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We experimentally investigate the highly modulated turbulent wake behind a
wall-mounted square-base pyramid protruding through the boundary layer. We
present the first modal energy flow analysis of a time-resolved three-dimensional
velocity field from experimental particle image velocimetry data. The underlying
low-order representation is optimized for resolving the base-flow variation as well
as the first and second harmonics associated with vortex shedding – generalizing
the triple decomposition of Reynolds & Hussain (J. Fluid Mech., vol. 54, 1972,
pp. 263–288). This analysis comprises not only a detailed modal balance of turbulent
kinetic energy as pioneered by Rempfer & Fasel (J. Fluid Mech., vol. 275, 1994,
pp. 257–283) for proper orthogonal decomposition (POD) models, but also the
companion energy balance of the mean flow. The experimental results vividly
demonstrate how constitutive elements of mean-field theory (Stuart, J. Fluid Mech.,
vol. 4, 1958, pp. 1–21) near laminar Hopf bifurcations remain strongly pronounced
in a turbulent wake characterized by highly modulated, quasi-periodic shedding.
The study emphasizes, for instance, the stabilizing role of mean-field manifolds, as
explored in the pioneering POD model of Aubry et al. (J. Fluid Mech., vol. 192, 1988,
pp. 115–173). The presented low-order representation of the flow and modal energy
flow analyses may provide important insights and reference data for computational
turbulence modelling, e.g. unsteady Reynolds-averaged Navier–Stokes simulations.
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1. Introduction

A refined global and modal energy flow analysis is provided of a time-resolved
three-dimensional (3D) turbulent wake from an experiment generalizing the frame-
works of Rempfer & Fasel (1994a,b), Couplet, Sagaut & Basdevant (2003) and
Noack, Papas & Monkewitz (2005). The modal decomposition aims to characterize the

† Email address for correspondence: rmartinu@ucalgary.ca

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

34
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:rmartinu@ucalgary.ca
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2016.345&domain=pdf
https://doi.org/10.1017/jfm.2016.345


718 Z. Hosseini, R. J. Martinuzzi and B. R. Noack

influence of the dynamics associated with coherent structures, which play an important
role in turbulent flows. These large-scale structures underlie the mean flow, and thus
aerodynamic forces via the Reynolds stress, and they feed the normal energy cascade
towards dissipative small-scale structures via the production term. One exchange
currency of these interactions is energy. Here, a modal decomposition is provided
of the base-flow variation and the coherent structure of a highly modulated pyramid
wake. The instantaneous and time-averaged energy flows between these modes, the
mean flow and the unresolved fluctuations are deduced and quantified from the flow
data. From the ensuing analysis, the contributions of the individual terms in the mean
and turbulent kinetic energy balances can be studied. From a global perspective, this
approach yields insights into the inter-modal transfer dynamics. A more detailed
consideration of the local distributions of these terms can be linked to the principal
flow features and thus, for example, an energy-based description of vortex interactions.
More generally, the resulting analysis provides Navier–Stokes-based energy flow terms,
as can be obtained from experimental particle image velocimetry (PIV) data and from
unsteady Reynolds-averaged Navier–Stokes (URANS) simulations. For example, the
modal energy or the relative importance of the individual energy balance terms can
be compared directly. Thus, an energetic litmus test for the discrepancy between
experiments and simulations is offered.

The modal energy interactions and nonlinear couplings are studied in the wake
behind a wall-mounted low-aspect-ratio pyramid protruding through the boundary
layer and with one face placed normal to the oncoming flow. The wake is described
as turbulent with a highly 3D quasi-periodic flow. Such flows are of applied
engineering interest. For example, these are representative of: the wake behind
non-conventional buildings, affecting wind loading or urban comfort and safety; the
influence of upstream mountain or rough terrain on the energy extraction potential of
wind turbines; or mixing devices as found in combustors. More fundamentally, the
bluff-body wake is a heuristic model for the study of large-scale coherent structures
and vortex interaction dynamics.

The low-aspect-ratio wall-mounted pyramid flow shares similarities with that of
the square-section finite cylinder counterpart. In both cases, the flow separates at
the sharp leading edges and gives rise to a highly 3D turbulent wake to form a
chain of linked vortex loops. The wake flow is characterized by strong quasi-periodic
fluctuations, which are, unlike the case of the cantilevered circular cylinder (Okamoto
& Sunabashiri 1992; Adaramola et al. 2006; Krajnović 2011), strongly correlated over
the entire height of the obstacle (McClean & Sumner 2012). For the cantilevered
finite cylinder wakes, the periodicity can be attributed to the shedding of Kármán-type
structures that are highly distorted due to the interactions with the separated shear
layer at the free end and the boundary layer (Wang & Zhou 2009; Bourgeois, Sattari
& Martinuzzi 2011; Hosseini, Bourgeois & Martinuzzi 2013) in the wall–obstacle
junction region. As the structures shed, the instantaneous location of the vortex
centres in the region downstream of the obstacle tip lags those in the core region of
the wake (Wang et al. 2006) to form a chain of linked vortex loops (Bourgeois et al.
2011).

In comparison, the pyramid wake is even richer in vortex dynamics, due to the
influence of the obstacle taper. Similarly to observations for wall-mounted triangular
plates (Castro & Rogers 2002; Castro & Watson 2004), the modulation of the wake
fluctuation amplitude is much greater and there is a stronger low-frequency drift than
is observed for cantilevered cylinder flows. Studies of the surface pressure distribution
on the side faces of several low-aspect-ratio pyramids (AbuOmar & Martinuzzi 2008;
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Martinuzzi 2008) suggest important differences between the cylinder and pyramid
flows. For both geometries, the dominant spectral peak of the surface pressure
fluctuations matches the shedding frequency. For the cylinder, the fluctuations are in
phase, within a small lag, over the entire side face. In contrast, the surface pressure
fluctuations on the upper half are out of phase with those on the lower half of the
pyramid face and the phase relation changes abruptly at about mid-height. Moreover,
based on PIV measurements along planes normal to the flow, it was noted that
an additional vortex was often present of similar strength to the vortices normally
associated with the shedding process. From these observations, it was inferred that a
second vortex forms near the tip region, referred to as the hairpin vortex based on
its mean flow topology, which interacts with the shed structures forming in the base
region – see, for example, figure 13 of Martinuzzi (2008). The interaction between
these structures is believed to be closely linked to the dynamic behaviour observed
in the pyramid wake. Hence, this work is a study of the inter-modal couplings
and energy transfer mechanisms with the aim of better understanding the transient
dynamics related to such interactions.

Intriguingly, key features of turbulent vortex shedding can be understood and
modelled in the framework of weakly nonlinear stability analysis for the onset
of the oscillatory instability. The onset of the vortex shedding in the prototypical
cylinder wake is described with an instability of the Hopf bifurcation type, consisting
of a pair of harmonic eigenmodes with a positive growth rate (unstable modes)
and the remaining eigenmodes that are highly damped (stable modes) (Sreenivasan,
Strykowski & Olinger 1987; Schumm, Berger & Monkewitz 1994). The transient
dynamics are modelled using the mean-field ansatz, which consists of the steady
solution, the unstable eigenmodes and a non-oscillatory mode that represents the
mean-field deformation (Stuart 1971). The transient trajectory falls on a paraboloid in
the phase space defined by the unstable pair and the non-oscillatory mode (Zielinska
et al. 1997) as shown schematically in figure 1. The non-oscillatory mode is referred
to as the shift mode, as it represents the shift of the short-time-averaged mean.
Inclusion of the shift mode and its energy transfer with the harmonic pair is crucial
in modelling the transient dynamics (Noack et al. 2003). Interestingly, the cylinder
wake transition from two-dimensional (2D) periodic vortex shedding to the 3D modes
A and B is described by the coupled Landau model (Sheard, Thompson & Hourigan
2003). Mathematically, this model is a generalization of the model describing the first
bifurcation.

The mean-field behaviour is also observed in the turbulent wake behind wall-
mounted finite cylinders (Bourgeois, Noack & Martinuzzi 2013). Even in the presence
of 3D effects, the global modes follow the mean-field paraboloid and a reduced-order
model using the mean-field invariant manifold approximation successfully captures
the main dynamics. For the current pyramid flow, however, the validity of mean-field
theory cannot be assumed a priori given the existence of more complex interactions
between multiple vortex structures. Whether the mean-field approximation in the
presence of such nonlinear interactions is able to describe the prevalent dynamic
behaviour has hitherto remained an open question.

The procedure enabling the analysis of the global flow field is based on earlier
work. To isolate the coherent contribution and construct the global energetic modes,
a modal subspace is defined based on the proper orthogonal decomposition (POD)
following Bourgeois et al. (2013) and Hosseini, Martinuzzi & Noack (2015). The
POD provides an objective approach to educe the global modes in non-homogeneous
flows and provides the natural basis to build the dynamical system of the coherent
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Average cycle

Steady solution

Mean-field
paraboloid

FIGURE 1. (Colour online) Schematic of the mean-field paraboloid in phase space: a∆
and a1, a2 correspond, respectively, to the amplitudes of the non-oscillatory mode and the
fundamental harmonic pair.

structures using a relatively small number of modes (cf. Tinney, Glauser & Ukeiley
2008a). Here, the basis is carefully constructed using the benefits of the POD,
appropriate choices of spatial filtering to incorporate the symmetry properties (Holmes
et al. 2012) and to cleanly distil the base-flow variations and periodic modes. Such a
basis is optimal in making an objective link to the physical mechanisms, as the basis
modes can be associated with a physical interpretation.

In the following sections, a detailed modal energy analysis, based on the
aforementioned basis modes, is performed to identify the sequence and direction
of the energy flow among various scales of motion and to characterize the
nonlinear couplings. The dataset includes time-resolved planar velocity measurements,
synchronized with surface pressure measurements using a sensor-based estimation
technique, taken for the wake behind a pyramid with apex angle ζ =60◦ at a moderate
Reynolds number of 28 000. In § 2 the experimental set-up and flow conditions are
described. The velocity modal decomposition and energy balance equations are
summarized in § 3. In § 4 the detailed energy analysis for the considered flow are
presented, followed by a summary of the main findings and concluding remarks in
§ 5. For self-consistency, the sensor-based estimation technique is summarized in
appendix A.

2. Experimental set-up
The measurements were performed in an open-test-section suction-type wind tunnel

schematically shown in figure 2 for the wake of a low-aspect-ratio pyramid with
apex angle of ζ = 60◦ corresponding to a base width and height of d = 45 mm and
h = 39 mm, respectively. The pyramid was mounted on a sharp-leading-edge flat
plate with one face normal to the free stream. The free-stream velocity and Reynolds
number were set to U∞ = 10 m s−1 and Red = U∞d/ν = 28 000, with a measured
turbulence intensity of less than 0.8 %, where ν is the kinematic viscosity of air. The
naturally developing boundary layer measured with laser Doppler velocimetry (LDV)
(figure 3) follows a turbulent boundary layer profile and has a thickness of δ/h= 0.25
at the location of the pyramid. The origin is set at the centre of the pyramid base,
with a Cartesian grid x= (x, y, z) defined as in figure 2. The x-axis is aligned with
the oncoming flow and the z-axis is parallel to the pyramid axis. The velocity u has
components u, v and w in the x, y and z directions, respectively.
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Flow

Pressure
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Measurement
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d
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z

FIGURE 2. (Colour online) Schematic of the experimental set-up and configuration of the
measurement planes. The pressure is taken at z/h= 0.22, 0.45, 0.68 and x/d = 0 on the
pyramid side faces and at x/d= 1, 1.5 and y/d=±0.25 on the boundary layer plate.

0 0.05 0.10 0.15

 0.1

0.2

 0.3

0.4

0 0.5 1.0

FIGURE 3. The boundary layer profile and root-mean-square streamwise velocity
fluctuations at the location of the obstacle. The displacement thickness δ∗, momentum
thickness θ and shape factor H = δ∗/θ are shown in the graph.

A high-frame-rate stereoscopic PIV system was used to measure three-component
velocity vectors at 20 (x–y) planes in the range 0 < z/d < 1.27 with a separation
of 0.067d, spanning 0.8< x/d < 2.3 and −0.8< y/d < 0.8. The configuration of the
experimental planes is shown schematically in figure 2. The PIV system includes (i) a
10 mJ per pulse Photonics Industries 527 nm Nd:YLF laser system forming a 2 mm
thick laser sheet, (ii) Laskin nozzle nebulizers generating 1 µm olive oil particles that
were illuminated in the laser sheet, and (iii) two Photron Fastcam SA4 cameras of
1024 × 1024 pixels. The PIV configuration and processing parameters were selected
after a lengthy trial-and-error process. Close attention was paid to the effect of the
camera angles, time separation for the image pairs, particle density and distribution.

For the present experiments, the cameras were mounted symmetrically at a 45◦
angle to the laser sheet. Image pairs with a time separation of 18 µs were taken at
a sampling rate of fs = 500 Hz capturing approximately 10 data points per shedding
cycle. For each plane, results are reported for three 4 s long trials, with a total of
6000 image pairs spanning 600 shedding cycles being taken. The velocity vectors
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were processed using the LaVision DaVis 8.2 software, with interrogation windows
of 32 × 32 pixels with 50 % overlap giving a vector spacing of 1.2 mm (0.027d).
For these acquisition parameters, it was verified that peak locking did not occur.
Data sequences containing more than 1 % ‘bad vectors’ were rejected. The estimated
uncertainty (Westerweel 2000) on individual vector measurements is 1u/U∞=±0.025.
Using this value and the maximum measured variance, over 600 independent cycles,
the statistical uncertainty for the mean velocity components is estimated to be
1U/U∞ = ±0.008 within a 95 % confidence level. Individual trials were repeated
if the mean velocity field did not satisfy the estimated uncertainty. Based on a
similar analysis for the higher-order moments, the maximum uncertainty is estimated
to be: for the Reynolds stresses, 1u′iu′j/U2

∞ ≈ 0.001; for the triple correlations,
1u′iu′ju′k/U3

∞ ≈ 0.0005; and for the mean-field gradients ≈ 0.02U∞/h. Based on an
error propagation method, the maximum uncertainty for the mean and turbulent
kinetic energy transport terms was estimated and is reported in the pertinent figures.

The estimation of the global modes from the isolated planar measurements was
performed using the fluctuating surface pressure, p′, as the sensor data. Ten high-
speed AllSensors Corp. pressure sensors were placed at pyramid side faces (z/h =
0.22, 0.45, 0.68 at either sides) and the flat plate (x/d = 1, 1.5 at y/d =±0.25). The
pressure data taken at a rate of 10.24 kHz were low-pass-filtered at 210 Hz with
an eighth-order Butterworth filter. To keep the phase unchanged, the filtering was
performed a second time in the reverse order.

The flow variables are non-dimensionalized with the free-stream velocity U∞, the
fluid density ρ and pyramid base width d. The rectangular observation domain is
denoted by Ω with boundaries of ∂Ω , and the time and temporal window length of
the measurements are respectively denoted by t and T .

Before proceeding to the energy flow analysis, a brief overview of the flow
characteristics is provided. Samples of the mean flow field are shown for the planes
y= 0 and z/h= 0.23 in figure 4. In the plane z/h= 0.23 (z/d= 0.20), the in-plane x, y
components U and V are shown as vectors, while the z component, W, is represented
as flooded isocontours. The markers ‘×’ indicate locations at which time series, as
discussed below, are extracted. The mean field shows mirror symmetry about the
plane y= 0 to within the experimental uncertainty. The W component is comparable
in magnitude to the V component over much of the wake, emphasizing the 3D nature
of the wake. In the symmetry plane y = 0, V = 0 and the U, W vectors are shown
together with the flooded isocontours representing u′w′. These Reynolds stresses are
largest in regions of large gradients in W, as is seen towards the tip region of the
wake. In both planes, the mean shear layer bounding the recirculation zone can be
identified.

The Reynolds stresses, shown in figure 5 for the plane z/h= 0.23, also show mirror
symmetry about y = 0. High values of u′2 and u′v′ are concentrated along the shear
layers, while those for u′2, indicating the end of the formation region, are concentrated
immediately downstream of the mean recirculation region. Higher values of w′2 are
concentrated in the base region. In this plane, u′w′ and v′w′ are typically 2–3 times
smaller than those for u′v′ and are thus not negligible, but are not shown for brevity.
Larger magnitudes of Reynolds stress containing w′ fluctuations are generally observed
along the shear layer in the tip region as seen, for example, in figure 4.

Spectra of the velocity fluctuations at the location x/d = 2.1, y/d = −0.3 in
the plane z/h = 0.23 are shown in figure 6. A strong peak corresponding to the
shedding frequency is observed for the two in-plane components. In contrast, the w′
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FIGURE 4. (Colour online) Mean velocity field along the symmetry plane y= 0 and in the
plane z/h= 0.23 (z/d= 0.20). In the plane y= 0, V = 0 and the in-plane vectors represent
U and W components. The coloured isocontours represent u′w′. In the plane z/h= 0.23,
vectors show the in-plane components U and V , while the out-of-plane W component is
shown as coloured isocontours. Points at which time series are extracted are indicated by
‘×’. Flow is from left to right. For clarity, only every second vector is shown.
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FIGURE 5. (Colour online) Coloured isocontours of the Reynolds stress field along the
plane z/h= 0.23. Points at which time series are extracted are indicated by ‘×’.

fluctuations appear only weakly correlated to the shedding process. The w′ fluctuations,
however, are more closely associated with the slowly varying base-flow fluctuations.
As discussed in §§ 4 and 4.1, this association with the slowly varying base flow is
maintained over the entire height of the pyramid. However, towards the tip region
(typically z/h > 0.5), the w′ fluctuations show a significant periodic component
related to the passage of the shed vortices. Excerpts of the time sequences and
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FIGURE 6. Normalized power spectral density function (PSDF) for the three fluctuating
velocity components at the location x/d= 2.1, y/d=−0.3 in the plane z/h= 0.23. Here
fc indicates the normalized shedding frequency. The PSDF is normalized by the signal
variance.

the corresponding autocorrelation functions at the locations shown in figure 4 are
shown in figure 7. The u′ fluctuations remain correlated over a large number of
cycles. Whereas for the points at x/d = 1.7 and 2.3, the fluctuations are correlated
with the shedding frequency, those for x/d = 1.3, y/d = 0 are correlated at twice
the shedding frequency, suggesting that the second harmonic is locally important.
For completeness, an excerpt of the v′ fluctuations at x/d = 2.1, y/d = −0.3 and
its autocorrelation function is also shown in figure 7. These also illustrate a strong
correlation over a large number of cycles.

Two-point cross-correlations for the u′ and v′ fluctuations are shown in figure 8.
Within the observation domain, the fluctuations associated with the shed vortices are
coherent, remaining strongly correlated in space over a large number of cycles. Also
shown in figure 8 is a longitudinal spatial correlation function for u′ along the line
y/d=−0.3. The observed wave form is consistent with the regular passage of large-
scale coherent structures as associated with quasi-periodic vortex shedding.

Spectra for the pressure fluctuations at two locations on the pyramid side faces
and at a location on the wall in the pyramid wake are shown in figure 9. The peak
associated with the shedding frequency is observed at all sensor locations. Note that,
for the wake sensor, a weak energy accumulation at twice the shedding frequency can
also be discerned. The times series excerpt and its autocorrelation function, also shown
in figure 9, suggest that the pressure fluctuations also remain strongly correlated over
a large number cycles.

3. Energy flow analysis
In this section, we propose a generalized modal energy flow analysis. First (§ 3.1),

the construction of the modal expansion from PIV data is discussed. In § 3.2, time-
averaged energy flow analysis is proposed. Finally, in § 3.3, refined instantaneous and
inter-modal energy flows are presented.

The observation domain Ω is a rectangular volume, defined by the aforementioned
measurement planes, behind the pyramid. The modal decomposition is based on the
standard inner product between two square integrable velocity fields u, v ∈L 2(Ω):

(u, v)Ω :=
∫

Ω

u · v dx, (3.1)

with the associated norm ‖u‖Ω :=
√
(u, u)Ω .
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FIGURE 7. Excerpts of the time series and autocorrelation functions, Ruu, for the u′
fluctuations at three locations (as indicated in the figure) in the plane z/h = 0.23. Also
shown are v′ and Rvv at the location x/d= 2.1, y/d=−0.3 in the plane z/h= 0.23. The
time t and temporal lag τ are in seconds.
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FIGURE 8. (a,b) Two-point cross-correlation functions for u′ and v′ fluctuations in the
plane z/h = 0.23 between locations shown in the panels; the time lag τ is in seconds.
(c) The longitudinal (spatial) cross-correlation function of u′ as a function of the separation
to the reference point, 1x, along y/d = −0.3 with the reference point at x/d = 2.1,
y/d=−0.3 in the plane z/h= 0.23.
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FIGURE 9. (Colour online) (a) The normalized PSDF as a function of the normalized
frequency for surface pressure measurements at two locations on the pyramid side face
(at x/d = 0: red, z/h = 0.22; black, z/h = 0.45) and in the wall in the wake (blue,
x/d= 1.0, y/d=−0.25). The PSDF are offset by 103 for clarity. (b,c) An excerpt of the
normalized pressure time series and its autocorrelation function, Rpp, for the wake wall
sensor.

For later reference, we also introduce the time average for the velocity field u:

u(x) := 1
T

∫ T

0
u(x, t) dt (3.2)

and analogously for other quantities. The integration period T is considered to be
infinitely long, so that all moments can be considered as converged.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

34
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.345


Modal energy flow analysis of a wake behind a pyramid 727

For the Navier–Stokes operations, we follow the notation of Noack, Morzyński &
Tadmor (2011). The ∇ and 1 operators are defined as ∇ := (∂x, ∂y, ∂z) and 1 :=
∂2

xx + ∂2
yy + ∂2

zz, where ∂α and ∂2
αα denote the first and second partial derivatives with

respect to α. The volume integral over the domain Ω is denoted as (F )Ω :=
∫
Ω

F dx
and the surface integral as [F ]∂Ω :=

∮
∂Ω

F · dA. Moreover, the Euclidean inner product
is denoted by · , which contracts the inner indices. The double contraction : for two
matrices F and G reads F : G = ∑3

α=1

∑3
β=1 FαβGβα, where α and β are dummy

variables over the Cartesian coordinates.

3.1. Three-dimensional modal expansion
In this section, we present the construction of an orthonormal Galerkin expansion
of the 3D time-resolved velocity field from 2D PIV data. The starting point is the
Reynolds decomposition of the velocity field into the mean u0 := u and fluctuation
u′ := u− u0, i.e.

u= u0 + u′. (3.3)

The fluctuation is expanded with orthonormal modes φi and corresponding temporal
amplitudes ai. Following the elegant notation of Rempfer & Fasel (1994b), we express
the velocity field by

u(x, t)=
∞∑

i=0

ai(t)φi(x), (3.4)

where the base flow has been included as the zeroth mode with a0 ≡ 1. In practice,
the expansion will be truncated after a finite number of modes N, yielding a resolved
part of the velocity field

u[0...N](x, t)=
N∑

i=0

ai(t)φi(x) (3.5)

and the residual u[N+1...∞].
The 3D velocity fields are estimated from the planar velocity measurements and

fluctuating surface pressure, obtained at the 10 locations identified in § 2, following the
sensor-based estimation technique of Hosseini et al. (2015). To render a consistent
flow topology and accurately represent the phase-space trajectory and transient
dynamics of the coherent motions, the extended proper orthogonal decomposition
(EPOD) technique (Borée 2003) is modified in four respects. (1) The estimation basis
is changed to an optimal orthonormal basis; the basis is carefully constructed by
incorporating the symmetry properties (Holmes et al. 2012) and using appropriate
choices of filtering, to distil the base-flow variations and harmonic oscillations.
(2) The sensor history is used to recover velocity cyclical behaviour through the
multi-time-delay approach (Durgesh & Naughton 2010). (3) The sensor-velocity
phase difference for the non-harmonic mode is taken into account by including a time
delay in the estimation found from peak of the pressure–velocity cross-correlation.
(4) Finally, the estimation of the higher harmonics is improved using quadratic
correlation terms. By including these improvements, the residual is significantly
reduced and transient dynamics are recovered. The details of this procedure can
be found in Hosseini et al. (2015) and a summary is provided for consistency in
appendix A.
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728 Z. Hosseini, R. J. Martinuzzi and B. R. Noack

Tinney et al. (2008a) and Tinney, Ukeiley & Glauser (2008b) have laid out an
alternative elegant spectral POD approach for state estimation. This approach solves
problems (2)–(4) in a single algorithmic step. In this study, we chose to restrict the
sensing data to a moving finite-time window to mitigate the effects of drifts and to
prepare a causal framework for planned flow control experiments. The price of a
causal estimation is the mentioned need to introduce parameters like the sampling
frequency, the time horizon and the time delay. Similar parameters are, for instance,
needed for ARMAX-based control (Hervé et al. 2012).

3.2. Time-averaged energy balance equations
The starting point of the energy balance equations is the Navier–Stokes equations in
a steady domain Ω:

R[u] := ∂tu+∇ · (uu)− ν1u+∇p≡ 0, (3.6)

where R denotes the Navier–Stokes residual, ν the kinematic viscosity, and u and p
respectively the velocity vector field and pressure. In writing the residual as a function
of the velocity alone, the pressure is considered a function of the velocity field. This
can be considered as a valid approximation for the considered steady domains with
no-slip conditions on the ground and ambient flow at infinity. A trivial corollary of
(3.6) is the weak form of the Navier–Stokes equation, i.e. that the projection of the
Navier–Stokes residual on an arbitrary test function v vanishes,

(v,R[u])Ω = 0. (3.7)

In particular, the time-averaged projection of R on a potentially time-varying test
function v vanishes, too:

(v,R[u])Ω = 0. (3.8)

The beauty of these corollaries is that most equations of the Galerkin method and
of statistical fluid mechanics can be derived from (3.7) and (3.8). For example, v :=φi

and u=∑N
i=0 aiφi in (3.7) yields the Galerkin system

d
dt

ai = ν
N∑

i=0

lνijai +
N∑

j,k=0

qc
ijkajak +

N∑

j,k=0

qp
ijkajak, (3.9)

where the left-hand side represents the local acceleration, lνij= (φi,1φj)Ω parametrizes
the viscous term, qc

ijk = −(φi, ∇ · φjφk)Ω originates from the convective term, and
qp

ijk may arise from the pressure term (Noack et al. 2005). For later reference, we
introduce a convection Galerkin coefficient density q̃c

ijk as the integrand leading to qc
ijk,

qc
ijk = (q̃c

ijk)Ω, where q̃c
ijk =−φi · ∇ · φjφk. (3.10)

Similarly, a drag or lift equation can be obtained from (3.8) with the unit vectors
ex and ey as test functions pointing in the streamwise and orthogonal directions,
respectively. Several other balance equations can be obtained (Noack et al. 2011).

In this study, we focus on the energy balance equations. Choosing v = u in (3.8)
yields the balance equation for the total mechanical energy. Exploiting the Reynolds
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NSE term: (3.8) with v = u0 (3.8) with v = u′
∂tu — —
−∇ · u0u0 C0: −[u0

1
2‖u0‖2]∂Ω —

−∇ · u0u′ — C: −[u0
1
2‖u′‖2]∂Ω

−∇ · u′u0 — P: −(u′u′ : ∇u0)Ω

−∇ · u′u′ T0: −(u0u′ : ∇u′)Ω T: −(u′u′ : ∇u′)Ω
ν1u D0: ν(u0 ·1u0)Ω D: ν(u′ ·1u′)Ω
−∇p F0: −[u0p0]∂Ω F: −[u′p′]∂Ω

TABLE 1. Energy terms in the balance equations for mean flow u0 and fluctuation u′.

decomposition u = u0 + u′ (3.3), this balance equation can be separated into a
contribution for the mean flow energy

K0 := ‖u0‖2
Ω/2 (3.11)

and one for the fluctuation

K := ‖u′ · u′‖2
Ω/2. (3.12)

The first is obtained from (3.8) with the test function v=u0. This mean kinetic energy
(MKE) equation has four terms: the convection of the MKE into the domain C0, the
transfer to the fluctuations T0, the direct dissipation D0, and the mean pressure work,
F0, i.e.

0=C0 + T0 +D0 + F0. (3.13)

The terms on the right-hand side are given explicitly in table 1. The left-hand side
dK0/dt vanishes because we have assumed a sufficiently long integration period T .

The second contribution is derived from (3.8) with the test function v = u′ and is
known as the turbulent kinetic energy (TKE) equation. This equation includes five
terms: production P, convection C, transfer T , dissipation D and pressure work F, i.e.

0= P+C+ T +D+ F. (3.14)

These terms are also summarized in table 1. Where applicable, the Gauss integral
formula is implemented to reduce the volume integrals to surface integrals (Noack
et al. 2003).

We emphasize that the sum of (3.13) and (3.14) yields the total mechanical energy
balance. Moreover, the TKE production results in a loss of mean energy,

P=−T0 − [u′ · ‖u′‖2]∂Ω (3.15)

to within a small surface integral.
The TKE balance can be decomposed into modal contributions by starting with

(3.8) but projecting on the modal fluctuation contribution v :=u[i]= aiφi. The resulting
modal energy flow equation (3.16) has analogous terms as (3.14), i.e. a modal
production Pi, convection Ci, transfer Ti, dissipation Di and pressure work Fi (Noack
et al. 2005):

0= Pi +Ci + Ti +Di + Fi. (3.16)

These terms are summarized in table 2 using λi=a2
i . Table 2 also features the terms of

the MKE equation exploiting the Galerkin expansion (3.4). Here, Galerkin coefficients
are generalized for the projection on the mean flow, i.e. i= 0.
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NSE term: (3.8) with v = u0 (3.8) with v = u[i]
∂tu — —
−∇ · u0u0 C0: qc

000 —
−∇ · u0u[i] — Ci: qc

i0iλi

−∇ · u[i]u0 — Pi: qc
ii0λi

−∇ · u[i]u[i] T0:
∑∞

i=1 qc
0iiλi Ti:

∑∞
j,k=1 qc

ijkaiajak

ν1u D0: νlν00 Di: νlνiiλi

−∇p F0: −[u0p0]∂Ω Fi: −[u[i]p′]∂Ω
TABLE 2. Energy terms in modal and base-flow balance equations.

3.3. Instantaneous modal energy flow analysis
In § 3.2, time-averaged energy equations have been discussed for the mean flow, the
fluctuation and individual modes employing (3.8) for the projection on v= u0, v= u′
and v= u[i], respectively. Evidently, analogous instantaneous energy equations can be
obtained by employing (3.7) instead of (3.8). We distinguish between averaged and
instantaneous energy terms by omission or inclusion of ‘(t)’ as argument, respectively.
As will be shown in § 4.4 the instantaneous energy flows elucidate important inter-
modal couplings that would be neglected by a time-averaged analysis.

Subsequently, we describe a detailed investigation of triadic interactions Tijk(t) =
qc

ijkaiajak. Throughout the paper, in referring to the individual terms of the triadic
interactions, the first harmonic pair modes are denoted by the subscript indices i=1,2,
the second pair modes by the indices i= 3, 4, and the slow-drift mode by the index
∆. The energy transfer, however, occurs in groups as opposed to individual modes.
These groups can consist of a large number of modes, making the representation
cumbersome. Therefore, to simplify the notation, we group the modes based on their
frequency content and study the energy transfer between the groups as opposed to
individual modes. Based on the characteristics of the global modes (see § 4.1), three
groups are considered:

(1) the first harmonic pair, which is an antisymmetric pair, denoted by the index a;
(2) the second harmonic pair, which is a symmetric pair, denoted by the index s; and
(3) the slow-drift mode, denoted by the index ∆.

The interactions between these three groups are represented by a total of six terms:

(i) T∆a(t), Ta∆(t), transfer between the slow-drift mode and the antisymmetric pair;
(ii) Tsa(t), Tas(t), transfer between the symmetric and antisymmetric pairs;

(iii) T∆s(t), Ts∆(t), transfer between the slow-drift mode and the symmetric pair.

Each term includes all the possible interactions between the two groups. For
example, T∆a(t) is the sum of all the instantaneous inter-modal transfer terms
Tijk(t)= qc

ijkaiajak with i=∆ and at least one other index from group a:

T∆a = T∆11 + T∆22 + T∆12 + T∆21 + T∆1∆ + T∆∆1 + T∆2∆ + T∆∆2

+T∆13 + T∆31 + T∆23 + T∆32 + T∆14 + T∆41 + T∆24 + T∆42. (3.17)

In this equation, the argument ‘(t)’ has been omitted for convenience. The harmonic
content of each term is easily assessed. The first four terms have strong slowly varying
(nearly constant with shedding cycle) and weak second harmonic contributions, the
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Flow
direction

0
–0.4

0.4
0.8

–0.8

(a) (b)

FIGURE 10. (Colour online) Characterization of the mean wake structure in terms of the
mean vorticity distribution. (a) Time-averaged vortex structures identified by isosurfaces
of λ2 = −0.01. (b) Isocontours of streamwise vorticity Ωx at planes x/d = 1.2, 1.6, 2.
The solid/dashed lines indicate positive/negative vorticity values for isocontours at intervals
of 0.4.

next four are harmonic, while the remaining ones contain first and third harmonics.
Numerically, we observe that most transfer terms practically vanish or that groups of
terms almost vanish in all six agglomerate transfer terms. Equation (3.17), for instance,
is well approximated by T∆a ≈ T∆11 + T∆22. The negligibility of the other terms can
be justified by the symmetry of the modes and by assuming that qijk + qkji = 0
holds. The latter equality is based on a surface integral, which can also be shown to
vanish for reasons of symmetry. We shall not pause to side-track the discussion on
decomposition-dependent symmetry arguments. Further elaboration on this topic and
properties of the triadic terms can be found in Noack et al. (2008, 2011).

4. Results and discussion
For each measurement plane, the procedure described in § 3.1 is performed using

a fixed pressure dataset to obtain an estimation of the coherent contributions, which
is synchronized over the observation domain. The coherent velocity field is then
obtained over the 3D measurement grid using a trilinear interpolation of the planar
estimations. The time-averaged and constructed instantaneous vortex structures at
three successive snapshots, separated by shedding phase increments of π/5, are
shown in figures 10 and 11, respectively. The streamwise vorticity plot shown at three
planes in figure 10(b) shows four concentrated vorticity regions, a counter-rotating
pair (downwash-inducing) at the tip region and another (upwash-inducing) at the base
region. The base vorticity however is weak and is not observed at further downstream
planes, and as a result cannot be associated with a vortex structure using the λ2 < 0
criterion of Jeong & Hussain (1995).

Even though the mean vortex topology resembles that of the cylinder wake
(Bourgeois et al. 2011; Hosseini et al. 2013), the instantaneous vortex structures
are significantly different. While an alternate shedding is observed, it involves
two coexisting vortex structures that are highly distorted and having a strong
streamwise vorticity component. The streamwise vorticity of the horizontally oriented
parts are consistent with a forward-tilted Kármán-type structure at the base and a
backward-tilted structure at the tip region. As seen from the vorticity contours in
figure 11, the cores of the structures are distinct, but remain in relative proximity,
suggesting important interactions. In contrast, for cantilevered cylinders, only the
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Tip vortex leg

Base shed
vortex Developed

vortex

(a) (b) (c)

FIGURE 11. (Colour online) Instantaneous vortex structures at three successive snapshots
for a∆ = 0, separated by phase increments of π/5 of the shedding period, identified by
isosurfaces of λ2 = −0.01 and isocontour lines, at intervals of 0.4, of the streamwise
vorticity, Ωx, with dashed lines indicating negative values.

Kármán-type structures are observed and these are tilted backwards. This significantly
different topology for the pyramid wake motivated the present work to perform a
detailed energy analysis to identify the modal couplings and differences in the energy
transfer sequence compared to those in the cylinder wake (Noack et al. 2005).

Note that the vortex structures shown in figure 11 are examples close to the limit
cycle (a∆= 0). The structures are constantly perturbed away from the limit cycle and
get distorted. As will be discussed in the next sections, distinct energetic interactions
occur during these cycles, which contribute to important dynamics of the studied
modulated wake.

4.1. Constructed global modes
The modal decomposition of Hosseini et al. (2015), briefly summarized in appendix A,
is performed on the 3D estimated field to obtain the global modes and coefficients
shown in figures 12–15. The characteristics of the first five energetic modes are
analogous to the planar modes, with the first two composing the fundamental pair, the
third representing the base-flow variations, and the fourth and fifth modes composing
the second (symmetric) harmonics. The contributions of the modes in percentages
of the total TKE in the considered spatial domain are shown in figure 12. The
coherent energy captured by these five modes is approximately 49.4 %. Figure 12
also shows one of the advantages of the pressure-based estimation technique. The
coherent velocity field is estimated on a finer temporal grid than that for the original
PIV data, while maintaining the statistical confidence levels. Although the sampling
of the PIV data is set at fs= 500 Hz, or approximately 10 points per shedding cycle,
the modal coefficients are estimated at the sampling intervals of the pressure data, at
a frequency of 20 times higher than the original PIV data. The procedure benefits the
reliability of the calculated temporal derivatives when considering the evolution of the
flow field and the quantification of the energy transfer terms. The spatial distribution
of the global slow-drift mode in figure 13 suggests underlying structural differences
in the wake behind the obstacle tip and base region. The global modes for the first
harmonic pair in figure 14 are consistent with the observation that the w′ field is
more strongly correlated with the shedding activity downstream of the tip than in the
base region. This distinction is not easily observed in the second harmonic modes in
figure 15.
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FIGURE 12. (Colour online) Temporal evolution of the global modal coefficients for the
constructed 3D modes: a∆ is the slow drift, a(1)u and a(2)u are the fundamental, and a(3)u
and a(4)u are the second harmonic pairs. The corresponding energies in percentages of the
total TKE are quantified on the right side of each panel.

Top view

Side view

x
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FIGURE 13. (Colour online) Isosurfaces of the 3D constructed slow-drift mode. Blue and
yellow surfaces correspond to values of −0.2 and +0.2, respectively.
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(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

( j) ( k) ( l)

Top 
view

Side 
view

Top 
view

Side 
view

u w

FIGURE 14. (Colour online) Same as figure 13 but for constructed first (antisymmetric)
harmonic pair.

(a) (b) (c)

(d ) (e) ( f )
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u w

Top 
view

Side 
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FIGURE 15. (Colour online) Same as figure 13 but for constructed second (symmetric)
harmonic pair.
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Index Mode φi Coefficient ai

i= 0 u0 a0 ≡ 1
i=∆ φ∆ a∆
i= 1 φ(1)a a(1)u

i= 2 φ(2)a a(2)u

i= 3 φ(1)s a(3)u

i= 4 φ(2)s a(4)u

TABLE 3. Indices used to denote the constructed global modes considered in the energy
analysis.

The energy analysis as described in § 3 is performed for the constructed global
modes and the mean flow. Note that since the time-averaged and the constructed
fluctuating coherent velocity fields are now available over the entire observation
volume, the spatial derivatives can be calculated directly. Here, a second-order centred
scheme was used to calculate the gradients. As summarized in table 3, the mean flow
is denoted by index i = 0, and i = 1, 2 refer to antisymmetric (first) harmonic pair,
i= 3, 4 to symmetric (second) harmonic pair, and i=∆ to the slow-drift mode.

4.2. Total energy flow
The energy terms in (3.13) and (3.14) are shown in figure 16. Each of the three
terms C0, T0 and D0 in the mean base-flow energy equation are calculated from the
measured data, and the pressure work F0 is estimated from the residual. With the
dissipation being negligible, the convected MKE into the domain is balanced by the
mean pressure work and the energy interactions of the mean flow with turbulent
fluctuations (loss to turbulence).

As is expected for a sufficiently large observation domain, the TKE transfer
term T is negligible. Consequently, the magnitude of the transfer from the mean to
fluctuations T0 in the MKE equations is almost equal to the production of turbulence
P in the TKE equation as implied by (3.15). Hence, in the MKE equation, T0 acts
as a sink, while in the TKE equation, P is the only source term.

Approximately 28 % of the TKE production is convected from the domain, giving
a residual of 72 %, which, neglecting the pressure work, provides an estimate for the
transfer to the unresolved modes and dissipation to heat in the small-scale fluctuations.
Generally, three-dimensionality has a mitigating effect on the role of the pressure
term in the Galerkin model. By analogy to the 3D shear layer, the pressure work is
expected to be two orders of magnitude smaller than the production or dissipation
terms (Noack et al. 2005). The dissipation term is significantly larger than the
convection term. Consider that the observation domain encompasses the end of the
formation region and the very near wake. When compared to the similar region of a
2D cylinder wake in a low-Reynolds-number transitional regime, similar observations
are made (Noack 2006).

In the cylinder study, the wake was subdivided into three observation domains:
the first extending from the cylinder to 10 diameters downstream; the second
from 10 to 20 diameters; and the third further downstream. In the first domain,
where the shedding is described as 2D, with the shed vortices (rollers) undergoing
little spanwise deformation, the production term exceeds the dissipation (losses to
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Equation (3.10)

Equation (3.11)

MKE convection

Loss to turbulence

Direct dissipation

TKE convection

Turbulence production

Transfer

Mean pressure work

Turbulent dissipation

–0.2 0 0.1 0.2 0.3–0.1–0.3

FIGURE 16. Energy terms in the modal and base-flow energy balance equations. Grey
and white bars show positive and negative values, respectively. The estimated uncertainty
for the individual terms is 0.008.

higher-order modes) by a factor of 2–3 times. The convection term is also observed
to be significantly larger than the dissipation term. In the second domain, where the
deformation of the roller vortices is increasingly significant, the magnitude of the
production term is only slightly larger than that of the dissipation and, in comparison,
the convection term is significantly smaller. Further downstream, production decreases
further and convection is negligible.

Noack (2006) attributes the high dissipation rates of wake and mixing layers to
increased three-dimensionality due to the effect of mode B rib structures deforming
the relatively stronger shed roller vortices. In the present flow, this 3D effect is
expected to be even more pronounced due to the interaction of the two coexisting
and strong structures in the base and tip regions (see § 4.5). These structures arise in
the immediate obstacle wake, suggesting that the 3D effects arise earlier. The present
results are consistent with a more rapid evolution when compared to the relatively
less complex cylinder wake. For the pyramid case, for which the observation domain
extends from 0.8d to 2.3d, the relative contributions of the energy terms resemble
those observed in the second domain of the cylinder case: the production is larger
but comparable to the dissipation, while the convection term is significantly smaller.

4.3. Modal energy flows
The modal contributions of (3.16) are shown in figure 17. Approximately 60 % of
the total production arises in the fundamental harmonic pair, and only 1.2 % in the
second harmonics. Consistent with a forward energy cascade, the energy is transferred
from the fundamental pair (negative) to the second harmonics (positive). The residual
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FIGURE 17. Time-averaged modal energy contributions and the residual inferred to
approximate the unresolved transfer terms for the TKE balance of (3.16). The right-hand
axis shows the magnitude as a percentage of the total mean production. The uncertainty
for the individual terms is estimated to be 0.0015.

represents the transfer to the unresolved scales, i.e. higher-order modes (HOM), since
the fluctuating pressure work can be considered small. The energy transfer of both the
resolved harmonics is negative, suggesting a transfer from the large scales to smaller-
scale turbulence. As is discussed below in considering the distribution of the Galerkin
coefficient densities, the transfer to HOM can be linked to the shear layer (Noack
et al. 2005). The rather large transfer to HOM observed in this work emphasizes that
the 3D shear layer has a stronger influence in exciting the higher harmonics, when
compared to 2D wakes.

Figure 18 summarizes the average energy flow between the resolved scales (the
slow-drift mode, fundamental and second harmonic pair), and all the other unresolved
scales lumped into one term (HOM). This map includes the modal contributions
of figure 17 as well as the production, convection and dissipation contributions of
the unresolved scales, estimated from (3.14) by subtracting the contribution of the
resolved scales. The unresolved terms gain 85.9 % from the mean and interactions
with the fundamental and second harmonic pairs, from which 72.1 % is dissipated and
the rest is convected. The dissipation, therefore, is an important energy mechanism
in the considered measurement domain.

Considering only the time-averaged flow misleadingly ignores surprisingly important
transient dynamics. The highest values and the standard deviations of these mean
values are also shown in figure 18. The variations are quite large: the production
of the fundamental pair can be up to 140 % of the mean total production, and the
transfer to the HOM up to 110 %. While a forward energy cascade is observed in
the mean, temporal variations show backscatter of TKE as well. More noticeable
is the energy transfer of the slow-drift mode. While no significant contributions
are indicated on average, this mode has an active role away from the limit cycle.
Temporal variations show that the instantaneous energy transfer between this mode
and the fundamental pair can be up to ±30 % of the mean total production. Time
averaging hides these large interactions. In the next section, closer consideration is
given to the temporal variations of the transfer terms and couplings of the slow-drift
mode with the fundamental harmonic pair.
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FIGURE 18. (Colour online) The mean values of the energy flow (as percentages of
the mean total production) and standard deviations with arrows indicating the average
direction. The maximum and minimum values are presented in brackets [min,max], with
negative values indicating reversal of the energy flows.

4.4. Temporal evolution of modal energy flows
The temporal variations of the energy transfers of the first harmonic pair with the slow-
drift mode T∆a and the second harmonics Tsa are shown in figure 19, together with the
corresponding time traces for a∆ and a(1)u for reference. Note that no significant energy
transfer is present between the slow-drift mode and the second harmonics, i.e. T∆s≡ 0.
The temporal variations of Tsa show that the forward energy cascade is dominant, with
few instances of low backscatter of energy.

Another important observation is the energy flow sequence. At high-amplitude
cycles with a∆ > 0, energy flows from the first harmonic pair, at the same time, to
both the slow-drift mode and the second harmonic pair, i.e. T∆a > 0, Tsa > 0. At
low-amplitude cycles with a∆ < 0, energy flows from the slow-drift mode to the first
harmonics and then with a delay transfers to the second harmonics, i.e. T∆a < 0,
Tsa > 0. Two examples of the latter are highlighted in figure 19. At the third
highlighted interval, the energy of the first harmonic pair remains low for a long
period and the energy flow to the second pair is almost zero.

The coupling and energy exchange between the slow-drift mode with the
fundamental pair is consistent with the mean-field theory. Figure 20 shows two
examples away from the limit cycle: (1) a cycle above the average cycle with an
amplitude larger than the average, and (2) another below the average cycle with an
amplitude smaller than the average. In case (1) the transfer from slow-drift mode to
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FIGURE 19. (Colour online) Transfer of the fundamental harmonic pair (b) with the
symmetric pair Tsa (blue) and the slow-drift mode T∆a (red), with the modal coefficients
(a). The highlighted intervals show examples of relatively low a∆, when delayed energy
transfers to the second harmonics occur. The right-hand axis shows the magnitude as a
percentage of the total mean production.

the antisymmetric pair is positive, whereas in case (2) the transfer is in the opposite
direction. In both of these cases, the energy exchange drives the flow state towards
the mean (oscillatory) solution. The distribution a∆ versus T∆a, shown in figure 20(c),
emphasizes that the direction of the energy transfer depends explicitly on the sign of
a∆ for all observed cycles.

The aforementioned dynamic behaviour may be interpreted as the response of a
stable nonlinear oscillator to perturbations, where the average solution represents an
attractor. As a heuristic example, if a shear layer feeding the forming vortices is
perturbed, which corresponds to a base-flow fluctuation and deviation from a∆ = 0,
the vorticity flux to the vortex is modified (i.e. the amplitude of the fundamental pair
is altered), which in turn induces a change in the base flow, tending to restore the
average cycle. The source of the perturbations results from the instantaneous effect of
a combination of the other modes, that is, the background turbulence. This can be seen
explicitly by considering the evolution equations for the individual modes, obtained
simply by taking the inner product of the mode of interest and the Navier–Stokes
equations (Couplet et al. 2003). This operation results in the appearance of terms
involving products of the temporal mode coefficients, analogous to the Reynolds-stress
terms. While these terms must vanish identically under temporal averaging, these are
instantaneously non-zero and act as source/sink terms. These Reynolds-stress-like
terms form the contributions to the triadic interactions found in the transfer and
production terms involving qc

ijk and qc
ii0, respectively. Thus, energy can be transferred

directly and independently to the individual modes, as is represented in figure 18.
The transfer term T∆a then acts to drive the solution towards the average cycle.
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FIGURE 20. (Colour online) Direction of the energy transfer between the slow-drift mode
and fundamental pair. (a) The a(2)u versus a(1)u phase portrait for two representative cycles,
one above (red) and one below (blue) the average cycle (a∆ = 0, indicated in black). In
both cases, the motion is clockwise. (b) Plot of a∆ versus a(1)u for all measurements (green
dots) and the representative cycles of (a) with corresponding colours. The arrows indicate
that the energy exchange drives the flow towards the average cycle. At high amplitudes
of the fundamental, a∆ > 0, T∆a > 0 and energy flows to the slow-drift mode and the
amplitude of the oscillations is dampened. Conversely, at low amplitudes, a∆< 0, T1a < 0
and energy flows to the fundamental pair, tending to amplify the oscillation. (c) Plot of
a∆ versus T∆a showing that the direction of the energy flow depends explicitly on the sign
of a∆.

4.5. Local distributions and link to physics
The results presented so far are the net global events summed over the whole spatial
domain. The local distributions can provide more details about the interactions, and
help to identify the links between energetic events and topological differences. As per
(3.10), q̃c

ijk denotes the convection Galerkin coefficient density to differentiate from the
integral Galerkin coefficients qc

ijk.
For a clearer illustration of the local distributions in figures 21–24, the limits of

the isosurfaces are selected objectively by taking the values that enclose a specific
fraction of the modal contributions. Two limits are considered, the surface enclosing
95 % (transparent) of the contribution, and another enclosing 50 % (opaque) to identify
localized areas of concentration. The blue/teal and yellow/red colours indicate negative
and positive values, respectively.

The isosurfaces of the local Galerkin coefficient densities q̃c
0ii are shown in figure 21.

This term includes two contributions, loss to turbulence, which is equal and opposite
to modal production, and transfer of mean kinetic energy by fluctuations. The
contribution of the transport terms integrated over the spatial domain is zero, as
discussed in § 4.2. This redistributed nature of the transfer terms can be deduced
from figure 21. The positive contributions are concentrated on the low-speed side of
the shear layer (i.e. inside the wake core, see figure 4 for reference). These are offset
by the negative contributions at the wake boundaries on the high-speed side of the
shear layers.

The distribution of the modal production coefficient densities q̃c
ii0 is shown in

figure 22 for the fundamental and second harmonic pairs. As expected, these terms
are positive (source) terms. The modal production coefficients of the fundamental pair,
shown in figure 22(a), are extremely localized at regions close to the wall where the
mean velocity gradients are high. Similar to the cylinder wake, the contribution from
the shear layer is not large. On the other hand, for the second harmonics, the shear
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(a)

(b)

FIGURE 21. (Colour online) Isosurfaces of the Galerkin transfer modal coefficient
densities q̃c

0ii representing interactions of the mean flow with the (a) first and (b) second
harmonic pairs. Transparent and opaque volumes, respectively, contain 95 % and 50 % of
the summed contribution, with blue/teal and red/yellow showing negative and positive
values, respectively. The displayed rectangle corresponds to the observation domain and
has a similar orientation as in figure 10.

(a)

(b)

FIGURE 22. (Colour online) Same as figure 21 but for modal production coefficient
densities q̃c

ii0.

layer plays a significant role. As shown in figure 22(b) the high-production regions
are closer to the boundaries of the wake. Moreover, they occur further downstream
of the regions where the production of the fundamental pair is concentrated. These
observations are consistent with the expected energy flow sequence from larger to
smaller scales. The production of the largest scales is related to the vorticity flux
at the solid boundaries, while the smaller scales arise from 3D vortex dynamics as
occurring, for instance, in the shear layers.
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(a)

(b)

FIGURE 23. (Colour online) Same as figure 21 but for modal convection coefficient
densities q̃c

i0i.

(a) (b)

FIGURE 24. (Colour online) Same as figure 21 but for modal transfer coefficients, q̃c
1ii,

representing interactions of the slow-drift mode with the fundamental harmonic pair.

The differences between the distributions of the transfer q̃c
0ii and production q̃c

ii0
terms highlight the different roles played by the fluctuating and mean field in the
energy flow. As can be seen in table 1, the transfer terms contain the spatial gradients
of the fluctuating components, while the production terms contain the mean velocity
gradients.

The modal convection coefficients in figure 23 show regions of positive and negative
values, as is expected from the periodic nature of the flow. Similar to the production
terms, concentrated regions are observed close to the pyramid and the wall where
gradients are high for the fundamental pair, and closer to the edge of the wake for
the second harmonics.

The global couplings of the slow-drift mode and the fundamental pair were
discussed in § 4.4. The transfer term as defined in § 3.3 includes 16 terms, from
which only two terms have significant contributions. The modal coefficient densities
for these two terms are shown in figure 24. The sign of both terms changes in
the region close to the mean vortex pair at the tip. In the wake core region, both
coefficients are positive (yellow coloured) and the local direction of the energy flow
matches that observed with the global behaviour: energy is extracted by the slow-drift
mode when a∆> 0 and is lost to the fundamental pair when a∆< 0. The local energy
flow in the tip region (blue coloured), however, is in the opposite direction.
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(a) (b) (c)

0
–0.02
–0.04

0.02
0.04

FIGURE 25. (Colour online) Isosurfaces of λ2 =−0.01 representing the vortex structures
at an instant of (a) negative, (b) zero and (c) positive slow-drift coefficients, coloured with
transfer term T∆a.

The aforementioned local change in the energy flow direction can be related to the
interaction between the base and tip region vortices. Consider the vortex topology
at three characteristic snapshots, taken at the same shedding phase, with (i) a∆ < 0,
(ii) a∆ = 0 (the typical or average cycle) and (iii) a∆ < 0 as shown in figure 25.
Significant topological differences are observed. The vortex topology is characterized
with two types of vortex structures. In case (i) the base vortex is stronger than the
second vortex with a streamwise part in the tip region. Here, the energy transfer
with the slow-drift mode tends to strengthen the tip region vortex and weaken the
base vortex. In contrast, in case (ii) the second vortex with a streamwise part at the
tip region is stronger and the energy flow is reversed. The transfer term T∆a for a
point on the average cycle is negligible. It thus appears that the exchange between
the slow-drift mode and the fundamental pair are physically expressed as interplay
between these vortex structures about the average flow state.

5. Conclusions
A detailed modal energy analysis is presented for the 3D velocity modes of the

highly modulated turbulent wake. The modes were constructed from planar PIV
measurements and simultaneous wall pressure data using a sensor-based estimation
technique that renders the main features of the wake and vortex topology (Hosseini
et al. 2015).

The oscillatory pyramid wake is found to have significantly different energy
mechanisms as compared to the 2D cylinder wake. The excitation of the higher
harmonics is stronger and the energy transfer plays an important role in damping the
energy. The fundamental pair contributes to 60 % of the total production. Approx-
imately 78 % of this contribution is transferred to higher harmonics, which eventually
gets dissipated in small-scale turbulence. The dissipation, rather than convection
(Noack et al. 2005; Noack 2006), is shown to be the dominant energy sink.

Even in the presence of such significant differences, strong couplings are observed
between the slow-drift (non-oscillatory) mode and the fundamental (unstable) pair.
Surprisingly, the transient dynamics are still described with such couplings that were
originally derived for the vortex shedding instability at transitional Reynolds number
Recrit = 47.

The temporal variations indicate sequences of large energy transfers in the
transitional states. Two characteristic events are generally observed: (i) in-phase energy
transfer from the fundamental pair to the slow-drift mode and second harmonics at
instances with a∆ > 0; and (ii) out-of-phase transfer from the slow-drift mode to the
fundamental pair and subsequently to second harmonics at instances with a∆ < 0.
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The spatial distributions of the temporally averaged energy terms indicate extremely
localized concentrations of production and convection. While the fundamental pair is
mainly created at regions close to the wall, the second harmonics are created at the
wake boundaries close to the shear layer. Observing the topology of the shed vortices,
the transfer dynamics in the shear layer appear to be linked to the interaction between
two coexisting structures. This feature distinguishes the pyramid wake flow from that
of the cantilevered finite cylinder flow, where only the Kármán-type structures are
observed.

Looking forward, this work offers a different perspective for exploiting experimental
data. The modal analysis results in an elegant and quantifiable description of coherent
structure interactions in terms of energy flows and the path along the energy cascades
towards small-scale motion. It highlights the significance of instantaneous exchanges,
ultimately underlying the generation of Reynolds stresses, which are masked in the
time-averaged terms. Further scrutiny provides localized details of vortex interaction
phenomenology. Such insights are often critical guides in formulating flow control
strategies as seen in Mills, Sheridan & Hourigan (2003). The remarkable link to mean-
field theory motivates our work in developing dynamically consistent reduced-order
models towards applications in flow control theory (Brunton & Noack 2015).

More generally, the present analysis potentially contributes to an original framework
for comparing data from PIV and URANS simulations. On a kinematic level, the
estimation technique can extract base-flow deformations and the oscillatory structures
that a URANS simulation can be expected to predict. On a dynamic level, the energy
flows between base flow, oscillatory structures and residual have been quantified
from PIV data in the proposed analysis. Thus production, convection, dissipation
and transfer terms of URANS simulations can be locally and globally compared
with the inferred experimental data. Finally, further analysis of the residual field
can form the basis for subsequent refinement of modelled terms. As alternative to
URANS simulations, Liu has pioneered shear turbulence models with stability modes
for the coherent structures and energy transfer models accounting for the stochastic
fluctuations (Liu 1989).
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Appendix. Estimation technique
As a starting point, the salient features of EPOD (Borée 2003) are reiterated for

continuity. First, the spatio-temporal pressure data acquired at locations y from Np

sensors are expanded onto the POD basis: p(y, t)=∑Np
n=1 a(n)p (t)φ

(n)
p (y), where a(n)p (t)

and φ(n)p (y) denote the nth temporal coefficient and spatial modes, respectively. The
extended velocity modes are then defined, ψ (n)

u (x) = 〈a(n)p (t)u(x, t)〉/λ(n)p , where 〈·〉
denotes the time-averaging operator, λ(n)p = 〈a(n)p (t)a

(n)
p (t)〉 and x denotes the velocity

spatial domain. The velocity, then, is estimated using

û(x, test)=
Nmode∑

n=1

a(n)p (test)ψ
(n)
u (x), (A 1)
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FIGURE 26. Algorithm used to obtain the orthonormal subspace onto which the velocity
data are expanded.

where test denotes the estimation time and Nmode 6Np. If all extended modes are used
(i.e. Nmode = Np) the linear stochastic estimation technique is recovered. To render a
consistent flow topology and the transient dynamics, the EPOD technique is modified
in four respects:

Expansion onto the optimal basis. The fluctuating velocity component is expanded
onto a basis, which, by construction, is orthonormal following the procedure depicted
in figure 26. Briefly, after subtraction of the time-averaged mean, the fluctuations are
decomposed into symmetric and antisymmetric fields according to:

us(x, y, z, t)= [u′(x, y, z)+ u′(x,−y, z)]/2,
ua(x, y, z, t)= [u′(x, y, z)− u′(x,−y, z)]/2,
vs(x, y, z, t)= [v′(x, y, z)− v′(x,−y, z)]/2,
va(x, y, z, t)= [v′(x, y, z)+ v′(x,−y, z)]/2,
ws(x, y, z, t)= [w′(x, y, z)+w′(x,−y, z)]/2,
wa(x, y, z, t)= [w′(x, y, z)−w′(x,−y, z)]/2.





(A 2)

This decomposition confers beneficial convergence behaviour for the spatial modes
(Holmes et al. 2012), which is paramount to the accuracy of the estimation. The
benefits have been verified to outweigh the potential risk due to cross-talk arising from
experimental uncertainty.

The antisymmetric harmonic modes are determined from a POD of the antisymmet-
ric field. The symmetric field is decomposed into a slowly varying part using the
Gaussian short-time averaging operator and a fast varying part. The most energetic
mode of the slowly varying part is taken to represent the low-frequency base-flow
variations (slow-drift mode) and the symmetric harmonic modes are obtained from the
POD of the fast varying part.

The five most energetic modes in plane z/h = 0.23 are shown in figure 27. The
two most energetic modes compose the fundamental antisymmetric pair with frequency
fc, the shedding frequency. The third most energetic mode is the slow-drift mode
following with the symmetric harmonic pair with frequency 2fc. The combination of
these five modes contributes to 60.8 % of the total TKE of this plane.
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FIGURE 27. (Colour online) (a) Contours of velocity spatial modes at the plane z/h =
0.23. The dashed lines indicate negative values. Subscripts a, s and ∆ indicate the
antisymmetric, symmetric and slow-drift modes, respectively. (b) The PSDFs of the
corresponding temporal coefficients. Spectra are in log–log scale and offset for clarity.

By expanding the velocity data onto the orthonormal basis as in (A 3), the
correlations between the spatio-temporal velocity data and the pressure coefficients of
ψ (n)

u reduce to correlations between the temporal coefficients as per (A 4):

û(x, test)=
Nu∑

k=1

â(k)u (test)φ
(k)
u (x), (A 3)

â(k)u (test)=
Nmode∑

n=1

a(n)p (test)
〈a(n)p (t)a

(k)
u (t)〉

λ(n)p

, (A 4)

where φ(k)u (x) and a(k)u (t) are, respectively, velocity basis modes and corresponding
temporal coefficients. This simplification significantly reduces the computational effort
and makes it possible to explicitly detect and extract the existing correlations in given
data. Only the pressure modes for which the correlation with the velocity field is
non-vanishing are used in the estimation. Hence, this approach eliminates the need
for additional ranking criteria for selection and reduces the experimental uncertainty
introduced by including non-contributing modes (cf. Sicot et al. 2012; Clark, Naghib-
Lahouti & Lavoie 2014). Here, when considering only the non-vanishing correlations,
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the estimation of the velocity coefficients for the first harmonic pair (k= 1, 2) and the
slow-drift (∆) reduce to

â(k)u (test)= a(1)p (test)
〈a(1)p (t)a

(k)
u (t)〉

λ(1)p

+ a(2)p (test)
〈a(2)p (t)a

(k)
u (t)〉

λ(2)p

,

â∆(test)= aG
p (test)

〈aG
p (t)a∆(t)〉
λG

p

,





(A 5)

where a(1)p and a(2)p are the antisymmetric pair coefficients, and aG
p is the slowly varying

coefficient of the pressure data, found from a similar decomposition to that used for
the u component of the velocity field.

Sensor history for harmonic mode estimation. The multi-time-delay approach improves
the estimation by forcing the convergence of the pressure harmonic modes (Lasagna,
Orazi & Iuso 2013) and accounting for the phase shift between the pressure and
velocity harmonic coefficients (Durgesh & Naughton 2010). Briefly, the spatial
information of the sensor data is obtained by treating the time-delayed signal as
originating from a virtual sensor located downstream of the physical sensor. For N
physical sensors, and M time-delayed signals, the POD is performed for a system
of Np = N × (M + 1) sensors. The selection of time-delay interval τT and number
of delayed signals M is shown to affect the accuracy of the estimation (Durgesh &
Naughton 2010; Sicot et al. 2012; Clark et al. 2014; Hosseini et al. 2015). Following
Hosseini et al. (2015), a time-delay interval of τT ≈ 1/fc and M = 10 time-delayed
signals are used to ensure that the first and second pressure harmonics follow the
expected cyclical behaviour. The error of the estimation does not change significantly
by addition of further delayed signals.

Fixing the phase of the slow-drift mode. The estimation of the velocity field is
improved by including a time delay for the non-harmonic modes separately. Omitting
this step introduces an artificial and random phase lag between the non-harmonic
and harmonic fluctuations, resulting in a misrepresentation of the coherent strain field
and the dynamics of the coherent motion. For the slow-drift mode, the time delay
τ∆ is found from the peak of the cross-correlation function of the pressure, aG

p , and
the velocity, a∆, coefficients. The correct phase in the estimation â∆ is recovered as
shown in (A 6):

â∆(test)= aG
p (test − τ∆)

〈aG
p (t− τ∆)a∆(t)〉

λG
p

. (A 6)

Estimation of higher harmonics. The onset of vortex shedding in the bluff-body wake
is of a Hopf bifurcation type and consists of a single pair of unstable eigenmodes
with a positive growth rate and a range of stable modes that are highly damped. The
system is approximated with an invariant manifold model (Noack et al. 2003), where
the active coordinates are aligned with the unstable modes and the stable modes are
slaved to the active modes. Consistent with this model, it was shown in Hosseini
et al. (2015) that a better estimation is obtained using a quadratic invariant-manifold
approximation as in (A 7):

â(k)u = hk11a(1)p a(1)p + hk22a(2)p a(2)p + hk12a(1)p a(2)p + `k3a(3)p + `k4a(4)p , (A 7)

where k = 3, 4 denote the second harmonic modes and hkij, `ki are the correlation
coefficients. As shown in figures 11 and 14 of Hosseini et al. (2015), inclusion of
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the quadratic terms results in an increase of up to 300 % of the energy represented in
the estimated second harmonic modes and improves the estimation of the streamline
topology and the region covered by the vortex cores, when compared to the measured
flow field.

Normally, the velocity field is well approximated with a linear mapping from
pressure sensors. However, the mode coefficients associated with the second harmonics
of the velocity field were shown to be much more accurately estimated as a quadratic
function of the first harmonics of the pressure signal as compared to a linear relation
with the second sensor harmonics. The phase and amplitude relation between first and
second harmonics of the flow is thus exploited while the second sensor harmonics
with low signal-to-noise ratio can be avoided. The Volterra series enables an elegant
alternative estimation approach for broadband dynamics without simplifications based
on harmonically related components (Baars & Tinney 2014).

REFERENCES

ABUOMAR, M. M. & MARTINUZZI, R. J. 2008 Vortical structures around a surface-mounted pyramid
in a thin boundary layer. J. Wind Engng Ind. Aerodyn. 96, 769–778.

ADARAMOLA, M. S., AKINLADE, O. G., SUMNER, D., BERGSTROM, D. J. & SCHENSTEAD, A. J.
2006 Turbulent wake of a finite circular cylinder of small aspect ratio. J. Fluids Struct. 22,
919–928.

AUBRY, N., HOLMES, P., LUMLEY, J. L. & STONE, E. 1988 The dynamics of coherent structures in
the wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115–173.

BAARS, W. J. & TINNEY, C. E. 2014 Proper orthogonal decomposition-based spectral higher-order
stochastic estimation. Phys. Fluids 26, 055112,1–21.

BORÉE, J. 2003 Extended proper orthogonal decomposition: a tool to analyse correlated events in
turbulent flows. Exp. Fluids 35, 188–192.

BOURGEOIS, J. A., NOACK, B. R. & MARTINUZZI, R. J. 2013 Generalized phase average
with applications to sensor-based flow estimation of the wall-mounted square cylinder wake.
J. Fluid Mech. 736, 316–350.

BOURGEOIS, J. A., SATTARI, P. & MARTINUZZI, R. J. 2011 Alternating half-loop shedding in the
turbulent wake of a finite-surface-mounted square cylinder with a thin boundary layer. Phys.
Fluids 23, 095101.

BRUNTON, S. L. & NOACK, B. R. 2015 Closed-loop turbulence control: progress and challenges.
Appl. Mech. Rev. 67 (5), 050801.

CASTRO, I. P. & ROGERS, P. 2002 Vortex shedding from tapered plates. Exp. Fluids 33, 66–74.
CASTRO, I. P. & WATSON, L. 2004 Vortex shedding from tapered, triangular plates: taper and aspect

ratio effects. Exp. Fluids 37, 159–167.
CLARK, H., NAGHIB-LAHOUTI, A. & LAVOIE, P. 2014 General perspectives on model construction

and evaluation for stochastic estimation, with application to a blunt trailing edge wake. Exp.
Fluids 55, 1756.

COUPLET, M., SAGAUT, P. & BASDEVANT, C. 2003 Intermodal energy transfers in a proper orthogonal
decomposition–Galerkin representation of a turbulent separated flow. J. Fluid Mech. 491,
275–284.

DURGESH, V. & NAUGHTON, J. W. 2010 Multi-time-delay LSE–POD complementary approach applied
to unsteady high-Reynolds-number near wake flow. Exp. Fluids 49, 571–583.

HERVÉ, A., SIPP, D., SCHMID, P. J. & SAMUELIDES, M. 2012 A physics-based approach to flow
control using system identification. J. Fluid Mech. 702, 26–58.

HOLMES, P., LUMLEY, J. L., BERKOOZ, G. & ROWLEY, C. W. 2012 Turbulence, Coherent Structures,
Dynamical Systems and Symmetry, 2nd edn. Cambridge Monographs on Mechanics. Cambridge
University Press.

HOSSEINI, Z., BOURGEOIS, J. A. & MARTINUZZI, R. J. 2013 Large-scale structures in dipole and
quadrupole wakes of a wall-mounted finite rectangular cylinder. Exp. Fluids 54, 1595.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

34
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.345


Modal energy flow analysis of a wake behind a pyramid 749

HOSSEINI, Z., MARTINUZZI, R. J. & NOACK, B. R. 2015 Sensor based estimation of the velocity
in the wake of a low-aspect-ratio pyramid. Exp. Fluids 56, 13.

JEONG, J. & HUSSAIN, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 69–94.
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