
Ontologies for supporting engineering analysis models

IAN R. GROSSE,1 JOHN M. MILTON–BENOIT,2 and JACK C. WILEDEN3

1Department of Mechanical and Industrial Engineering, 160 Governor’s Drive, University of Massachusetts,
Amherst, Massachusetts 01003-2210, USA

2United Technologies Research Center, East Hartford, Connecticut, USA
3Department of Computer Science, University of Massachusetts, Amherst, Massachusetts 01003-2210, USA

(Received May 28, 2003; Accepted August 5, 2004!

Abstract

In this paper we lay the foundations for exchanging, adapting, and interoperating engineering analysis models ~EAMs!.
Our primary foundation is based upon the concept that engineering analysis models are knowledge-based abstractions
of physical systems, and therefore knowledge sharing is the key to exchanging, adapting, and interoperating EAMs
within or across organizations. To enable robust knowledge sharing, we propose a formal set of ontologies for classi-
fying analysis modeling knowledge. To this end, the fundamental concepts that form the basis of all engineering
analysis models are identified, described, and typed for implementation into a computational environment. This generic
engineering analysis modeling ontology is extended to include distinct analysis subclasses. We discuss extension of the
generic engineering analysis modeling class for two common analysis subclasses: continuum-based finite element
models and lumped parameter or discrete analysis models. To illustrate how formal ontologies of engineering analysis
modeling knowledge might facilitate knowledge exchange and improve reuse, adaptability, and interoperability of
analysis models, we have developed a prototype engineering analysis modeling knowledge base, called ON-TEAM,
based on our proposed ontologies. An industrial application is used to instantiate the ON-TEAM knowledge base and
illustrate how such a system might improve the ability of organizations to efficiently exchange, adapt, and interoperate
analysis models within a computer-based engineering environment. We have chosen Java as our implementation
language for ON-TEAM so that we can fully exploit object-oriented technology, such as object inspection and the use
of metaclasses and metaobjects, to operate on the knowledge base to perform a variety of tasks, such as knowledge
inspection, editing, maintenance, model diagnosis, customized report generation of analysis models, model selection,
automated customization of the knowledge interface based on the user expertise level, and interoperability assessment
of distinct analysis models.

Keywords: Engineering Analysis Models; Interoperability; Knowledge Base; Ontologies

1. INTRODUCTION

The design of virtually all engineered products requires the
services of engineering analyses to predict the behavior of
the product and0or its manufacturing processes for evalua-
tion and optimization of the product design in terms of its
intended function, reliability, quality, manufacturability, and
so forth. In the course of development of these analysis
models of physical systems, engineers make numerous mod-
eling idealizations or assumptions. Indeed, modeling ideal-
izations and their associated justification are at the heart of
all engineering analysis models. Which modeling idealiza-

tions are invoked depends on a variety of factors, such as
the goals of the engineering analysis, the specific analysis
objectives, analysis time constraints, the risk preferences of
the analysis engineer to uncertainty in the analysis results,
estimates of analysis cost, accuracy, and resolution, and
observations regarding the behavior of the physical system
~Doraiswamy et al., 1999!. Further, this modeling knowl-
edge is dynamic in nature. Analysis goals and objectives,
time and cost constraints, and other related modeling infor-
mation change as the product development cycle proceeds.
As a result, analysis models that are appropriate or even
optimal at one point in the product development cycle are
inadequate at other phases of the product development cycle.
For example, early in the product development cycle engi-
neering analysis may consist of quick back-of-the-envelope
analysis, yielding only order of magnitude estimates, while

Reprint requests to: Ian R. Grosse, Department of Mechanical and
Industrial Engineering, 160 Governor’s Drive, University of Massachu-
setts, Amherst, MA 01003-2210, USA. E-mail: grosse@ecs.umass.edu

Artificial Intelligence for Engineering Design, Analysis and Manufacturing ~2005!, 19, 1–18. Printed in the USA.
Copyright © 2005 Cambridge University Press 0890-0604005 $16.00
DOI: 10.10170S0890060405050018

1

https://doi.org/10.1017/S0890060405050018 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050018

in the later stages of the development cycle detailed finite
element analysis ~FEA! may be required to obtain suffi-
ciently accurate analysis results.

When engineers develop analysis models, they apply a
mixture of domain modeling knowledge and general mod-
eling principles to create the analysis model abstraction.
Consider the NextStepTM ~registered trademark of United
Technologies Corporation, Hartford, CT! escalator drive
unit module shown in Figure 1a and a corresponding FEA
model in Figure 1b developed by an engineer at United
Technologies Research Center. This analysis model is a
2-dimensional ~2-D! plain–strain idealization of the system
with a number of other important modeling assumptions.
For example, all the metal components interacting with the
flexible drive belt ~drive pulley, follower pulley, idler roll-
ers, and engagement link! are modeled as rigid surfaces;
the bottom teeth on the belt, as well as on the drive pulley
and idler rollers, are suppressed, and the belt itself is mod-
eled as a pseudohomogeneous single material part, although
in reality the belt consists of a number of steel cords embed-

ded in polyurethane ~PU!. This pseudohomogeneous belt
has a modulus of elasticity and belt thickness such that its
bending and longitudinal stiffnesses are equivalent in a mac-
roscopic sense to that of the actual belt. Despite these ide-
alizations, this model simulates with sufficient accuracy the
engagement of the top teeth of the cogged belt with the
metal link ~which connects to the escalator steps and drives
the escalator! and the resulting strains and stresses induced
in the upper teeth of the belt. Obviously, a host of modeling
idealizations has been made in the process of creating this
engineering analysis model. Further, underlying this mod-
eling knowledge is mathematical and physical knowledge
related to this physical phenomenon ~i.e., the continuum–
mechanics boundary value problem that models this phys-
ical system behavior! and numerical knowledge involved in
the solution of this boundary value problem ~i.e., finite ele-
ment model!. If we consider the wealth of modeling knowl-
edge that is involved in developing analysis models that are
used to predict combustion and fluid flow in a jet aircraft
engine, the aerodynamic performance of entire planes, defor-

Fig. 1. ~a! The NextStep™ escalator drive unit module and ~b! 2-D finite element analysis model of the NextStepTM escalator model
showing the distribution of the maximum principal strains in the drive belt.

2 I.R. Grosse et al.

https://doi.org/10.1017/S0890060405050018 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050018

mation of automobiles in crashes, noise and vibration in
helicopters and planes, and so forth, it is not surprising that
organizations find that merely exchanging model data ~i.e.,
input and output files! does little to ensure reusability, adapt-
ability, or interoperability of EAMs.

It has been estimated that the cost of imperfect computer-
aided design ~CAD! interoperability is at least $1 billion
per year for members of the US automotive supply chain
~Brunnermeier & Martin, 1999!. Poor reusability, adaptabil-
ity, and interoperability of engineering analysis models as a
result of imperfect knowledge exchange could have simi-
lar, if not larger, cost impacts.

The lack of standards in this area has only compounded
the problem. Although voluminous standards are beginning
to emerge for the representation of analysis modeling data,
such as the ISO 10303-104 ~1994! standard for representa-
tion of finite element modeling data in the domain of struc-
tural analysis, there are no current standards for modeling
knowledge. It is important to distinguish between modeling
knowledge and modeling data. ISO 10303-104 ~1994! sup-
ports the representation of entities such as coordinate sys-
tems, nodes, elements and element types, degrees of freedom,
shape functions, element matrices, integration schemes, analy-
sis control options, analysis results, and so forth. It does not
support any information regarding modeling idealizations,
limitations of the analysis model, analysis purpose and objec-
tives, and the justification that supports each modeling ide-
alization. For example, if a 2-D finite element model is
electronically transmitted via ISO 10303-104 ~1994! to some-
one else inside or outside the organization for reuse, adap-
tation, or interoperability purposes, answers to such basic
questions such as what is the overall goal of the analysis,
what 3-D geometric features of the system were approxi-
mated as having 2.5-D geometry or simply ignored and
why, what changes in the original physical system would
make this modeling simplification no longer appropriate,
what loading and boundary condition idealizations were
idealized as 2-D and why, and what are the constraints on
all the various 2-D modeling idealizations, cannot be found
or even inferred from ISO 10303-104 ~1994! data.

2. RELATED WORK

This section outlines the various approaches taken by
researchers in the past and present in two key areas: adap-
tation and interoperability and knowledge-based systems
and ontologies for engineering analysis. The subsection on
knowledge-based systems and ontologies focuses primarily
work in the domain of FEA.

2.1. Reusability, adaptation, and interoperation

We define reusability as the ability to reuse an analysis
model for the same application ~typically with minor changes
to one or more input parameters! by someone other than the

model developer. Adaptation is defined as the ability to
easily reuse or modify an analysis model developed for one
application for another similar or related application. Inter-
operability is defined as the ability of independently devel-
oped models or analyses to be easily applied or combined
for use in a hybrid application that involves multiple dis-
tinct analyses. This section deals with the existing approaches
to reusability, adaptation, and interoperability problems. Most
of these solutions are ad hoc and unsatisfactory, in a large
measure because of the lack of suitable computer science
foundations for addressing the underlying fundamental issues
from which the problems arise.

Reusing or adapting an analysis model is a knowledge-
intensive process, and to date, manufacturing enterprises
have had very limited success in capturing, archiving, and
reusing knowledge in a computational environment. Orga-
nizations resort to offline documentation of the design and
analysis assumptions. Apart from offline documentation,
the next most prevalent approach for overcoming this prob-
lem is automated transformation of data or code, such as by
a macroprocessor or similar tools, for example, GenVoca
~Batory et al., 1994!. These, however, tend to be program-
ming language or platform specific and unable to assure
uniform, complete, or consistent transformations. More-
over, these existing approaches lack two critical features
required of adaptation in engineering applications: the abil-
ity to capture both the nature and intent of adaptation, and
the ability to combine or sequence adaptations and to rec-
ognize ~in!compatibilities among them.

One of the most common concerns among manufactur-
ing enterprises is the persistent lack of data portability and
interoperability ~Brunnermeier & Martin, 1999!. Major CAD
vendors that provide a complete package of tools @product
data management ~PDM!, CAD, computer-aided manufac-
turing, FEA, etc.# have a distinct advantage in the market
simply because interoperability concerns are lessened, even
though one or more of the individual software components
may be inferior to others in the market. Hence, this means
that an interoperable solution these days requires organiza-
tions to lock into a single monolithic computational envi-
ronment in lieu of a suite of application tools, each one
being optimally suited for the specific task at hand.

The problem of interoperability has been addressed in
areas apart from FEA. The most notable contribution has
been in the area of PDM. Szykman et al. ~2000! have pro-
posed a foundation for interoperability in the next genera-
tion product development systems. They have made efforts
to integrate data exchange standards such as ISO 10303-
104 ~1994!, known as STEP ~standard for the exchange of
product model data! into the existing generation of soft-
ware tools. This system addresses the lack of formal prod-
uct representations such as function, behavior, and structure,
which are the shortcomings in the existing PDM systems.
These existing systems concentrate mainly on database-
related issues and do not place any emphasis on informa-
tion models for artifact representation.

Ontologies for engineering analysis models 3

https://doi.org/10.1017/S0890060405050018 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050018

Earlier work by deKleer and Brown ~1983!, Iwasaki and
Chandrasekaran ~1992!, Alberts and Dikker ~1992!, Chan-
drasekaran et al. ~1993!, Henson et al. ~1994!, Goel et al.
~1996a, 1996b!, Qian and Gero ~1996!, Ranta et al. ~1996!,
and Umeda et al. ~1996! on product information represen-
tation has helped in the high-level division of artifact infor-
mation into form, function, and behavior. Szykman et al.
~2000! have developed on this high-level division to obtain
a core-level representation consisting of objects and rela-
tionships with flow, function, form, geometry, material,
behavior, specification, and artifact as the various classes
representing them. Utilizing this type of a product represen-
tation would provide a rich source of knowledge that could
be utilized in the development of the product. Although not
in the area of engineering analysis, the fundamental con-
cept of a formal information structure that, when instanti-
ated, represents knowledge about a particular domain that
can then be operated upon by computers and humans alike
is a key component to how we propose to solve problems
involving reusability, adaptation, and interoperability of engi-
neering analysis models.

2.2. Knowledge-based systems and ontologies
in engineering analysis

In this section we focus on research that has been done to
develop knowledge-based systems for engineering analysis,
with particular focus on FEA, and on the development of
ontologies for supporting knowledge base systems in engi-
neering. Surprisingly, relatively little work has been done in
this area, although it has been over 20 years since the devel-
opment of the rule-based expert system, MYCIN, in the field
of medical diagnostics ~van Melle, 1978; Clancey, 1983!.

One of the early applications of the MYCIN environment
to nonmedical domains was a structural-analysis assistant
that addressed some of the numerical modeling aspects of
the problem using the heuristic classification problem-
solving paradigm ~Clancey, 1985!. By incorporating a large
number of heuristics, these systems can recommend prob-
lem specifications, analysis strategies, and program options,
starting with a description of problem features. Under most
circumstances, a domain expert and a knowledge engineer
are locked away for months or years and return with a model
and computer program, which are comparable in perfor-
mance to human specialists ~Grower, 1982!. This method
has produced several remarkable programs such as SACON
~Bennett et al., 1978!, PROSPECTOR ~Duda et al., 1978!,
R1 ~McDermott, 1980!, and INTERNIST ~Miller et al.,
1982!. Yet, maintenance of these rule-based systems has
been difficult, as seemingly insignificant changes in the
rule base can produce dramatic and unpredictable results
~Musen, 2000!.

Over a period of time a number of frameworks have
been developed to support engineering analysis, such as the
frameworks proposed by Shephard et al. ~1990! and the
knowledge-based assistance for finite element modeling pro-

posed by Turkiyyah and Fenves ~1996!. These frameworks
continue to have the problems of domain-specific knowl-
edge tightly coupled with procedures and rules, making the
systems difficult to maintain and extend. Object-oriented
frameworks address this issue. Extensive work by Tomiyama
et al. ~1989!, Zimmerman et al. ~1992!, Mackie ~1992!, and
Dubois–Pelerin and Zimmermann ~1993! have shown a com-
plete representation of FEA models in object-oriented frame-
works. This has led to the development of a number of
semiautonomous systems, such as an automated system for
the modeling and analysis of multichip modules by Sheehy
and Grosse ~1997! and Holzhauer and Grosse ~1999!. These
researchers developed a hierarchical object-oriented data-
base to represent the physical system at various levels of
abstractions, such as user-defined physical system level and
computer-generated physical and finite element model lev-
els. Even though these systems have been restricted to cer-
tain application domains such as thermal or structural
analysis of multichip modules, they demonstrated the
improved efficiency and ease of applying blackboard archi-
tecture to integrate the various numerical and symbolic
knowledge sources in an object-oriented framework. Peak
~2000! proposed the X-Analysis Integration Technology sys-
tem, which includes capturing design knowledge, transfer-
ring the same into reusable libraries, and deployment of
these template analyses for the creation of a new analysis
type. However, in this system, as well as the previous sys-
tems discussed above, there is no formal representational
scheme for modeling knowledge. Therefore, these systems
cannot be easily extended by methods that would operate
on this knowledge, nor can modeling knowledge be easily
explicated and exchanged with people or software agents.

The use of Java-based frameworks to support engineering
analyses has become a recent trend ~1997!. This work in-
cludes Onyx ~Read & Afjeh, 1998!, MOB-FEM ~Shanbhag,
2002; Shanbhag et al., 2002!, and FIPER ~Rohl et al., 2000;
Wujek et al., 2002!. Onyx is a Java-based object-oriented
application framework for aerospace propulsion system sim-
ulation that is capable of integrating advanced multidisci-
plinary and multifidelity analysis methods, dynamically
constructing arbitrary simulation models, and distributing
computationally complex tasks.This system provides a robust
framework for interoperability between the different disci-
plines ~structural, fluid, thermal, etc., referred to as phenom-
enon in this proposal! along with fidelity ~0-D, 1-D, 2-D,
and 3-D referred to as geometry in this proposal!. However,
the system requires a representation of these models to pre-
exist in the database of components, and is restricted to
aerospace propulsion systems. This system assumes the same
kind of boundary, initial, and load condition when analyz-
ing a particular component of a model. Hence, reusability,
adaptability, and interoperability exists only in the context
of a specific multidiscliplinary analysis problem. Onyx
exploits the Java reflection capability in developing the analy-
sis models but has no capability of intercession, unlike Open-
Java ~Tatsubori, 1999!. Shanbhag et al. ~Shanbhag, 2002;

4 I.R. Grosse et al.

https://doi.org/10.1017/S0890060405050018 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050018

Shanbhag et al., 2002! developed an OpenJava application
called MOB-FEM for automatically reusing finite element
modeling knowledge. A separate Visual Basic tool, called
TEK-FEM, with a graphical user interface was developed
to extract modeling knowledge from a domain expert. This
knowledge is then stored in a Microsoft Access backend
database. Although the modeling knowledge extracted from
the expert is based on a taxonomy similar to the one pro-
posed by Finn et al. ~1992!, the knowledge was not repre-
sented or stored using a formal information structure. As a
result, the researchers were forced to hardwire much of the
functionality of the coupled TEK-FEM0MOB-FEM system
for the specific problem used to demonstrate the methodol-
ogy: thermal cooling FEA and subsequent mold ejection
elastostatic FEA of a plastic part. FIPER, the result of a
$21.5 million project effort funded primarily by NIST’s
Advanced Technology Program and a number of high tech-
nology companies, is a component-based Web-centric frame-
work with a common protocol that to enable companies to
“wrap” their engineering tools, data, and processes into the
FIPER environment. This enables across the Web data
exchange and access to various engineering tools that sup-
port product development. The architecture is based on Java
and Sun’s Jini software system. However, there is no across
the Web knowledge exchange.

Parallel to the development of these frameworks to sup-
port engineering analysis activities, researchers in the field
of artificial intelligence began to uncover serious shortcom-
ings with procedural rule-based expert systems. They dis-
covered that subtle changes in the way the rules were
organized produced dramatic changes in the expert system
results ~Buchanan & Shortliffe, 1984!. It was clear that
relationships existed among the rules that were difficult to
determine by direct inspection of the knowledge base, and
therefore, large production rule systems were difficult to
maintain and problematic ~Bachant, 1988!. A way was
needed to separate out operational knowledge, that is,
problem-solving methods, from the domain knowledge upon
which the problem-solving methods operate.

One of the most promising ways to separate and repre-
sent domain knowledge from operational or problem-
solving knowledge is through the use of ontologies. A popular
definition of ontology is the one offered by Gruber in 1993:
ontology is an explicit specification of a conceptualization
of a domain. It is a formal specification of the terms in the
domain and the relations among them. Noy and McGuin-
ness ~2001! elaborate to define an ontology as a formal
explicit description of domain concepts, often called classes,
properties of each class, called slots, which describe the
various features and attributes of the class, and restrictions
on the properties or slots, called facets. The classes may be
arranged hierarchically with subclasses inheriting proper-
ties from their superclasses and adding further specifica-
tion with additional properties and facets. Ontologies
represented or modeled in this manner are well suited for
implementation using object-oriented languages.

When an ontology is populated with information that fills
the properties of the classes, that is, instances of the class
objects, it represents a knowledge base for that particular
domain. One important distinction between an ontology-
based knowledge tool and a pure object-oriented architec-
ture is that, in the latter, problem-solving methods are
interleaved with the knowledge structure, that is, class and
instance objects. This has advantages in terms of permitting
a good bit of flexibility regarding the semantics of encoded
objects and making it straightforward for developers to
include new functionality into the code. Yet, it is impossi-
ble to consider control–flow relationships separately from
the data structures that comprise the object hierarchy or to
view the data or knowledge model without being distracted
by associated program code ~Musen, 2000!.

The development of ontologies for a wide variety of
domains has been an active area of research in recent years.
Extensive ontology libraries can be found at the Stanford’s
Knowledge Systems Laboratory ~www.ontolingua.stanford.
edu! and at DARPA’s DAML ontology library ~www.daml.
org!. Unfortunately, little work has taken place to date in
developing formal ontologies for engineering and for engi-
neering analysis modeling knowledge. However, there are
a few notable contributions in this area. Dym and Levitt
~1991! appear to be the first to propose taxonomies for
engineering analysis modeling knowledge. The authors
present a topology of engineering knowledge that includes
fundamental or first principle knowledge, phenomenologi-
cal knowledge, analytical model knowledge, numerical
model knowledge, and even meta knowledge, such as goals,
objectives, and intentions of the analysis model. They imple-
ment their knowledge topology in a LISP-based Life Safety
Code Advisor, a prototype knowledge-based expert system
for reviewing architecture designs for conformance with
NFPA safety code. In a similar vein, Finn et al. ~1992!
proposes an intelligent modeling assistant based on a tax-
onomy of modeling idealizations for continuum-based analy-
sis models, and subsequently proposes a system ~CoBRA!
for the development of a model of a physical system ~called
a physical model by the authors! adopting both case-based
and model-based reasoning ~Finn & Cunningham, 1994!.
They describe the generation of a model as the application
of idealizations and simplifications of spatial, phenomeno-
logical, and temporal aspects. They have broken down the
modeling simplifications into two categories: geometric and
phenomenon. The four types of geometrical simplifications
discussed by Finn et al. ~1992! are dimensional reduction,
geometric symmetry, feature removal, and domain alter-
ations. Similarly, the phenomenon simplifications are
reduced or removed. Phenomenon removal is the omission
of an entire phenomenon from an analysis, while phenom-
enon reduction is the removal of a component of a phenom-
enon such as ignoring radiation in a heat transfer analysis.

Borst et al. ~1994, 1995! have developed a set of formal
engineering ontologies called PhysSys for dynamic physi-
cal systems. The set includes three ontologies ~component,

Ontologies for engineering analysis models 5

https://doi.org/10.1017/S0890060405050018 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050018

process, and engineering mathematics!with ontological pro-
jections that map components to processes and processes to
engineering mathematics. PhysSys basically defines com-
ponents as carriers of physical processes that can be repre-
sented mathematically with physical quantities and
mathematical relations using Gruber’s and Olsen’s Eng-
Math ontology ~1994!. The authors discuss the need to
include metalevel information as attributes of engineering
analysis models, and suggest validation information and
modeling assumptions as examples of such knowledge. Their
system captures this knowledge as text, but the authors
acknowledge that a more formal structure is needed so that
a support system for engineering modeling could actually
reason about it.

3. RESEARCH APPROACH

We argue that formal taxonomies or ontologies for the rep-
resentation of engineering analysis modeling knowledge are
needed. Efficient methods and tools are needed for extract-
ing analysis modeling knowledge from engineers and incor-
porating this knowledge into a computational environment.
Finally, we need methods and associated tools that can
exploit the existence of such knowledge in a computational
environment to improve interoperability, reusability, and
adaptability of analysis models.

3.1. Ontologies for representing engineering
analysis modeling knowledge

Noy and McGuinness ~2001! provide a step by step guide
for developing an ontology. Based on their methodology,
we have begun to develop an ontology that would be appli-

cable to all engineering analysis models. This ontology draws
upon some of the analysis modeling taxonomies and con-
cepts presented by Tomiyama et al. ~1989!, Finn et al. ~1992!,
Dym and Levitt ~1991!, Finn and Cunningham ~1994!, Sinha
et al. ~2001!, and Paredis et al. ~2002!. Figure 2 shows our
hierarchical categorization of types of analysis models. We
first distinguish between physics-based and non-physics-
based models. Physics-based models are predictive models
of the physical behavior of a physical system, such as an
engineered product or manufacturing process. Example of
a non-physics-based model is a market analysis model that
predicts the demand for a product. In this research we are
focused on physics-based models, which we further sub-
type as empirical, lumped parameter or discrete, and con-
tinuum based, and our proposed ontologies are applicable
to all physics-based engineering analysis models. Empiri-
cal models are models directly derived from experimental
observations, such as response surface models or material
behavior models derived from material testing. Lumped
parameter or discrete models are mathematic models that
consist of one or more interconnected model components
with individual model component parameters lacking spa-
tial dependency. Continuum-based or distributed models are
mathematic models with one or more variables or param-
eters that are dependent upon one or more independent spa-
tial variables. Continuum-based models are classified as
analytical or numerical, depending on whether or not numer-
ical techniques are needed to obtain the model solution.
The class of numerical continuum-based models has a num-
ber of subclasses according to specific numerical tech-
niques, such as boundary element method, finite element
method, finite difference method, wavelet methods, and
hybrid methods involving one or more of the previous meth-
ods. As new methods emerge, additional subclasses would
be included here.

Fig. 2. The class hierarchy of some engineering analysis model types. The proposed ontologies are applicable to all physics-based
engineering analysis models.

6 I.R. Grosse et al.

https://doi.org/10.1017/S0890060405050018 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050018

In Table 1 we identify basic properties of all physics-
based analysis models. The first column is the term employed
to represent this modeling knowledge concept, the second
column is the type of information contained in this concept,
the third term is the cardinality of this information, and the
fourth column lists constraints or other properties of this
concept. The information is typed to facilitate computa-
tional representation and manipulation. An instance type
means that this information is an instance or object of another
class with separate properties that define that class. Cardi-
nality is the number of values an instance of the term or
property may take on. Note that a cardinality of multiple
means this term supports multiple values, but it can be empty.
A term with required multiple cardinality means that the
term must contain at least one value. A term with required
single cardinality means the term must and can only have
one value.

The class of engineering analysis models has the basic
properties of name ~a string!, creator ~a string!, creation
date ~a date!, modifier ~a string!, modification date ~a date!,
model version number ~a floating point number!, and model
documentation ~a string that provides links to technical
reports, presentations, etc.!. This information is similar to
standard software engineering documentation. We assert that

additional more abstract, or meta, knowledge needs to be
formalized into an ontology to support engineering analysis
modeling, as shown in Table 1. Specifically, all engineering
analysis models have a purpose that describes what the over-
all goal of the model is in terms of strategic objectives of
the engineering department. An engineering analysis should
have a primary objective in terms of specific analysis results
that are sought ~i.e., specific engineering quantities of inter-
est, such as maximum temperature, stress, deflection,
response time, natural frequency, acoustic amplitude, power,
energy, force, etc.!, and possibly secondary objectives. Engi-
neering analysis models are derived from physical systems,
such as products, subassemblies, components, or manufac-
turing processes, and therefore, this information should be
captured.

As Hazelrigg ~1996! notes, analysis models have three
fundamental properties: accuracy, resolution, and causality.
Resolution is the ability of the model to differentiate between,
or resolve, results for different values of input parameters,
and causality is the ability of the model to help establish
causal relationships between output parameters and input
parameters. Therefore, in our ontology we include as fun-
damental properties of the analysis model class slots for
expected accuracy, expected resolution, and expected cau-

Table 1. Properties of engineering analysis models

EAM Term Type Cardinality Notes

Model name String Required single Unique identifier
Description String Required single Short and concise
Version no. Float Required single Recommend x.x format
Documentation String Multiple References to technical report~s!0presentations
Creator or developer String Required multiple
Creation date Date Single ,Current date
Modifiers String Multiple
Modification dates String Multiple ,Current date
Development time Float Single In hours
Purpose String Required multiple
Primary objective String Required single Engineering quantity predicted
Secondary objectives String Multiple
Physical system basis String Single Product or process
Graphic of model Instance Multiple Image files of model
Accuracy expectation String Single Qualitative multiple choice
Resolution expectation String Single Qualitative multiple choice
Causality expectation String Single Qualitative multiple choice
Software requirements String Multiple
Hardware requirements String Multiple
Robustness String Single Qualitative multiple choice
Model input String Required multiple List of input parameters
Model output String Required multiple List of output parameters
Model limitations Instance Required multiple List of model limitations
Model idealization Instance Required multiple List of model idealizations
Model components Instance Multiple List of model components
Model development steps String Multiple List of major model development steps
Intended user0user group String Required multiple Employees, customers, etc.
Training hours required Float Required single 0 � no training
Validation plan String Single
Certification level Integer Single

Ontologies for engineering analysis models 7

https://doi.org/10.1017/S0890060405050018 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050018

sality. At this point it is not clear how to type these slots,
that is, as numbers or perhaps as strings for qualitative
information.

We also include model robustness in our ontology. We
define robustness as a measure of the stability of the engi-
neering analysis model to variations in input parameters. It
should be noted that if the model seeks to simulate an inher-
ently unstable phenomenon, such as a flame, then instabil-
ity in the results may be indicative of the physical system
being simulated and not due to a lack of model robustness.
Instability in computer-based analysis is often due to finite
precision in digital computers, coupled with large differ-
ences in scales of physical quantities represented in the
analysis model. Included in our definition of robustness is
the degree to which the analysis tool ~or macro that executes
the analysis tool! has error trapping to detect if supplied
input parameters are out of bounds. Analysis models may
demand certain resource requirements in terms of software
and hardware, and therefore, the analysis class could include
these slots to specify this information as well.

All analysis models have a set of limitations that describe
the applicability of the analysis model to a class of prob-
lems. Each limitation may be the result of one or more
modeling idealizations and0or due to limitations of the analy-
sis tool used to solve the analysis model. Each modeling
idealization has justification knowledge to support the spe-
cific modeling assumption. Figure 3 shows the relationship
between the Analysis Model, Limitation, Idealization, and
Justification classes, as well as fundamental properties of

each concept or class. Each concept has slots for specifying
the name and description of an instance of the concept. For
the sake of brevity, the property list for the Analysis Model
class is abbreviated in the figure to include only the addi-
tional slot for storing limitations property. The complete
list of properties of the Analysis Model class is given in
Table 1. In addition to a Justification property, the Ideali-
zation class includes properties for specifying the effect the
idealization has on accuracy, resolution, causality, and reduc-
ing the analysis modeling cost. Justification knowledge
includes three properties for justifying the idealization based
on heuristics, theory, or first-principle, and0or empirical
observations.

Analysis models are often comprised of components that
may or may not map directly to physical components. Thus,
we have included in our ontology a slot for specifying a list
of model components that comprise the engineering analy-
sis model. As in the model itself, model components may
have specific limitations associated with the component.
The component limitations are associated with instances of
the idealization class with justification knowledge for each
idealization.

All analysis models have inputs, either parameters or files
containing input data, and outputs, either parameters or files
containing output data. Input parameters and files have asso-
ciated suppliers, whereas output parameters and files have
associated recipients. Suppliers and recipients may be peo-
ple, databases, or other software tools. Input parameters
have constraints that restrict their values. Our ontology struc-

Fig. 3. The properties and relationships of the analysis model, limitations, idealization, and justification classes.

8 I.R. Grosse et al.

https://doi.org/10.1017/S0890060405050018 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050018

ture would support explicit representation of all of this infor-
mation by having the model input parameter slot value be
an instance of the input parameter class.

We can think of other modeling knowledge that may be
important, especially to organizations with quality control
processes imposed on the model development process. For
example, the model may have a validation or critical risk
reduction plan that seeks to address uncertainty with regard
to validity of model idealizations or a certification level
indicating the overall robustness and accuracy of the model.
The ontology could capture the model development process
itself, either informally by specification of model develop-
ment steps as a property of the analysis model class using a
text list or more formally by an instance of a process ontol-
ogy. A process ontology has fundamental process proper-
ties, such as task, inputs for a task, outputs for a task,
preceding task, following task, task resources required, and
so forth.

3.2. Domain-specific EAM ontology research
and development

In Section 3.1 we have broadly discussed the type of knowl-
edge that might support all EAMs. Within this overall EAM
class, there are subclasses of analysis models, as shown in
Figure 2. Each of these subclasses of EAMs may have spe-
cific modeling knowledge that needs to be specified in a
formal information structure. For example, continuum-
based analysis models have the concept of geometry as
defined by one or more spatial coordinates and have an
underlying theory based on continuum mechanics, and there-
fore have a unique class of modeling idealizations related
to spatial coordinates. For example, geometry itself can be
idealized as 2-D or 1-D, geometric features can be ignored
or modified, forces and constraints can be idealized as point
loads, and so forth. Further, all but the simplest continuum-
based models require numerical techniques, such as FEA,
to solve. This introduces additional modeling knowledge
related to discretization techniques and the specification of
the proper numerical solution techniques. For example, in the
finite element model analysis subclass discretization knowl-
edge could include element types and meshing methodology.

Lumped parameter models have the concept of flow, such
as energy or current, between components that are defined
with specific input–output relationships. Therefore, lumped
parameter models have idealizations regarding input–
output black box behavior of interconnected functional com-
ponents of the model. Underlying theory, such as control
theory, supports these models. Empirical models have the
concept of observations and measurement error. Statistical
theory supports empirical models.

4. AN EXAMPLE IMPLEMENTATION OF
EAM ONTOLOGIES

We have implemented our EAM ontologies into a compu-
tational framework and instantiate the object classes to form

a prototype engineering analysis modeling knowledge base
called ON-TEAM. Implementation has been facilitated by
using Protégé-2000, a noncommercial open-source Java tool
developed at Stanford’s Medical Informatics Lab that pro-
vides an ontology and knowledge-base development envi-
ronment ~www.protege.stanford.edu; Grosso et al., 1999!.
Using Protégé-2000 we were able to quickly implement our
engineering analysis domain ontology, design knowledge
acquisition forms, and enter engineering analysis modeling
domain knowledge. Protégé-2000 supports plugins and appli-
cation program interfaces ~APIs!. Thus, ON-TEAM can be
extended with object-oriented methods that operate on the
knowledge base to perform various tasks.

Figure 4 shows the basic object class ontology imple-
mented in ON-TEAM. In the window pane on the left the
various classes and class hierarchy for the Analysis Model-
ing Knowledge class are shown. The Analysis Modeling
Knowledge class is an abstract class with no properties that
serves as an organizational container for subclasses Analy-
sis Models, Component, Development_Process, User, Lim-
itation, Idealization, Idealization_Justification, Analysis_
Tool_Limitation, and Parameter each with their own
properties. The pane on the right shows the basic properties
of the Analysis_Model subclass that were discussed in Sec-
tion 3.1. Note that some slot or property information is
specified as a text string such as the purpose of model,
primary, and secondary objectives, and model documenta-
tion ~URL to technical reports!, as a multiple choice pick
from a list ~type is symbol! such as accuracy expectation,
resolution expectation, causality expectation, robustness, and
so forth, as a number such as model version number, as a
class such as intended user group, or as an instance of a
class such as model inputs, model outputs, output param-
eters, limitations, model idealizations, model components,
graphic of the model, and intended users.

5. AN APPLICATION EXAMPLE

In this section we present a real world engineering analysis
modeling application. Engineers at United Technologies
Research Center and Otis Elevator Company, both units of
United Technologies Corporation, develop sophisticated
analysis models to validate new technology that are used to
improve products. One new technology that has recently
been introduced in the NextStepTM escalator product is a
drive unit that employs a thermoplastic PU ~TPU!-coated,
cogged steel belt for transferring forces from the escalator
drive motor to the steel links that directly drive the escala-
tor steps. This TPU-coated steel belt technology replaces a
conventional steel chain drive, improving noise and vibra-
tion characteristics while reducing the maintenance costs of
the escalator. Numerous analysis models were developed
during the course of developing and validating this technol-
ogy. Figure 5 is a screen capture of part of the completed
modeling knowledge acquisition form for a 2-D FEA model

Ontologies for engineering analysis models 9

https://doi.org/10.1017/S0890060405050018 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050018

Fig. 4. Implementation of an ontology for representing analysis modeling knowledge.

10
I.R

.G
rosse

et
al.

https://doi.org/10.1017/S0890060405050018 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0890060405050018

Fig. 5. A screen capture of the completed knowledge acquisition form for the NextStepTM escalator modular drive.

O
ntologies

for
engineering

analysis
m

odels
11

https://doi.org/10.1017/S0890060405050018 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0890060405050018

of the drive unit modular. In this interface the “V” buttons
stand for view, “C” for create, “�” for add from a list of
existing objects or instances of objects, and “�” for delete.
If the user clicks on the V button of the graphic of model
widget, the window shown in Figure 6 pops up. This is a
maximum principal strain contour plot showing the strain
distribution in the cogged belt as the belt is engaged by the
link, which is represented by a rigid surface. The knowl-
edge engineer, that is, the original developer of this analy-
sis model, provided this analysis result figure and specified
to the ON-TEAM system the location of the image file to
be displayed by the graphic of model property. Note from
Table 1 or Figure 4 that the graphic of model property of
the analysis model class is, in turn, an instance of the “My
Images” class. Thus, the information shown in the various
parts of Figure 6, such as the image name, the image itself,
uses, filename, and so forth, is specified as properties of

this generic image class. Thus, we can use the My Images
class to support storage of graphical information that might
be instances of many different types of classes. For exam-
ple, the Physical System Basis property of the analysis model
class shown in Figure 5, as well as in Table 1 and Figure 4,
is an instance of either the product or manufacturing pro-
cess class. The product ~or manufacturing process! class
include the property “graphic of product” ~or “graphic of
manufacturing process”!, which is an instance of the My
Image class. Thus, by clicking on the view physical system
basis button shown in Figure 5 and then the subsequent
view graphic of product button, the result is shown in Fig-
ure 7. Thus, the analysis model class, the product class, and
the manufacturing process class each have a graphic prop-
erty that is an instance of the My Image class. This is an
excellent example of how object-oriented technology facil-
itates modularity and object reuse.

Fig. 6. A graphic of the analysis model results for the NextStepTM escalator drive unit module.

12 I.R. Grosse et al.

https://doi.org/10.1017/S0890060405050018 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050018

Fig. 7. A graphic of the physical system basis of the NextStepTM escalator drive unit module.

O
ntologies

for
engineering

analysis
m

odels
13

https://doi.org/10.1017/S0890060405050018 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0890060405050018

By comparing the graphic of the analysis model results
~which shows the underlying model! shown in Figure 6 and
the graphic of the physical system basis ~i.e., the picture of
the NextStepTM escalator drive unit module!, it is clear that
the analysis model is a significant abstraction, or idealiza-
tion, of the underlying physical system. In ON-TEAM analy-
sis models have a property called idealizations, which are
instances of the idealization class. Idealizations can be
directly inspected by clicking on an idealization shown in
the window or by inspecting first the limitation property.
Limitations are instances of the limitation class, and one of
the properties of this class include idealizations that con-
tribute to the limitation. Figure 8 shows a portion of the
knowledge acquisition form. The figure shows inspection
of the specific analysis model limitation that stresses are
uniform through the depth of the belt in this analysis model.
Figure 8 also shows that the associated idealization for this
limitation of the analysis model is called steel_corded_
belt_2D_dimensional_reduction and the properties of this
idealization. This idealization essentially involves abstract-
ing the round steel cords contained within the belt as a
single rectangular section steel cord that extends through
the entire belt depth, so that the belt may be modeled with
2-D geometry. The justification knowledge for this ideali-
zation, called steel_cord_equivalency, is an instance of the
justification knowledge class whose properties are shown
in Figure 3. The values of the properties of steel_cord_
equivalency justification knowledge provides the equiva-
lency calculation in which the section and material properties
of the rectangular steel cord section are determined such
that it is equivalent to the set of round steel cords in terms
of uniaxial and bending stiffnesses.

The knowledge acquisition forms shown in the Fig-
ures 5–8 are the default ~but customizable! forms offered
by the development environment to enable the domain expert
to input modeling knowledge for a specific application into
ON-TEAM. However, different organizations may prefer
different types of user interfaces for specifying knowledge.
For example, some organizations may prefer a question and
answer format, or a specific checklist sequence with accom-
panying pull-down menus. Because Protégé-2000 is a free
open-source Java development environment, organizations
can customize how knowledge is acquired to suit their pref-
erences. As currently implemented, the knowledge pro-
vider interacts with the knowledge acquisition form,
proceeding top down through the properties of the analysis
model class. If an analysis model property is an instance of
another class, such as the analysis model limitations slot
values are instances of the limitation class, then the prop-
erties or slot values of the linked class instances must also
be provided. However, a more bottom-up approach may
prove more intuitive for the knowledge provider. Referring
to Figure 3, it may be more natural for the knowledge pro-
vider to first create instances of all the modeling idealiza-
tions of the analysis model by defining properties of instances
of the limitation class and supporting these properties with

instances of justification knowledge. Then the knowledge
provider would associate these idealizations with resulting
instances of limitations of the analysis model by linking the
model idealizations to the idealizations slot of the limita-
tion class. The limitation instances are then linked to the
analysis model class via the limitations slot of the analysis
model class.

Another issue is how to best present this knowledge to
end users of the system. One Web-enabled way that knowl-
edge can be presented to end users is via a server hosting
html tables containing a library of the analysis modeling
knowledge. Through standard features and plug-ins devel-
oped for Protégé-2000, ON-TEAM has the ability to output
its knowledge base in various formats, including html, xml,
rdf schema, and, through Java database connectors, to MS
Excel, or various common relational databases. Table 2 below
shows a portion of the html table generated automatically
by ON-TEAM for the application example. All underlined
items in the table are hyperlinked to additional html tables
with property values that provide the appropriate knowledge.

6. CONCLUSIONS AND FUTURE WORK

In the world of rapidly evolving technology and highly com-
petitive markets, manufacturing enterprises rely heavily on
engineering analyses to provide the information needed to
inform design decisions as quickly and as cost effectively
as possible. Considerable modeling knowledge is invested
in the development of these analysis models, and yet no
formal schemes exist to represent and operationalize this
knowledge in ways that will facilitate successful exchange,
reuse, adaptation, or interoperation of analysis models. In
this research we propose such a scheme based on identify-
ing and classifying fundamental analysis modeling knowl-
edge into a set of formal ontologies. We then presented an
implementation of these ontologies into a Java-based object-
oriented information structure, which was instantiated with
a real-world industrial analysis model to form the basis for
an engineering analysis modeling knowledge base system
called ON-TEAM.

It should be noted that our research in developing ontol-
ogies to support engineering analysis modeling knowledge
and implementing them in ON-TEAM is a work in progress.
To validate and refine the effectiveness of the proposed
ontologies and our implementation tool, evaluation is needed
in the context of real-world product development activities.
To this end we will draw upon the Center for e-Design and
Realization of Engineered Products and Systems, a new
NSF-sponsored Industry0University Cooperative Research
Center currently involving the University of Massachusetts,
University of Pittsburgh, University of Central Florida, and
approximately 15 companies ~see www.e-designcenter.info
for more information!. The Center’s industry members will
serve as an evaluation test bed for the proposed ontologies
and our ON-TEAM implementation in the context of prac-
tical engineering analysis interoperability problems.

14 I.R. Grosse et al.

https://doi.org/10.1017/S0890060405050018 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050018

Fig. 8. Part of the knowledge acquisition form showing inspection of a specific model limitation.

O
ntologies

for
engineering

analysis
m

odels
15

https://doi.org/10.1017/S0890060405050018 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0890060405050018

Because our formal ontology for EAM concepts has been
modeled using object-oriented concepts and implemented
using an open-source Java-based tool that provides an API,
object-oriented methods can be implemented to operate on
this knowledge to perform a variety of important tasks.

These tasks include the ability to automatically inspect the
modeling knowledge for consistency, editing, maintaining,
and extending the knowledge base for model reuse and adap-
tation. In addition, methods can be developed to assess the
suitability of an analysis model in terms of its robustness,

Table 2. Partially hyperlinked html table of application-example EAM knowledge for
CCSB-2-D-belt-link-pulley-roller-model and finite_element_model class

Own Slots

Slot Name Value Type

Model_name CCSB-2-D-belt-link-pulley-roller-model String

Description Plane strain model of the NextStepTM escalator modular drive, coated cogged
steel belt. The effect of pulleys, engagement links, and rollers are also modeled
using rigid surfaces and spring elements.

String

Model_version_number 1.2 Float

Intended_users 1. OEC-F ~Otis Engineering Center–Farmington! ~of class customers!
2. John Milton_Benoit ~of class employee_users!

Instance

Physical_system_basis coated-cogged-steel-belts ~of class CCSB! Instance

Graphic_of_model ccsb-model-1 ~of class My images! Instance

Primary_model_objective Predict maximum strains in upper belt teeth and simulate belt0link engagement String

Secondary_model_objectives 1. Determine maximum escalator passenger load
2. Evaluate tooth load ramping
3. Optimize engagement roller configuration

String

Accuracy_expectation Medium Symbol

Robustness High Symbol

Limitations 1. fixed outer belt tooth form ~of class ccsb_limitation!
2. uniform_thru_the_belt_depth_stresses ~of class ccsb_limitation!
3. no_load_misalignment ~of class ccsb_limitation!
4. no_inner_teeth_belt_stresses ~of class ccsb_limitation!
5. quasi-static analysis ~of class ccsb_limitation!
6. constant_belt_velocity ~of class ccsb_limitation!

Instance

Model_idealizations 1. steel_corded_belt_2D_dimensional_reduction ~of class dimensional_reduction!
2. feature_suppression ~of class Feature_class_suppression!
3. rigid_link_tooth_surface ~of class Material!
4. rigid_idler_pulley ~of class Material!
5. rigid_drive_pulley ~of class Material!
6. constant_velocity ~of class suppress_time_behavior!

Instance

Model_outputs 1. delta-v ~of class output_numeric_parameter!
2. sigma_1-max ~of class output_parameter!
3. MPL ~of class output_numeric_parameter!
4. tooth_load ~of class force!

Instance

Model_creation_date March ~of class Date! Instance

Secondary_model_objectives 1. Determine maximum escalator passenger load
2. Evaluate tooth load ramping
3. Optimize engagement roller configuration

String

Training_hours_required 10.0 Float

Model_inputs 1. D1 ~of class float_input_parameter!
2. w ~of class float_input_parameter!
3. kr ~of class float_input_parameter!
4. C1 ~of class float_input_parameter!
5. PL ~of class float_input_parameter!
6. material models ~of class material_behavioral_model of class input_parameter!
7. tooth form ~of class geometric_forms of class input_parameter!

Instance

Validation_plan Experimental testing and application in escalator prototypes have proven the
model to be qualitatively correct.

String

16 I.R. Grosse et al.

https://doi.org/10.1017/S0890060405050018 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050018

costs, value, uncertainty, and so forth, in meeting a partic-
ular analysis goal, to select the most appropriate analysis
model class for a given analysis problem, to enable inter-
operability of multiple distinct analyses, and to customize
interaction with our environment based on properties of the
user.

Although capturing EAM knowledge in a well-designed
ontology structure is expected to facilitate reusing, adapt-
ing, and exchanging analysis models, the captured knowl-
edge is of very limited utility unless it can be easily brought
to bear on real engineering analysis problems. The kinds of
methods that are needed include methods for assessing the
properties of models, for determining the applicability of
specific models to specific analysis problems or categories
of problems, for figuring out whether and how two or more
models can interoperate, and for customizing user inter-
faces to support novice engineers, students, or users with
different learning styles. The former methods should be
based on characteristics of the captured EAM knowledge
associated with models using the ontology structure, while
the latter methods are based on characteristics of different
user classes. To support this, a user ontology structure could
be implemented as part of our system. In this scheme users
would be classified based on analysis experience level,
underrepresentation, and ethnic group. This information will
be requested as voluntary information at the start of an
interactive session with the ON-TEAM environment.

With a basic user ontology included as part of our system
and tracking of user interactivity, one can study how ON-
TEAM is used by different classes of users, such as novice
or student, intermediate, advanced, underrepresented, and
ethnic group classes. Refinements based on this study will
enable us to maximize the effectiveness of our EAM knowl-
edge base environment for a diverse mix of users.

Finally, the foundations laid by an ontological represen-
tation of engineering analysis modeling knowledge can serve
as basis for the development of an international standard to
supplement existing analysis data and CAD standards. With
such a schema we believe engineering analysis models can
be more easily exchanged, reused, and adapted by people
within and external to engineering organizations.

ACKNOWLEDGMENTS

The authors acknowledge the support of United Technologies
Research Center ~UTRC! in East Hartford, CT, and NSF under
their I0UCRC program ~Grant EEC0332508!. In addition, the first
author is particularly grateful to Dr. Orisamolu and Dr. Bonilha of
UTRC for the sabbatical opportunity and guidance and support of
this research.

REFERENCES

Alberts, L.K., & Dikker, F. ~1992!. Integrating standards and synthesis
knowledge using the YMIR ontology. In Artificial Intelligence in Design
~Gero, J.S., & Sudweeks, F., Eds.!, pp. 517–534. Boston: Kluwer
Academic.

Bachant, J. ~1988!. RIME: preliminary work toward a knowledge acquisi-
tion tool. In Automatic Knowledge for Acquisition for Expert System
~Marcus, S., Ed.!, pp. 201–224. Boston: Kluwer Academic.

Batory, D., Singhal, V., Thomas, J., Dasari, S., & Sirkin, M. ~1994!. The
GenVoca model of software-system generation. IEEE Software 11(5),
89–94.

Bennett, J., Cleary, L., Englemore, R., & Melosh, R. ~1978!. SACON: A
Knowledge-Based Consultant for Structural Analysis. Report No.
STAN-CS-699. Stanford, CA: Stanford University, Department of Com-
puter Science.

Borst, P., Pos, A., Top, J.L., & Akkermans, J.M. ~1994!. Physical systems
ontology. In Working Papers of the European Conf. Artificial Intelli-
gence ECAI’94 Workshop on Implemented Ontologies ~Mars, N.J.I.,
Ed.!, pp. 47–80. Amsterdam: ECCAI.

Borst, P., Akkermans, J.M., Pos, A., & Top, J.L. ~1995!. The PhysSys
ontology for physical systems. In Working Papers of the Ninth Int.
Workshop on Qualitative Reasoning QR’95 ~Bredeweg, B., Ed.!, pp.
11–21. University of Amsterdam.

Brunnermeier, S.B., & Martin, S.A. ~1999!. Interoperability Cost Analysis
of the US Automotive Supply Chain, Final Technical Report To NIST.
RTI Project No. 7007-03. Research Triangle Park, NC: Research Tri-
angle Institute.

Buchanan, B.G., & Shortliffe, E.H. ~1984!. Uncertainty and evidential
support. In Rule-Based Expert Systems: The MYCIN Experiments of
the Stanford Heuristics Programming Project. Boston: Addison–Wesley.

Chandrasekaran, B., Goel, A., & Iwasaki, Y. ~1993!. Functional represen-
tation as design rationale. IEEE Computer January, 48–56.

Clancey, W.J. ~1983!. The epistemology of rule-based expert system: a
framework for explanation. Artificial Intelligence 20, 215–251.

Clancey, W.J. ~1985!. Heuristic classification. Artificial Intelligence 27(3),
December.

de Kleer, J., & Brown, J.S. ~1983!. Assumptions and ambiguities in mech-
anistic mental models. In Mental models ~Genter, D., & Stevens, E.L.,
Eds.!, pp. 155–190. Hillsdale, NJ: Erlbaum.

Doraiswamy, S., Krishnamurty, S., & Grosse, I. ~1999!. Decision making
in finite element analysis. Proc. 1999 Design Technical Conf., DETC990
CIE-9058, September. Las Vegas, NV: ASME.

Dubois–Perlerin, Y., & Zimmermann, T. ~1993!. Object-oriented finite
element programming: III. An efficient implementation in C��. Com-
puter Methods in Applied Mechanics and Engineering, 108, 165–183.

Duda, R.O., Gasching, J., Hart, E., Konolige, K., Reboh, R., Barrett, P., &
Slocum, J. ~1978!. Development of the PROSPECTOR consultation
system for mineral exploration, final report. In SRI Projects 5821 and
6415. Menlo Park, CA: SRI International.

Dym, C., & Levitt, R. ~1991!. Toward the integration of knowledge for
engineering modeling and computation. Engineering with Computers
7, 209–224.

Finn, D., & Cunningham, P. ~1994!. Physical model generation in PDE
analysis using model-based case-based reasoning. QR ’94: 8th Int.
Workshop on Qualitative Reasoning About Physical Systems, pp. 90–97,
Nara, Japan, June.

Finn, D., Grimson, J.B., & Harty, N.M. ~1992!. An intelligent mathemat-
ical modeling assistant for analysis of physical systems. Proc. ASME
1992 Computers in Engineering Conf. Exposition, Vol. 2, pp. 69–74.
San Diego, CA: ASME.

Goel, A., Bhatta, S., & Stroulia, E. ~1996a!. KRITIK: an early case-based
design system. In Issues and Applications of Case-Based Reasoning to
Design ~Maher, M., & Pu, P., Eds.!. Mahwah, NJ: Erlbaum.

Goel, A., Gomez, A., Grue, N., Murdock, J.W., Recker, M., & Govindaraj,
T. ~1996b!. Explanatory interface in interactive design environments.
In Artificial Intelligence in Design ~Gero, J.S., Ed.!. Boston: Kluwer
Academic.

Grosso, W.E., Eriksson, H., Fergerson, R.W., Gennari, J.H., Tu, S.W., &
Musen, M.A. ~1999!. Knowledge Modeling at the Millennium (The
Design and Evolution of Protégé-2000). Stanford’s Medical Informat-
ics Report No. SMI-1999-0801. Stanford, CA: Stanford University.

Grower, M.D. ~1982!. A Pragmatic Knowledge Acquisition Methodology.
Redondo Beach, CA: TRW Defense Systems Group.

Gruber, T.R. ~1993!. A translation approach to portable ontologies. Knowl-
edge Acquisition 5(2), 199–220.

Gruber, T., & Olsen, G. ~1994!. An ontology for engineering mathematics.
Proc. Fourth Int. Conf. Principles of Knowledge Representation and
Reasoning ~Doyle, J., Torasso, P., & Sandewall, E., Eds.!, pp. 258–
269. San Mateo, CA: Morgan–Kaufmann.

Ontologies for engineering analysis models 17

https://doi.org/10.1017/S0890060405050018 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050018

Hazelrigg, G.A. ~1996!. Systems Engineering: An Approach to Information-
Based Design. New York: Prentice–Hall.

Henson, B., Juster, N., & de Pennington, A. ~1994!. Towards an integrated
representation of function, behavior and form, computer aided concep-
tual design. Proc. 1994 Lancaster Int. Workshop on Engineering Design
~Sharpe, J., & Oh, V., Eds.!, pp. 95–111. Lancaster: Lancaster Univer-
sity EDC.

Holzhauer, D., & Grosse, I. ~1999!. Finite element analysis using compo-
nent decomposition and knowledge-based control. Engineering with
Computers 15, 315–325.

ISO 10303-104. ~1994!. Industrial Automation Systems and Integrations—
Product Data Representation and Exchange—Part 104: Integrated
Application Resource: Finite Element Analysis. ISO TC184, SC4. New
York: ISO, ISO Technical Committee 184, Subcommittee 4.

Iwasaki, Y., & Chandrasekaran, B. ~1992!. Design verification through
function and behavior-oriented representations: bridging the gap between
function and behavior. In Artificial Intelligence in Design ~Gero, J.S.,
Ed.!, pp. 597– 616. Boston: Kluwer Academic.

Java Native Interface Specification. ~1997!. Cupertino, CA: Sun Micro-
systems, Inc.

Mackie, R.I. ~1992!. Object oriented programming of the finite element
method. International Journal for Numerical Methods in Engineering
35, 425– 436.

McDermott, J. ~1980!. R1: an expert in the computer system domain. In
Proc. National Conf. Artificial Intelligence, AAAI, pp 269–271.

Miller, R.A., Pople, H.E., & Myers, J.D. ~1982!. INTERNIST—I: an exper-
imental computer based diagnostic consultant for general internal med-
icine. New England Journal of Medicine 306(8), 468– 476.

Musen, M.A. ~2000!. Ontology-oriented design and programming. In
Knowledge Engineering and Agent Technology ~Cuena, J., Demazeau,
Y., Garcia, A, & Treur, J., Eds.!. Amsterdam: IOS Press.

Noy, F. N., & McGuinness, D.L. ~2001!. Ontology Development 101: A
Guide to Creating Your First Ontology. Stanford Knowledge Systems
Laboratory Technical Report KSL-01-05 and Stanford Medical Infor-
matics Technical Report SMI-2001-0880. Stanford, CA: Stanford
University.

Paredis, C.J.J., Diaz–Calderon, A., Sinha, R., & Khosla, P.K. ~2000!. Com-
posable models for simulation-based design. Engineering with Com-
puters 17, 112–128.

Peak, R.S. ~2000!. X-Analysis Integration Technology. Technical Report
EL002-2000A. Atlanta, GA: Georgia Institute of Technology, Engi-
neering Information Systems Lab.

Qian, L., & Gero, J.S. ~1996!. Function–behavior–structure paths and their
role in analogy based design. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing 10(4), 289–312.

Ranta, M., Mantyla, M., Umeda, Y., & Tomiyama, T. ~1996!. Integration
of functional and feature based product modeling—the IMS0GNOSIS
Experience. Computer-Aided Design 28(5), 371–381.

Reed, J.A., & Afjeh, A.A. ~1998!. An object-oriented framework for dis-
tributed computational simulation of aerospace propulsion systems.
Proc. 4th USENIX Conf. Object-Oriented Technologies and Systems
(COOTS), Santa Fe, NM, April 27–30.

Rohl, P.J., Kolonay, R.K., Irani, R.M., Sobolewski, M., Kao, K., & Bailey,
M.W. ~2000!. A federated intelligent product environment. In AIAA-
2000, pp. 5– 6. Paper No. AIAA-2000-4902.

Shanbhag, S. ~2001!. Metaobject based finite element modeling. MS The-
sis. Amherst, MA: University of Massachusetts.

Shanbhag, S., Grosse, I.R., Wileden, J.C., & Kaplan, A. ~2001!. Meta-object
based finite element analysis. Paper No. DETC20010DAC-21062. Proc.
ASME 2001 Design Automation Conf. Pittsburgh, PA: ASME.

Sheehy, M., & Grosse, I. ~1997!. An object-oriented blackboard based
approach for automated finite element modeling and analysis of mul-
tichip modules. Engineering with Computers 13, 197–210.

Sinha, R., Liang, V.C., Paredis, C.J.J., & Khosla, P.K. ~2001!. Modeling
and simulation methods for design of engineering systems. Journal of
Computing and Information Science in Engineering 1, 84–91.

Shephard, M.S., Bachmann, L., Georges, M.K., & Korngold, E.V. ~1990!.
Framework for reliable generation and control of analysis idealisa-
tions. Computer Methods in Applied Mechanics and Engineering 82(1–
3), 257–280.

Szykman, S., Fenves, S.J., Keirouz, W., & Shooter, S.B. ~2000!. A foun-
dation for interoperability in next generation product development sys-
tems. Proc. 2000 ASME Design Engineering Technical Conf., Baltimore,
MD, September, pp. 10–13. New York: ASME.

Tatsubori, M. ~1999!. An extension mechanism for the Java language. MS
Thesis. Ibaraki, Japan: University of Tsukuba.

Tomiyama, T., Kiriyama, T., Takeda, H., & Xue, D. ~1989!. Metamodel: a
key to intelligent CAD systems. Research in Engineering Design 1,
19–34.

Turkiyyah, G.M., & Fenves, S.J. ~1996!. Knowledge-based assistance for
finite element modeling. AI Applications in Civil and Structural Engi-
neering 11(3), 23–32.

Umeda, Y., Ishii, M., Yoshioka, M., Shimomura, Y., & Tomiyama, T. ~1996!.
Supporting conceptual design based on the function–behavior–state
modeler. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing 10, 275–288.

van Melle, W. ~1978!. A Domain Independent System That Aides in Con-
structing Consultation Programs. Report HPP-78-19. Stanford, CA:
Stanford University, Computer Science Department.

Wujek, B., Koch, P., McMillan, M., & Chiang, W.-S. ~2002!. A distrib-
uted, component-based integration environment for multidisciplinary
optimal and quality design. 9th AIAA0ISSMO Symp. Multidisciplinary
Analysis and Optimization, Atlanta, GA, September.

Zimmermann, T., Dubois–Perlerin, Y., & Bomme, P. ~1992!. Object-
oriented finite element programming: I. Governing principles. Com-
puter Methods in Applied Mechanics and Engineering 98, 291–303.

Ian Grosse is an Associate Professor in mechanical engi-
neering and Director of the I-MAD Laboratory at the Uni-
versity of Massachusetts. He received his BS from Cornell
University in 1979 and his MS and PhD degrees from Vir-
ginia Polytechnic Institute and State University in 1983 and
1987, respectively. Professor Grosse’s research interests
include interoperability of engineering analysis models,
decision-based trade-offs in engineering design and analy-
sis modeling, and the development of object-oriented frame-
works for supporting engineering analysis applications. Dr.
Grosse also codirects the Center for e-Design and Realiza-
tion of Engineered Products and Systems, an NSF-sponsored
multiuniversity and industry research collaboration.

John Milton–Benoit is Principal Research Engineer for
United Technologies Corporation ~UTC!. He received his
BS and MS degrees in mechanical engineering from the
University of Massachusetts in 1990 and 1993, respec-
tively. His interests include improved efficiency in innova-
tion processes and interoperability of engineering analysis
models, and finite element error analysis for material non-
linear problems. He is currently an Innovation Project Leader
at the UTC Research Center in East Hartford, CT.

Jack C. Wileden received his BA degree in mathematics
and his MS and PhD degrees in computer and communica-
tions sciences from the University of Michigan in 1972,
1973, and 1978, respectively. Dr. Wileden has been on the
faculty of the University of Massachusetts at Amherst since
1978 and is currently a Professor in the Department of Com-
puter Science and Director of the Convergent Computing
Systems Laboratory. Professor Wileden’s research interests
are programming languages and interoperability. His work
is primarily directed toward producing tools, techniques,
and formal foundations to support development and evolu-
tion of maximally seamless systems comprising interoper-
ating components.

18 I.R. Grosse et al.

https://doi.org/10.1017/S0890060405050018 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050018

