion cyclotron frequency.
The typical frequencies of interest are near the diamagnetic drift frequency

o~ w, ~kypvi/a 4.2)

associated with drift waves, where k, is a typical perpendicular wavenumber. The
ion and electron drift frequencies are comparable as p;v; ~ p.v., with p, and v, the
electron gyroradius and thermal speed.

In the core of a tokamak collisions are normally weak so it is convenient to assume
that the poloidal gyroradius is small compared to the ion mean free path A =v;/v;,

Ppi K 4, (4.3)

where v; is the ion—ion collision frequency, and ions and electrons have comparable
mean free paths so no distinction is made.
Gyrokinetics allows

kipi~1 4.4)
by expanding in the small parameter
S~ pifar~ /82~ pPpi/ A (4.5)

Moreover, k;p, ~ 1 can be allowed so electron temperature gradient modes can be
treated as well. In addition, the fluctuations are assumed to have parallel wavenumbers
k; such that

kygR ~ 1, (4.6)

where gR is referred to as the connection length. Notice that p,;/1 = qRp;/Aa implies
the general collisional ordering A~ gR is allowed for both ions and electrons. These
orderings are compatible with the banana regime ordering A >> gR in the core of a
tokamak in which parallel streaming dominates over collisions. Moreover, they permit
charges to stream faster along a field line than they magnetically drift poloidally in a
flux surface, that is, gR/v; < a*/p;v;, since p,;/a < 1. Only on the longer collisional
or turbulent transport scale do charges transport across flux surfaces.
It is normally useful to write the electrostatic potential as

S=&(r, 1)+ D(r, 1), 4.7

where @ and @, respectively, are slowly and rapidly varying functions of space and
time. For a sonic (~v;) electric field drift Ze® /T ~ 1/6 > 1. Normally, however, the
drift due to the electric field is at the level of the diamagnetic drift speed (~dv;) giving
Zed /T ~ 1.
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It is also often convenient to employ scale separation to split the distribution
function up into slow and fast spatio-temporal portions by writing

f=Ffr v, 0+f@ v, 0. (4.8)

Typically 9f/dt ~ w,f and 9P/t ~ w, P, with f and P varying approximately on the
transport scale of gyroDohm diffusion D,g ~ p?v;/a, that is, f~'9f/3t ~ Dyp/a’.
Moreover, it is useful to order

FIf~2e®d /T~ 1/kia<k 1, (4.9)

which is consistent with the so-called mixing length estimate V,f ~ V f. The

preceding ordering for f/f ~ Ze® /T was introduced by Dimits, Lodestro & Dubin
(1992). Using it gives the fluctuating electric drift to be of order

cB~'b x V& ~ Sv,. (4.10)

Also, rapid temporal variation on the diamagnetic drift frequency scale, and
slow temporal variation on the gyroBohm transport scale gives (df/91)/(df/d1) ~
(0 /01)/ (0P /1) ~ § for

Zed /T ~ 1. 4.11)

5. Gyrokinetic variables

When transforming to gyrokinetic variables there are a few choices for the velocity
space variables, but the usual choice for the spatial variation is the mixed variable that
relates the guiding centre or gyrocentre location R to the particle position r, namely,

R=r+Q 'vxb=r—p, (5.1)

with p the gyroradius vector. The velocity variable is defined in cylindrical velocity
space variables v, ¢, v; such that the charge spirals about the magnetic field line as
it streams along it to lowest order. Then

v="v, (e, cosy+e,sing)+yb, (5.2)

with ¢ the gyrophase, and e, = V¢ /|Vy| and e, =b x e, orthonormal unit vectors.

There are three main reasons why this gyrokinetic change of variables is useful. The
first is that to lowest order the guiding centre tries to stream along the magnetic field,
that is,

R~v.-Vr+ (Ze/Mc)(v xB) -V, (2 'vxb)=v—v, = vb. (5.3)

To obtain the preceding, the velocity space variable result V,v = I is employed, just

as in spatial variables Vr = I. A convenient form of the unit dyad is I =eye, +
e.e, +bb.
The preceding means that the gyrokinetic variable R allows the ordering

v -Vf~R2vxb-V.f. (5.4)
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Consequently, unlike drift kinetics (Hazeltine 1973), gyrokinetics is able to retain short
perpendicular wavelengths by allowing k, - v, ~ £2. B _

It is convenient to employ scale separation to assume B, @ and f are slow functions
of space such that Taylor expansions may be employed to obtain

B(r)=BR)+p-VB+---~B(R), (5.5)
Pr)=2PR)+p- VD + .- -=D(R), (5.6)
and
R =f)—p-Vf+---, (5.7)
wf}flere the leading correction to the expansion of f is needed to treat diamagnetic
effects.

The fluctuating quantities @ and f contain rapid spatial variation and need not be
Taylor expanded. This feature is another important difference between gyrokinetics and
drift kinetics. For example, if

@ x e = ek BEP) (5.8)

then a gyroaverage at fixed gyrocenter location R,

(- r=0Qm~" ?{dtp(---), (5.9)

may be employed to obtain
(exp(ik - )k = (exp(ik - p)) g exp(ik - R) = Jo(k v, /2) exp(ik - R).  (5.10)

As a result, the gyroaverage of the electrostatic potential holding the guiding centre
fixed differs from the electrostatic potential at fixed particle location, that is, (@) #
D(r).

The third key reason that the gyrokinetic change of variables is so useful is found

by working a bit harder. Assuming a steady state or weakly time varying magnetic
field,

R=vb—v-V(27'b) xv—cB'V® xb. (5.11)
Using (v)g =v;b and (vv)g = (vi/Z)(? —bb) + vﬁbb gives the important result

Ryg=vb— (v V(27'h) x V) +cB™'b x V& = (v + u))b + vy + (ve)g, (5.12)
where the gyroaveraged electric drift is
(V)R =cB7'b x Vi(®)x (5.13)
and the magnetic drift is as in drift kinetics
vy =27'b x [vjb - Vb + (v} /2)VnB], (5.14)
while the parallel velocity correction is

uy=—/22)b-V xb. (5.15)
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To more easily obtain u; and the VB and curvature drifts, it is useful to notice that

—(v-V(27'b) x v)p= (1 /2)V x (27'b) + 27 (v] — v1 /2)b x (b - Vb), (5.16)

and then use V x (27'0)=2"(V xb+b x V&nB) and (7—bb) Vxb=bx(b-Vb)
to find

VX2 '0)=27'[bb-V xb+b x (b-Vb+ VinB)]. (5.17)
The combination
U=y +2 'vxb.-Vy (5.18)

appearing in the canonical angular momentum is the radial gyrokinetic variable, with
the poloidal and toroidal gyrokinetic variables similarly defined as

O=0+R2 'vxb-V0, (5.19)
and
Y=¢+R2 'vxb-Ve. (5.20)
The drift kinetic canonical angular momentum is
vo=v —Iv/Q, (5.21)

a constant of the motion of the drift kinetic equation. Occasionally, it is convenient
to use the canonical angular momentum 1, as the radial variable rather than the
gyrokinetic variable ¥ (Kagan & Catto 2008, 2010).

Analytically, it is usually most convenient to use the velocity space variables of total
energy,

E=Mv*/2+ Zed, (5.22)
magnetic moment,
w=Muv? /2B, (5.23)

and gyrophase ¢.
In these variables a so-called full f form of the gyrokinetic equation can be obtained
by gyroaveraging

F=0f/0t+R-Vif +Edf/IE + 0f /o + ¢f /9. (5.24)
For slow temporal evolution and global variation of the magnetic field

E=2Z7edd /o1, (5.25)
f=—uB 'v-VB—MvB 'v-Vb-v—ZeB v, -V, (5.26)

and, differentiating v-e, =v, cos¢ and v-e, =v, sing,

¢p=—2—-v-Ve,-e, — vvav «Vbxb-v+ (Ze/Mvi)v bxVo. (527
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These last three expressions are the same as for drift kinetics. However, gyroaveraging
holding R fixed instead of r, gives the lowest-order expressions

(E)g = Zed(®)g /01, (5.28)
(Mg =0, (5.29)

and
(P)r=—1£2, (5.30)

where the lowest-order result v, «- V@ = (0v/d¢) + b x V® = —20® /d¢|z and
Ze® /T ~ 1 are used, and (v- Ve, -e, +vv;°v-Vb xb-v)g~v,(2b- Ve, -e, +
bV xb)/2~v/R K2 varies on the scale of the magnetic field so is small.
Expanding f in § by writing f =f©@ +f® 4+ ... | taking —£29f? /3¢ =0 to lowest
order, and then gyroaveraging the next-order equation to annihilate the " term, gives
the simplest full f gyrokinetic equation to be

Of© /01 + (v + vy + (Ve)e) « Vif @ + Ze(d(@)r/000f O JOE = (C(f x| (5 5,
®, v/qR ki pvi/R  Svi/a w,/k.a v, 63D

Unfortunately, this direct approach is risky since the result contains terms of a few
different orders as noted below the equation (recall k;a > 1 and v < w,), and it
ignores higher-order corrections from f and the gyrokinetic change of variables. In
addition, most of f© is normally a Maxwellian. Consequently, the derivation of the
gyrokinetic equation will be refined in the next sections by being more clever and

deriving what is referred to as a local or 8f =f gyrokinetic equation. The derivation
takes advantage of the scale separation between the fluctuations and the background.

6. Gyrokinetics for the slowly varying portion of the distribution function

_When the unperturbed distribution function is slowly varying in time and space with
df /oo =0, only the lowest-order equation

(fHr=vib - Vf = C{{f),} =~ C{f}, (6.1)

need be solved, as long as vf > df/dt, (vp)g + Vf/vyb « Vf ~ vy - Vf/vib - Vf ~
ppifa<<1 and

FRE ) =f(rE, i, ) + 2 "o xb - Vf+--.. (6.2)

The preceding implies that vyb - Vif ~vb - Vf and (C{f})r = (C{f}), = C{(f),} =~
C{f}. A subscript r on a gyroaverage indicates that it is to be performed at fixed r

rather than fixed R. As @ is small compared to @ it will be convenient at times to
use the alternate energy variable

E=Mv*/2+ Zed. (6.3)

Using the lowest-order form of the kinetic equation v;b - Vf = C{f}, either a flux
surface average,

()= []{dﬁdg(...)/B-Vﬁ]/ V dz?d;/B-Vz?] , (6.4)
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for the passing, or a transit average,

()= Vdﬁdg(...)/v”b . Vﬁ}/ M dode /v - Vz&‘] , (6.5)

for the trapped, can be employed to annihilate the parallel streaming term. It
is convenient to retain the ¢ integrals in the transit average, and also notice
vy/B = 1/(B/v;) for the passing, with v;/B = 0 for the trapped. The constraints
obtained for the passing by flux surface averaging,

(Bv; ' C{f}) =0, (6.6)

and trapped by transit averaging,

Cc(f} =0, 6.7)

must be satisfied by the lowest-order distribution function as is shown next.

To verify that these can only be satisfied by a Maxwellian, multiply the lowest-order
kinetic equation by ¢nf and integrate over all velocity space and flux surface average
to obtain the Boltzmann H theorem on a flux surface,

< / d*venfCy f}> =0. (6.8)

The preceding form for the H theorem follows from d*v — 2wdEduB/v, and

</d3vvb.V(fznf —f)> = <B-V [3-1 /d3vv||(fﬁnf —f)]>:0 (6.9)

because the flux surface average of the divergence of any vector Q,

~ 9 (Q-VY\ D (Q-VO) 9 (Q-V¢
V'Q_B'W[aw(B-w>+aﬂ (B-Vﬁ>+8§ (B-Vz?)]’ (6.10)

gives

10
(V.0)= 7@(‘/ (Q-Vy)), (6.11)

with V' = ¢ d9d¢/B - V9 and where B - V¥ is independent of ¢. The entropy

production only vanishes for a local Maxwellian f,, for which C{ f}=0 and, therefore,
vb - Vf =0. Consequently, the steady state solution for a stationary confined plasma
with well-defined flux or total pressure surfaces is

F=fu@. E)=fir = () IM/2nT () 5TV = n(M/2mT)¥ e 2T (6.12)
with the density n and pseudo-density n related by
n= U(W)e_zeqs(w)mw)- (6.13)

In the core of a tokamak n, T and @ are lowest-order flux functions. The collision
operator must be Galilean invariant so a drifting Maxwellian is also allowed. However,
without large momentum input, the ion drift velocity is small and at the diamagnetic
level ~8v; so a stationary Maxwellian can be employed.
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The preceding demonstration is valid for ions without any modification since C is
then the ion—ion collision operator. For electrons both like and unlike electron—ion
collisions must be retained. However, momentum relaxation occurs on the electron—ion
time scale so friction rapidly relaxes the electrons to the same drift velocity as the
ions. A speed expansion of the electron—ion collision operator can then be performed
and the Galilean invariance of the like collision operator used to determine that the
electrons are also Maxwellian to lowest order.

The next-order correction to the Maxwellian in a tokamak is found by using
axisymmetry. To find this correction it is convenient to define

fo =@M /2T () Pe HT0, (6.14)
so that Taylor expansion gives
[e(us B) = fuy(WE) — (Mc/Ze)R*V & ~ vdfy /Oy + - - - (6.15)

For an axisymmetric steady state

7., By =0, (6.16)

since ¥, =0 and E=o0. Consequently, letting

f=F.(., E) +h, (6.17)
and using (C\{(¥« — ¥)dfu /0¥ })r = —Ci{(Iv,/$2)3fy/0¥}, the gyrokinetic equation
for h is

(F)r = vyb - Vh= Ci{h— (Tvy/2)dfu/ 0V ). (6.18)

with C; denoting the linearized collision operator.

To lowest-order collisions are normally weak in the core, giving vy - Vh=0. Transit
averaging the next-order equation for the trapped (subscript f) over a full bounce
annihilates the streaming term leaving

0=C{h, — (Ivy/2)3fu/0V} = Ci{h, — (Tvy/$2)0fu /3% } = Ci{h,}. (6.19)
As there is no drive,
h, =0. (6.20)

A flux surface average is used to annihilate the streaming term in the next-order
equation for the passing (subscript p) leaving

(Buy ' Ci{hy, — (Iv)/$2)3fy/8Y}) = 0. 6.21)

The solution of this constraint is the neoclassical response h, = h,(V, E, n, o)
responsible for banana regime transport. It must be odd in v, =o|y| like the drive.
As it depends only on v, E, and w it will be shown later that it does not matter
in the gyrokinetic equation for the fluctuations even though h, ~ (Jv,/$2)9fy /0y ~
(Mc/Ze)R*V ¢ - vdfy /0.

Before going on to derive the gyrokinetic equation for the fluctuations some particle
transport and ambipolarity considerations are worth stressing.
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7. Ambipolarity and particle transport considerations

The convenient way to evaluate the collisional and turbulent particle fluxes is to use
the R*V¢ component of the momentum conservation equation

d(MnV) /3t + Zen(V ® —c‘leB)-i—V-(M/d3vvvf)=M/d3vvC. (7.1)

Forming the R?V¢ component and including coarse grain averages in time and radius
with the flux surface average gives

Ze

V-V, = Z < aq)> +iiv’<MR2V -/d3f - V)
- n g = ZLe n3§ . Vv oy ¢ vfov cg

—M(R*V¢ - /d3vvC)cg, (7.2)

where the density and flow velocity are defined as n= [ d*vf and nV = J d*vof, and

B 1 z+rd 1 w+yd 73
(...)Cg_zr/ tg - 1)0()’ ( . )

-1

with w,7>>1 and k, - e,y > |V{|. The coarse grain average removes very fast time
and very short radial scale variation. The species pressure p = (M/3) [ d*vvf =nT
does not contribute to (MR*V ¢ - f d*vfvv - Vi), making the term small. Indeed, the
off-diagonal stress tensor and time derivative only enter at higher order when the
radial flux of toroidal angular momentum is evaluated. Therefore, only the turbulent
and collisional fluxes survive in

0D ) 3
Ze(nV « Vi), = Zec <n8§> — Mc(R°V¢ -/d vuC),,. (7.4)
cg

In a quasineutral plasma (XZen = 0) this form makes it clear that turbulent and
collisional particle transport are separately intrinsically ambipolar, and when added
yield

(Vi) =0, (7.5)
where J is the current density and X is the species sum. This ambipolarity condition
is required in a quasineutral plasma for which V - J =0 must satisfy the constraint

(V -J) =0 with the radial current vanishing at the magnetic axis. Overall momentum
conservation for Coulomb collisions requires

Z(RV¢-M / d*vvC) =0, (7.6)

as first noted by Kovrizhnykh (1969) and Rutherford (1970). The form of (nV . V)
implies that the turbulent particle flux is

L = Zec(’la(p/a{)cg (77)

https://doi.org/10.1017/5002237781900031X Published online by Cambridge University Press


https://doi.org/10.1017/S002237781900031X

Practical gyrokinetics 13

and the collisional particle flux is
1—'(:011 = _CM<R2V§ ° / dSU(UL + UHb)C>cgv (78)

with the v, the contribution from classical collisions due to gyromotion and the v;b
term the neoclassical portion caused by finite orbit departures from flux surfaces. The
separate intrinsic ambipolarity of turbulent (X' I3, = 0, using quasineutrality) and
collisional (X' I.,; = 0, using collisional momentum conservation) particle transport
in a tokamak was first demonstrated by Sugama er al. (1996). Their treatment is
fully electromagnetic, but some details relied on using a quasilinear treatment and
Krook collision operator. These limitations where removed electrostatically by Parra
& Catto (2009). Appendix A of Sugama & Horton (1998) also showed intrinsic
ambipolarity electromagnetically in a tokamak with sonic toroidal flow within a
quasilinear treatment of the Onsager symmetry.

In a completely axisymmetric tokamak it is necessary to satisfy conservation of
total toroidal angular momentum to higher order. Quasineutrality, ambipolarity and
total collisional momentum conservation require that the lowest-order flux function
behaviour of @ adjusts to satisfy conservation of toroidal angular momentum

i 2 7i 2 / 3
S MRV -VE) + o EszM RVe - [ Pufov- V), (7.9)

where the time derivative term is inserted for completeness. In the absence of
a momentum source (as assumed here) the steady state equation reduces to the
condition that the radial flux of toroidal angular momentum vanish on each flux
surface,

M(RZV;-/d3vav-V¢>cg:o, (7.10)

as there is no flux of radial momentum at the magnetic axis. The species sum is
dropped as the electron contribution is usually negligible.

8. Gyrokinetic equation for the fluctuations

The conventional 8f =f gyrokinetic equation is really not an equation for 8f = f
f

at all. Instead it is the gyrokinetic equation for the non-adiabatic portion of §f =
obtained by letting

f=fW. By +h=f+], (8.1)
with
h=h+h, (8.2)
and h the non-adiabatic response. Expanding the E dependence about
E=Mv*/2 4 Ze® (Y, ¥, 1) (8.3)
for small @, and expanding v, about ¥ yields

[ E) = fyy (¥, E) — (Ze®D | Tfyy — (Mc/Ze)R*VE - 00fu /0% + -+ . (8.4)
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Then

8f =f =h— (Ze® /Dy, (8.5)
with —(Ze® /T)fy; the adiabatic part or Maxwell-Boltzmann response of f, and
f=f E) +h. (8.6)

Inserting f =f, + h into the Fokker—Planck equation and using

fo =1, 8f./ 0V, + Edf./OE = c(30 /3¢) (3fu/dY) + Ze(dP /31) (3fu/OE),  (8.7)

gives

h— Ci{h— (Mc/Ze)R*V ¢ + vdfy |3y} = (Zefyr/T) (@D /31) — (3D /3) (3fu/dY), (8.8)

where the lowest-order linearized collision operator must have the property that
Ci{fu} = 0. The drive terms for turbulence on the right side are time variation and
departure from axisymmetry.

Subtracting out the slowly varying background terms gives the Fokker—Planck
equation for the fluctuating response to be

ho= 9h/dt+v-Vi+[20xb— (Ze/M)VP]- Vi~ C (i}
+ (Zefu/T)d® /3t — (3D /D) dfu /Y, (8.9)

with @ = @ + & on the left side and h = h(r, E, i1, ¢, t). Changing to gyrokinetics
variables, using il=}~l(R, E, 1) as 8?1/ d@|r =0 to lowest order, and then annihilating
the next-order equation, yields the desired form of the 8f =f gyrokinetic equation for
the non-adiabatic response to be

(= b+ v+ () - Vi = (C e+ 220 2000 cag’z“ 2{’/[” (8.10)
where
(vE)r=CB™'b x Vi(® + (D)) (8.11)
and

1dfy 10p Zedd Mv?> 5\ 19T
—w =t ==+t =) 5 (8.12)
fudy poy T oy 2T  2) Toy

In the linear limit, Laplace transforming in time and Fourier decomposing in

toroidal angle gives the replacements 0(®)g/0t — —iw(P)g and (P )r/I¢ — —iL(D ).
Defining

LT 9
of = S U, (8.13)
Zefy O
recovers the usual instability drive w — ! of linear gyrokinetics (Catto 1978). Notice
that w! only depends on the toroidal mode number £.
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Any neoclassical response h, = l_z,,(t//, E, u, o) in h is unimportant as the
gyroaverage of

s ok, ok,

oh oh
hp — E _P P

+x/}a}_”’ Zev-V&—L 4+ p—L + Vwailp (8.14)
— — ~—Zev - — — tv- —, .
o Mo TV ay D o
gives
. . 0h - - dh ah
(h,,)R:—Ze<v-V<D)Ra—Ef—ZeB 1<vL-V<p>Ra—:+<v-V¢>R8—;:O, (8.15)

since v+ VP ~v, - Vi = —[28@3/8(le means (v - V@)R ~ (0, and along with (v -
Viy)r =0 gives (1) =0 to lowest order. 5
When a simple local Fourier decomposition of @ is used then

(®)g o (¥ = e*Ro(k v, /02), (8.16)
giving h oce®® . Therefore, when perturbed quasineutrality,

. _7%*n
(OB

ZEZe/d3vil:22e/d3v<iz>,, (8.17)

is evaluated a second set of Bessel functions appears from

(h), oc (), = ™"y (kyvy /), (8.18)

where (- --), is the gyroaverage at fixed r.
In a stellarator ¥ = + 2 'v x b - Vi is used in place of v, so that

fo(W,E) = fu(fr, E) — (Ze® | T)fy + 20 x b - VYafu /0¥ +---  (8.19)
and

f.=Waf.)0W + Edf./0E ~cB~'b x Vi - V& (8fy/dY) + Ze(dD /91)(3f1/OE).

(8.20)
As a result, the gyrokinetic equation for a stellarator is
i3 3}; ~ ~
(hr = 5 + (vyb + vy + (ve)r) - Vrh = (Ci{h})r
Zefy (P -9
Zefu 0(®Plr _ oy v By 8.21)
T ot B oy

In the §f tokamak and stellarator equations for h all terms are normally of the
same order in a turbulent plasma, and the cB~'b x V(®)g term in (vg)g is the only
nonlinearity (Hitchcock & Hazeltine 1978; Frieman & Chen 1982; Lee 1983). This
nonlinearity leads to gyroBohm transport as shown in the next section.
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9. GyroBohm transport from the fluctuation gyrokinetic equation and zonal flow

In this section the critical balance procedure of Barnes, Parra & Schekochihin
(2011) is used to demonstrate that the turbulent transport is gyroBohm within a
geometrical factor.

To begin, the eddy size A is taken as the measure of the typical value of k', that
is

A~k ©.1)
and thereby the drives are ordered as
w~ a)f ~ pvi/aA. (9.2)

The adiabatic and non-adiabatic responses are comparable when h/fy~ Ze®T.
According to the mixing length estimate the nonlinear terms become important

when Vliz’vVlfM or
h/fy ~Ze® /T ~ Ala. (9.3)
Balancing the nonlinear drift term with parallel streaming
vih/qR~vyb - Vih~ (c/B)b X V(®)g - Vih~ vipiziffl, (9.4)
then yields the eddy size estimate

A~ pi(gR/a) = pyi. 9.5)

The eddy turnover time t is estimated by balancing the time derivative with the
parallel streaming term,

1/t~ dh/dt ~vjb - Vgh ~v;h/qR, (9.6)
giving
T~qR/v;~1/o!. 9.7)
The turbulent diffusivity Dy ~ A%/t is then estimated to be
Dur, ~ (qR/a)pivi/a~ (qR/a)Dyp. (9.8)

The preceding crude estimate is an aspect ratio larger than gyroBohm. More details
with comparisons to ion temperature gradient simulation results are in Barnes et al.
(2011). The turbulent levels found by Parra & Barnes (2015a) for ITG momentum
diffusivity are also consistent with (9.8).

Nonlinear beating deposits some of the turbulent energy by an inverse cascade into
a temporally varying axisymmetric radial mode with a sheared toroidal E x B drift
velocity referred to as a zonal flow. To reach the residual zonal flow level evaluated by
Rosenbluth & Hinton (1998), the poloidal dependence of the initial condition gives
rise to a geodesic acoustic mode (GAM) that damps away. Sugama & Watanabe
(2006) were able to describe this transient behaviour as it damped to the steady
state zonal flow level. The residual zonal flow potential has no poloidal variation
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so no further Landau damping occurs once the transient geodesic acoustic mode
(GAM) response to this mode coupling has Landau damped away. The zonal flow
shear suppresses turbulence and is responsible for the nonlinear Dimits upshift from
the linear threshold for the onset of the ion temperature gradient (ITG) mode. The
Rosenbluth & Hinton (1998) zonal flow test demonstrated the need for simulations
to properly retain ion polarization effects associated with the magnetic drifts. They
did this by solving the linear axisymmetric initial value problem associated with the
transit average of the gyrokinetic equation

ah ~  Zefy 3(P)x
= b CVh=2M .
o T (Wb +v) T ot

9.9)

By specifying poloidally varying gyroaveraged initial conditions they proved that the
time asymptotic solution did not damp to zero, but rather relaxed to a residual zonal
flow level of

& =d(t=0)/(1+1.64¢°/£"?), (9.10)
when k,p,, < 1 and ¢ <« 1. Subsequent work considered the role of collisions
(Hinton & Rosenbluth 1999; Xiao, Catto & Molvig 2007), shaping (Xiao & Catto
2006), arbitrary k, p (Xiao et al. 2007; Monreal et al. 2016), electromagnetic effects
(Catto, Parra & Pusztai 2017) and extensions to stellarators (Monreal et al. 2016
and references therein). Xiao’s work is briefly summarized in Xiao, Catto & Dorland

(2007), where comparisons with numerical simulations are presented.
The next section generalizes gyrokinetics to retain electromagnetic effects.

10. Electromagnetic effects in the local gyrokinetic equation

Electromagnetic effects in a local §f gyrokinetic description are most conveniently
handled by writing the fluctuating magnetic field B as

B=V x @A +Ab)~V xA +VA xb, (10.1)
then relating its parallel component to the fluctuating vector potential A by
b-B=Bj~b -V xA,. (10.2)

In this way, A, and B, turn out to be the two useful dependent variables needed to
describe electromagnetic effects. The fluctuating Ampere’s law

V x (VA x b+ Byb) = (47 /c) X Ze / d*vvf, (10.3)
then gives the parallel component to be
V2A >~ —(4n/c) X Ze / o, f, (10.4)
and the perpendicular component as

VB, xb=4n/c)XZe / d*vv, f. (10.5)
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The gyrokinetic equation now contains
[E+c'vx (B+B)]-V, [, E), (10.6)
with
E=—-V(® +®)—c A/t (10.7)

The V,E=Muv term is easier to treat so is considered first. Removing the adiabatic
piece as before leaves the gyroaverage of the fluctuating terms

X 0 /- ~ 10

D= (6 TA)) - o514, (10.8)
namely,

c{R)r=c(®)g — v(A))g — (VL - A (10.9)

The gyroaverage (¥)z can be evaluated when @, A and B are proportional to e*”.
Recalling (e *), = Jo(k,v,/$2) and using (v, e **)r = ik;'v k x bJ,(k v, /R2)

gives
(vL-é)R:kllvlJl(kLvl/Q)E’H(R, t), (1010)

where B, ~ib -k x A |- Then using ¥ = Xy jxe* " results in the Fourier transform
expression

(Fivr =Jotk v /D[P R, 1) — ¢ 'vjA (R, )] + ¢ 'k v Ji(kovy /2)By(R, 1), (10.11)

where @ (R, 1), ;1” (R, t) and B” (R, 1) are proportional to e*® and their k, subscripts
are suppressed for notational simplicity. To verify that the k v, /2 < 1 limit is
recovered correctly for the B; term as well as for & — ¢ 'vA;, use v, = (dv/dp) x b
to integrate by parts, then use v, - VeA = —$20A /d¢|r to find

(v A= <b XU aaii:; R>R = —é(m . VR‘i‘l xb-vi)p m —Uzig”-
(10.12)
The preceding results imply the orderings
c® ~ v Ay~ vipB) ~ kLpiA (10.13)
giving
Aj~pBy~kipA, . (10.14)
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with v, and v; the electron and ion thermal speeds. Recalling Ze® T ~ 1/k,a, c® ~
VA gives

B /B~kiA|/B~ p./a, (10.15)
and
By/B~k.A /B~1/k,a. (10.16)

Consequently, electron dynamics appears to allow electromagnetic effects to enter at
very small levels. However, typically only the transit average response of the electrons
matters, bringing the electron parallel current down to the ion level. As a result, the
parallel Ampere’s law gives

A ~ (4w /) Zevf [fu, (10.17)

which for k, p; yields viﬁn Jc~ B®, where B is the plasma over magnetic pressure,
B =8nnT/B*. The transit averaged electron response from 3dA;/dt competes with the

electrostatic potential terms in quasineutrality when a)AH Jkjc ~ @. Combining these
two estimates for w ~ w, ~k, p;v;/a and k; ~ gR, suggests that finite 8 effects due to
shear Alfvén effects enter when

B =8mnT/B*~a/qR < 1. (10.18)

Within other geometrical factors it is very roughly the B value at which trapped
electron modes make the transition to kinetic ballooning modes (Pueschel, Kammerer
& Jenko 2008).

To estimate when B” enters, the perpendicular Ampere’s law is used by noting the
ion response is what matters in the perpendicular current because of the gyroaverage
contained in the integral over velocity space. As a result, it gives

ki By ~ (4mii;/ ) Zevf [fu. (10.19)

Then estimating BH/B ~ 1/kya~ f/fy yields the much higher plasma over magnetic
pressure of

B =8nnT/B*~1, (10.20)

as the value of 8 when compressional Alfvén effects should be kept.

The V¥, = —(Mc/Ze)R*V¢ term must also be evaluated. However, ¥ — ¥ + &
with ¥ = —R2V¢ -A must be used in ¥, when forming V. so that 3/t cancels the
—c7'9A/dt in the fluctuating electric field term, leading to the consideration of just

R*(V® —c'vxB)-V¢. (10.21)
Employing

RvubxB-Vi = —BvVA -Bx Vy
—B ™y VA, - (IB — R*B*V¢{) ~v,0A, /3¢, (10.22)
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with the b - VA, term ignored as small, gives
2w - d (= Uiy
RIVE —clubx B Ve = (q) - —A”> . (10.23)
c

In addition,
(v xBr=(vL x(VxA4)), =(VA-v.), — (v, - (VA), = (VA-v,),, (10.24)
where the gyroaverage of v, - VA =v,-VgA =—$204 /d¢|r leaves only

0 v

1 9 -
(v, x B+ V)~ (A-v)g> RzzLJ‘ (kle/.Q)&B” (R,n. (10.25)

R3¢
As a result, (x)r is again obtained, with

(R*(V® —c¢'v x B) - V{)r = 3(X)r/3¢. (10.26)
Therefore, the right side of the electromagnetic gyrokinetic equation is found to be

PP Zefu 0(X)r (X )r Ofu
(g = Ci{h}r + T ¢ TR (10.27)

On the left side of the gyrokinetic equation the electromagnetic nonlinear term must
be evaluated, namely

. A . 9A
2((-eVé - +vxB)-V.R) =bx(cVd - -V@-v)+v-VA
R

R
~ b x Vi(cd — vjA; — v, - A)p, (10.28)

where the dA/dt is small and (v - VA)r =0. As a result, (v, e **), =ik 'v k x bJ,
gives

(Ze/M)([—cV D — dA/3t + v x Bl - V,R)g ~ cB~'b x V(7 )& (10.29)

Using the preceding results, the 8f = f form for the nonlinear electromagnetic
gyrokinetic equation for the non-adiabatic response is found to be

h ok 7 ~ Zefy 0{x
(hr = 87+(U||b+vD—i—(vX)R).VRh:<C1{h}>R+ fu O (X )R
! T ot
el (10.30)
dc Y
with
vp=vy +cB b x Vi@ (10.31)
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and

(v, )r=cB'b x Vi(X)r=icB'b x Zpk(Xi)re™X. (10.32)

Consequently, to recover the electromagnetic form from the electrostatic form, (P)g
is simply replaced by (X )x-

Employing h= 2',‘,(_,(/;1,(_15ei("i‘kl"’e and ¥ = Xy )Zk/e‘k/i" the nonlinear term becomes
(v )x - Veh=cB™'b - [Zpk x k' (§i) why_i ]e K. (10.33)
Then the Fourier transformed version of the electromagnetic gyrokinetic equation is
ah -
Tk +yb - Vel + ik - vphy + b Tk, x k LX) RPe—ie' ]
- Zef XKR .7
=(Ci{lu})r + TM [ ” - +1wI<Xk>R:| , (10.34)

with h= SihyekiR, gkir = e dtikC—a) o =, Vi + k, V(¢ — q9), and b - k| x
k, =Bk, k, — kyk,).
Only the k x b component of the perpendicular Ampere’s law,

k2 By = (47i/c) ¥ Zek x b - / (v e Py by, (10.35)

matters, since the adiabatic response does not contribute and both sides of the k,
component vanish because (k; -v,e7**?), =0 and VB, x b~iBk x b.

Once again the electromagnetic correction from the neoclassical response l_ap =
}_zp(x//, E, i, o) does not matter. The fluctuating B term is proportional to

vxB-V,u = B 'vyv, -b x (V xA)
~ Bilv”(vj_ . VA” —b. Vé . DJ_) :Bil'UHUJ_ . VA” (1036)
and is negligible since b+ VA-wv, is small and (v, - V;\H)R =0.

Simulations often use v, rather than E or E, as one of the velocity space variables.
In such cases, using M vﬁ /2=FE — Ze® — uB, the replacement

Vih— Vih — (Mv)) ™ (ZeV z® + 1V xB)dh/dv, (10.37)
displays the mirror force. In addition, flux tube simulations use the spatial variables
wa

a=¢—q(y)oy, D), (10.38)
and ¥ or their gyrokinetic counterparts, where now
1) (7 oo o Y
O, 0)=—= [ dO'/[R°(y, 9)B(Y, ¥") - VI']. (10.39)
q(¥) Jo
The poloidal angle ¥ gives the position along the magnetic field. Notice that for this
choice
oo
B:-Va=B- V{— +B- v 22— 0, (10.40)
a¢ v
as desired.
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11. Gyrokinetics with flow

The treatment so far retains some flow features by keeping ¢B~'b x Vz® in
(vg)g. In particular, for sonic flow @ is known to be a flux function to lowest order
(Hinton & Wong 1985; Catto, Bernstein & Tessarotto 1987). The order used here
is subsonic, but even for diamagnetic flows @ = @ (i) to lowest order (Parra et al.
2012). Consequently, B x Vi = IB — R*B>*V{ can be employed to write the small
electric drift

(Ve)r=cB™'b x V& = (cIB~'0®/0y)b — (cdD/0Y)R*V, (11.1)
as the difference between two B/B, larger flows, one parallel and the other toroidal.
As a result, the left side of the gyrokinetic equation can be written as

oh - -
(az + 2.R*V¢ - VRh> + [y — IB~'2)b + vy + (v,)z] - Vih, (11.2)

with the toroidal rotation frequency 2, = £2,(y) defined as

Q. =—cdD /Y (11.3)
and the fluctuating electric drift
(v)r =B 'b x Vg(®). (11.4)
The combination
Dh/Dt = dh/dt + Q.R*VE - Vih (11.5)

is the rotating frame time derivative, and redefining o =¢ — g(¥)0(yr, ¥) — 2, (Y)t
gives Dh/Dt = 0h/0t|,.

The preceding suggests adding a parallel flow to the Maxwellian to make it a
drifting Maxwellian by introducing

wy=v, — IB~'%2,, (11.6)

then in the toroidally rotating frame the curvature drift will include a Coriolis drift as
well, since

vjR27'b x (b - Vb) =~ (Wi + 2w 2,IB")27'b x (b - Vb), (11.7)

with b - Vb~ —V/{nR, as in Parra et al. (2011). Continuing to follow their treatment,
but using energy rather than parallel velocity as a variable, the energy in the rotating
frame is defined as

U=M[(—IB' Q) +v11/2+Zed —MQR*/2~E —MvIB~'2,, (11.8)
where M2} (R* — I’B™%) /2T = M.Q?(RzB,%)/ZTB2 < L
To retain flow with a parallel drifting Maxwellian the replacement E — U is made

in f, to obtain

£ = n(r)M/2xT () e 0T (11.9)
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and
f=£2W, U) +h, (11.10)

with
U=M[(vy—IB'2:)* +v11/2+ Ze® — MQR*/2~E — M IB~'2,. (11.11)

Defining the parallel drifting Maxwellian

oy, U) = FO = n(y)[M/2nT () 2eV/T®)
~ n(M/ZJTT)3/267M”2/27+Mm:vH/TB’ (11.12)

where M.Q(IZRZBIZ,/ZTB2 « 1 is assumed, then

W, O) = ;7 = fu, E)eM /e, (11.13)
Observing
FE (W, U) =, E)MIW0MITE, (11.14)

with 2,.(Y. — ¥) = $2, and [v;/B a slow function of space, then a new drive term
due to flow shear arises when f° is formed since to lowest order

FEIfE = fuf + M(Ivy/B)[2,(¥.) [ T(W)] = fu/f- + (MIv,/B)3($2,/T) /3. (11.15)

The preceding implies that when toroidal flow is retained and the gyrokinetic
equation is written in the toroidally rotating frame for M$2;R*B,/2TB* < 1, the result
is
Zefyi 3(X)r

T ot

Dh - 5
Dr + Wb+ vy + (EE>R) « Vrh = (Ci{h})r +

_ 0k <W+AWE)%> . (11.16)
3¢ \ 9y TB 3y
with
Sf=f=h— (Zed)T)fS (11.17)
and

13fS 1dp Zedd

= 11.18
i dy  pdy Ty ( .

Mwi+v) 5| 18T
2T 2| Toy
The preceding form for the gyrokinetic equation requires 1> £2.R/v; > BS/B, > § to
be valid.
Local gyrokinetic simulations typically solve the gyrokinetic and Maxwell system of
equations on a flux tube by specifying p, T and 0® /0y and their radial derivatives.

Global simulations specify more involved profiles by linking local flux tubes together.
As a result, boundary conditions are more complicated for global runs.
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Many more details on transforming the gyrokinetic equation to the toroidally
rotating frame are given in Parra et al. (2011) where the derivation is performed to
higher order to treat intrinsic rotation. Here the purpose is to give some insight into
how subsonic toroidal rotation due to a momentum source can be treated when it spins
the plasma above the diamagnetic level. In addition, the preceding is a gyrokinetic
equation consistent with the important symmetry properties proven and illustrated in
Parra, Barnes & Peeters (2011) and Sugama et al. (2011). These symmetry properties
are discussed in appendix A in a more heuristic manner. The consideration of sonic
flows results in some simplifications (Able et al. 2013), but requires a strong source
of momentum input. Even when a sonic impurity species is present, a full treatment
of momentum transport and profile evolution is required for the non-sonic species to
obtain the correct rotation frequency.

12. When are higher-order gyrokinetic variables required?

Local and global simulations are unable to spatially and temporally evolve radial
profiles self-consistently. They must be run for specified background profiles (value
and derivative) of the plasma density, ion and electron temperatures and radial
electric field. If it were not for the lowest flux function that needs to be determined
in the electrostatic potential, evolving profiles could be done by linking multiple
flux tube simulations using just the conservation of number and energy equations as
only particle and heat transport would need to be determined. However, to evaluate
the full electrostatic potential requires evaluating the radial flux of toroidal angular
momentum in the vicinity of each flux surface and then linking and evolving these
surfaces using conservation of toroidal angular momentum. To evaluate the radial
flux of toroidal angular momentum and toroidal angular momentum conservation
to the requisite order requires a higher-order gyrokinetic description as realized by
Catto et al. (2008), demonstrated in detail by Parra & Catto (2008, 2009, 2010a) and
refined further by Parra et al. (2011) and Parra et al. (2012). The goal here is the
far less ambitious one of demonstrating why higher-order effects are required.

To begin the task, recall that as profiles evolve due to momentum transport, the
ambipolarity condition (J - Vi) = 0 must be satisfied on each flux surface, as the
displacement current can normally be ignored. Any error resulting in (J « VY )enor #
0 acts as a torque on the plasma that results in an unphysical momentum transport
satisfying

c 9, 2 3 —(T.
W@V YM(R°V¢ -/d vfov e V) =(J - VY )gror 70 (12.1)

in the steady state (Parra & Catto 2010b). Letting XM (R*V¢ - [ dcufov - Vi) ~
RZB‘,,H@ and (J + VY )ewor =2 RB,J™, implies that the ambipolarity error must be small
enough that it and the off-diagonal stress tensor I7,. satisfy d11,./dr > ¢~ 'B,J*™ or

J7™ Jenv; L I, ppi/nTa. (12.2)
Turbulent momentum transport implies
I, ~ Dywd(MnV;)/or, (12.3)

where the toroidal flow is diamagnetic with V, ~v;0,;/a. As a result,

I, /nT ~ (pyi/a)* (pi/a), (12.4)
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and an unphysical torque will be applied by a very small error in the stress tensor or
radial current density of

T3 fenvi ~ (/@) (pi/a). (12.5)

In addition, a direct evaluation of the off-diagonal stress requires a very high-order
evaluation of the fluctuating distribution function

h/fu ~ e InT ~ (0,1/a)*(pi/ @) (12.6)

Any error in its evaluation will also act as an unphysical torque (Parra & Catto
2010¢). Such an accurate evaluation of % seems unrealistic since the gyrokinetic
equation derived herein only gives h/fy ~Ze® /T ~1/k,a~ p;/a, while to next-order
gyrokinetics gives iz/fM ~ pippi/a*. Fortunately, l~1/fM ~ pippi/a* is sufficient when
moments of the exact Fokker—Planck equation are employed to pick up another
order in p,/a, as anticipated by Catto et al. (2008) and confirmed more carefully
and rigorously by Parra & Catto (2008, 2010a). Moments of the full Fokker—Planck
equation are routinely employed in neoclassical transport to avoid having to calculate
distribution functions to higher order in the gyroradius expansion. And, of course, are
the basis of all evaluations of short and long mean free path transport.

The simplest example is radial particle transport as mentioned in the ambipolarity
discussion. It is most conveniently evaluated using the coarse grain average of the
R?V¢ component of the electron momentum conservation to find the lowest-order
result

(n V- Vi) = (c/e) <eﬁg8<15/8{ +mR2V§-/d3vvCe,»{fe}> , (12.7)

c8

with C,; the electron—ion collision operator and m the electron mass. For illustrative
purposes only electrostatics need be considered. Only the fluctuating electron density
n, and potential are required to evaluate the turbulent flux. A direct evaluation of
(f d*uf,v - V). would require a more accurate f, as the lowest-order neoclassical
contribution to f, is odd in v, the leading classical part of f, also depends on vV
and thereby results in a vanishing collisional contribution, while (ﬁ,)cg = 0 for the
turbulent contribution implying that the turbulent correction to (f,)., = f. is required.
As b -V is higher order, the turbulent particle flux is simply

(710D /DC) g </d3v]gc3—'b X VP - V¢> . (12.8)

cg

Similarly, to evaluate radial heat fluxes the R2V¢ - vv?/2 moment of the full Fokker—
Planck equation is also needed. In this case, the lowest-order expression is

Mv? 5T,
(@) Vi)eg = </d3vﬁ~( > —2’) v-wf>

5c [ 9T, M 3 2
= Apy)) +5 & V;-/d V(M — ST)Ci{f}) egr (12.9)
cg

27¢ \Pa¢
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where p; = M; [ d*vv*f/3 = i, T; + i, T; and (5;0T;/0¢)e = (Tj/1))(7;0P;/C) s With
C; = C; for the ions and C, =C,, + C,; for the electrons. Again, this moment of the
full kinetic equation obviates the need to evaluate f; to very high order.

The electron particle flux, and electron and ion heat fluxes, require only the
lowest-order solutions of the §f =f gyrokinetic equation for the fluctuations and the
lowest-order drift kinetic equation for the collisional modification to the Maxwellian
background. B B

The lowest-order flux function @ >~ @ (yr) is required to complete the transport
description and determine the complete ion flow and flow shear at a flux surface.
It enters particle and heat fluxes but must be evaluated by solving the conservation
of toroidal angular momentum equation. The moment procedure becomes more
involved for the evaluation of the radial flux of toroidal angular momentum both
because a stress tensor is involved and higher-order gyrokinetic variables are required.
Even with these complications the moment procedure is essential as it only requires
the next-order modifications of gyrokinetics. At present, the next order gyrokinetic
treatment combined with a moment approach seems to be the only practical and
realistic way to treat momentum transport and profile evolution. Details are beyond
the scope of a gyrokinetic tutorial as the mathematics is rather involved since
the R?V¢ - vv and R*V{ - vvv moments of the full Fokker—Planck equation are
required (Parra & Catto 2010b,c), as well as the associated complexity of having
to employ higher-order gyrokinetic variables. Nearly all of the required expressions
were evaluated by Parra & Catto (2008, 2009, 2010b,c); Parra et al. (2011); Parra
et al. (2012); Parra & Barnes (2015a,b); and Calvo & Parra (2015); however, the
contribution from global features of the radial turbulence profile due to eddy length
scale over unperturbed radial scale length corrections remains an active area of
research (Parra & Barnes 2015a,b) because of the more complicated boundary
conditions needed for such a flux tube simulation.

13. Discussion and prospects

This tutorial attempts to summarize gyrokinetics in a manner accessible to
interested magnetic fusion practitioners who are not gyrokinetic experts. The orderings
appropriate for gyrokinetics and benefits of taking advantage of separation of scale
between the slow temporal and spatial background behaviour and the much shorter
scales and more rapid time variation of the turbulent fluctuations are highlighted.
Then the gyrokinetic equation is derived in its simplest electrostatic forms. The
scale separation assumption allows the adiabatic response of each species to be
removed from the local gyrokinetic equation for the non-adiabatic response once a
lowest-order Maxwellian is shown to be valid because of the existence of pressure
or flux surfaces in a tokamak. The electromagnetic and flow modifications to the
gyrokinetic equation for the non-adiabatic response are also obtained, along with a
brief mention of the stellarator form for the gyrokinetic equation. The discussions
stress the separate intrinsic ambipolarity of turbulent and collisional particle transport
in an axisymmetric tokamak. Moreover, the development demonstrates that both
turbulent and collisional heat fluxes follow from lowest-order gyrokinetic treatments.
The inadequacy of lowest-order gyrokinetics only becomes evident when momentum
transport and profile evolution need to be treated in a tokamak to determine the
unknown flux function in the electrostatic potential. The need to use great care in
such cases to avoid introducing errors that torque the plasma is stressed. The prospects
of solving a full hybrid fluid (using conservation of number, momentum, and energy
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equations) and next-order gyrokinetic equation to provide closure is stressed without
delving into the challenging and complex formulation that is required. At present this
seems to be the most promising path for solving this important problem and using
the results to further optimize tokamak performance.

The lowest-order flux function @ >~ @ (yr) is required to complete the transport
description and determine the complete ion flow and flow shear at a flux surface.
It is evaluated by solving the conservation of toroidal angular momentum equation.
The moment procedure becomes more involved for the evaluation of the radial
flux of toroidal angular momentum both because a stress tensor is involved and
higher-order gyrokinetic variables are required. Even with these complications the
moment procedure is essential as it only requires the next-order modifications of
gyrokinetics. In spite of these subtleties the procedure is more tractable than a full
f Hamiltonian method that requires a third-order Hamiltonian — that is, the lowest
Hamiltonian plus all corrections up to and including (p/a)® (Parra & Calvo 2011;
Parra et al. 2012; Calvo & Parra 2012). At present only the second-order Hamiltonian
has been evaluated (Parra & Calvo 2011; Calvo & Parra 2015). Therefore, the
next-order gyrokinetic treatment combined with a moment approach seems the only
practical and realistic way to treat momentum transport and profile evolution.
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Appendix A. Symmetry properties of the gyrokinetic equation

Parra et al. (2011) and Sugama et al. (2011) have proven that the gyrokinetic
equation has important symmetry properties. To simplify the demonstration only an
up—down mirror reflected symmetric tokamak is considered for the more heuristic
treatment sketched here. For these up—down reflected symmetry considerations the Z
axis is the axis of rotation and upon reflection Z— —Z, VZ— —VZ and Vi - -V,
while B, =V ¢ x Vi is unchanged. The low field side of the equatorial plane is taken
to be ¥ =0. Up-down symmetry means that in the absence of momentum sources or
sinks, there can be no radial transport of toroidal angular momentum associated with
the lowest-order gyrokinetic equation.

Using B=Bb=IV{+ V¢ x VY =Va x Vi with ¢, a =¢ —q()0 (¢, ¥) and ¢
as the three spatial variables, and considering the linearized electrostatic gyrokinetic
equation at first, then the transformations vy — —v; and Vi — —V} leave the parallel
streaming term, as well as the time derivative and collision terms on the left side
unchanged. The remaining linear terms are the magnetic drifts

Vih vy 2l 7 \% o Al

Uy Vel =y« Walp‘l‘vM' a@+vM' Olaa- (AD)

As the magnetic drift is predominately down (in the —VZ direction), up—down
symmetry (Z — —Z, ¥ — —v') means that upon coordinate reflection the magnetic
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drift becomes predominately in the VZ direction with Vi@ — —V#. As a result,
vy - VO — vy - VO, but vy - VY — —vy - Viy. Moreover, the toroidal drift
cannot change direction so vy « Vo — vy + Va. Therefore, for perturbations the
transformations 9/0¥ — —d/0¥ or ky, — —ky, 0/0® — 9/00), and 9/da — 0/dc or
ko — ko, do not change the magnetic drift terms and thereby the linearized electrostatic
gyrokinetic equation.

When the nonlinear term

A(P)x 0h  3(P)g Oh
doa 0¥ ¥ da

c

(v)r - Vieh = 7 {32

A(DP)g 0h (D) R
da 90 90 da

} (A2)

is retained, additional complications arise. As B’ is an even function of ¥, a sign
change will occur in the first nonlinear term. This observation suggests using the
additional transformations 7 — —h and (@)g — —(P)g in all terms of the gyrokinetic
equation. Then using B - Va x V¥ = R™>Vy - VI — (dg/dy)B - V¥, the second
nonlinear term transforms properly as well. The third and final nonlinear term appears
to be a problem; however, it is an order smaller since it can be rewritten as

+B-Va x V9

A(P)g 0h  3(D)r R

+IB-VY - _ =
W IO 90 v

A(P)g 0h  3(D)g Oh
W 90 9O v

NP, = 0h :
= B-Vh— —B .V (D), (A3)
ov ov

B-Vy

where cIB‘la(qs)R/ 0¥ < |yy| implies that the first term is an order smaller than the
parallel streaming term, while in the second term the parallel electric field is small
compared to the perpendicular electric field.

The preceding symmetry properties mean that if ft(kw, ke, 9, E, n, o, t) and
(®)r(ky, ko, ¥, 1) with o = v/|yj| are solutions to the nonlinear electrostatic
gyrokinetic equation then so are —fz(—k(/,, k,, 0, E, uw,—o,t) and —(@)R(—kw, ko, U, 1).
These symmetry properties are then easily extended to the nonlinear electromagnetic
gyrokinetic equation by noting that when the solutions (A)gr(ky, k¢, ¥, ) and
(B))r(ky, ky, O, 1) are retained, (A)gr(—ky, ky, O, 1) and —(B))r(—ky, ka, O, 1)
are the corresponding solutions. Finally, when subsonic rotation is much stronger
than the diamagnetic level, the additional symmetry properties in the rotating frame
of 2, - —$2, and 082, /9y — —382, /0y enter, where v is replaced by w.

The direction of the toroidal magnetic field is unimportant for the preceding
symmetry argument as the full gyrokinetic equation posses another simpler symmetry
property of just vy — —v; (or wy — —w)) and [ — —I.
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