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SUMMARY
In this paper, a control design methodology for a new class
of modular robots, so-called “uni-drive modular robots”
is introduced. Uni-drive modular robots have a substantial
advantage over regular modular robots in terms of the mass
of each module since then employ only a single drive for
powering all the joints. The drive is mounted at the robot
base and all joints tap power from this single drive using
clutches. By controlling the engagement time of the clutches,
the position and velocity of the joints are regulated. After
reviewing the structure of the uni-drive modular robot, a
self-expansion formula to generate the dynamics of the robot
is introduced. The control of uni-drive n-module robots is
realized by blending independent joint control and theory
of variable structure systems via a pulse width modulation
technique. A uni-drive modular robot is used to conduct
simulations and validate the control design technique.

KEYWORDS: Modular robot; spring wrap clutch; sliding
mode control.

1. Introduction
The concept of modularity has been proposed for the design
of robot mechanisms to provide flexibility, economy, ease
of maintenance, and rapid deployment.1–9 A fully modular
reconfigurable robot consisting of a set of standardized
modules can be configured to different structures and degrees
of freedom (DOFs) for different task requirements. The
feasibility of the modular approach has been carried out using
various prototypes built at several research institutes.1,6,7,9–11

Modules may have different output powers to provide a wide
variety of configurations;6,9,12 however, the common feature
of all current modular robots is the use of self-actuated
modules. A good overview of the topic and challenges and
opportunities can be found in ref. [13].

One example of a modular robot is Polypod.14 This mod-
ular robot is constructed using two different modules. The
first module is called a segment with 2 DOFs, and the second
module is called a node to supply power to the segments. In
ref. [14], the author demonstrated the capability of the Poly-
pod by constructing different configurations such as a cater-
pillar, an earthworm, and a slinky using these two modules.

Although the modular design philosophy has several
advantages, the mass of each module limits the number
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of units that can be chained together. In refs. [15, 16],
a new modular robot concept, the so-called “uni-drive”
modular robot has been introduced to remove this limitation.
In ref. [17], extensive design, modeling, and simulation
studies have been reported for uni-drive modular robots. An
experimental two-axis gantry robot based on this concept
was designed and fabricated. The mathematical model of
the gantry robot was developed and simulation results were
compared. In a uni-drive modular robot, one drive motor
mounted at the base is used to power all the modules through a
rotating shaft and clutches. The engagement of the clutches is
controlled by the pulse width modulation (PWM) technique
to regulate velocity and position of the modules.

In ref. [18], a mechanism with a single-motor actuation is
introduced for a dexterous hand. In this mechanism, seven
bilateral clutches were used to actuate three fingers.

The discontinuous PWM controller design of a robotic
manipulator has been reported in ref. [19]. In this work, the
discontinuous (on-off) stabilizing controller was determined
from a continuous controller designed for the nonlinear
average model of the PWM controlled system. The
combination of a sliding mode controller with PWM has
also been reported for controlling an antilock brake system
(ABS) and position control of an x–y table mechanism.20,21

In following sections, the concept and overall structure of
the uni-drive modular robot are first explained. The design
of the mechanical drive using a spring wrap clutch (SWC)
used to regulate the output speed of the mechanical drive
is also reviewed. A self-expansion formula is introduced
as a suitable tool for modeling of modular robots. Finally,
simulation results to assess the robustness of the designed
controller are presented.

2. Uni-drive Modular Robots
In Figs. 1 and 2, two different configurations of uni-drive
modular robots are depicted. In Fig. 1, the modules are
in series while in Fig. 2 they are in parallel. In both
configurations, the robot consists of n modules, each taking
their power from a common drive shaft. In the series design,
a single drive at the base powers all the joints through
a central rotating shaft and mechanical drive units. These
units are designed to use a unidirectional input to provide
a bidirectional output using two SWCs although alternative
clutch designs are also clearly feasible. The PWM technique
is used to control the clutches, and as a result, the average
output velocity of the units can be varied within a desired
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Fig. 1. Series configuration of the uni-drive modular robot.

Fig. 2. Parallel configuration of the uni-drive modular robot.

range. In the parallel design, each mechanical drive is
connected to a distributor via a rotating shaft powered by
the single drive.

This new class of robots has several advantages over
conventional modular robot designs in which the actuators
are placed at, or close to, the joints. These advantages include:
lower manufacturing cost by reducing the complexity of
actuators and controllers, higher dexterity and manipulability
by chaining a larger number of modules together, and
simplicity in drives and their control system by replacing
continuous drives with clutches and on/off controllers.

The proposed modular robot can be used in inspection and
repair of welds on tube bundles in nuclear heat exchangers
(limited access and hazardous environment), working in
a cluttered environment in which a dexterous and more
flexible robot is needed, space applications where inertia is
a major concern, and agile manufacturing where production
requirements and configurations change frequently.

In Fig. 3, a proposed control scheme for the robot shown in
Fig. 1 is presented. As shown in this figure, a motor mounted
at the base feeds all mechanical drives with constant speed.
The modules are powered and controlled by the mechanical

Fig. 3. Schematic of the uni-drive modular robot control system.

drives using local controllers. The inputs and output of a local
controller are the position and velocity of its module, and a
tuned PWM signal, respectively. While the local controllers
are used to control each module, a path planner is needed
to supervise local controllers to accomplish the robot’s main
task and also to deal with redundancy in the robot.

2.1. Mechanical drive unit: design and modeling
To implement the conceptual design shown in Fig. 1, a
mechanical drive is needed to differentiate the unidirectional
speed of the central rotating shaft into forward and reverse
motions. For this purpose, the mechanical drive unit shown
in Fig. 4 is proposed. The unit consists of two SWCs (upper
and lower), and spur and planetary gear trains. The planetary
gear train has two inputs: the first is the pinion (sun), which
is connected directly to the input shaft, and the second is
the carrier. The carrier either can be locked to the frame by
engaging the lower clutch, or can be driven from the input
shaft via the spur gear train (gears 1 through 4) by engaging
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Table I. Four possible states for the mechanical drive.

Lower clutch Upper clutch State Output

0 0 0 Free
0 1 1 Forward
1 0 2 Reverse
1 1 Disallowed –

Fig. 4. Schematic of the mechanical drive.

the upper clutch. Three planet gears are mounted on the
carrier and mesh with the pinion and ring gear as shown in
Fig. 4. The ring gear drives the output shaft. There are four
possible states for this two-clutch system as shown in Table I.

A prototype of the mechanical drive has been fabricated
and is shown in Fig. 5. For this prototype, considering the
number of gear teeth and the kinematics of the planetary gear
train, the maximum forward and reverse speeds of the output
shaft can be calculated as:1

ωo (forward) = 0.2ωi ωo (reverse) = −0.24ωi. (1)

SWCs were selected for the mechanical drive due to their
high power transmission to weight ratio and their rapid
response time. A typical cross-section of an SWC is shown
in Fig. 6. The key element of this clutch is the close coiled
torsional spring, one end of which is attached to the output
shaft and the other end to a control ring. A small air gap
separates the end of the control ring from a collar on the
input shaft when the clutch is disengaged. A stationary coil
(solenoid) is used to engage the clutch by drawing the control
ring against the collar on the input shaft. Friction between the
control ring and input shaft causes the spring to wrap down,
which makes the internal diameter of the spring smaller, and
as a result mechanically connects the input shaft to the output.
After the electric current is interrupted, the magnetic field is

1 For more details about this design the reader is referred to ref. [17].

Fig. 5. Mechanical drive unit.

Fig. 6. Typical cross-section of a SWC.

removed causing the spring to unwrap and thus disengage
the clutch. This type of clutch relies on the relative rotation
between the input and output shafts for engagement; thus
the slower the input shaft speed the longer the engagement
time. The wrap relative angle between the input and output
shafts is typically 9◦. SWCs also provide torque only in the
direction in which they wrap down.

To model an SWC, the main elements including the
magnetic circuit, the control ring motion and clutch function
should be considered. A lumped model of an SWC is shown
in Fig. 7. In this model, linear and rotational motions of
the control ring are considered to be independent. For each
motion, a mass-spring-damper mechanism is considered and
the control ring is connected to the output by a torsional
spring and to the ground by a linear spring. Its maximum
linear and rotational motions are xg and ϕg , respectively.
For both independent linear and rotational movement of
the control ring, absolute and relative viscous friction are
considered.

Based on the above lumped model and certain other
assumptions, the equations of motion become (for details
see ref. [17]):

mẍ + blẋ + klx = fsol, (2)

J ϕ̈ + br (ϕ̇ − θ̇) + kr (ϕ − θ) + braϕ̇ = Tc, (3)

Jeff θ̈ + br (θ̇ − ϕ̇) + kr (θ − ϕ) + beff θ̇ = c(ωi − θ̇), (4)
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Fig. 7. Proposed lumped model for SWCs.

where m, J , Jeff , kl , kr , bl , br , bra , and beff are the mass,
moment of inertia, spring stiffness, and viscous friction
coefficients shown in Fig. 7. Also fsol , Tc, c, ωi , θ , and ϕ are
magnetic force, Coulomb torque, virtual2 viscous coefficient,
clutch input angular velocity, and angular displacement of
clutch output and control ring, respectively. Equation (2)
gives the forced linear motion of the control ring that is
actuated by the magnetic force. Equation (3) represents
the forced rotational motion of the control ring that is
actuated by the Coulomb torque. Finally, Eq. (4) shows the
forced rotational motion of the output that is actuated by
virtual nonlinear viscous friction. In the overall model of the
mechanical drive unit, Jeff , and beff represent the inertia and
friction of the gear train. By modifying Eq. (4), the overall
model of a uni-drive modular robot with any kind of modules
(rotational/translational) can be derived.

In subsequent sections, the dynamics of an n-module
planar robot will first be introduced. Integration of the
mechanical drive into the robot dynamics will be developed
next. The remainder of paper will deal with control of such
robots using concepts of independent joint control, theory of
variable structure (VS) systems, and PWM technique.

3. Uni-Drive n-Module Planar Robot
In this section, the concept of the uni-drive modular robot
introduced in the previous section will be applied to a
planar robot. For this purpose, a self-expansion formula
(SEF) for planar modular robots is considered. Assuming
unified modules, the SEF generates the equations of motion
for the modular robot based upon the number of modules.
The integration of the SEF and the developed model of the
mechanical drive will yield the final dynamics of the uni-
drive n-module planar robot in the form of an SEF.

2 In a SWC as the torsional spring wraps down, the output torque
increases linearly in a short period of time and the output velocity
becomes equal to the input velocity rapidly. To model this, it is
assumed a virtual viscous friction acting between the input and
output shafts (for details see ref. [17]).

3.1. Self-Expansion Formula
For control design purposes, it is necessary to have a
mathematical model that describes the dynamic behavior of
the system. However, for a modular robot, it is very helpful
to have an SEF. The SEF generates the whole set of robot
dynamic equations based on only the number of modules.
Here, our approach to derive such a formula relies on the
Euler–Lagrange technique. In Fig. 8 the planar configuration
of a modular robot is shown. All n modules are the same,
and have 2 DOF each, one rotational and one translational.
Therefore, the whole robot has 2n DOF.

Although the structure shown in Fig. 8 is planar, by
considering the different rotational axes’ directions for
the rotational links of the modules, a three-dimensional
configuration will be feasible. The feasibility study of the uni-
drive modular robot shown in Fig. 8 using a central rotating
shaft along with the modules has been already investigated
in previous studies at the University of Waterloo.15–17,22,23

To obtain the total kinetic and potential energy of the
system, we first derive the Cartesian coordinates of the center
of masses in terms of generalized coordinates. Kinetic and
potential energy can then be obtained in terms of generalized
coordinates. Considering Rayleigh’s dissipation function and
the Euler–Lagrange equation, the 2n equations of motion in
the form of an SEF can be derived as follows:

• Translational equations

(m1 + m2)
n∑

i=k+1

i−1∑
j=1

(
�̇1

j cos qk1 + �̇2
j sin qk1

)

+
n∑

i=k+1

(
�̇3

i cos qk1 + �̇4
i sin qk1

)

+ m2

k−1∑
i=1

(
�̇1

i cos qk1 + �̇2
i sin qk1

) + (n − k)

× (m1 + m2) g sin qk1 + m2g sin qk1 + m2q̈k2

− m2qk2q̇
2
k1 + c2q̇k2 = Qk2 k = 1, . . . , n, (5)

• Rotational equations3

(I1 + I2)q̈k1 + (m1 + m2)
n∑

i=k+1

i−1∑
j=1

{ − (qk2 + d)�̇1
j sin qk1

+ (qk2 + d)�̇2
j cos qk1

}

+
n∑

i=k+1

{ − (qk2 + d)�̇3
i sin qk1 + (qk2 + d)�̇4

i cos qk1
}

+
k−1∑
i=1

{ − (m1l + m2qk2)�̇1
i sin qk1 + (m1l + m2qk2)

× �̇2
i cos qk1

} + (n − k)(m1 + m2)g(qk2 + d)

× cos qk1 + (m1l + m2qk2)g cos qk1 + (
m1l

2 + m2q
2
k2

)
× q̈k1 + 2m2qk2q̇k2q̇k1 + ∂Ec

∂q̇k1
= Qk1 k = 1, . . . , n,

(6)

3 The complete derivation of SEF Eqs. (5) and (6) can be found in
ref. [22].
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Fig. 8. The coordinates description of the planar modular robot.

where ∂Ec

∂q̇k1
and generalized forces (actuator torques and

forces) are defined as

∂Ec

∂q̇k1

=
⎧⎨
⎩
c1q̇11 for k = n = 1
2c1q̇k1 − c1q̇(k−1)1 − c1q̇(k+1)1 for 1 ≤ k < n, n �= 1
c1q̇n1 − c1q̇(n−1)1 for k = n, n �= 1,

(7)

Qij =
{
τi − τi+1 i = 1, . . . , n

fi i = 1, . . . , n.
(8)

In the SEF Eqs. (5) and (6), �̇j

i are the time derivatives of

�1
j = −q̇j1(qj2 + d) sin qj1 + q̇j2 cos qj1,

�2
j = q̇j1(qj2 + d) cos qj1 + q̇j2 sin qj1,

�3
i = −m1lq̇i1 sin qi1 + m2(q̇i2 cos qi1 − qi2q̇i1 sin qi1),

�4
i = m1lq̇i1 cos qi1 + m2(q̇i2 sin qi1 + qi2q̇i1 cos qi1).

(9)

As seen in the SEF, 2n equations are generated auto-
matically to define the dynamic behavior of the uni-drive
modular robot. The validation of Eqs. (5) and (6) has been
also proved using the conservation of energy principle and a
Newton–Euler algorithm based on the Denavit–Hartenberg
(DH) notation.22

3.2. Integrating Mechanical Drive Dynamics into SEF
In order to apply the SEF given by Eqs. (5) and (6) to a uni-
drive modular robot, the dynamics of the mechanical drive
Eqs. (2) to (4) should be considered. In this model, fsol can
be related to the PWM signal, u by a nonlinear first-order
differential equation, and the state space model of Eqs. (2)–
(4) can then be obtained as:

ẋ1 = Fsol(u, x1),

k1ẍ2 + k2ẋ2 + k3x2 = x1, (10)

k4ẍ3 + k5(ẋ3 − ẋ4) + k6(x3 − x4) + k7ẋ3 = k8x1,

k9ẍ4 + k5(ẋ4 − ẋ3) + k6(x4 − x3) + k10ẋ4 = k11(ωi − ẋ4),

where k1−11 are the clutch and load parameters, and u and ωi

are the PWM signal and clutch input speed, respectively. The
first equation in Eqs. (10) represents the nonlinear model of
the clutch solenoid force. The last three equations in Eqs. (10)
are associated with Eqs. (2), (3), and (4), respectively. This
model can represent the bidirectional motion of the load by
switching the sign of ωi . The left-hand side of the fourth
equation in Eqs. (10) includes the dynamics of the load
to which the clutch is attached, and its right-hand side
represents the actuator force/torque. In fact, to apply the
SEF to the planar uni-drive modular robot with n modules,
the first three equations in Eqs. (10) must be added to both
Eq. (5) and Eq. (6) and the actuator force/torque replaced
by the associated expression in Eqs. (10). In this case, the
total number of equations in the SEF increases to 8n. The
equations for translational motion are:

(m1eff + m2eff )
n∑

i=k+1

i−1∑
j=1

(
�̇1

j cos qk1 + �̇2
j sin qk1

)

+
n∑

i=k+1

(
�̇3

i cos qk1 + �̇4
i sin qk1

)

+ m2eff

k−1∑
i=1

(
�̇1

i cos qk1 + �̇2
i sin qk1

) + (n − k)

× (m1eff + m2eff )g sin qk1 + m2eff g sin qk1

+ m2eff q̈k2 − m2eff qk2q̇
2
k1 + c2eff q̇k2 = k′

11(ωi − q̇k2),

(11a)

k4ẍk3 + k5(ẋk3 − q̇k2) + k6(xk3 − qk2) + k7ẋk3 = k8xk1,

(11b)

k1ẍk2 + k2ẋk2 + k3xk2 = xk1, (11c)

ẋk1 = Fsol(uk, xk1), k = 1, . . . , n. (11d)

The equations for rotational motion are:

(I1eff + I2eff )q̈k1 + (m1eff + m2eff )
n∑

i=k+1

i−1∑
j=1

{ − (qk2 + d)�̇1
j sin qk1 + (qk2 + d)�̇2

j cos qk1
}
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+
n∑

i=k+1

{−(qk2 + d)�̇3
i sin qk1 + (qk2 + d)�̇4

i cos qk1}

+
k−1∑
i=1

{−(m1eff l + m2eff qk2)�̇1
i sin qk1

+ (m1eff l + m2eff qk2)�̇2
i cos qk1} + (n − k)

× (
m1eff + m2eff

)
g(qk2 + d) cos qk1

+ (
m1eff l + m2eff qk2

)
g cos qk1 + (m1eff l

2 + m2eff q
2
k2)

× q̈k1 + 2m2eff qk2q̇k2q̇k1 + ∂Ec

∂q̇k1
= k11(ωi − q̇k1),

(12a)

k4ÿk3 + k5(ẏk3 − q̇k1) + k6(yk3 − qk1) + k7ẏk3 = k8yk1,

(12b)

k1ÿk2 + k2ẏk2 + k3yk2 = yk1, (12c)

ẏk1 = Fsol(vk, yk1), k = 1, . . . , n. (12d)

Notice that in Eqs. (11) and (12), I1, I2, m1, m2, c1, and
c2 are replaced by I1eff , I2eff , m1eff , m2eff , c1eff , and c2eff ,
respectively, to include the effect generated by the clutch
mass and inertia in each joint. k′

11 and k11 represent force and
torque coefficients, respectively, and ∂Ec

∂q̇k1
and �̇

j

i are defined
in Eq. (7) and as the time derivative of Eq. (9). In Eqs. (11)
and (12), xk′s , yk′s , uk , and vk represent the clutch variables
and PWM signals, respectively.

4. Control of Uni-Drive Modular Robots
In Section 2, the control structure of a uni-drive modular robot
using local controllers and path planner was introduced. For
implementation of this structure, the articulated uni-drive
modular robot shown in Fig. 8 (which has no limit on the
number of modules used) is considered. To achieve a robust
design methodology for local controllers, the key strategy is
to combine the independent joint control of manipulators and
the theory of variable structure (VS) systems.

In order to design local controllers, here we use
independent joint control (IJC) in which each axis of the
manipulator is controlled as a single-input/single-output
(SISO) system. The actuator dynamics are considered as a
SISO system, and any coupling effect due to the motion of
the other links is either ignored or treated as a disturbance. To
apply independent joint control to a uni-drive modular robot,
SEF Eqs. (5) and (6) which includes the nonlinear inertia,
centripetal, Coriolis, and gravitational coupling effects due
to the motion of the manipulator and actuator dynamics are
considered separately. In Eqs. (5) and (6), Qk1 and Qk2 are the
joints’ torque and force, respectively. In uni-drive modular
robots the actuator dynamics are replaced by mechanical
drive dynamics. The dynamic model of the mechanical drive
is given by Eq. (10). The first three equations in Eqs. (10)
represent the dynamics of the magnetic circuit and motions
of the control ring of the SWC. For now, these dynamics can
be ignored if we assume ideal switching occurs without any
delay. Later on, we will compensate for this assumption in the

design of local controllers. Furthermore, the last equation can
be simplified by assuming that the inertia of the control ring
can be ignored when compared to the inertia of the modules.
Based on these assumptions, the mechanical drive dynamic
for revolute joints is given by

Jeff 1θ̈k1 + Beff 1θ̇k1 = τk1 − rk1Qk1; k = 1, . . . , n, (11)

and for translational joints is given by

Jeff 2θ̈k2 + Beff 2θ̇k2 = τk2 − rk2Qk2; k = 1, . . . , n, (12)

where θ̇ , θ , Jeff , Beff , and rk represent the angular position and
velocity of the SWC, effective inertia, damping coefficient
and gear ratio of the mechanical drives, respectively. Index
1 refers to the mechanical drive associated with rotational
joints while index 2 refers to the mechanical drive associated
with translational joints. In Eqs. (11) and (12), τk1 and τk2

are the torque and force produced by mechanical drives (i.e.,
virtual viscous torque and force). Considering Eqs. (10) they
can be written as

τk1 = c(ωi − θ̇k1), (13)

τk2 = c(ωi − θ̇k2), (14)

where c represents a virtual damping coefficient. Equations
(5) and (6) associated with Eqs. (11) and (12) form the
skeleton of the independent joint control for the uni-drive
modular robot.

4.1. Robust controller design for robot manipulators
The PWM technique used to control the clutches in the
mechanical drives gives a VS nature to the uni-drive
modular robot dynamics. One of the best controller design
methodologies to control VS systems is sliding mode
control.24 For a class of nonlinear systems, sliding mode
control addresses the following problem: given the extent
of parametric uncertainty (such as imprecision of inertias,
geometry, loads) and of disturbances (such as Coulomb or
viscous friction) and the frequency range of unmodeled
dynamics (such as unmodeled structural modes, neglected
time delays), design a nonlinear feedback controller to
achieve optimal tracking precision, in a suitable sense.
This methodology provides a decoupled set of equations
which are very applicable to the control of manipulators.
By using a decoupled approach for controlling each DOF of
a manipulator, simpler and more tractable controllers can be
designed.

To illustrate some of the advantages of the sliding mode
approach to deal with nonlinear systems with uncertainties
and similar equations as those in Eqs. (11) and (12), we
consider a nonlinear time invariant system given by

ẋ1 = x2

ẋ2 = ax2 − bu + d sin(x1) + z(t), a, b > 0 (15)

xT = (x1, x2).

In this system, u is the main input, and the first two terms of
the second equation describe a linear system. The last two

https://doi.org/10.1017/S0263574709005670 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574709005670


Independent joint control and variable structure systems for uni-drive modular robots 155

terms show additional nonlinearity and a disturbance input
z(t). A VS control law is of the form

u = ψ1x1 + ψ2x2 + ψ3x3, x3 ≡ z, (16)

where the coefficients ψi are discontinuous,

ψi =
{
αisgn(b), if xis > 0
−αisgn(b), if xis < 0 αi > 0, i = 1, 2, 3,

(17)
and s = 0 defines the switching line, that is,

s = λx1 + x2 = 0, λ > 0. (18)

We select αi such that s and ṡ have opposite signs in the
neighborhood of s = 0, that is,

ṡs < 0. (19)

The sliding mode occurs on s = 0 and the motion continues
along the switching line in Eq. (18). Another expression for
Eq. (19) is

1

2

d

dt
s2 ≤ −η |s| or ṡ ≤ −ηsgn(s), (20)

where η is a design parameter which adjusts the approach
speed of the system trajectories to the switching line. When
the system of Eq. (17) is on the switching line, its trajectories
(x1(t), x2(t)) satisfy s = λx1(t) + x2(t) = 0, which implies
that x1(t) is governed by the equation

ẋ1 = −λx1. (21)

This is called the equation of the sliding mode. It is a reduced
order system which represents the original system of Eq. (15)
when on the switching line. Initially, the equation of the
sliding mode was obtained by the equivalent control method
proposed by Utkin.26 According to this method, u is solved
for the algebraic equation ṡ = 0. By taking the derivative of
Eq. (18) and using Eq. (15), ṡ becomes

ṡ = λx2 + ax2 − bu + d sin(x1) + z(t) = 0. (22)

By solving Eq. (22) for ueq and substituting in Eq. (15),
Eq. (21) is obtained by restricting x1, x2 to satisfy
Eq. (18). Observing that Eq. (21) depends only on λ, we
see that sliding mode does not depend on system parameters
a and b, or on nonlinearity d sin(x1), or disturbance z(t).
This clearly exhibits the insensitivity with respect to system
parameters and the disturbance rejection capability of sliding
mode control. Furthermore, Eq. (21) has an eigenvalue
equal to −λ. Our earlier choice of positive values of λ in
Eq. (18) insures asymptotic stability. The response speed
in sliding mode is determined by λ, which is a design
parameter.

Let us assume that the parameters a, b, and d are unknown
but that their bounds M1, M2, and M3 are known; that is,
|a| < M1, M2 < |b| < ∞, and |d| < M3. Furthermore, we
assume that the sign of b is known and disturbance z(t)

is available for measurement. Since − |x1| < sin(x1) < |x1|,
then the sliding mode condition of Eq. (19) is satisfied when

α1 >
M3

M2
, α2 >

λ + M1

M2
, α3 >

1

M2
. (23)

Thus to determine the αi in Eq. (17), we only need to know
the bounds Mi on the system parameters. It may appear that
since the disturbance z(t) is measurable, a feedforward term
with constant gain added in the control is sufficient to remove
its influence. Nevertheless, a switching gain is necessary due
to parameter uncertainty in b.

When sliding occurs, the VS control of Eq. (16) is ideally
switched at an infinite frequency. In reality, the control
is switched at a finite frequency and the corresponding
trajectories chatter with respect to the switching plane. We
refer to these trajectories as nonideal sliding mode. It can
be shown that if ueq is unique, the nonideal sliding mode
is close to the ideal sliding mode defined by Eq. (21).
Given a parameter � depending on the type and size of
imperfections (switching hysteresis or delay, finite slope
switching, neglected small time constants, etc.) there exists a
positive number H such that the difference between the ideal
x(t) and nonideal sliding mode x̃(t) is bounded by

‖x(t) − x̃(t)‖ ≤ H�, (24)

for all t ∈ [t1, ∞) providing that at t = t1, the state is within
� of the switching line, that is,

‖s(t1)‖ ≤ �. (25)

Chattering must be eliminated for the controller to perform
properly. This can be achieved by smoothing out the control
discontinuity in a thin boundary layer neighboring the
switching line:

B(t) = {x, |s(x, t) ≤ φ|}, φ > 0, (26)

where φ is the boundary layer thickness, and ε = φ/λ is the
boundary layer width, as shown in Fig. 9 for a second-order

Fig. 9. Smoothing out the control discontinuity using a thin
boundary layer.

https://doi.org/10.1017/S0263574709005670 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574709005670


156 Independent joint control and variable structure systems for uni-drive modular robots

system.25 In other words, outside B(t), we choose control
law u as before (i.e., satisfying sliding condition of Eq. (20)),
which guarantees that the boundary layer is attractive, hence
invariant. As a result of this, all trajectories starting inside
B(t = 0) remain inside B(t) for all t ≥ 0; and we then
interpolate u inside B(t). To implement this change in
the expression of Eq. (20), the term sgn(s) is replaced
by sat(s/φ). This leads to tracking within a guaranteed
precision ε (rather than perfect tracking), and more
generally guarantees that for all trajectories starting inside
B(t = 0)

∀ t ≥ 0, ‖x(t) − xd (t)‖ ≤ 2λε, (27)

where x(t) − xd (t) is the tracking error. For more details on
this issue, the reader is referred to ref. [25, Chapter 7].

Summarizing the results obtained from the above example,
the local controller design procedure consists of two steps.
First, a feedback control law u is selected so as to verify a
sliding condition of Eq. (20). Considering the presence of
modeling errors and disturbances, chattering is unavoidable.
Chattering is undesirable in practice because it involves
high control activity, and further, it may excite high-
frequency dynamics neglected in the course of modeling
(such as unmodeled structural modes and neglected time
delays). Thus, in a second step, a discontinuous control
law u is suitably smoothed to achieve an optimal trade-off
between control bandwidth and tracking precision. While
the first step accounts for parametric uncertainty, the second
steps achieves robustness to high-frequency unmodeled
dynamics.

4.2. Design of local controllers: independent joint control
and theory of VS systems
In this section, we combine the independent joint control
and theory of VS systems to develop a controller design
procedure for uni-drive modular robots. To begin this
discussion, for simplicity we drop indices 1 and 2 and rewrite
Eqs. (11) and (12) that are obtained from the independent
joint control approach as:

Jeff θ̈k + Beff θ̇k = uk − dk; k = 1, . . . , n. (28)

For a particular link, uk is the input torque provided by its
mechanical drive and dk is the disturbance load rkQk received
from the inertia and different accelerations of other links.
We consider the following set point regulation problem:
assuming θ ≡ p and θ̇ ≡ v, for the given initial states
p(t0), v(t0), and desired position pd , velocity vd = 0, find a
discontinuous feedback control u(p, v) such that p(t) → pd

and v(t) → 0. In terms of the position error e(t) = p(t) − pd ,
our goal is to nullify the error e(t). Accordingly, the state
space representation of Eq. (28) is

ėk = vk,

(29)
v̇k = −avk + buk − d ′

k; k = 1, . . . , n,

where a = Beff

Jeff
, b = 1

Jeff
, and d ′

k = dk

Jeff
. From the similarity

between Eqs. (15) and (29), and assuming that the bound

of system parameters and disturbances are known, we can
readily come up with the sliding mode design for Eq. (29).
For this case, the VS control law has a fixed amplitude and
is defined as

uk = ψ1kωisgn(vk) + ψ2kM3ksgn(d ′
k), (30)

where |vk| ≤ ωi,
∣∣d ′

k

∣∣ < M3k, and the coefficients ψ1k and
ψ2k are

ψ1k =
{−α1k if vksk > 0
α1k if vksk < 0 , α1k > 0, (31)

ψ2k =
{−α2k if d ′

ksk > 0
α2k if d ′

ksk < 0 , α2k > 0,

and switching lines

sk = λkek + vk = 0, λk > 0, (32)

then the sliding mode condition ṡksk < 0 is satisfied for k =
1, . . . , n when

α1k >
λk − M1

M2
, α2k >

1

M2
, (33)

where

M1 < a, M2 < b < ∞, λk > a, (34)

and for ṡk = 0, ueq can be found as

ueq = 1

b
((a − λk)vk + d ′

k). (35)

The validity of the above design can be easily shown by
examining all possible cases that yield the sign of sk and ṡk

and hereby ṡksk . Considering Eqs. (29), (30), and (32) we
obtain ṡk as

ṡk = (λk − a)vk + b(ψ1kωisgn(vk) + ψ2kM3ksgn(d ′
k)) − d ′

k.

(36)

There are six states with a combination of different signs for
sk , vk , and d ′

k . In each of these cases, using Eqs. (31) and
(33), the sign of ṡk can be found and must be opposite to
the sign of sk to verify the design. The six states and proper
values for ψ1k and ψ2k are

if sk > 0, vk > 0, d ′
k > 0 and − α1k, − α2k then ṡk < 0,

if sk > 0, vk < 0, d ′
k > 0 and α1k, − α2k then ṡk < 0,

if sk > 0, vk > 0, d ′
k < 0 and − α1k, α2k then ṡk < 0,

if sk < 0, vk < 0, d ′
k < 0 and − α1k, − α2k then ṡk > 0,

if sk < 0, vk > 0, d ′
k < 0 and α1k, − α2k then ṡk > 0,

if sk < 0, vk < 0, d ′
k > 0 and − α1k, α2k then ṡk > 0.

(37)

Considering Eq. (37), the expression in Eq. (30) for uk can
be simplified to

uk = −(α1kωi + α2kM3k)sgn(sk). (38)

https://doi.org/10.1017/S0263574709005670 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574709005670


Independent joint control and variable structure systems for uni-drive modular robots 157

Fig. 10. Adaptive VS local controller for the uni-drive modular robots.

5. Simulation
In this section, the performance of local controllers will be
studied via simulation.

5.1. Adaptive VS local controller
Figure 10 shows an adaptive VS controller used as local
controller for each joint in the uni-drive modular robot.
The main substructures of the local controller are the
SEF introduced in previous sections, and the sliding mode
structure and PWM generator. The inputs to the sliding
mode structure are

∣∣d ′
k

∣∣ generated by the SEF, the error
in position and output velocity of the mechanical drive,
while its outputs are the duty ratio D (ueq , when the system
trajectory reaches the switching line, an assumption which
is valid when the PWM frequency is relatively high) to
the PWM generator and the sign of sk . By knowing the
number of modules and their boundaries of motion such
as range of travel, velocity, and acceleration, the SEF will
automatically calculate the

∣∣d ′
k

∣∣ as a main input parameter
for the design of the sliding mode structure in Eq. (35).
Using the PWM generator and sign of sk , the virtual damping
coefficient of the mechanical drive switches between either
0 and c or 0 and −c. Then the output of the mechanical
drive uk is a positive or negative torque based upon the
sign of sk . The mechanical drive torque is affected by
the disturbance dk (representing the dynamics of the robot
structure) and the result causes the mechanical drive to
rotate.

To study the performance of the designed VS controller
shown in Fig. 10, we consider a mechanical drive whose
parameters are

Jeff = 0.01 kgm2, Beff = 0.1 Ns/m. (39)

The values for a and b used in Eq. (29) are therefore
10 and 100 respectively. For this case we consider a random
torque disturbance dk with |dk| < 2.5 N.m and a mean value
of zero and variance of one; thus |d ′

k| < 250 and M3k = 300.
The input speed to the mechanical drive is assumed to be
30 rad/sec. Using these values and assumptions, we are able
to design the VS controller parameters in Eqs. (33) and (34)

Fig. 11. Step response of a mechanical drive with VS controller in
the presence of disturbance, |dk| < 2.5.

as

M1 = 5, M2 = 50, and λk = 15,
(40)

α1k = 0.25, α2k = 0.03.

Considering (40) and (38), we find the amplitude of uk as:

|uk| = α1kωi + α2kM3k = 16.5. (41)

Using the block diagram shown in Fig. 10, the simulation
results of the mechanical drive are depicted in Fig. 11. For
this simulation, the set point and the PWM frequency are
4 rad and 10 Hz., respectively. It should be noted that if
we consider a gear ratio of r for the mechanical drive, the
real position of the joint attached to the mechanical drive is
obtained as rθ while the real disturbance would be dk/r .

In Fig. 12(a), (b), and (c), s(x), the disturbance and the
PWM signals are shown, respectively. The value of � in
Eq. (25) can be measured from Fig. 12(a) to be equal to 5.
According to Eq. (24) and Fig. 11, the maximum positioning
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Fig. 12. Positioning control: (a) switching line (b) disturbance
|dk| < 2.5, and (c) PWM.

Fig. 13. Time response of a mechanical drive with VS controller in
the presence of disturbance, |dk| < 1.7.

error H� is 0.12 in the presence of the disturbance. Hence,
the constant H is calculated to be equal to 0.024 and if � is
considered proportional to disturbance dk , the proportionality
coefficient is found to be 2. Using the values of H and � in
the above example, we are able to predict the position error in
different cases. For instance, if |dk| < 1.7 then � = 3.4 and
the position error H� = 0.0816. In Fig. 13, the step response
of the mechanical drive is shown while the disturbance is
|dk| < 1.7. In Fig. 14(a), (b), and (c), s(x), the disturbance
and the PWM signals are shown for this case, respectively.
Figures 13 and 14(a) verify these predictions by showing a
position error of 0.08 and � = 3.2.

6. Conclusions
In this paper, we have studied and developed a stability
analysis and controller design method for uni-drive modular
robots. The new modular robot benefits from much lighter
modules due to the uni-drive concept. The main element

Fig. 14. Positioning control: (a) switching line (b) disturbance
|dk| < 1.7, and (c) PWM.

of a uni-drive modular robot is a mechanical drive capable
of providing a variable bidirectional speed from a constant
unidirectional input velocity. The design of the mechanical
drive was reviewed and its mathematical model was
integrated into the SEF which is very useful for generating
the dynamics of uni-drive modular robots based only on the
number of modules.

The design of local controllers was achieved based upon
blending of independent joint control and theory of VS
systems. Based on this design, each axis of the manipulator
is controlled as a SISO system. The actuator dynamics
are considered as a SISO system and any coupling effects
due to the motion of the other links is either ignored or
treated as a disturbance. Sliding mode was used to deal
with the control of the mechanical drive as a VS systems.
Sliding mode control addresses problems such as parametric
uncertainties, disturbances, and the frequency range of
unmodeled dynamics to achieve optimal tracking precision,
in a suitable sense.
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