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Marine micro-organisms must cope with complex flow patterns and even turbulence as
they navigate the ocean. To survive they must avoid predation and find efficient energy
sources. A major difficulty in analysing possible survival strategies is that the time series
of environmental cues in nonlinear flow is complex and that it depends on the decisions
taken by the organism. One way of determining and evaluating optimal strategies is
reinforcement learning. In a proof-of-principle study, Colabrese et al. (Phys. Rev. Lett.,
vol. 118, 2017, 158004) used this method to find out how a micro-swimmer in a vortex
flow can navigate towards the surface as quickly as possible, given a fixed swimming
speed. The swimmer measured its instantaneous swimming direction and the local flow
vorticity in the laboratory frame, and reacted to these cues by swimming either left, right,
up or down. However, usually a motile micro-organism measures the local flow rather
than global information, and it can only react in relation to the local flow because, in
general, it cannot access global information (such as up or down in the laboratory frame).
Here we analyse optimal strategies with local signals and actions that do not refer to
the laboratory frame. We demonstrate that symmetry breaking is required to find such
strategies. Using reinforcement learning, we analyse the emerging strategies for different
sets of environmental cues that micro-organisms are known to measure.

Key words: micro-organism dynamics, active matter, machine learning

1. Introduction

Active micro-organisms are ubiquitous in marine environments. They can adjust their
motion in response to hydrodynamic signals. It is thought micro-organisms evolved
these mechanisms to survive in the ocean. For example, when planktonic copepods or
protists sense strong fluid strains, they jump (Kiørboe & Visser 1999) or change their
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swimming direction (Jakobsen 2001) to avoid potential predators or to attack prey. To
avoid wind-induced water turbulence near the ocean surface, marine micro-organisms
migrate downwards, in response to turbulent strains, and return to the surface after the
turbulence subsides (Incze et al. 2001; Maar et al. 2006). In this case, the actions are less
vigorous, involving smaller accelerations. Copepods, for example, can adjust their speed
and direction of vertical migration by reorientation in response to hydrodynamic signals
(Strickler & Bal 1973). Other organisms behave in similar ways. Veliger larvae are thought
to respond to large fluid accelerations or strains (Fuchs et al. 2013) to avoid local turbulence
(Barile, Stoner & Young 1994). Oyster larvae increase their upward swimming speed but
also perform rapid dives when the intensity of turbulence increases (Fuchs et al. 2015).
Rapid morphology changes allow dinoflagellates to diversify their direction of migration
in intense turbulence, probably to enhance the chance of survival of the population.
Sometimes these organisms form long chains to increase their swimming speeds (Fraga
1989; Sullivan et al. 2003) to increase their speed of vertical migration (Lovecchio et al.
2019).

How did these strategies evolve? This question requires answers on different levels.
From an evolutionary perspective, what is the cost or reward function to be optimised? Is
it more important to avoid predation or to find food in an efficient way? Organisms like
copepods or larvae migrate upward to the water surface to feed (Hays 2003), but migrate
downward during the day or in the presence of strong turbulence (Incze et al. 2001; Barile
et al. 1994), to hide in darkness from foraging predators (Bollens & Frost 1989) or to avoid
turbulence because it is easier to detect a predator in a quiescent fluid (Visser 2001; Gilbert
& Buskey 2005).

To pursue these questions starting from a mechanistic model for a micro-swimmer in a
complex flow poses several challenges, not least concerning the fluid mechanics of small
swimming organisms. First of all, which signals can an active micro-organism measure,
and how? This is quite well understood (Visser 2010). Plankton as small as tens of microns
(Martens et al. 2015) can detect hydrodynamic signals in the form of fluid disturbances
using sensory hairs such as setae or cilia. Planktonic copepods, for example, use arrays of
setae to detect small velocity differences to the ambient flow. From the bending patterns
of their setae, these organisms can also distinguish their relative angular velocity to the
fluid, as well as its strain rate (Kiørboe, Saiz & Visser 1999). Ciliates (Jakobsen 2001)
and rotifers (Kirk & Gilbert 1988) use similar mechanisms to detect predators. Also,
invertebrate larvae can sense fluid strains by the deformation of cilia (Mackie, Singla &
Thiriot-Quievreux 1976; Fuchs et al. 2015).

Second, given a reward function to optimise, which environmental signals are the most
important? As mentioned above, fluid strains may indicate the presence of predators
(Kiørboe & Visser 1999), but the fluid-velocity gradients caused by a predator may be
masked by local turbulent fluctuations (Visser 2001; Gilbert & Buskey 2005). Moreover,
a sinking organism may measure its settling velocity to infer the direction of gravity. This
may allow the organism to reorient to navigate vertically (Strickler & Bal 1973). Finally,
fluid-velocity fluctuations generated by flow around obstacles on the sea floor may indicate
appropriate habitats for larval organisms (Fuchs et al. 2015).

Third, given certain environmental cues, what should the swimmer do? It should act
rationally (Visser 2010), because the strategies evolved under natural selection must benefit
the survival of the organism. Different species developed different strategies. Copepods
tend to jump when they sense a fluid disturbance caused by a predator (Kiørboe et al.
1999) or they may adjust their cruising speeds in response to a changing turbulence
intensity (Michalec, Souissi & Holzner 2015). Sometimes, a copepod may change not only
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its swimming speed but also its swimming direction (Kiørboe et al. 2010). When oyster
larvae sense a change in turbulent intensity close to the seafloor, they dive and attach to the
floor (Fuchs et al. 2013). Phytoplankton can modulate the efficiency of vertical migration
(Durham et al. 2013; Gustavsson et al. 2016) in response to turbulence, by changing their
cellular morphology (Sengupta, Carrara & Stocker 2017) or forming cell chains (Park et al.
2001; Lovecchio et al. 2019).

Fourth, if one tracks a micro-organism in a complex or turbulent flow, how should one
interpret its actions? The challenge is that the cues may change in an apparently random
fashion as the organism explores the flow. In general, it is difficult to model the time
sequence of environmental cues because it depends on the actions the swimmer chooses
to take. In addition, what looks like a good move at any moment may turn out not to be
optimal in the long run.

In summary, the question is how to find optimal strategies to optimise a given reward
for a micro-swimmer in a complex flow and how to understand the mechanisms that
determine the optimal strategy. In a recent proof-of-principle study, Colabrese et al.
(2017) demonstrated that reinforcement learning is an efficient way to address this
question. The authors used the Q-learning algorithm (Watkins & Dayan 1992; Sutton
& Barto 1998; Mehlig 2021) to investigate strategies for efficient vertical migration of
a gyrotactic micro-swimmer. The point is that fluid-velocity gradients tend to re-orient
the swimmer, which make it difficult to find the optimal path to the surface. Colabrese
et al. (2017) analysed different swimming strategies for an idealised model of a swimmer
in a two-dimensional steady vortex flow. The swimmer measured the local vorticity of
the flow, whether it was positive, negative or close to zero, and whether the current
swimming direction pointed left, right, up or down in the laboratory frame. The possible
actions were to swim left, right, up or down. Colabrese et al. (2017) demonstrated that
smart swimmers can avoid being trapped in vortices and that they can take advantage of
upwelling flows to accelerate upward navigation. This work motivated some follow-up
studies (Gustavsson et al. 2017; Colabrese et al. 2018; Alageshan et al. 2020; Qiu et al.
2020), which investigated different flows as well as different actions. In all of these studies,
some signals and actions referred to the laboratory frame, so that the swimmer had, in
effect, access to a map, which facilitated navigation. The navigation problems considered
in recent studies (Biferale et al. 2019; Schneider & Stark 2019; Gunnarson et al. 2021;
Muiños-Landin et al. 2021) also used information relating to a fixed reference frame.

Motile micro-organisms in a complex flow, by contrast, do not carry a map. They can
only access limited information regarding the local flow field. By detecting the velocity
difference to the surrounding flow, a micro-swimmer can estimate the local fluid-velocity
gradients or its rotation relative to that of the local fluid. In some cases, a swimmer might
have access to global information. During day time, it can, for instance, follow the light to
find the way to the surface (phototaxis) (Cohen & Forward 2002). This does not work at
night or under conditions where it is hard to determine the light direction. The question is
therefore how a micro-swimmer can successfully navigate a complex flow given that it has
only local information in its frame of reference. The answer to this question depends on
the reward function and, in particular, on its symmetries. We expect that a task that does
not break any symmetry of the problem is easiest to learn, such as escaping from a certain
point as far as possible in a given time with a given swimming speed. Efficient upward
migration, by contrast, may be more difficult to learn because it requires that the problem
does not have vertical reflection symmetry.

In this paper, we use reinforcement learning to find efficient strategies for vertical
migration using only local signals and local actions. We use a highly idealised model
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Figure 1. Sketch of an elongated micro-swimmer in the x–y plane, which shows the velocities and angular
velocities that determine the dynamics of the micro-swimmer (see (2.1)).

for a motile micro-organism and its hydrodynamic sensing capabilities. With Q-learning,
we search for optimal strategies for fast vertical migration in a two-dimensional steady
Taylor–Green vortex flow (Taylor 1923), which allows for direct comparison with
Colabrese et al. (2017), and in a steady two-dimensional random velocity field. We
investigate how symmetry breaking allows the swimmer to distinguish different directions
(which is necessary to swim upwards), which highlights significant differences between
navigation using local signals in the frame of reference of the swimmer and signals in the
laboratory frame (Colabrese et al. 2017, 2018; Gustavsson et al. 2017; Biferale et al. 2019;
Schneider & Stark 2019; Alageshan et al. 2020; Gunnarson et al. 2021; Muiños-Landin
et al. 2021). We find that settling owing to gravity allows the swimmers to find efficient
strategies for vertical migration, because the settling breaks vertical reflection symmetry.
We show that the swimmers emulate more slender ones through adaptive steering, which
enables them to preferentially sample upwelling regions of the flow and thus accelerate
upward migration.

2. Methods

2.1. Model
Swimming gaits and speeds of motile micro-organisms vary substantially (Jiang, Osborn
& Meneveau 2002; Fuchs & Gerbi 2016). Here we do not refer to any particular
plankton species or to any particular mode of propulsion. Instead, we assume that the
micro-swimmer cruises with a constant translational speed vs (Durham, Kessler & Stocker
2009; Durham et al. 2013; Gustavsson et al. 2016; Lovecchio et al. 2019). Our idealised
micro-swimmer can choose to rotate with angular velocity ωs. We model the swimmer as
an elongated spheroid with aspect ratio λ = c/a and symmetry axis n (figure 1). In § 4, we
discuss potential limitations of this highly idealised model.

For our analysis, we use model parameters typical for copepods in the ocean (table 1).
Given the parameters in table 1, we infer that the Reynolds number Rep = 2cvs/ν and
the Stokes number St = τp/τf are both small. Here, ν is the kinematic viscosity, τp is the
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Range Value used Unit

Swimmer size 2c 0.1–0.5 0.2 mm
Aspect ratio 2.0–2.5 2.0
Mass–density ratio ρp/ρf 1.005–1.019 1.017
Swimming velocity vs 0.33–3.76 1.00 mm s−1

Settling velocity v
‖
g 0.1–0.8 0.152 mm s−1

v⊥g 0.133 mm s−1

Swimming angular velocity ωs <20.0 1.0 rad s−1

Gyrotactic timescale B ≈5.0 5.0 s

Table 1. Summary of model parameters. The swimmer size is obtained from the length of a small copepod
(Titelman 2001; Titelman & Kiørboe 2003) and the aspect ratio is a rough estimate between the length and
width of copepods (Carlotti, Bonnet & Halsband-Lenk 2007). The mass–density ratio is calculated using mass
density of copepods ρp (Knutsen, Melle & Calise 2001) and a sea-water density of ρf = 1.025 g cm−3 (salinity
of 3.5 % and temperature of 20 ◦C) (Millero et al. 1980). The value of the swimming velocity is typical of
the values observed in experiments (Titelman & Kiørboe 2003). The settling velocity is estimated by Stokes
settling velocity (Kim & Karrila 1991), which is consistent with the range given by Titelman & Kiørboe (2003).
The maximal angular velocity can be estimated from the images shown by Jiang & Paffenhöfer (2004) to
approximately 90◦ in 0.067 s. We use a lower value for convenience in numerical simulation, which represents
the slow steering motion (Kabata & Hewitt 1971). The gyrotactic re-orientation time is taken from Fields &
Yen (1997) for copepods.

particle response time for spheroids (Kim & Karrila 1991; Zhao et al. 2015) and τf is
a characteristic flow time-scale (discussed in more detail below). Assuming that Rep � 1
and St � 1, we neglect the inertia of swimmer and fluid, and use the following overdamped
model (Durham et al. 2013; Gustavsson et al. 2016) for the dynamics:

ẋ = v, (2.1a)

v = u+ vsn+ vg + ξ , (2.1b)

ṅ = ω × n, (2.1c)

ω = Ω +Λn× (Sn)+ ωs − 1
2B

n× eg + η. (2.1d)

Here, v and ω denote the velocity and the angular velocity of the swimmer, respectively.
The first three terms on the right-hand side of (2.1b) denote the fluid velocity u(x, t) at the
swimmer position x, the constant translational swimming speed vs in the direction of n
and the Stokes settling velocity vg for a spheroid (Kim & Karrila 1991):

vg = v⊥g eg + [v‖g − v⊥g ](eg · n)n. (2.1e)

Here, eg is the unit vector in the direction of gravity, and v‖g and v⊥g are the settling
speed of a spheroid in a quiescent fluid aligned parallel with or perpendicular to gravity,
respectively (Kim & Karrila 1991). The buoyancy of micro-swimmers varies depending
on their living environment (Cohen et al. 2019). Here we assume that the mass density of
the swimmer is larger than that of water (table 1).

The first two terms on the right-hand side of (2.1d) correspond to Jeffery’s angular
velocity for a spheroid, using the Stokes approximation (Jeffery 1922). These contributions
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to the angular velocity depend on the flow vorticity 2Ω , the strain S and the shape factor

Λ = λ
2 − 1
λ2 + 1

. (2.2)

The third term on the right-hand side of (2.1d) represents the angular velocity owing
to active rotations, ωs. The fourth term is the gyrotactic angular velocity arising from a
restoring torque towards −eg, with a time scale B (Kessler 1985; Visser 2010; Durham
et al. 2013; Gustavsson et al. 2016). Finally, ξ and η in (2.1) represent small white-noise
perturbations, added to remove the influence of initial position and orientation of the
swimmers and to break structurally unstable periodic orbits (Colabrese et al. 2017).

In the present study, we consider only two-dimensional flows. Although (2.1) are
compatible with three-dimensional motion, we restrict the translational and rotational
motion of the swimmer to the x–y plane. We use two different models for the fluid-velocity
field. First, to compare with Colabrese et al. (2017), we consider a two-dimensional,
time-independent Taylor–Green vortex (TGV) flow with velocity (Taylor 1923):

u(x) = ∇ × ezψ(x) with stream function ψ(x) = −u0L0

2
cos

x
L0

cos
y

L0
. (2.3)

Here ez is the unit vector in the z-direction and we assume that the gravitational
acceleration points in the negative y-direction, eg = −ey, as shown in figure 1. We take
u0 = 2.0 mm s−1 and L0 = 0.5 mm for the velocity and length scales of the flow, and
define τf ≡ L0/u0. These scales correspond to the Kolmogorov scales (Frisch 1997) of
ocean turbulence with kinematic viscosity ν ∼ 10−6 m2 s−1 and energy dissipation rate
E = 1.6× 10−5 m2 s−3 (Yamazaki & Squires 1996). Following the values in table 1 and
the assumed velocity and length scales of the flow, the non-dimensional parameters of
swimming velocity and gyrotactic stability (Durham, Climent & Stocker 2011; Colabrese
et al. 2017) are

Φ ≡ vs

u0
= 0.5 and Ψ ≡ BL0

u0
= 20. (2.4a,b)

Comparing with Durham et al. (2011) and Colabrese et al. (2017), who explored a
parameter range of 0.01 < Φ,Ψ < 100, our swimmers have low swimming speeds and
weak gyrotaxis. Therefore, they cannot migrate efficiently unless they actively adjust their
swimming directions.

To verify the generality of the results obtained for the TGV flow, we compare with the
results obtained using a Gaussian random velocity field. This velocity field is defined by a
stream function ψ(x) with zero mean and correlation function (see Gustavsson & Mehlig
(2016) for details)

〈ψ(x)ψ(x′)〉 = 
2u2
s,0

2
exp

[
−|x− x′|2

2
2

]
. (2.5)

We choose the parameters 
 and us,0 so that the spatial averages of u2 and
∑

i,j(∂iuj)
2 are

equal those obtained from (2.3).

2.2. Hydrodynamic signals
Many planktonic micro-swimmers can sense the motion of the surrounding fluid using
sensory hairs which allow to detect velocity differences between the body and the fluid
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(Mackie et al. 1976; Kirk & Gilbert 1988; Kiørboe & Visser 1999; Jakobsen 2001; Visser
2010; Fuchs et al. 2013). For example, to a first approximation, a micro-swimmer can be
considered rigid so that it cannot deform. If the surrounding fluid deforms with strain rate
S, velocity differences δs must arise between the surface velocity of the swimmer and the
fluid velocity: δs = Sr, where r is the vector from the centre of the swimmer to a point on
its surface (Kiørboe & Visser 1999). In this way, a swimmer can detect the fluid strain rate
in its local frame of reference. This argument neglects the fact that the swimmer disturbs
the flow. Strictly speaking, it can therefore not directly measure the undisturbed fluid strain
while swimming. Accurate measurement of the strain rate is difficult when the swimming
speed is of the same order of magnitude as the fluid velocity (Visser 2010). However, it
is thought that organisms can distinguish external fluid-velocity disturbances from those
generated by their own motion (Yen & Strickler 1996). For example, copepods can sense
external hydrodynamic signals while they generate their own feeding current (Hwang &
Strickler 2001). Also, steady swimming generates definite fluid-velocity gradients around
the swimmer which makes it possible, in principle, to subtract these gradients from an
external signal.

At any rate, for an incompressible velocity field in two dimensions, there are two
independent strain parameters. Assuming that the swimmer can measure the normal and
tangential components of the fluid strain rate tensor along its swimming direction, we take
the independent components to be

Snn = n · Sn, (2.6a)

Snq = n · Sq. (2.6b)

Here n is the swimming direction defined above and q is a vector orthogonal to n, such
that n and q form a right-handed orthonormal basis in the flow plane (figure 1).

Relative rotation between the fluid and the swimmer also results in velocity differences
on the surface of the swimmer, given by δΩ ∼ (Ω − ω)× r, where both Ω and ω are
parallel to ez in a two-dimensional flow. Relative angular motion results from the gyrotactic
torque (Visser 2010) or simply because the swimmer rotates actively. We assume that the
swimmer can measure local relative rotation:

ΔΩ = (Ω − ω) · ez. (2.6c)

Finally, a swimmer can also measure the local slip velocity owing fluid acceleration,
swimming or settling (Visser 2010). In two spatial dimensions, there are two independent
components of the slip velocity:

Δun = (u− v) · n, (2.6d)

Δuq = (u− v) · q. (2.6e)

To implement the Q-learning algorithm, we must discretise the signals. Appropriate
discretisation scales can be estimated from the threshold of sensing velocity differences
Δuc and from the size c of the swimmer (Kiørboe & Visser 1999). This results in
the following scales for the thresholds of strain Sc = Δuc/c and angular slip velocity
ΔΩc = Δuc/c. Thresholds estimated using the half-length of the major axis c (instead
of the minor axis a) reflect the highest sensitivity to signals for spheroidal swimmers: any
signal below these thresholds cannot give rise to a velocity difference greater than Δuc
anywhere on the swimmer surface. In experiments, it is observed that copepods make
escape jumps in response to strain rates with threshold values in a range of more than
one order of magnitude (Kiørboe et al. 1999; Buskey et al. 2002). Here we adopt a typical

932 A10-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

97
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.978


J. Qiu and others

Signal Threshold

Strain rate Snn, Snq Sc = 0.5 s−1

Angular slip velocity ΔΩ ΔΩc = 0.5 s−1

Slip velocity Δuq Δuc = 50 μm s−1

Table 2. Summary of signals and thresholds we use in Q-learning. The threshold values Sc, ΔΩc and Δuc are
used to discretise the signals for Q-learning. The value of Sc is taken from experiments where copepods are
observed to jump in response to strain rates above ∼0.5 s−1 (Kiørboe et al. 1999; Buskey, Lenz & Hartline
2002). The values of ΔΩc and Δuc are then estimated from Sc, see text.

value, Sc ∼ 0.5 s−1, corresponding to Δuc = cSc ∼ 50 μm s−1, which is of the same order
of magnitude as the smallest velocity difference, 20 μm s−1, that a copepod can measure
(Yen et al. 1992). From this value, we also obtain ΔΩc = Sc = 0.5 s−1 from the definition
above. The signal Δun, evaluated using the swimming speed in table 1, lies below the
lower threshold, Δun < −Δuc. This signal is therefore always activated and the swimmer
can therefore not distinguish changes of the signal Δun close to the threshold value. Rather
than introducing new, arbitrary thresholds for Δun, we focus on the other four signals in
(2.6) in what follows, on Snn, Snq, ΔΩ and Δuq. In table 2, we summarise the signals and
thresholds used.

2.3. States and actions
To apply the Q-learning algorithm in its simplest form, we must define states and actions.
The state of the swimmer is obtained from local measurements of the environment. Given
the thresholds quoted above, we discretise each of the signals in table 2 into three states.
For example, the possible values of Snn are discretised into three intervals Snn < −Sc,
−Sc < Snn < Sc and Snn > Sc.

Depending on the state of swimmer, it may take different actions. In our model, the
swimmer moves with constant speed while steering with an angular velocity ωs (Kabata
& Hewitt 1971). For two-dimensional flows, only the z-component, ωs ≡ ωs · ez, matters.
We allow the swimmer to choose between three values of ωs,

ωs = {−1, 0, 1} rad s−1, (2.7)

to control its motion. In other words, the swimmer either swims straight ahead, ωs = 0, or
steers with a constant positive or negative angular velocity.

More choices of steering actions might enhance the reward of the optimal strategy.
However, here we only consider the three possibilities (2.7), because a larger number of
actions may lead to strategies that are less robust because of overfitting. Also, a larger
number of actions will result in a great difficulty to find candidates for optimal strategies.
Fewer actions tend to result in strategies that we can interpret and understand. We choose
1 rad s−1 for the magnitude of the steering angular velocity, which is one quarter of the
maximum flow vorticity, because this allows the swimmer to exert some orientational
control in regions of lower vorticity. This value is smaller, by a factor of ten, than the
angular velocity that would be obtained if the swimmer were to convert its full propulsion
effort into angular motion, ωmax ∼ vs/c ∼ 10 rad s−1. This means that the steering motion
only requires a small amount of energy compared with that required for propulsion.
We also remark that some micro-swimmers can achieve much higher angular velocities,
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up to approximately 20 rad s−1, when they rotate rapidly (Jiang & Paffenhöfer 2004). Our
model does not describe such vigorous motion.

These states and actions are local. They refer to the frame of reference of the swimmer
and do not directly relate to the laboratory frame. We contrast this with the states and
actions stipulated by Colabrese et al. (2017). They defined the states of the swimmer in
terms of discrete orientations in the laboratory frame (left, right, up or down), and the three
discretised levels of the vorticity of background flow [Ωz < −Ωc, −Ωc < Ωz < Ωc and
Ωz > Ωc, with the threshold Ωc = u0/(6L0)]. The actions of the swimmer in Colabrese
et al. (2017) were to rotate with angular velocity

ωs = 1
2B
(n× k). (2.8)

The vector k is chosen by the swimmer from four possible directions (left, right, up or
down) in the laboratory frame in the x–y plane. Below we compare strategies obtained for
both models.

2.4. Q-learning
The task of the swimmer is to navigate upward through the flow. As mentioned in
§ 1, vertical migration is common and important for micro-organisms in the ocean.
Because this task breaks vertical reflection symmetry, it allows us to illustrate the role
of symmetries in the learning problem. To find optimal upward navigation strategies, we
use the reward function

ri = 1
L0
( yi+1 − yi). (2.9)

Here yi is the vertical location of the swimmer immediately after a state update si−1 →
si. For the simulation in TGV flow, states are updated at a fixed time-step size and the
reward ri is thus proportional to the time-averaged velocity from si to si+1. This allows
the algorithm to optimise the vertical navigation velocity. For the simulation in random
velocity fields, states are updated only when one of the state signals changes its discretised
state level, and ri is only approximately proportional to a velocity (see Appendix A). We
have confirmed that these two update rules give the same result in TGV flow.

We use the one-step Q-learning algorithm (Watkins & Dayan 1992; Sutton & Barto
1998; Mehlig 2021) to search for efficient strategies for vertical migration. The swimmers
move according to the dynamics (2.1) with ωs adjusted according to the current state.
When evaluating strategies, we use a greedy choice of action: whenever the state is updated
to si, the swimmer takes the action ai = arg maxa Q(si, a). The value function Q(si, a) is
an estimate of the summation of future reward if action a is taken at state si, also referred
to as the Q table. To find an estimate of the Q table, we use a training phase, where the
swimmer adopts the ε-greedy strategy: it mainly takes the action ai = arg maxa Q(si, a)
but takes a random action with a probability ε. This allows the swimmer to explore
different actions and helps to avoid local optima. Given {si, ai, ri, si+1}, the Q table is
updated in the standard fashion during the training phase:

Q(si, ai)← Q(si, ai)+ α
[
ri + γ max

a
Q(si+1, a)− Q(si, ai)

]
. (2.10)

The learning rate α is a free parameter that controls the convergence speed. The rate
γ , 0 ≤ γ < 1, is introduced to regularise the discounted reward

∑∞
j=i rjγ

j−i. We choose
γ = 0.999 to obtain a far-sighted strategy. The training is divided into episodes. In each
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Case State Action Settling Gyrotaxis Vertical reflection symmetry Training

S1 Snq, Snn (2.7) No No Unbroken Failure
S2 Ωz,n (2.7) No No Broken (n known in lab frame) Success
S3 Snq, Snn (2.8) No No (k known in lab frame) Success
S4 Snq, Snn (2.7) No Yes Broken (gyrotaxis) Success
S5 Snq, Snn (2.7) Yes No Broken (settling) Success
S6 Snq, Snn (2.7) Yes Yes Broken (gyrotaxis and settling) Success

Table 3. Summary of cases studied (see text for definitions of n and k, and further details).

episode, ten swimmers sharing the same Q table are initialised with random locations
and orientations. Each episode allows for at least imax = 104 state changes, large enough
for the discounted reward to converge. We choose the number of episodes large enough for
the Q table to converge to an approximately optimal policy. The training details are slightly
different for the TGV flow and for the random velocity fields. Further details concerning
the training and parameter values are given in Appendix A.

2.5. Summary of cases studied
As mentioned in § 1, our goal is to investigate the role of symmetries in finding optimal
strategies for vertical migration. Table 3 summarises the different cases we analyse, S1–S6.
The TGV flow has C4 point-group symmetry, and the random velocity field is statistically
isotropic (its correlation functions are isotropic). As a consequence, both velocity fields
exhibit vertical reflection symmetry. The swimmer cannot distinguish the ey-direction – it
cannot find any meaningful strategy for vertical navigation – unless the vertical reflection
symmetry of the problem is broken. In case S1, both states and actions are local, and
neither settling nor gyrotaxis are taken into account. Hence, neither signals, nor actions
nor the dynamics break vertical reflection symmetry. Therefore, the swimmer fails to find
a strategy to move in the ey-direction. In the cases S2 and S3, vertical reflection symmetry
is broken because the swimmer either knows its orientation in the lab frame (it knows
whether n points up or down, case S2) or it has an absolute sense of the target direction
(k in (2.8), case S3). These two cases are similar to those studied by Colabrese et al.
(2017). Because the swimmer has direct access to the laboratory coordinates, it learns to
navigate as expected. For cases S4 and S5, neither states nor actions break the vertical
reflection symmetry. In this case, the swimmer can learn to migrate along the ey-direction
if its dynamics breaks the symmetry, either because the swimmer experiences a gyrotactic
torque or because it is heavier than the fluid and settles along the negative ey-direction.
These cases are analysed in § 3.1.

It is clear that gyrotaxis in case S4 must help the swimmer to navigate successfully,
because it tends to align n with the ey-direction. However, training can be successful even
in the absence of gyrotaxis. It might appear that settling alone should make it more difficult
for the swimmer in case S5 to navigate upwards, because settling imposes a negative
contribution to vy after all. However, in the absence of any other symmetry breaking,
settling may enable the swimmer to move upwards although gravity pulls it down.

Finally for case S6, both settling and gyrotaxis act with the parameters given in table 1.
This case is analysed in § 3.2 to understand the microscopic mechanisms that allow the
swimmer to navigate with local signals and actions.
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0.8
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Case
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Naive
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〈v y
〉/u

0

Figure 2. Normalised averaged vertical velocity 〈vy〉 for cases S1–S5 (table 1). Shown are the results following
the naive strategy (‘naive’, see text), the best strategy obtained by reinforcement learning (‘RL’) using the
signals Snn and Snq, and a random strategy (‘random’), where the swimmer takes random actions when its
state, defined by Snn and Snq, changes.

3. Results

3.1. Symmetry breaking
To find the optimal strategy with reinforcement learning, we use a subset of signals,
only Snn and Snq. Each signal gives rise to three states so that the size of the Q table is
32 × 3, which corresponds to nine states and three actions. Thus, a swimmer can choose
between 39∼104 different strategies in total. In principle, one can evaluate the performance
of each possible strategy, but Q-learning allows us to obtain optimal or approximately
optimal strategies much more efficiently. Figure 2 illustrates the training results for cases
S1–S5 (table 3). Shown is the average velocity of the swimmer 〈vy〉 (see (2.1b)) in the
y-direction, after the velocity reaches a statistically steady state. Angular brackets represent
the ensemble average over the positions of swimmers. Red bars show the results of the best
strategy obtained after training in each case.

To assess the success of the optimal strategy, we compare it with two others. First, we
consider a swimmer that follows the ‘naive’ strategy, which follows a single predefined
action. For S3, this means that ωs is chosen according to (2.8) with k = ey, so that the
swimmer always turns towards the ey-direction in the laboratory frame (Colabrese et al.
2017). This strategy breaks the vertical reflection symmetry. For cases S2, S4 and S5,
the naive strategy corresponds to ωs = 0, which does not break this symmetry. Second,
adopting a random strategy, the swimmer chooses a random action with equal probability
whenever the state defined by Snn and Snq changes. The random strategy preserves the
point-group symmetry, at least on average.

Figure 2 shows, as expected, that training fails in the completely symmetric case S1.
The results for cases S2 and S3 confirm, as expected, that the swimmers find strategies
to optimise vertical migration when either signals or actions break the symmetry of the
flow (Colabrese et al. 2017). We also see that the optimal strategy found by reinforcement
learning is better than both naive or random strategies, which resultsin a larger 〈vy〉. Cases
S4 and S5 show that the swimmer can still learn to optimise vertical migration. In both
cases, the vertical reflection symmetry is neither broken by signals nor actions, but by
the dynamics. With gyrotaxis alone (no settling, case S4), the optimal strategy is only

932 A10-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

97
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.978


J. Qiu and others

slightly better than the naive one. This is not surprising because the naive strategy breaks
the symmetry. It is interesting, however, that settling alone helps the swimmer to navigate
upwards (no gyrotaxis, case S5). If the symmetry is not broken in any other way, settling is
in fact necessary to allow the swimmer to find the positive ey-direction. We see in figure 2
that the signals Snn and Snq provide enough information for the swimmer to actively exploit
the flow. In the next section, we discuss the underlying mechanisms.

3.2. Mechanisms
How does the swimmer make use of local signals to navigate? We consider a swimmer
following the dynamics (2.1), with the parameters given in table 1. The steering angular
velocities are ωs = −1, 0, 1 rad s−1 as described in § 2.3, and the signals are taken to
be subsets of those listed in table 2. Figure 3 refers to four different combinations: Snq
alone; Snn and Snq; Δuq and Snq; ΔΩ and Snq. The key message is that Snq alone allows
the swimmer to successfully navigate. The corresponding Q table is shown in figure 3(a)
and typical trajectories of swimmers following this strategy are shown in panel (b). We
see that the swimmer learns to avoid the regions of strong vorticity and finds upwelling
regions where the background flow tends to carry it upwards. Figure 4 illustrates that
this behaviour is not particular to the TGV flow. Panel (a) shows how smart swimmers
preferentially sample the upwelling fringes of the vortices in the TGV flow: they swim
to the right of positive vortices (with Ω > 0, white) and to the left of negative vortices
(black). Panel (b) shows the same but for swimmers navigating a spatially smooth, steady
random velocity field (see (2.5)). This suggests that the learnt strategy is robust, at least
for steady two-dimensional flows, for parameter values similar to those shown in table 1.

The underlying strategy in figure 3(a) relies entirely on the signal Snq. For a swimmer
moving in a two-dimensional plane (the x–y-plane), we have

Snq = n · Sq = ez · [n× (Sn)]. (3.1)

Comparing with the equation of motion (see (2.1d)), we see that Snq determines how the
strain rotates the swimmer. When Snq is negative, for example, a prolate swimmer (Λ > 0)
is rotated clockwise by the strain. Figure 3(a) and (b) show that the optimal action does the
same: ωs < 0 means that the swimmer steers clockwise. For Snq > 0, however, the flow
turns the swimmer counter-clockwise and so does the optimal action. Finally, when Snq is
close to zero, the swimmer does not actively steer.

Because the steering mirrors the effect of the strain, we conclude that the swimmer tries
to emulate a more slender swimmer, with a larger value of Λ. This makes sense, because
it was shown by Gustavsson et al. (2016) that naive gyrotactic swimmers (no steering
actions, ωs = 0) tend to sample upwelling regions of the flow when their shape factor
Λ increases, or at least regions where downwelling is weaker. In other words, the smart
swimmers manage to preferentially sample upwelling regions of the flow by mimicking
slender naive swimmers that take no steering actions (ωs = 0). How this works is shown
more quantitatively in figure 5, where we compare the performance of smart swimmers
with Λ = 0.6 to naive gyrotactic swimmers with Λ ≥ 0.6. Figure 5 shows their mean
vertical velocities 〈vy〉, and also the different contributions to 〈vy〉, namely 〈ny〉vs, 〈uy〉
and the average vertical component of the settling velocity, 〈vg · ey〉. We see that the
smart swimmers have an appreciable upward velocity, because gyrotaxis favours alignment
between n and ey, and because the swimmers sample upwelling regions where uy > 0.
Naive swimmers with the same value ofΛ also migrate upwards, but more slowly. Figure 5
reveals the reason: naive swimmers do not sample upwelling regions as efficiently as smart
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Figure 3. (a) Q table of the optimal strategy when swimmers sense only Snq. Each signal has three levels:
negative (−), approximately zero (0) or positive (+), as described in § 2.3. The cells filled with blue indicate the
optimal action for each state. (b) Typical trajectories of smart swimmers following the strategy shown in panel
(a). Black dots represent the instantaneous position of the swimmer and the coloured line segments indicate the
swimmer orientation n (representing the tail of the swimmer). The colours represent signals and corresponding
actions: green, Snq < 0, ωs < 0; red, Snq ≈ 0, ωs = 0; salmon, Snq > 0, ωs > 0. The background colour
gives the normalised vorticity 2ΩzL0/u0. Remaining panels: Q tables for different signal choices, using
(c) Snn and Snq; (d) Δuq and Snq and (e) ΔΩ and Snq.

ones and do not align as much with the upward direction. Figure 5 also illustrates that
naive swimmers with larger values ofΛ tend to sample upwelling regions more efficiently
(〈uy〉 is larger) and align more with the upward direction than in the case Λ = 0.6. For
a spheroid, the shape factor Λ is constrained to be smaller than unity (see (2.2)). It is
nevertheless interesting to investigate the dynamics for larger values of Λ, artificially
increasing the effect of the strain on the angular dynamics (Zhao et al. 2019). Here, we
change the value of Λ, but keep λ, v‖g and v⊥g constant, as given in table 1 (this means that
(2.2) no longer holds).

Figure 5 shows that a smart swimmer with shape factor Λ = 0.6 migrates as fast
as a naive swimmer with Λ = 1.2, roughly twice as fast as a naive swimmer of the
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Figure 4. Number density N of swimmers following the dynamics (2.1) with angular swimming ωs according
to the strategy in figure 3(a) (colour scale) in (a) the TGV flow (2.3) and (b) the random velocity field (2.5).
The grey background scale refers to the normalised fluid vorticity, 2ΩL0/u0.
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Figure 5. Contributions to the vertical swimming of swimmers defined in case S6 (the leftmost group) and
naive swimmers with different Λ (the other groups) in the TGV flow. The blue bars represent the average
of vertical velocity 〈vy〉. The red, yellow and purple bars represent the vertical velocity owing to swimming,
advection of local fluid and settling, respectively. All velocities are normalised by the swimming velocity vs.

same parameter Λ = 0.6. We see that the average vertical velocity 〈vy〉 increases as Λ
grows until Λ = 2. This is explained by three observations. First, the average vertical
swimming velocity 〈ny〉vs increases as Λ increases from 0.6 to 1.4, because n tends to
align with ey. However, note that the alignment becomes weaker for Λ > 1.4. Second, as
predicted by Gustavsson et al. (2016) and later verified by direct numerical simulations
of turbulence (Borgnino et al. 2018; Cencini et al. 2019; Lovecchio et al. 2019), the
dynamics of gyrotactic swimmers undergoes a flow-and-parameter dependent transition
from preferential sampling of downwelling regions for Λ < Λc to upwelling regions for
Λ > Λc. For the TGV flow and parameters leading to figure 5, this transition occurs at
Λc ≈ 1, as shown in figure 5. This implies that naive gyrotactic swimmers cannot sample
upwelling regions. Smart swimmers, however, succeed in sampling upwelling regions by
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emulating naive swimmers withΛ > 1. Third, the settling velocity 〈vg · ey〉 is found to be
almost independent of Λ. This is explained by the observation that the orientation n has
only a small influence on the settling velocity because v‖g and v⊥g are of the same order
of magnitude for the parameters given in table 1. These three observations explain the
strategy shown in figure 3(a), as well as the trajectory patterns shown in figures 3(b) and 4.

Up to now, we discussed the simplest case, where the swimmers sense only one signal,
Snq (figure 3(a)). Now consider the cases where the swimmers sense not only Snq but also
other signals. In each case, we obtain an efficient strategy as shown in figure 3(c–e). These
strategies are robust, because they are learnt in both TGV flow and a random velocity
field. However, these strategies are only slightly better than the one in figure 3(a): the
resulting upward velocities are of the same order of magnitude for all the four strategies
(figure 7). Moreover, these strategies share a similar pattern. For instance, the strategy in
figure 3(c) yields actions independent of the signal Snn. In other words, it is identical to the
strategy obtained using only Snq as a signal (figure 3(a)). For the cases where the swimmers
measure Δuq or ΔΩ in addition to Snq, the Q tables shown in panels (d) and (e) illustrate
that Δuq is useful only when Snq is close to zero, and ΔΩ is useful only when Snq and
ΔΩ are either both positive or negative. This means measuring extra signals in addition
to Snq provides not much more useful information for the upward navigation of swimmers.
We therefore conclude that it is Snq that provides the most important information, because
in two-dimensional flows, it is a direct measure of the rotation the fluid strain exerts upon
the swimmer and it allows the swimmers to smartly mimic more elongated swimmers.

4. Conclusions

We analyse how a micro-swimmer can navigate a complex flow relying only on local
hydrodynamic signals. We assume that the swimmer can actively rotate in its frame
of reference in response to the local signals. Using reinforcement learning, we found
that successful swimming strategies exist only if the swimmer can distinguish the target
direction. The flows we considered do not provide direct information concerning the target:
the TGV flow has C4 symmetry and the random velocity field is statistically isotropic. As
a consequence, both velocity fields exhibit vertical reflection symmetry. In this case, the
dynamics must break vertical reflection symmetry to allow the reinforcement learning
algorithm to find meaningful strategies. For example, gravity breaks this symmetry
because it causes gyrotaxis or settling and this allows the swimmer to navigate with local
signals and actions. For the case of settling owing to gravity, we found that even though
settling opposes the migration task, the resulting breaking of vertical reflection symmetry
allows the swimmer to swim upwards with an average velocity larger than the settling
velocity.

We investigate the underlying mechanism of navigation with local signals by
considering swimmers with both gyrotaxis and settling. Reinforcement learning projects
out a simple but efficient optimal strategy for vertical navigation: the swimmer
measures the strain component, Snq, allowing it to adjust its angular velocity to amplify
strain-mediated rotations, which leads to a preferential sampling of strain regions and
upwelling regions. For the parameters tested here, we found the same optimal strategy
in both the TGV flow and different realisations of a smooth random velocity field, which
indicates that the strategy is robust. For the tested cases, the strategy leads to twice the
navigation speed compared with a naive gyrotactic swimmer (Kessler 1985; Durham et al.
2011, 2013; Gustavsson et al. 2016).

932 A10-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

97
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.978


J. Qiu and others

In this article, we use a highly idealised model for a micro-swimmer to investigate
the role of symmetries in Q-learning using local signals. To speculate in how far
the model may apply to any given planktonic micro-organism, the model assumptions
must be critically assessed. First, it is assumed that the micro-swimmer is rigid and
that the swimmer swims with a constant speed. This rules out jumping copepods
escaping predators, but may apply to cruising swimmers. Copepods, for example, can
cruise by moving their appendages in specific, high-frequency gaits (Jiang et al. 2002).
Dinoflagellates can also cruise using their flagella (Kamykowski, Reed & Kirkpatrick
1992). Second, we assume that the micro-swimmer can measure local fluid strain, as well
as its relative rotation and its relative translation to the fluid. This is in principle possible
with setae or cilia, as for copepods (Kiørboe et al. 1999), ciliates (Jakobsen 2001), rotifers
(Kirk & Gilbert 1988) and invertebrate larvae (Mackie et al. 1976; Fuchs et al. 2013). More
signals provide more information, facilitating navigation. This suggests that the swimming
strategies of a realistic swimmer may rely on all available signals, possibly including
light and chemical concentration gradients in addition to hydrodynamic signals. Third, we
assume the swimmer is rigid and that hydrodynamic signals are unaffected by the motion
of the swimmer. This is because a micro-swimmer is thought to be able to distinguish
external fluid disturbance from that generated by its own motion (Hwang & Strickler 2001)
by recognising temporal and spatial characteristics of signals (Yen & Strickler 1996; Fields
2014). However, realistic swimmers need to deform smartly to propel (Verma, Novati &
Koumoutsakos 2018; Tsang et al. 2020; Hartl et al. 2021). The interaction between the
swimmer and fluid must disturb the local flow field, which makes it more difficult to
measure external signals. How and to what extent a swimmer can extract useful signals
remain to be investigated. Fourth, our results are obtained for the parameters given in
table 1. Although the mechanisms found here are robust to small parameter changes
(figure 7 in Appendix A), it is clear that the found strategies must fail when the parameters
change substantially. For example, we choose ωs to be five times larger than the gyrotactic
angular velocity of the order of B−1, which facilitates the control of swimming direction.
Whether there exist efficient navigation strategies when ωs is small compared with B−1

remains an open question. As another example, for much larger swimming speeds, the
preferential sampling becomes weaker (Gustavsson et al. 2016), so that it becomes harder
to outperform the naive strategy (Colabrese et al. 2017).

In our model, we consider steady flows in two spatial dimensions. Our idealised
flow configurations allow us to investigate the symmetry problem and the underlying
mechanism of hydrodynamic signal in an intuitive way. When generalised to more realistic
situations, the breaking of symmetry is also important. For example, symmetry needs to
be broken for a swimmer to navigate through locally isotropic turbulence in the ocean.
However, the optimal strategies are expected to be different in a three-dimensional and
time-dependent flow, because three-dimensional dynamics is more complex and brings
additional flow signals to act upon. It remains an open question to determine optimal
strategies in three-dimensional unsteady flows. Moreover, in our model, the perceived
signals were given by estimated threshold values in table 2, but in reality, the swimmers
may respond to other levels of hydrodynamic signals. How can we determine which level is
the most important? Is it possible to model the signal under disturbances from swimming?

Optimising the rate of vertical migration is a fairly simple task, and this choice of
target allowed us to study the effect of symmetry breaking, and to compare with the
existing literature on navigation of smart swimmers (Colabrese et al. 2017). However,
in nature, there are competing tasks, such as minimising energy consumption during
migration or avoiding predation (Huntley & Brooks 1982; Morris, Gust & Torres 1985;

932 A10-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

97
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.978


Navigation of micro-swimmers in steady flow

Park et al. 2001). How to analyse the effects of these competing tasks remains an
open question, necessary to answer to understand observed survival strategies of motile
micro-organisms in the ocean.
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Appendix A. Numerical details

In this appendix, we give details of the different simulations summarised in table 3 and
the implementation of the reinforcement learning algorithm.

To implement the Q-learning algorithm, both actions and states are discretised. The
action is to modify the angular swimming velocity ωs in (2.1d). In cases S1, S2, S4, S5
and S6, the actions are given by (2.7). In case S3, the actions are given by (2.8), with k
being one of (0,−1, 0), (1, 0, 0), (0, 1, 0) or (−1, 0, 0) (Colabrese et al. 2017). The states
are given by different combinations of the signals. In cases S1, S3, S4 and S5, the states are
given by the combination of Snn and Snq. In case S2, the states are given by the combination
of three levels of local vorticityΩ and four discrete levels of the instantaneous direction n
of the swimmer (Colabrese et al. 2017). In case S6, the states are given either by the signal
Snq solely or in combination with one of Snn, Δuq and ΔΩ (see (2.6)).

The training with reinforcement learning is divided into episodes. In each episode, ten
swimmers are initialised with random locations and orientations, and simulated to update
the Q table in parallel. The Gaussian noises ξ and η in (2.1b) and (2.1d) are implemented
at every time step by Gaussian translational and rotational displacements with variances√

2DtΔt and
√

2DrΔt, respectively, where Dt = 0.001L0u0 and Dr = 0.01u0/L0. For the
simulation in the TGV flow, we integrate (2.1) numerically using an explicit second-order
Adams–Bashforth scheme for 105 time steps of size Δt = 0.01u0/L0, which allows for the
position, velocity and orientation of the swimmer to reach a statistically steady state. The
state si of a given swimmer is evaluated and the Q table is updated every 10 time steps,
which results in a total of imax = 104 state updates in each episode. We use γ = 0.999,
which corresponds to a time window of order (1− γ )−1 = 103 state changes or 25 s in
physical time. This time window is much longer than the time scale for a swimmer to move
through a vortex, estimated by L0/vs = 0.5 s.

We make similar assumptions and choose similar parameters for our simulations using
random velocity fields, but there are a number of minor differences. First, the state si is
evaluated at every time step but the Q table is updated only when the state changes. Second,
each episode lasts for 2500 s, which corresponds to at least imax = 104 state changes.
Third, we use the Euler method to integrate (2.1), rather than the Adams–Bashforth
scheme. We confirm that the two approaches yield the same results for the TGV flow.
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Flow field Case α0 σ0 ε0 j0 Episode number

TGV flow S1 0.02 1000 0.0 ∞ 1000
S2 0.02 1000 0.0 ∞ 1000
S3 0.02 1000 0.0 ∞ 1000
S4 0.02 1000 0.0 ∞ 1000
S5 0.02 1000 0.0 ∞ 1000
S6: Snn, Snq 0.008 1000 0.001 2000 2000
S6: Snq 0.02 1000 0.0005 1000 1000
S6: Snq,Δuq 0.02 1000 0.0005 1000 1000
S6: Snq,ΔΩ 0.01 1000 0.001 2000 2000

Random velocity field S6: all cases 0.04 1000 0.02 2000 3000

Table 4. Training parameters.
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Snp, TGV flow Snp, Random flowSnp, �uq, TGV flow Snp, �uq, Random flow(a) (b) (c) (d )

Figure 6. Evolution of the total reward R as a function of episode. The curves represent the moving average
of R over 100 episodes. Each panel shows 5 different learning processes.

During training, we take both the learning rate, α, and the exploration rate, ε, to decrease
as the episode number j increases, i.e.

α = α0
σ0

σ0 + j
, ε = ε0 max

(
0, 1− j

j0

)
, (A1a,b)

with initial learning and exploration rates α0 and ε0 and decay scales σ0 and j0. Training
parameters for all cases are shown in table 4.

We use the total reward, R =∑imax
i=0 riL0/TNvs, to evaluate the performance of strategies

found during training, where ri is the reward of each state change defined in (2.9) and
imax is the total number of state changes in a single episode. The R indicates how fast a
swimmer navigates upward. We note that R is different from the concept of discounted
reward, as mentioned in § 2.4. The training has converged when Σr has reached a plateau
(figure 6).

To test the robustness of the strategies shown in figure 3, we examined the strategies
on swimmers whose parameter values are perturbed from table 1. The vertical velocities
of swimmers shown in figure 7 show that the optimal strategies are robust to moderate
changes of the parameters and better than the naive strategy in most of cases.
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TGV flow

P1 P2 P3 P4 P5 P6

0

0.5

1.0

1.5

2.0
Random velocity field

P1 P2 P3 P4 P5 P6

0

0.5

1.0

1.5

2.0

〈v y
〉/v

s
Snq
Snq, �uq
Snq,�Ω

Naive

(a) (b)

Figure 7. Robustness of strategies to small parameter perturbations. (a) TGV flow and (b) random velocity
field. P1, result for parameters given in table 1. P2, same, but vs = 2.0 mm s−1. P3, vs = 0.5 mm s−1. P4,
ωs = 1.2 rad s−1. P5, ωs = 0.8 rad s−1. P6, Sc = 0.8 s−1.
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