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Two-dimensional scattering of a Gaussian
beam by a homogeneous gyrotropic circular
cylinder
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Two-dimensional scattering of a Gaussian beam by a homogeneous gyrotropic circular cylinder is presented. The incident
Gaussian beam source is expanded as an approximate expression with Taylor’s series. The transmitted field in the homoge-
neous gyrotropic cylinder is expressed in terms of the series of wave functions based on the integral equation. The unknown
coefficients of the scattered fields are obtained with the aid of the boundary conditions of continuous tangential electric and
magnetic fields. Some numerical results are presented and discussed. The result is in agreement with that available as expected
when the Gaussian beam degenerates to a plane wave incidence case.
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I . I N T R O D U C T I O N

Gyrotropic media whose electric permittivity and magnetic
permeability are tensors have peculiar optical and electromag-
netic properties. They are distributed widely in the natural
world such as the ionosphere. They have also been used as
microwave devices such as circulators, isolators, resonators,
and optical devices such as modulators, switches, phase shif-
ters, etc. Therefore, it is necessary to study extensively wave
propagation in a gyrotropic medium.

A large number of publications have been devoted to
studying the characterizing interactions of electromagnetic
waves in general gyrotropic materials in the past 20 years.
Many analytical and numerical methods (e.g. the finite-
difference time-domain (FDTD) method [1], the eigenfunc-
tion theory [2, 3], the Dyadic Green’s function [4], the
moment method (MM), etc.) have been applied. Several solu-
tions have been reported on the two-dimensional scattering by
gyrotropic spheres and circular cylinders. Electromagnetic
scattering by a multilayer circular gyrotropic bianisotropic
cylinder has been discussed in [3, 5]. Electromagnetic fields
in general gyrotropic media have been solved by using the
method of separation of variables in [6]. Okamoto has pro-
posed a method based on the extended integral equation
and showed the scattering properties of a circular ferrite cylin-
der and an elliptic ferrite cylinder [7, 8]. Geng has treated elec-
tromagnetic scattering by an inhomogeneous plasma
anisotropic sphere and spherical shell [9, 10].

However, these papers are only concerned with plane wave
incidence. For some practical electromagnetic scattering pro-
blems, a Gaussian beam or a spherical wave is more realistic
instead of a plane wave. The problem of scattering of a
Gaussian beam by a homogeneous gyrotropic circular cylinder
has been treated in this paper. A Gaussian beam approximate
expression [11, 12] is introduced to describe the accurate pre-
diction of scattering behaviors, while the plane wave scattering
is only its special case. In the expressions for the electromag-
netic fields, the time dependence exp ( jvt) is omitted
throughout.

I I . F O R M U L A T I O N

As can be seen from Fig. 1, a cross-section of an infinitely long
gyrotropic cylinder is shown. Two rectangular coordinate
systems and one cylindrical coordinate system are defined.
The z-axis, which is common to three coordinate systems, is
not plotted. A Gaussian beam source, which is located at
(x1 ¼ 2r0, y1 ¼ 0) is incident on the circular cylinder,
making an angle u0 clockwise with respect to the negative
x-axis.

Consider a homogeneous gyrotropic cylinder characterized
by the following permittivity and permeability tensors:
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A) Transmitted wave
Only the case of transverse-electric (TE) polarization is con-
sidered and the similar formulation of transverse-magnetic
(TM) polarization can be obtained by adopting the similar
method.

Referring to the Maxwell’s equations, the differential equa-
tion for H-polarization inside a homogeneous gyrotropic
cylinder (designated by the superscript c) is found to be

1xx
∂2Hc

z

∂x2
+ ∂2Hc

z

∂y2

( )
+ v2mzz(12

xx − 12
xy)Hc

z = 0. (2)

The magnetic field Hc
z can be written as follows [13]:

Hc
z(x, y) =

∫
Ca

daf (a,b(a))e j(ax+b(a)y), (3)

where f(a, b(a)) is the angular spectrum amplitude, a and
b(a) denote the coefficients to be determined. Substitute
equation (3) into (2), and equation (2) can be written as
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If we set a ¼ k1cos j, b ¼ k1sin j, we have
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√
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For x ¼ rcosu, y ¼ r sinu, equation (3) can be expressed as

Hc
z(r, u) =

∫
Cj

djH(j)e jk1r cos(u−j), (6)

using the series expansion of plane wave [14]

ejk1r cos(u−j) =
∑1

n=−1

j−nJ(k1r)e jn(u−j), (7)

and expanding H(j) in terms of the complete series expansion

as follows:

H(j) =
∑1

m=−1

Cme jmj. (8)

Thus, the magnetic field in the circular cylinder region can
be expressed as

Hc
z(r, u) =
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CmHnm(r), (9)

where

Hnm(r) = Jn(k1r)
∫2p

0
ej(m−n)jdj, (10)

where Cm are unknown coefficients, Jn(k1r) is the Bessel func-
tion of the first kind and order n.

B) Incident and scattered waves
The z-component of the magnetic field of the incident
Gaussian beam source (designated by the superscript inc) is
expressed as

Hinc
z (x1 = −r0, y1) = e−b2y2

1 , (11)

where

b2 = a2
0 + jb2

0, (12)

where 1/|b| corresponds to the beamwidth of the incident
wave.

The incident field from the source can be approximately
expanded as [11]
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k is the free-space wavenumber. This expression is valid for
|(bl)2| ,0.3 and (a/l) ,5.0, where a is the radius of the
cylinder.

The scattered magnetic field (designated by the superscript s)
in the free space region is expressed as

Hs
z(r, u) =

∑1
n=−1

Bnj−nH(2)
n (kr)ejnu, (15)

Fig. 1. Geometry of the problem.
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where Bn are unknown coefficients and H(2)
n is the Hankel func-

tion of the second.

C) Boundary conditions
The tangential components of the electric and magnetic fields
are continuous on the surface of the gyrotropic circular cylin-
der. Assume that the surface is represented by r ¼ a, and thus
the boundary conditions on the gyrotropic-free space inter-
face are given by

Hc
z = Hinc

z + Hs
z, r = a, (16)

Ec
u = Einc

u + Es
u, r = a. (17)

The tangential component of the electric field on the inner
side of the interface of gyrotropic-free space can be expressed
as
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where g = 12
xx − 12

xy, which can be simplified to
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while the tangential component of the electric field on the
outer side of the interface of gyrotropic-free space can be

written as
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Applying the boundary conditions (16) and (17), two equa-
tions can be obtained as
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In order to obtain numerical results, the infinite series
needs to be truncated under the prerequisite of achieving
the solution convergence. The unknown coefficients can be
obtained from these equations finally, and the electromagnetic
field can be calculated, while the radar cross-section (RCS) per
unit length can be written as:

s

l
(u, uinc) = 2
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Fig. 2. H polarization, uinc ¼ 1808, ka ¼ p/2, 1xx ¼ 4.010, 1xy ¼22j10, mzz ¼

2m0.
Fig. 3. H polarization, bistatic radar cross-sections d/l dB, uinc ¼ 1808, ka ¼
2p, 1xx ¼ 210, 1xy ¼ 0, mzz ¼ 2m0, a0l ¼ 0.3, b0l ¼ 0.4, N ¼ 28.
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I I I . N U M E R I C A L R E S U L T S

To check the validity and accuracy of the proposed method
and the Fortran associated code, the plane wave incidence
case is considered. Figure 2 shows the angular distributions
of the normalized RCS per unit length for the plane wave
case. For the sake of comparison, the results of Monzon and
Damaskos [13] and those of the FDTD method (the frequency
of the incident wave is 1 GHz) are also shown in Fig. 2. For the
plane wave incidence case, both a0 and b0 are set to be zero,
while (r0/l) ¼ 3.0, ka ¼ p/2, uinc ¼ 1808. The elements in
the permittivity tensor and the permeability tensor are:
1xx ¼ 4.010, 1xy ¼ 22j10, mzz ¼ 2m0. The results come into
agreement with those comparison results for the plane wave
incidence case.

Figure 3 illustrates an example with x and y principal axes
for both Gaussian beam and plane wave incidence cases, with
uinc ¼ 1808, ka ¼ 2p, 1xx ¼ 210, 1xy ¼ 0, mzz ¼ 2m0, and
a0l ¼ 0.3, b0l ¼ 0.4 for the Gaussian beam. As one can see
from this figure, the RCS is symmetrical around u ¼ 1808
due to the symmetry of the cylinder around this angle.
Figure 4 shows more general cases, with uinc ¼ 1808, ka ¼
2p, 1xx ¼ 310, 1xy ¼ 21.5j10, mzz ¼ 2m0, and a0l ¼ 0.3,
b0l ¼ 0.4 for the Gaussian beam. The RCS is unsymmetrical
in all the three cases because of the appearance of the param-
eter, 1xy. Unlike the uniform distribution property of plane
wave, the scattering behavior of Gaussian beam is closely
related to its beam optical source. The Gaussian beam back-
ward scattering width is lower than the plane wave one.
Because of the complexity of Gaussian beam scattering beha-
viors, many available EM commercial tools cannot give the
numerical results directly for the Gaussian beam case. The
comparison between the proposed method and those numer-
ical solvers is left for a future discussion.

I V . C O N C L U S I O N

A solution to a Gaussian beam scattering properties from a
homogeneous gyrotropic circular cylinder was presented.
The solution was given for the TE case, and the TM case
could be obtained via duality. The validity and accuracy of
the numerical results were examined by making use of

limiting cases such as the plane wave case. Several numerical
results were given and discussed, which were of useful
values for the development of approximate and numerical
techniques as well as antennas and radar applications. The
applications of the present formulation can be extended to
include layered or elliptic cylinder structures [15] involving
the gyrotropic medium.
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