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Let f : N → C be a bounded multiplicative function. Let a be a fixed non-zero integer
(say a = 1). Then f is well distributed on the progression n ≡ a (mod q) ⊂ {1, . . . , X},
for almost all primes q ∈ [Q, 2Q], for Q as large as X1/2+1/78−o(1).
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1. Introduction

Let f : N → C be a multiplicative function with |f(n)| � 1 for all n. In this note
we look at how f(n) behaves on progressions n ≡ a (mod q), n � X, with q a prime
larger than X1/2 by a small power.

Notation. Throughout the paper, En∈S is shorthand for (1/|S|)
∑

n∈S , where S
is a set of integers. We reserve the notation E for the expectation of a random
variable. The letter c denotes a positive absolute constant, which may be different
at each appearance. When we write X � Y we will mean that |X| � CY for some
absolute constant C, which may again be different at each appearance. We write
e(t) as a shorthand for e2πit.

Theorem 1.1. Suppose that f : N → C is a multiplicative function with |f(n)| � 1
for all n. Suppose that Q satisfies X1/3 < Q < X1/2+1/78−σ, and suppose that
0 < |a| < 10Q. Then

|En�X, n≡a (mod q)f(n) − En�Xf(n)| � ε

with the possible exception of at most Qε−1X−cσε primes q with Q � q < 2Q.

Remarks. The parameter σ is of very little consequence and is included just so
that we can state the largest range of Q for which we can get a non-trivial result.
The range of a stated is not the best one that can be obtained with our method,
but the result is probably most interesting for constant a (for example a = 1). The
statement has content for ε � log log X/ log X and is perhaps most interesting for
ε � 1, in which case we get a power saving over the trivial bound. The stipula-
tion that Q > X1/3 is somewhat arbitrary: the main interest of the result is for
Q > X1/2−o(1).
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Let µ be the Möbius function and let λ be the Liouville function. A straightfor-
ward corollary of theorem 1.1 and the classical estimates En�Xµ(n), En�Xλ(n) �
e−

√
log X (both essentially the prime number theorem with classical error term) is

the following.

Corollary 1.2. Suppose that Q satisfies X1/3 < Q < X1/2+1/78−σ, and suppose
that 0 < |a| < 10Q. Then |En�X, n≡a (mod q)µ(n)| � ε with the possible exception of
at most Qε−1X−cσε primes q with Q � q < 2Q. The same is true for the Liouville
function λ.

Further remarks. The main novelty in these results is that they apply with
prime moduli larger than X1/2 by a power. There is a considerable and deep litera-
ture concerning the distribution of primes in progressions a (mod q) with q > X1/2.
However, these works typically require q to be ‘smooth’ or ‘well factorable’ [3,8,14]
or else ‘only’ beat the X1/2 barrier by a smaller term Xo(1) [4, 5].

In fact, the restriction to prime q (or at least some restriction on q) is quite
important for us. Indeed, as stated, theorem 1.1 is false without some such restric-
tion, as may be seen by taking f(n) = (−1)nµ2(n). In this case, En�Xf(n) is very
small, but |En�X, n=a (mod q)f(n)| � 1 whenever q is even. The issue here is that f
is ‘pretentious’ in the sense of Granville and Soundararajan (see, for example, [1]).
We do expect theorem 1.1 to hold when f = µ is the Möbius function, even if q
is allowed to be composite. However, our methods do not give such a statement in
their current form.

Very little in the proof of our main result will be a surprise to experts. Many of the
ingredients (application of Poisson summation formula, reciprocity for congruences,
reduction to a bilinear form estimate) may be found in the literature cited above.

The main difference between our work and the aforementioned papers is that,
because our interest is in bounded multiplicative functions such as µ rather than
in the primes, we can make do with bilinear form estimates in a rather restricted
(and accessible) range. This observation goes back to Kátai [11] and has featured,
in a variety of different forms, in many recent works. In particular, we mention the
paper of Bourgain et al . [1], as well as the note of Harper [10].

To obtain bilinear forms we will proceed using an identity of Ramaré, which
affords some flexibility in the choice of various parameters and leads to quite good
bounds. We do not claim any originality for the idea of using Ramaré’s identity in
this context: it is implicit in [12], and remarked upon without proof in a blog post
of Tao.1 However, we do not know of any portable implementation of this in the
literature, and so proposition 2.2 may be useful elsewhere.

To analyse the resulting bilinear forms, which involve ‘Kloosterman fractions’,
we use a result of Duke et al . [7] (we in fact use a numerically stronger version of
this due to Bettin and Chandee [2]).

In theorem 1.1, the modulus a was fixed. We do not know how to establish a
corresponding result with a being allowed to vary with q, for any Q > X1/2. This
in fact appears to be a significantly harder problem, leading to issues related to the

1 See remark 4 at https://terrytao.wordpress.com/2015/02/24/254a-supplement-6-a-cheap-vers
ion-of-the-theorems-of-halasz-and-matomaki-radziwill/.
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Kakeya conjecture in Euclidean harmonic analysis. We make some comments on
this point in § 4.

2. Ramaré’s weights and bilinear forms

In this section we record a result, proposition 2.2, which is of a type well known to
experts. It is very similar to results of Kátai [11], Bourgain et al . [6] and Harper [10],
and is based on work of Ramaré [13].2

Throughout this section, we will have parameters Y < Z, depending on X. Write
u := log Z/ log Y , and assume that u � 2. We will consider the weight function

w(n) :=
1

#{p : Y � p < Z : p|n} + 1
. (2.1)

Lemma 2.1. Suppose that M � Z8. Then EM�m<2Mw(m)2 � (log u)−2.

Proof. We may assume that u is sufficiently large, the result being vacuous other-
wise. Suppose that m is selected at random from [M, 2M). Write Xp for the event
that p|m, and write X =

∑
Y �p<Z Xp; then the quantity we wish to bound is

E(1/(X + 1)2).
We have

EXp =
1
p

+ O

(
1
M

)

and so

EX =
∑

Y �p<Z

1
p

+ O

(
Z

M

)
= log u + O(1)

by Mertens’s estimate. We claim that it is enough to show that

P(X = t) � (log u)−2 (2.2)

uniformly for 0 � t � 1
2 log u. Indeed, we then have

E
1

(X + 1)2
� (log u)−2 +

∑
0�t�(log u)/2

P(X = t)
(t + 1)2

� (log u)−2
(

1 +
∑

0�t�(log u)/2

1
(t + 1)2

)

� (log u)−2,

which is what we wanted to prove. To establish (2.2), we use a fourth moment
argument. Write X ′

p := Xp − 1/p and X ′ :=
∑

Y �p<Z X ′
p = X − log u + O(1). If

X = t with t � 1
2 log u, then X ′ > 1

4 log u, so

P(X = t) � P(X ′ > 1
4 log u) � (log u)−4EX ′4

2 We thank Kaisa Matomäki and Terence Tao for drawing our attention to Ramaré’s work,
especially the latter who provided some details of it in his blog.
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by Markov’s inequality. It therefore suffices to prove that

EX ′4 � (log u)2. (2.3)

To this end, we may expand

EX ′4 =
∑

Y �p1,p2,p3,p4<Z

EX ′
p1

X ′
p2

X ′
p3

X ′
p4

. (2.4)

Suppose that one of the pi is different from all the others. Then, by the Chi-
nese remainder theorem, the sum of

∏4
i=1(1pi|m − 1/pi) over any interval of length

p1p2p3p4 is 0, and so

EX ′
p1

X ′
p2

X ′
p3

X ′
p4

= O

(
Z4

M

)
.

The contribution to (2.4) from these choices is therefore � Z8/M � 1. If there is
no such pi, then the average is of the form EX ′2

p X ′2
p′ . Noting that X j

p = Xp for all
j (since Xp takes values 0 and 1) and that EXpXp′ = 1/pp′ + O(1/M) � 1/pp′ if
p �= p′, it follows easily from the binomial theorem that

EX ′2
p X ′2

p′ �
{

1/pp′ if p �= p′,

1/p if p = p′.

The contribution to (2.4) from these remaining quadruples p1, p2, p3, p4 is therefore∑
Y �p, p′<Z, p �=p′

1
pp′ +

∑
Y �p<Z

1
p

� (log u)2.

This concludes the proof of (2.3), and hence of the lemma.

Proposition 2.2. Let F : N → C be any function. Let 1 < Y < Z < X1/16 be
parameters. Let f : N → C be a multiplicative function with |f(n)| � 1 for all n.
Then

En�Xf(n)F (n) � Etriv + Esieve + Ebilinear,

where

Etriv := Y −1/2‖F‖∞, Esieve := En�X |F (n)|1(n,
∏

Y �p<Z p)=1,

and

Ebilinear =

√√√√√√ sup
p,p′,I

1
max(I)

∣∣∣∣∣
∑
m∈I,

(m,pp′)=1

F (pm)F (p′m)

∣∣∣∣∣,

the supremum being taken over all primes p, p′ with Y � p < p′ < Z and all
intervals I ⊂ [0, X] with max(I) > X/10Y Z.

Remarks. So as to get a fairly clean statement, we have omitted some logarithmic
factors that, if included, would make the statement marginally stronger.

One could formulate and prove, using an almost identical argument, a similar
statement in which some small collection of exceptional pairs of primes p, p′ was
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tolerated in the definition of Ebilinear. We do not do this here, since it is not necessary
for our applications. One problem where such a formulation could be of interest is
the (open) question of showing that

∑
n�X µ(n)Λ(n−1) = o(X). Here, the bilinear

estimate is certainly the heart of the matter. Things would be reduced to showing
that for almost every pair of primes p, p′ ∼ Q with Q ∼ Xδ one has the expected
number (as predicted by the Hardy–Littlewood heuristics) of x � X/Q for which
px + 1, p′x + 1 are both prime.

Proof. Set u := log Z/ log Y . Let w be Ramaré’s weight function as defined in (2.1).
It is convenient to introduce the function µ2

[Y,Z)(n), defined to be 0 if n is divisible
by the square of some prime p with Y � p < Z, and 1 otherwise. If µ2

[Y,Z)(n) = 1,
then we have the (easily checked) Ramaré identity

∑
Y �p<Z,

p|n

w

(
n

p

)
=

{
1 if p|n for some Y � p < Z,

0 otherwise.

Now we have ∑
n�X,

µ2
[Y,Z)(n)=0

f(n)F (n) �
∑

Y �p<Z

∑
n�X,
p2|n

|f(n)F (n)|

� ‖F‖∞
∑

Y �p<Z

∑
n�X,
p2|n

1

� ‖F‖∞
∑

Y �p<Z

(
X

p2 + O(1)
)

� ‖F‖∞

(
Z +

X

Y

)
� XEtriv.

Meanwhile, from the Ramaré identity,

∑
n�X,

µ2
[Y,Z)(n)=1

f(n)F (n)

=
∑

n�X,
µ2

[Y,Z)(n)=1

f(n)F (n)
∑

Y �p<Z,
p|n

w

(
n

p

)
+

∑
n�X,

(n,
∏

Y �p<Z p)=1

f(n)F (n).

=
∑

n�X,
µ2

[Y,Z)(n)=1

f(n)F (n)
∑

Y �p<Z,
p|n

w

(
n

p

)
+ O(XEsieve).

The main business of the proof is therefore to bound the first term, which we refer
to as Σ from now on, by O(X)(Etriv + Esieve + Ebilinear).
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Using the multiplicativity of f , Σ may be rewritten as∑
Y �p<Z

f(p)
∑

m�X/p,
(m,p)=1,

µ2
[Y,Z)(m)=1

w(m)f(m)F (pm)

=
∑

m�X/Y,

µ2
[Y,Z)(m)=1

w(m)f(m)
∑

Y �p<Z,
p�X/m,
(m,p)=1

f(p)F (pm).

It is technically convenient to drop the condition that µ2
[Y,Z)(m) = 1. If we do this,

since w(m) � 1 and |f(m)| � 1 pointwise, the terms that we add in are bounded
by

Z‖F‖∞
∑

Y �p̃<Z

∑
m�X/Y,

p̃2|m

1 � ‖F‖∞

(
XZ

Y 2 + Z2
)

� XEtriv.

Thus it remains to bound

Σ′ :=
∑

m�X/Y

w(m)f(m)
∑

Y �p<Z,
p�X/m,
(m,p)=1

f(p)F (pm).

Since w(m) � 1 and |f(m)| � 1 pointwise, a very crude estimate for the con-
tribution to this sum from m � X1/2 is O(X1/2Z‖F‖∞) � XEtriv. Split the
sum over the remaining m into exponential ranges e−i−1X < m � e−iX, where
log Y � i � 1

2 log X. For notational convenience we write this range as m ∼ e−iX.
On each such range we may apply the Cauchy–Schwarz inequality, obtaining a
bound

Σ′ � XEtriv +
(log X)/2∑
i=log Y

( ∑
m∼e−iX

w(m)2
)1/2

( ∑
m∼e−iX

∣∣∣∣∣
∑

Y �p<Z,
p�X/m,
(m,p)=1

f(p)F (pm)

∣∣∣∣∣
2)1/2

� XEtriv +
X1/2

log u

(log X)/2∑
i=log Y

e−i/2

( ∑
m∼e−iX

∣∣∣∣∣
∑

Y �p<Z,
p�X/m,
(m,p)=1

f(p)F (pm)

∣∣∣∣∣
2)1/2

. (2.5)

In deriving the second line here we made use of lemma 2.1; this is valid since, with
i in the stated range, e−iX � X1/2 � Z8.

We have∑
m∼e−iX

∣∣∣∣ ∑
Y �p<Z,
p�X/m

f(p)F (pm)
∣∣∣∣
2

=
∑

Y �p,p′<min(ei,Z)

f(p)f(p′)
∑

m∼e−iX,
m�min(X/p,X/p′),

(m,pp′)=1

F (pm)F (p′m)
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�
∑

Y �p,p′<min(ei,Z)

∣∣∣∣∣
∑

m∼e−iX,
m�min(X/p,X/p′),

(m,pp′)=1

F (pm)F (p′m)

∣∣∣∣∣. (2.6)

Since (a + b)1/2 � a1/2 + b1/2 for a, b > 0, we have, comparing with (2.5),

Σ′ � XEtriv +
X1/2

log u

(log X)/2∑
i=log Y

e−i/2

( ∑
Y �p�min(ei,Z)

∑
m∼e−iX,
m�X/p,
(m,p)=1

|F (pm)|2
)1/2

+
X1/2

log u

(log X)/2∑
i=log Y

e−i/2

( ∑
Y �p<p′<min(ei,Z)

∣∣∣∣∣
∑

m∼e−iX,
m�min(X/p,X/p′),

(m,pp′)=1

F (pm)F (p′m)

∣∣∣∣∣
)1/2

= XEtriv + E1 + E2,

say.
Let us first estimate E1. Rather crudely,

∑
Y �p�min(ei,Z)

∑
m∼e−iX,
m�X/p,
(m,p)=1

|F (pm)|2 � X‖F‖2
∞,

and so

E1 � X‖F‖∞
log u

(log X)/2∑
i=log Y

e−i/2 � X

Y 1/2 ‖F‖∞ = XEtriv.

(We simply ignored the log u in the denominator, which will be very small compared
to Y 1/2 in applications.)

Next we bound E2. For the portion of the sum with i > log(Y Z) we use the
trivial bound

X1/2

log u

∑
i : ei>Y Z

e−i/2(Z2(e−iX‖F‖2
∞)1/2) � X‖F‖∞

Y log u
.

This is bounded by XEtriv.
Recalling the definition of Ebilinear, for ei < Y Z we have

∑
Y �p<p′<min(ei,Z)

∣∣∣∣∣
∑

m∼e−iX,
m�min(X/p,X/p′),

(m,pp′)=1

F (pm)F (p′m)

∣∣∣∣∣

� E2
bilineare

−iX#{Y < p < p′ < min(ei, Z)}
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�

⎧⎪⎪⎨
⎪⎪⎩

E2
bilinear

eiX

i2
if i � log Z,

E2
bilineare

−iX

(
Z

log Z

)2

otherwise.

It follows that the remaining portion of E2 (that is, the sum over i < log(Y Z)) is
bounded by Ebilinear times

X

log u

log Z∑
i=log Y

1
i

+
XZ

log u log Z

log(Y Z)∑
i=log Z

e−i � X.

Here, we noted that

log Z∑
i=log Y

1
i

= log
(

log Z

log Y

)
+ O(1) = log u + O(1).

Putting all this together concludes the proof.

3. Proof of the main theorem

We will prove the following statement, which implies the main theorem in a very
straightforward manner.

Proposition 3.1. Suppose that X1/3 < Q < X1/2+1/78−σ. Let −10Q < a < 10Q
and let F : N → C be any function of the form

F (n) =

⎧⎪⎨
⎪⎩

∑
Q�q<2Q

ξq

(
1n≡a (mod q) − 1

q

)
, n �= a,

0, n = a,

if n �= a, and F (a) = 0, where (ξq)Q�q<2Q is a sequence of complex numbers
satisfying |ξq| � 1 for all q and ξq = 0 unless q is prime. Let f : N → C be a
multiplicative function with |f(n)| � 1 for all n. Let ε > 0. Then

En�Xf(n)F (n) � ε

Q

∑
Q�q<2Q

|ξq| + X−σε/20.

Let us see how our main theorem, theorem 1.1, follows from this. The remainder
of the paper will then be devoted to the proof of proposition 3.1.

Deduction of theorem 1.1. Suppose that there is a set S ⊂ [Q, 2Q] of primes such
that

|Ex�X,x≡a (mod q)f(x) − Ex�Xf(x)| � ε

for all q ∈ S. For q ∈ S, choose unit-modulus complex numbers ξq such that

ξq(Ex�X, x≡a (mod q)f(x) − Ex�Xf(x)) � ε.
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For q /∈ S, set ξq = 0. Then, taking F (n) as in the statement of proposition 3.1
(with this choice of ξq) we have

En�Xf(n)F (n) � ε

2

∑
q∈S

1
q

� ε

4
#S

Q
. (3.1)

Here, we used the fact that q/X is much smaller than ε; we may certainly assume
this since proposition 3.1 has no content when ε < 1/ log X.

However, proposition 3.1 provides the upper bound

En�Xf(n)F (n) � ε′

Q
#S + X−σε′/20.

Taking ε′ = cε for a suitably small constant c, it follows that

X−σε′/20 � ε

Q
#S.

This concludes the deduction of proposition 3.1 from theorem 1.1.

Proof of proposition 3.1. We apply proposition 2.2, taking Y = Xεσ/4 and Z =
Xσ/4.

Estimation of Etriv. Note that ‖F‖∞ � 2 since all the primes q are greater than
X1/3, and so if n ≡ a (mod q) for at least three different q, then n = a. Thus the
contribution of Etriv is less than a constant times Y −1/2 = X−εσ/8, which is one of
the terms in the statement of proposition 3.1.

Estimation of Esieve. We use the fact that

#
{

n � X : n ≡ a (mod q),
(

n,
∏

Y �p<Z

p

)
= 1

}
� X

q

∏
Y �p<Z

(
1 − 1

p

)

� log Y

log Z

X

q
, (3.2)

uniformly for 1 < Y < Z < X1/10, for q < X3/4 and for all a. Such an estimate is
a consequence of the fundamental lemma of the combinatorial sieve.

By the triangle inequality,

XEsieve =
∑
n�X

|F (n)|1(n,
∏

Y �p<Z p)=1

�
∑

Q�q<2Q

|ξq|#
{

n � X : n ≡ a (mod q),
(

n,
∏

Y �p<Z

p

)
= 1

}

+
∑

Q�q<2Q

|ξq|
q

#
{

n � X :
(

n,
∏

Y �p<Z

p

)
= 1

}
.

By (3.2), this is bounded by

X log Y

log Z

∑
Q�q<2Q

|ξq|
q

.
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With our choice of Y , Z, it follows that

Esieve � ε

Q

∑
Q�q<2Q

|ξq|.

The right-hand side is one of the terms in the statement of proposition 3.1.

Estimation of Ebilinear. This is the heart of the matter. It is enough to show that

∑
m∈I,

(m,pp′)=1

F (pm)F (p′m) � LX−εσ/10 (3.3)

whenever I is a subinterval of [0, L], whenever p �= p′ are distinct primes with
Y � p < p′ < Z, and for all L with X1−σ/2 � L � X (in the notation of
proposition 2.2, L = e−iX, and we actually need the estimate for L � X/Y Z;
however, Y � Z = Xσ/4).

It is convenient to remove the condition (m, pp′) = 1. The contribution to the
left-hand side of (3.3) from m not satisfying this condition is O(L/Y ), which is
certainly acceptable.

For the remaining sum we will in fact show the stronger estimate

∑
m

1J

(
m

L

)
F (pm)F (p′m) � LX−σ/10, (3.4)

where J ⊂ [0, 1] is a subinterval of R.
The next step, completely routine in considerations of this type, is to replace the

cutoff 1J by a smooth variant. Set

W (x) =
∫

1J(y)Xσ/10Ψ(Xσ/10(x − y)) dy,

where Ψ ∈ C∞
0 (R) has Ψ � 0, Supp(Ψ) ⊂ [−1, 1],

∫
Ψ = 1. Then W = 1J outside a

union of two intervals of measure O(X−σ/10), and so it suffices to show that

∑
m

W

(
m

L

)
F (pm)F (p′m) � LX−σ/10. (3.5)

Let A � 2 be an integer. Noting that

‖W (A)‖∞ � XAσ/10‖Ψ (A)‖1 �A XAσ/10

and that W is constant outside of the union of two intervals of measure O(X−σ/10),
we have the derivative bound ‖W (A)‖1 � X(A−1)σ/10. Therefore, by partial inte-
gration we have the Fourier bound

|Ŵ (ξ)| �A |ξ|−A‖W (A)‖1 �A |ξ|−AX(A−1)σ/10. (3.6)
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To proceed further towards (3.5) we expand out the definition of F , reducing the
task to proving that

∑
m

W

(
m

L

) ∑
Q�q,q′�2Q

ξqξq′

(
1pm≡a (mod q) − 1

q

)(
1p′m≡a (mod q′) − 1

q′

)

� LX−σ/10

for any choice of ξq, |ξq| � 1, ξq = 0 unless q is prime. Using the identity (a−a′)(b−
b′) = −(ab − a′b′) + a(b − b′) + b(a − a′) this may be further split into the following
subtasks: ∑

q′

ξq′

q′

∑
m

W

(
m

L

) ∑
q

ξq

(
1pm≡a (mod q) − 1

q

)
� LX−σ/10, (3.7)

∑
q

ξq

q

∑
m

W

(
m

L

) ∑
q′

ξq′

(
1p′m≡a (mod q′) − 1

q′

)
� LX−σ/10 (3.8)

and∑
q,q′

∑
m

W

(
m

L

)
ξqξq′

(
1pm≡a (mod q)1p′m≡a (mod q′) − 1

qq′

)
� LX−σ/10. (3.9)

Of these, (3.7) and (3.8) are equivalent and so we need only prove one of them, say
(3.7); since

∑
q′ ξq′/q′ = O(1), it is enough to prove that

∑
q

∣∣∣∣ ∑
m

W

(
m

L

)(
1pm≡a (mod q) − 1

q

)∣∣∣∣ � LX−σ/10. (3.10)

Thus (3.9) and (3.10) are our remaining tasks. The first step in establishing both
of them is an application of the Poisson summation formula. In the case of (3.10),
this is essentially also the last step. By contrast, (3.9) lies deeper.

The Poisson summation formula
∑

n∈Z
φ(n) =

∑
h∈Z

φ̂(2πh) applied with φ(x) =
W ((dx + b)/L) gives

∑
m

W

(
m

L

)(
1m≡b (mod d) − 1

d

)
=

L

d

∑
h�=0

Ŵ

(
2πLh

d

)
e

(
bh

d

)
. (3.11)

To prove (3.10), we can proceed with rather crude bounds: using (3.6) with A = 2
we have ∑

q

∣∣∣∣ ∑
m

W

(
m

L

)(
1pm≡a (mod q) − 1

q

)∣∣∣∣ �
∑

q

L

q

∑
h�=0

∣∣∣∣Ŵ
(

2πLh

q

)∣∣∣∣
�

∑
q

L

q

∑
h�=0

Xκ

∣∣∣∣Lh

q

∣∣∣∣
−2

� Q2Xσ/10L−1

� LX−σ/10
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provided that Q < X1−σ. This establishes (3.10). Turning to (3.9), a similarly
blunt approach would lead only to a corresponding bound under the much stronger
condition Q2 � X1−O(σ), which excludes any possibility of working with Q > X1/2.
To access this range we must exploit cancellation coming from the phases e(bh/d)
in (3.11).

Let us turn to the details (of bounding (3.9)). Let us first make the trivial obser-
vation that the contribution from q = q′ is negligible. For the remaining pairs q �= q′,
the Chinese remainder theorem of course tells us that there is a unique residue class
r(q, q′) ∈ Z/qq′

Z such that pr(q, q′) ≡ a (mod q), p′r(q, q′) ≡ a (mod q′). The task
is then to show that∑

q �=q′

ξqξq′

∑
m

W

(
m

L

)(
1m≡r(q,q′) (mod qq′) − 1

qq′

)
� LX−σ/10. (3.12)

By Poisson summation, this follows from

∑
h�=0

∑
q �=q′

ξqξq′

qq′ Ŵ

(
2πLh

qq′

)
e

(
r(q, q′)h

qq′

)
� X−σ/10.

We bound the contribution from ‘large’ h trivially using (3.6):

∑
|h|>H

∑
q �=q′

ξqξq′

qq′ Ŵ

(
2πLh

qq′

)
e

(
r(q, q′)h

qq′

)
�

∑
|h|>H

∑
q �=q′

1
qq′

∣∣∣∣Ŵ
(

2πLh

qq′

)∣∣∣∣
�

∑
q �=q′

1
qq′ X

(A−1)κ
∑

|h|>H

∣∣∣∣Lh

qq′

∣∣∣∣
−A

� X(A−1)σ/10Q2AL−AH1−A.

If Q = X1/2+η, then one may compute that, with the choice A = 
100/σ� and
H = X2η+2σ/5, this contribution is bounded by LX−σ/10 as required. It is thus
enough to show that

∑
q �=q′

ξqξq′

qq′ Ŵ

(
2πLh

qq′

)
e

(
r(q, q′)h

qq′

)
� X−2η−σ/2 (3.13)

uniformly in 0 < h � H. (The reader should have in mind that H ∼ X2η = Q2/X,
for some rough sense of the symbol ∼. Note that there is nothing to prove if η < 0.)

We now use a devious separation of variables trick from [9, p. 267]. By a change
of variables in the definition of the Fourier transform Ŵ , we have

Ŵ

(
2πLh

qq′

)
= q

∫
|u|�10/q

W (qu)e
(

−Luh

q′

)
du,

and so the left-hand side of (3.13) is equal to

Q

∫
|u|�10/q

du

(
1

Q2

∑
Q�q<2Q,

q �=q′

αu(q)βu,h(q′)e
(

r(q, q′)h
qq′

))
, (3.14)
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where
αu(q) = ξqW (qu)

and

βu,h(q′) :=
Qξq′

q′ e

(
−Luh

q′

)
.

The scalars αu(q), βu,h(q′) are essentially arbitrary bounded functions of q, q′.
Thus, we do indeed choose to forget their precise form, thereby reducing matters
to establishing the bilinear form estimate∑

Q�q<2Q,
q �=q′

α(q)β(q′)eqq′(−r(q, q′)h) � X−2η−σ/2 (3.15)

for all choices of α(q), β(q′) with |α(q)| � 1, |β(q′)| � 1, and uniformly for h < H =
X2η+2σ/5. Here, and below, we have written em(x) as a shorthand for e(x/m) =
e2πix/m.

To proceed further we must be more explicit about r(q, q′), which, recall, is the
solution to the simultaneous congruences

pr(q, q′) ≡ a (mod q),
p′r(q, q′) ≡ a (mod q′).

Note that
r(q, q′) = a(pq′)−1 (mod q) q′ + a(p′q)−1 (mod q′) q,

and so

eqq′(hr(q, q′)) = eq(ah(pq′)−1 (mod q)) eq′(ah(p′q)−1 (mod q′))

= ep′q(ahp′(pq′)−1 (mod q)) epq′(ahp(p′q)−1 (mod q′)). (3.16)

Now we note the ‘reciprocity relation’

v−1 (mod u)
u

+
u−1 (mod v)

v
≡ 1

uv
(mod 1),

which means that

eu(v−1 (mod u)) = ev(−u−1 (mod v))e2πi/uv.

Applying with u = pq′ and v = p′q gives

epq′(ahp(p′q)−1 (mod pq′)) = ep′q(−ahp(pq′)−1 (mod p′q))
(

1 + O

(
|ah|
Q2

))
,

and so from (3.16)

eqq′(−hr(q, q′)) = ep′q(ah(p − p′)(pq′)−1 (mod p′q))
(

1 + O

(
|ah|
Q2

))
.

Since |a| � Q, |h| ≪ X1/6, the error term is negligible for the purposes of estab-
lishing (3.15). Therefore, we see that it is now enough to establish that∑

q �=q′

α(q)β(q′)ep′q(ah(p − p′)(pq′)−1 (mod p′q)) � X−2η−σ/2. (3.17)
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Writing m = pq′, n = p′q, b = ah(p′ − p), α̃(m) = α(m/p) when m/p is a prime
in [Q, 2Q] and 0 otherwise, β̃(n) = β(n/p′) when n/p′ is a prime in [Q, 2Q] and 0
otherwise, this takes the form

Σ :=
∑

pQ�m<2pQ,
p′Q�n<2p′Q

α̃(m)β̃(n)en(bm−1 (mod n)).

Non-trivial bounds for bilinear forms of this type were given by Duke et al . [7].
A much more recent paper by Bettin and Chandee [2] gives a somewhat superior
bound (albeit using a similar method). Their bound (see [2, theorem 1], with their
notation A = 1, θ = b, M = pQ, N = p′Q), recalling that p, p′ � Z, gives the
bound

Σ � Q2−1/20+o(1)Z.

It can be checked that this is indeed bounded by X−2η−σ/2 (as required by (3.15))
provided that η � 1

78 − σ.

4. On allowing the residue class to vary

Suppose that Q > CX1/2. Our results required a fixed residue class a (mod q). If
the residue class is allowed to depend on q, the problem appears to be vastly more
difficult. Let us imagine taking a similar approach. Then, even in the case in which
ξq = 1 for q prime in proposition 3.1, one would be led to bilinear forms of the type

∑
Q�q,q′<2Q

∑
m�X

(
1pm≡a(q) (mod q)1p′m≡a(q′) (mod q′) − 1

qq′

)
, (4.1)

and one would be seeking a bound of o(X). Now suppose that a(q) = p for q ∈ S,
and that a(q′) = p′ for q′ ∈ S′, where S, S′ are disjoint sets, each consisting of half
the primes in [Q, 2Q]. Then one may check that (4.1) is greater than a constant times
Q2, the point being that if q ∈ S and q′ ∈ S′, then the unique solution (mod qq′)
to pm ≡ a(q) (mod q) and p′m ≡ a(q′) (mod q′) is m = 1, which automatically lies
in {1, . . . , X}.

Thus, to make progress, even in the special case ξq = 1, one would need a different
mode of argument exploiting some averaging in p, p′, perhaps.

The following, say for Q = X1/2+δ for very small δ, is an easier problem to which
we do not know the solution. Suppose that for each prime q ∈ [Q, 2Q] we take a
residue class a(q) (mod q). Let A be the union of all these residue classes, intersected
with {1, . . . , X}. Is #A � X1−o(1)? This is somewhat reminiscent of the Kakeya
problem in Euclidean harmonic analysis and indeed implies it as δ → 1

2 .
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