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Numerous natural processes are contingent on microorganisms’ ability to swim
through fluids with non-Newtonian rheology. Here, we use the model organism
Caenorhabditis elegans and tracking methods to experimentally investigate the
dynamics of undulatory swimming in shear-thinning fluids. Theory and simulation
have proposed that the cost of swimming, or mechanical power, should be lower in a
shear-thinning fluid compared to a Newtonian fluid of the same zero-shear viscosity.
We aim to provide an experimental investigation into the cost of swimming in a
shear-thinning fluid from (i) an estimate of the mechanical power of the swimmer
and (ii) the viscous dissipation rate of the flow field, which should yield equivalent
results for a self-propelled low Reynolds number swimmer. We find the cost of
swimming in shear-thinning fluids is less than or equal to the cost of swimming in
Newtonian fluids of the same zero-shear viscosity; furthermore, the cost of swimming
in shear-thinning fluids scales with a fluid’s effective viscosity and can be predicted
using fluid rheology and simple swimming kinematics. Our results agree reasonably
well with previous theoretical predictions and provide a framework for understanding
the cost of swimming in generalized Newtonian fluids.
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1. Introduction
Swimming microorganisms are integral to many natural processes, including the

formation of infectious biofilms in the stomach (Celli et al. 2009), the movement
of sperm cells in cervical fluid (Katz & Berger 1980; Fauci & Dillon 2006) and
the aeration of soil by nematodes (Alexander 1991). Typical length scales for these
organisms range from the micron (e.g. Escherichia coli) to the millimetre scale
(e.g. Caenorhabditis elegans). These small length scales naturally lead to small
Reynolds numbers, defined as Re = ρUL/η � 1, where U is the swimming speed,
L is a characteristic length scale and ρ and η are the fluid’s density and viscosity,
respectively. In this regime, viscous forces dominate inertial forces and Stokes’ flow
governs fluid transport, which is independent of time. Consequently, the organism’s
body geometry dictates the motion of a low-Re swimmer. Such an organism must
employ a kinematically irreversible swimming stroke for net translation to occur
(Purcell 1977).

† Email address for correspondence: parratia@seas.upenn.edu
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While many studies have sought an understanding self-propulsion at low Re
in Newtonian fluids (Taylor 1951; Lighthill 1976; Lauga & Powers 2009; Guasto,
Johnson & Gollub 2010), there are crucial biological systems in which microorganisms
must swim in complex fluids that contain polymers, particles and large proteins
(Spagnolie 2015). Examples include sperm cells in cervical mucus (Katz & Berger
1980; Fauci & Dillon 2006) and Lyme disease spirochaetes in tissues (Harman et al.
2012). These complex fluids typically display non-Newtonian rheological behaviour
such as shear-thinning viscosity and viscoelasticity (Larson 1999).

Recent studies of the behaviour of single swimmers in non-Newtonian fluids
have centred on the effects of fluid elasticity and local structure on propulsion
speed and kinematics (Lauga 2007; Fu, Wolgemuth & Powers 2009; Leshansky
2009; Fu, Shenoy & Powers 2010; Juarez et al. 2010; Teran, Fauci & Shelley
2010; Liu, Powers & Breuer 2011; Shen & Arratia 2011; Harman et al. 2012;
Gagnon, Shen & Arratia 2013; Thomases & Guy 2014; Patteson et al. 2015; Qin
et al. 2015). These studies have shown that fluid elasticity modifies the swimming
speed and kinematics of microorganisms. Whether swimming speed is increased or
decreased seems highly dependent on the swimming gait of the organism and its
coupling with the material properties of the fluid. There has been considerably less
work, however, on the effects of shear rate-dependent viscosity on the swimming
behaviour of microorganisms. A recent experimental investigation (Gagnon, Keim
& Arratia 2014) found that shear-thinning viscosity does not modify the propulsion
of C. elegans, a model undulatory swimmer, when compared to Newtonian fluids
of the same effective viscosity, despite substantial changes in the resulting velocity
fields. Previous numerical simulations and theoretical studies of swimming speed in
shear-thinning fluids have predicted an enhancement or no change in an organism’s
swimming speed, depending on the model swimmer (Montenegro-Johnson et al. 2012;
Montenegro-Johnson, Smith & Loghin 2013; Vélez-Cordero & Lauga 2013).

Despite recent progress, our understanding of swimming in shear-thinning fluids
is still incomplete and many important questions remain, including whether a
microorganism finds swimming in shear-thinning fluids mechanically easier (or more
difficult) than in Newtonian fluids. One can think of this ease or difficulty in
swimming as an organism’s cost of swimming, or mechanical power. Our previous
experiments (Gagnon et al. 2014) with swimming C. elegans in shear-thinning
fluids suggest, to first order, that the cost of swimming in an shear-thinning fluid is
similar to that in a Newtonian fluid with the same effective viscosity, which is lower
than the equivalent mechanical power for a Newtonian fluid with the same zero-shear
viscosity. Recent work, both theoretical (Vélez-Cordero & Lauga 2013) and numerical
(Li & Ardekani 2015), has also proposed a reduction in the cost of swimming for
undulatory organisms in shear-thinning fluids. Indeed, it seems quite reasonable that a
fluid possessing decreasing viscosity with increasing shear rate might reduce the cost
of swimming, although there has been little experimental evidence for such behaviour.

In this manuscript, we present an experimental investigation of the cost of
swimming in Newtonian and shear-thinning fluids using the model biological organism
C. elegans, a 1 mm long nematode commonly used in the study of genetics and
disease (Jorgensen & Mango 2002; Rankin 2002; Silverman et al. 2009). We use
particle tracking methods (Crocker & Grier 1996; Sznitman et al. 2010b) to obtain
the velocity fields generated by the swimming nematodes in both Newtonian and
shear-thinning fluids and bright-field microscopy to track the nematode’s position and
surface contour during swimming (Sznitman et al. 2010a). The divergence theorem
(Happel & Brenner 1983) is used to estimate the cost of swimming or mechanical
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power of the swimming nematode from (i) the drag force on the nematode’s body
and (ii) the viscous dissipation rate in the flow field around the swimmer. We find the
cost of swimming in weakly shear-thinning fluids is similar to the cost of swimming
in Newtonian fluids with the same viscosity, whereas strongly shear-thinning fluids
decrease the cost of swimming relative to Newtonian fluids. We compare our results
to recent theoretical predictions (Vélez-Cordero & Lauga 2013; Li & Ardekani 2015).

2. Methods
2.1. Experimental techniques

Swimming experiments in Newtonian and shear-thinning fluids are performed using
the nematode C. elegans. These nematodes are characterized by a relatively long and
quasi-cylindrical body shape and are approximately 1 mm in length and 80 µm in
diameter; their genome has been completely sequenced (Brenner 1974) and a complete
cell lineage has been established (Byerly, Cassada & Russell 1976). C. elegans are
equipped with 95 muscle cells that are highly similar in both anatomy and molecular
makeup to vertebrate skeletal muscle (White et al. 1986). Their neuromuscular system
controls their body undulations, allowing C. elegans to swim, dig and crawl through
diverse environments. The wealth of biological knowledge accumulated to date makes
C. elegans an ideal candidate for investigations that combine aspects of biology,
biomechanics and the fluid mechanics of propulsion.

We place nematodes into sealed fluidic chambers (figure 1a) that are 2 cm in
diameter and 1 mm in depth, and image their swimming motion using standard
bright-field microscopy (Infinity K2/SC microscope with an in-system amplifier, a
CF-3 objective, and an IO Industries Flare M180 camera at 150 f.p.s.). The depth
of focus of the objective is approximately 20 µm and the focal plane is set on
the longitudinal axis of the nematode body. The nematode beats primarily in the
observation plane; the out-of-plane beating amplitude of C. elegans is less than
6 % of the amplitude of its in-plane motion (Sznitman et al. 2010b). All data
presented here pertain to nematodes swimming at the centre of the fluidic chamber
and out-of-plane recordings are discarded to avoid nematode–wall interactions and to
minimize three-dimensional flow effects.

Two main types of experiments comprise our study: nematode tracking and flow
velocimetry. We use in-house software (Krajacic et al. 2012) to track the swimming
motion of C. elegans, extract the nematode’s body shape and compute the nematode’s
kinematic properties; swimming speed U, amplitude A and frequency f . Our
previous experiments show that C. elegans exhibit a predominately two-dimensional
sinusoidal beating pattern, producing a travelling wave that moves from head to tail
(Sznitman et al. 2010b). They move with a nearly constant frequency of 2 Hz and
an average speed of 0.35 mm s−1 in water (Sznitman et al. 2010b). Furthermore,
recent experimental results of Gagnon et al. (2014) indicate that the nematode’s
kinematics are largely insensitive to shear-thinning effects. The flow fields, however,
are significantly modified by shear-thinning rheology. Please see Gagnon et al. (2014)
for more details.

We measure the velocity fields generated by swimming C. elegans in both
Newtonian and shear-thinning fluids by seeding the working fluids with 3.1 µm
polystyrene tracer particles, which are tracked continuously for the entire duration
of the experiment using in-house codes. These tracer particles are dilute (<0.5 %
by volume) and do not alter the properties of the fluid. We image the nematodes
swimming through this seeded fluid for 6 to 10 cycles, with each swimming cycle
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FIGURE 1. (Colour online) (a) The 1 mm nematode C. elegans is placed in a sealed
fluidic chamber containing either shear-thinning (aqueous solutions of xanthan gum) or
Newtonian fluids (e.g. buffer solution). These fluids are seeded with 3.1 µm particles for
particle tracking velocimetry. The yellow dashed line shows the tracked centreline of the
nematode, with a large dot indicating its centroid. Arrows show the forward swimming
speed U and a sample normal vector n. (b) Snapshot of the streamlines obtained
using particle tracking techniques around C. elegans in a Newtonian buffer solution
(η= 1 mPa s) at the moment of maximum fluid velocity. Colour represents the magnitude
of the local velocity field. (c) Snapshot of the streamlines around C. elegans during the
same phase of motion in a strongly shear-thinning fluid (Carreau time scale λCr ≈ 6.5 and
power-law index n≈ 0.5). See section Fluids & rheology and figure 2 for more detail.

(or period) containing 60 phases. Because C. elegans beat at a constant frequency,
we can phase average the data and obtain spatially resolved velocity fields. We note
that data points for each phase are averaged into gridded spaces of size 21 µm.
Figures 1(b) and 1(c) show snapshots of streamlines computed from phase-averaged
velocity fields for Newtonian and shear-thinning fluid cases, respectively; the snapshots
are colour coded by the magnitude of the flow velocity. These snapshots reveal a
redistribution of fluid velocity from near the head in the Newtonian case and towards
the tail in the shear-thinning case; additionally, shear-thinning rheology can increase
both the vorticity and circulation of the body vortices produced by the nematode
(Gagnon et al. 2014).

2.2. Fluids and rheology
We use both Newtonian and shear-thinning fluids in this investigation. The range of
Reynolds numbers, defined as Re=ρUL/η, is 10−4<Re6 0.35 across all experiments,
where Re = 0.35 represents the water-like case. For shear-thinning fluids, we use η
measured at the estimated mean strain rate (from velocity fields) in computing the Re,
which defines the fluid effective viscosity ηeff in our experiments. We could alternately
use the zero-shear-rate viscosity η0 instead, but this choice would underestimate Re.
Since the non-Newtonian fluid viscosity is rate dependent, the use of the mean strain
rate to estimate η seems appropriate.

We prepare Newtonian fluids to cover a range of viscosities, ranging from 1
to 700 mPa s. From lowest to highest viscosity, we use (i) a water-like buffer
solution (M9 salt solution) (Brenner 1974), (ii) very dilute solutions of the polymer
carboxymethyl cellulose in M9 salt solution (CMC, 7 × 105 MW, Sigma Aldrich
419338) and (iii) mixtures of two molecular weights of chlorotrifluoroethylene
(halocarbon oils H27 and H700; Sigma Aldrich H8773 and H8898, respectively)
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FIGURE 2. (Colour online) (a) Measurements of viscosity η as a function of shear rate γ̇
for the Newtonian buffer solution M9 (closed symbols), CMC solutions in M9 (blue open
symbols, concentrations from bottom to top: 300, 500, 1000, 1500, 2000 and 3000 ppm,
Sznitman et al. (2010b)), and halocarbon oil mixtures (grey open symbols, from bottom
to top: 100 % H27, 44 % H700, 61 % H700, 78 % H700 and 95 % H700 by weight, Shen
& Arratia (2011)). (b) Measurements of viscosity η as a function of shear rate γ̇ for
shear-thinning solutions of XG in M9 (from bottom to top: 50, 100, 200, 300, 500, 1000,
2000 and 3000 ppm). The solid black line shows a fit to the Carreau–Yasuda model (2.1)
(c) Carreau time scale λCr as a function of concentration (A) and power-law index n (E)
as a function of concentration cXG.

(Sznitman et al. 2010b). We note that halocarbon oil mixtures are limited to only
Newtonian swimming kinematics data due to a significant density mismatch between
these polymer solutions and polystyrene tracer particles. The polymer CMC possesses
a flexible backbone, and (aqueous) solutions of CMC may exhibit viscoelasticity. Here,
however, we minimize the effects of elasticity by using a low polymer concentration
(cCMC . 103) in comparison to the overlap concentration c∗CMC = 104 in addition to the
presence of salt (M9) (Sznitman et al. 2010b). As a result, these solutions exhibit
negligible shear-thinning rheology and elasticity (Shen & Arratia 2011) and sample
rheology curves for CMC solutions are given in figure 2(a).

We prepare shear-thinning fluids by adding small amounts of the polymer xanthan
gum (XG, 2.7 × 106 MW, Sigma Aldrich G1253) to water in the presence of salt.
The XG concentration in buffer ranges from 50 ppm to 3000 ppm. These aqueous
XG solutions have been well characterized and are known to have negligible elasticity
(Shen & Arratia 2011; Gagnon et al. 2014). We characterize all fluids (Newtonian
and shear-thinning) using a cone-and-plate rheometer (strain-controlled RFS III, TA
Instruments) at a range of constant shear rates. Figures 2(a) and 2(b) show the fluid
viscosity η as a function of shear rate measurements for Newtonian and shear-thinning
fluids, respectively. We find strong shear-thinning behaviour (e.g. power-law viscosity)
for the most concentrated XG solution (cXG = 3000 ppm), and this shear-thinning
behaviour gradually decreases as the concentration of XG decreases; at the lowest
concentration (cXG = 100 ppm), the behaviour of the XG solutions is Newtonian-like.
We quantify this shear-thinning viscosity by fitting the rheological data with the
Carreau–Yasuda model (Carreau, DeKee & Chhabra 1997):

η(γ̇ )= η∞ + (η0 − η∞)(1+ (λCrγ̇ )
2)(n−1)/2, (2.1)

where η(γ̇ ) is the fluid’s shear rate-dependent viscosity, γ̇ = |γ̇ | ≡ √(γ̇ : γ̇ )/2 is the
magnitude of the shear rate tensor γ̇ ≡ (∇u+∇uT )/2, η0 is the zero-shear viscosity,
η∞ is the infinite-shear viscosity and n is the power-law index.
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The characteristic time scale λCr represents the inverse of the shear rate at which
the fluid transitions from Newtonian-like to power-law behaviour; values of λCr for
each fluid are shown in figure 2(c). Larger time scales indicate that the fluid exhibits
shear-thinning properties at lower shear rates (Carreau et al. 1997). Using this time
scale, we can define a non-dimensional shear rate based on the kinematics of the
nematode. This kinematic Carreau number describes the strength of the shear-thinning
behaviour, and we define it as Crk= 2πλCrfAk, where f is the beating frequency, A is
the average beating amplitude and k is the wavenumber of the swimming nematode
(Li & Ardekani 2015). A fluid behaves Newtonian-like when Crk� 1 with a viscosity
η≈η0. When Crk &1, the fluid exhibits shear-thinning behaviour. The power-law index
n, shown in figure 2(c), describes the sensitivity of the fluid’s viscosity to changes in
shear rate.

3. Results and discussion
We now begin our discussion on estimating the cost of swimming or mechanical

power of swimming C. elegans from velocimetry and nematode tracking data. Here,
we consider the flow of an incompressible fluid at low Reynolds number. Under these
conditions, the equation of motion and the continuity equation are

∇ · σ =−∇p+∇ · τ = 0 (3.1)
∇ · u= 0, (3.2)

where u is the fluid velocity and σ is the total stress tensor. The stress is defined as

σ =−pI + τ , (3.3)

where p is pressure, I is the identity tensor and τ is the shear (deviatoric) stress.
Steady flow is assumed since the ‘frequency’ Reynolds number is much less than one:
Ref =ρA2f /µ�1, where f and A are the nematode’s beating frequency and amplitude,
respectively (Childress 1981).

Next, we consider the energy expenditure of a swimming nematode under the above
conditions and assumptions. Conservation of energy requires the power expended by
the swimming nematode in deforming its body to be equal to the energy dissipation
rate of the surrounding fluid. This relationship naturally provides two methods for
estimating the cost of swimming, or mechanical power, as we will see below. We
define the mechanical power associated with the motion of the nematode surface S as
its rate of work:

P=−
∫

S
n · σ · u dS, (3.4)

where u is the velocity of the surface. We assume that inertial and body forces are
negligible for a swimming nematode and the only forces acting on the swimmer are
viscous surface forces F= ∫

S n · σ dS= 0. This integral of the surface force must be
zero since the swimmer is self-propelled and force free (Lauga & Powers 2009).

Next, we can apply the divergence theorem to (3.4) to transform the surface
integral into a volume integral over the surrounding fluid V with the assumption that
u vanishes far from the swimmer (Lighthill 1976). This transforms the surface’s rate
of work into the rate of viscous dissipation of the fluid:

P=−
∫

S
n · σ · u dS=

∫
V
∇ · (σ · u) dV. (3.5)
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Distributing the divergence operator on the volume integral yields

P=−
∫

S
n · σ · u dS=

∫
V
(∇ · σ ) · u+ σ : ∇u dV. (3.6)

By the Stokes equation (3.1), the first term in the volume integral must be zero.
Furthermore, we can substitute σ in the volume integral with the definition of the
stress tensor σ (3.3) so that

P=−
∫

S
n · σ · u dS=

∫
V
−pI : ∇u+ τ : ∇u dV. (3.7)

Note that I : ∇u=∇ · u= 0 for an incompressible fluid, yielding the energy balance:

P=−
∫

S
n · σ · u dS=

∫
V

τ : ∇u dV. (3.8)

Lastly, the right-hand side of (3.8) is equal to the fluid’s viscous dissipation:

Φ =
∫

V
τ : ∇u dV. (3.9)

Equation (3.8) reveals two methods for estimating the cost of swimming via both
a calculation of the swimmer’s mechanical power (P, (3.4)) and an estimate of the
surrounding fluid’s viscous dissipation rate (Φ, (3.9)). In what follows, we will use
(3.8) along with experimental data (nematode tracking, velocimetry and rheology) to
estimate the cost of swimming for C. elegans. There are three necessary ingredients:
(i) the instantaneous position of the surface S (obtained from nematode tracking)
and the corresponding fluid volume V , (ii) a spatially differentiable flow field u
(from particle tracking) and (iii) a constitutive model for the fluid stresses σ (from
rheology and (2.1)). First, we measure the instantaneous position of the surface S
and its outward normal n by tracking the body of the nematode using bright-field
microscopy (figure 1a). Image processing provides an outline of the nematode’s body
in a two-dimensional plane; to estimate S, we multiply the observed body shapes by
the diameter of the nematode’s body (80 µm) to form a thin surface area. For our
estimate of the viscous dissipation rate, we consider the area formed by the plane of
observation in our region of interest (approximately 2 mm by 2 mm). Beyond this
region of interest, the velocities of the fluid are below the noise level of our particle
tracking measurements. Similar to our surface integral, we multiply this area by the
diameter of the nematode’s body (80 µm) to form a small, thin volume. For both
integrals (surface and volume), we note this assumes a uniform planar flow field
within 40 µm of the mid-plane of the worm. The thinness of the selected volume
aims to minimize errors associated with the three-dimensional nature of the flow.
Second, using particle tracking velocimetry, we measure the velocity fields u and,
because u is spatially resolved, the associated shear rate tensor γ̇ (figure 1b,c).

Lastly, we consider the constitutive equation necessary to estimate the fluid stress
tensor σ = −pI + τ . The pressure p is found by integrating Stokes equation from
the boundary of our velocity field to the fluid–swimmer interface; note that the
contribution of the isotropic static pressure p0 vanishes over a closed integral and as
a result is negligible. For Newtonian fluids, we simply use Newton’s law of viscosity
τ = ηγ̇ . For shear-thinning fluids, the shear (deviatoric) stress is estimated for each
beating phase by first differentiating the velocity field to obtain a shear rate field.
We then use the Carreau–Yasuda model (2.1) along with the rheological data shown
in figure 2(b,c)) to calculate a viscosity field for all shear-thinning fluids.
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0.4 0.6 0.8 1.0
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FIGURE 3. (Colour online) Viscosity fields, normalized by the fluid’s zero-shear viscosity
η0, for a selection of XG solutions at an instant in time: (a) 200 ppm, (b) 300 ppm,
(c) 500 ppm XG.

Figure 3 shows snapshots of the spatial viscosity fields normalized by zero-shear
viscosity η/η0 for a particular beating phase in different XG solutions. Viscosity is
colour coded such that blue corresponds to zero-shear viscosity and yellow highlights
regions of strong shear-thinning behaviour; one can also consider locations with
decreased viscosity as highlighting regions of large shear rate magnitude in the
flow. Figure 3(a) shows the estimated viscosity field for the 200 ppm XG solution,
which has a power-law index of n = 0.85 and a Carreau time scale of λCr = 0.4 s.
The largest decrease in normalized viscosity for this fluid is approximately 15 %.
Figure 3(b) shows the result for a solution of n= 0.70 and λCr= 1.2 s, which exhibits
a decrease in viscosity of nearly 30 %. Finally, figure 3(c) shows the viscosity fields
for nematode’s swimming in a XG solution of n = 0.60 and λCr = 3.5 s. Here, we
observe the formation of a highly thinned fluid envelope around the nematode that
extends approximately 0.5 mm (or half-body length) away from the nematode’s
body; the viscosity decrease near the swimmer is approximately 60 %. The viscosity
fields for nematodes swimming in highly shear-thinning fluids, n < 0.5 and λCr > 5
(not shown), show similar behaviour to figure 3(c) and the normalized viscosity can
decrease by more than an order of magnitude (from 1 to 0.1).

Measurements of the surface S, differentiable velocity fields u and the stress σ
allow us to investigate whether a local decrease in viscosity modifies the cost of
swimming. We compute both the mechanical power of the swimmer (P, (3.4))
and the rate of viscous dissipation in the fluid (Φ, (3.9)). This allows for an
interesting comparison between different methods of computing the mechanical power
of swimming organisms at low Re from experimental data. We note that particle
tracking techniques can only resolve velocity fields and shear rates 40 µm from the
boundary of the swimmer. Our calculation of drag force and power (3.4) are therefore
somewhat hindered by our ability to make measurements close to the swimmer. We
then compare our estimations of power from experimental data to recent theoretical
(Vélez-Cordero & Lauga 2013) and numerical results (Li & Ardekani 2015).

Results for both mechanical power and viscous dissipation rate are shown in
figure 4. The calculation of mechanical power P (3.4) as a function of zero-shear-
viscosity η0 is shown for several shear-thinning fluids (E) and Newtonian solutions (@).
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FIGURE 4. (Colour online) (a) Cost of swimming as a function of zero-shear viscosity
η0 using each side of (3.8). For Newtonian fluids: mechanical power (@, from Sznitman
et al. (2010b)), viscous dissipation rate (D, buffer only) and the scaling P ∼ ηU2 (solid
line) calculated from our kinematics data (Gagnon et al. 2014). For shear-thinning fluids:
mechanical power (E), viscous dissipation rate (A) and the scalings P ∼ η0U2 (dash-dot
line) and P ∼ ηeff U2 (dashed line). (b) Mechanical power and viscous dissipation rate
replotted versus effective viscosity ηeff .

Also shown is the viscous dissipation rate Φ (3.9) for the same shear-thinning fluids
(A) as well as a Newtonian buffer solution (D). Results from the measurement of
mechanical power and viscous dissipation rate show quite reasonable agreement, and
suggest that both methods can be used to estimate the cost of swimming of low-Re
organisms.

The data presented in figure 4(a) show that the estimated mechanical power
increases linearly with fluid viscosity for C. elegans swimming in Newtonian fluids.
A deviation from this linear behaviour is found for high viscosity fluids because
the nematode is power limited (Shen & Arratia 2011); this deviation starts for
fluid viscosities greater than approximately 30 mPa s. For nematodes swimming in
Newtonian fluids, we expect the mechanical power to scale as P ∼ ηU2, where U
is the swimming speed of the nematode; the black line shows this scaling using
our previously obtained experimentally measured kinematics (in Newtonian fluids) to
provide values of U for a range of fluid viscosities (Shen & Arratia 2011; Gagnon
et al. 2014). This scaling indicates that power should increase linearly with viscosity
and indeed the calculation of mechanical power in Newtonian fluids supports this
linearity. This indicates that the nematode’s kinematics (i.e. swimming speed) are
largely insensitive to changes in viscosity for η < 30 Pa s (Sznitman et al. 2010b).
For larger values of η, however, our data show a deviation from a linear scaling for
P∼ ηU2 because the nematode is power limited.

For shear-thinning fluids, the mechanical power at low viscosity also increases
linearly with increasing zero-shear viscosity. At moderate to large viscosities
(& 30 mPa s), mechanical power increases sub-linearly with zero-shear viscosity (η0).
In order to interpret these data, figure 4(a) also shows two scalings for shear-thinning
fluids generated from our experimentally measured kinematics in shear-thinning fluids.
The first scaling (P ∼ η0U2), is shown as a dash-dot line. This curve is essentially
a continuation of the linear scaling observed at low viscosities in Newtonian fluids.
The second scaling (P ∼ ηeff U2), shown as a dashed line, appears to captures the
sub-linearity of our mechanical power calculations; the value of ηeff is defined as
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the average viscosity over the range of characteristic shear rates produced by the
organism (Gagnon et al. 2014). Figure 4(b) evaluates the robustness of this scaling;
here, the mechanical power and viscous dissipation measurements are shown versus
effective viscosity (ηeff ) and compared with the Newtonian scaling P ∼ ηU2, which
remains unchanged. The data collapse onto the Newtonian scaling, suggesting that
an organism’s cost of swimming in a generalized Newtonian fluid is reasonably well
predicted by estimating a fluid’s effective viscosity for a given swimming gait. This
confirms a previous hypothesis made from the kinematics of C. elegans as a function
of effective viscosity (Gagnon et al. 2014).

Previous work on undulatory swimming in shear-thinning fluids, however, generally
compares mechanical power to the equivalent Newtonian power, defined as PN=P(η0),
and broadly predicts that shear-thinning viscosity decreases the cost of swimming
(Vélez-Cordero & Lauga 2013; Li & Ardekani 2015). Since a shear-thinning fluid’s
effective viscosity must always be less than or equal to its zero-shear viscosity, our
findings in figure 4(a) suggest agreement. However, these theoretical (Vélez-Cordero
& Lauga 2013) and numerical (Li & Ardekani 2015) studies also suggest theoretical
scalings using the Carreau–Yasuda model (2.1) for mechanical power relative to
the Newtonian case P/PN . While the work of Vélez-Cordero & Lauga (2013) uses
a small-amplitude approximation and diverges at high Carreau number Crk, Li &
Ardekani (2015) have recently extended this scaling to large amplitudes:

P/PN = 1− (1− η∞/η0)(1− (1+Cr2
k)
(n−1)/2). (3.10)

We note that Li & Ardekani (2015) multiply the square of the kinematic Carreau
number Crk by the constant 3/8, such that the first term of the Taylor expansion
of (3.10) matches the theoretical power of a small-amplitude undulatory sheet in a
generalized Newtonian fluid (Vélez-Cordero & Lauga 2013; Li & Ardekani 2015).
Since we are not performing an expansion of this equation and are instead inserting
experimentally measured swimming kinematics and fluid rheology, we take this
constant to be one in our experimental system.

This theoretical scaling for relative power (3.10) now gives us a method for
making a quantitative comparison between the proposed scaling and the methods
for estimating mechanical power from (3.8). By using our rheology data (figure 2)
and kinematics data (Gagnon et al. 2014), we can estimate η∞/η0 and directly
compute Crk to obtain an approximation of the normalized power P/PN . We show
this experimental estimate of P/PN as a function of Crk in figure 5 alongside
our measurements of mechanical power using both methods discussed above,
(i) mechanical power (P, E) and (ii) viscous dissipation rate (Φ, A). We note
that we do not observe a strongly power-limited regime for C. elegans swimming in
shear-thinning fluids, though we observe some deviations from a linear scaling for
Newtonian fluids; it is in such regime that one would expect significant deviations
from the theoretical calculations, which assume the swimmer to have infinite power.

We find good agreement among between our calculations and the theoretical scaling
based on our kinematics and rheology data: at Crk ∼ O(1), the cost of swimming
in shear-thinning fluids transitions from P/PN ≈ 1 to P/PN < 1. Indeed, we now
gain considerable confidence in predicting the cost of swimming using only rheology
(η0, η∞, and λCr) and simple kinematics (A, f , and k).

It follows that we can hypothesize the cost of transport for an undulatory swimmer
in a generalized Newtonian fluid. For example, in a shear-thickening fluid with the
same constitutive model (2.1) but now with a power-law index n > 1 and η0 < η∞,
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FIGURE 5. (Colour online) Normalized mechanical power (E) and viscous dissipation rate
(A) as a function of Crk; the dashed line represents the Newtonian case. The transition
from P/PN ≈ 1 to P/PN < 1 occurs at Crk =O(1). The solid black line is the theoretical
scaling generated from our rheology and kinematics data, given by (3.10) (Li & Ardekani
2015).

we predict that a nematode would require more power compared to a Newtonian fluid
of the same zero-shear viscosity. Additionally, when scaled by effective viscosity,
we expect the cost of swimming in a shear-thickening fluid to collapse onto the
Newtonian scaling, similar to our shear-thinning data in figure 4(b).

4. Conclusion
Using each side of the energy balance for a low Reynolds number swimmer (3.8),

we find that (i) the mechanical power and (ii) the viscous dissipation rate suggest
that the cost of swimming for an undulatory swimming in shear-thinning fluids is
smaller than the cost of swimming in a Newtonian fluid with the equivalent zero-shear
viscosity. Furthermore, this cost of swimming is well described by the scaling P ∼
ηeff U2 (figure 4b). Our experimental observations show good agreement with a recent
theoretical scaling (Li & Ardekani 2015) (figure 5). These results provide a framework
for understanding of the cost of swimming in generalized Newtonian fluids, which can
be predicted using only the fluid’s rheology and simple swimming kinematics.
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