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THE DOMINATING COLOUR OF
AN INFINITE PÓLYA URN MODEL

ERIK THÖRNBLAD,∗ Uppsala University

Abstract

We study a Pólya-type urn model defined as follows. Start at time 0 with a single ball
of some colour. Then, at each time n ≥ 1, choose a ball from the urn uniformly at
random. With probability 1

2 < p < 1, return the ball to the urn along with another ball
of the same colour. With probability 1 − p, recolour the ball to a new colour and then
return it to the urn. This is equivalent to the supercritical case of a random graph model
studied by Backhausz and Móri (2015), (2016) and Thörnblad (2015). We prove that,
with probability 1, there is a dominating colour, in the sense that, after some random but
finite time, there is a colour that always has the most number of balls. A crucial part of
the proof is the analysis of an urn model with two colours, in which the observed ball
is returned to the urn along with another ball of the same colour with probability p, and
removed with probability 1 − p. Our results here generalise a classical result about the
Pólya urn model (which corresponds to p = 1).
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1. Introduction

We study an urn model described as follows. At time 0, start with a single ball of some
colour. At each time step n ≥ 1, choose a ball uniformly at random.

1. With probability p, return the ball to the urn along with another ball of the same colour.

2. With probability 1 − p, recolour the ball with a new colour and then return it to the urn.

In this paper we will typically consider the p > 1
2 case, although the definition or the urn model

makes sense for any 0 ≤ p ≤ 1. This urn model has a (countably) infinite number of colours.
It also allows for the extinction of colours. If the last ball of a certain colour is recoloured, then
this colour will never appear again in the urn. It is equivalent to the following random graph
model studied in [4], [5], and [17]. Let G0 be the graph with a single isolated vertex. Create Gn

from Gn−1 by performing one of the following steps.

1. With probability p, perform a duplication step. Select a clique in Gn−1 with probability
proportional to size, and introduce a new vertex to that clique.

2. With probability 1 −p, perform a deletion step. Select a clique in Gn−1 with probability
proportional to size and delete a vertex from the chosen clique. Then introduce a new
clique with a single vertex.
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The dominating colour of an infinite Pólya urn model 915

The equivalence of these models will become clear once we identify each clique with a colour
in the urn.

Let us mention a few known results about the urn model, coming from [4], [5], and [17].
These results were originally proved in the random graph version, but transfer immediately to
the urn version. The degree distribution is known to exhibit a phase transition from exponential
decay to power-law in the three regimes 0 < p < 1

2 , p = 1
2 , and 1

2 < p < 1, referred
to as the subcritical, critical, and supercritical case, respectively. Knowledge of the degree
distribution of the random graph model translates to knowing the almost sure limits of the
quantities Uj,n/Nn, where Uj,n is the number of colours at time n with j balls, and Nn is the
number of balls at time n. This was carried out for p = 1

2 in [4] and for the remaining cases
in [17]. Both exact and asymptotic results were found. Later Backhausz and Móri [5] revisited
the model and determined bounds on the logarithmic growth rate of the maximal clique size of
the graph, i.e. the number of balls of the leading colour. In particular, in the supercritical case
p > 1

2 they found that

p

β
≤ lim inf

n→∞
log Mn

log Nn

≤ lim sup
n→∞

log Mn

log Nn

≤ 1

β
, (1)

where β = p/(2p − 1), Mn is the size of the leading colour at time n, and Nn is the number
of balls in the urn at time n. As we shall see later, this result can be strengthened to show that
Mn ∼ μN

1/β
n for some random variable μ > 0, implying that the upper bound in (1) is the

correct one. This was indeed the correct growth rate conjectured in [5]. We remark that this
result was originally put in terms of the maximal degree, which is equal to one less than the
maximal clique size, which by the identification is equal to the number of balls of the leading
colour.

Similar studies have been carried out for population models. Champagnat and Lambert [6]
studied a population model in which individuals were given independent and identically dis-
tributed lifetime distributions and gave birth at constant rate. Furthermore, individuals then
mutate at constant rate and change allelic type. If the lifetime distribution has a unit point mass
at ∞, births are at rate p, and mutations at rate 1 − p, then this corresponds to a continuous-
time version of our model, where colours correspond to the alleles. Champagnat and Lambert
achieved a number of convergence results, in all three regimes, about the oldest and most
abundant families, mainly in expectation and distribution. By contrast, we shall derive almost
sure results, but only in the supercritical regime.

One of our main results is that, provided p > 1
2 , then, with probability 1, there is some

colour that after some random but finite time becomes dominant, i.e. remains the colour with
the most number of balls forever. A similar problem was studied by Khanin and Khanin [13].
They considered an urn model with k colours, with a parameter r > 0. Balls are added
sequentially, and the probability of adding a ball of colour 1 is proportional to xr , where x

is the number of balls of colour 1, etc. They show that for r > 1
2 one of the colours will be

eventually dominant almost surely, but for r ≤ 1
2 the colours change leadership infinitely many

times. Indeed, for r > 1, all but finitely many of the new balls are of the same colour, creating a
monopoly of one of the colours. Similar results were achieved by Chung et al. [7] for an infinite
urn model. This model works as follows (slightly rephrased to allow for more direct comparison
to our model). With probability p, add a ball, the colour of which is chosen like in the Khanin–
Khanin model. With probability 1 − p, add a ball of a new colour. The difference to our urn
model is that colours can never lose balls in the Chung–Handjani–Jungreis model. Also, the
number of balls in the Chung–Handjani–Jungreis model grows deterministically, which makes
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analysis slightly easier. Although these models appear similar, qualitatively they behave rather
differently. For r = 1 it is found that the number of colours of size k in the Chung–Handjani–
Jungreis model decays like a power-law for all 0 < p < 1. This should be contrasted with our
model, where there is a phase transition from exponential decay to power-law at p = 1

2 .
In the random graph interpretation of our model, the notion of a dominant colour should

be seen as a variation of the notion of a persistent hub, a concept considered by Dereich and
Mörters [8] and Galashin [9]. The latter considered the classical preferential attachment model
and a variation thereof and showed that, almost surely, there is a vertex that after some random
but finite time (and always thereafter) is the vertex of maximal degree in the graph. This vertex
is called the persistent hub. As remarked in [5], our random graph model does not have a
persistent hub on the level of vertices, since all vertices will be selected for deletion infinitely
often, thus pushing their degree down to 0. However, by using the correspondence between
vertices in a clique and balls of a certain colour, we will see that there is a clique that almost
surely is the largest one, i.e. a persistent clique-hub.

The rest of this paper is outlined as follows. We will typically embed the discrete urn model
in a corresponding continuous-time model. First we use the contraction method to determine
the growth rate of a fixed colour. Then, to show that there is an eventually dominating colour,
we follow the approach taken by Galashin [9]. His methods extrapolate to our setting without
any significant changes. We start by observing the joint behaviour of two fixed colours and
determine exactly the asymptotic distribution of the quantity Bn/(Wn +Bn), where Bn and Wn

are the number of balls of the two colours at time n, respectively. From this distribution we
deduce that two colours can change relative leadership at most finitely many times. Furthermore,
we can determine exactly the probability that one of the colours ever overtakes the other, which
allows us to bound the probability that a colour with only one ball (a new colour) will overtake
a colour with many balls (the leading colour). This probability will turn out to be sufficiently
small, in the sense that we can apply the Borel–Cantelli lemma to show that colours with few
balls overtake the currently leading colour only a finite number of times, with probability 1.
This, along with the fact that two fixed colours overtake each other at most a finite number of
times, implies the existence of a dominating colour. This dominating colour must grow like
some fixed colour, so we are able to determine the asymptotic growth rate of the largest colour
of the urn.

In line with [5] and [17], let us introduce the notation β = p/(2p − 1) and γ = (1 − p)/p.
We use the notation an

a.s.∼bn (‘a.s.’ means almost surely) for (possibly random) sequences
(an)

∞
n=1 and (bn)

∞
n=1 to mean limn→∞ an/bn

a.s.=1 and X ∼ F to denote that the random
variable X has distribution F .

2. Results

Inspired by Athreya’s embedding scheme, see [3, Section V.9], we shall embed the discrete
urn scheme in a continuous-time urn scheme. The continuous urn scheme is defined as follows.
Each ball in the urn has two exponential clocks, one ringing at rate 1

2 < p < 1 and the other at
rate 1 − p. If the first clock rings, add to the urn another ball of the same colour. If the second
clock rings, remove the ball from the urn and add a ball of a new colour. It is easy to see that
the discrete process has the same transition probabilities as the continuous process. Moreover,
whenever a new colour is created, it behaves like a birth–death process with birth rate p and
death rate 1 − p. We characterise the growth rate of such a birth–death process in the next
lemma.
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Lemma 1. Let (X(t))t≥0 be a continuous-time birth–death process with birth rates p and
death rates 1 − p. Then

X(t)

e(2p−1)t

a.s.−→ U,

where U is a random variable with distribution (1 − γ ) Exp(1/β) + γ δ0.

Note that δ0 denotes the distribution that places unit mass at 0. The quantity γ is the
extinction probability (which can be found in many different ways). After some work, one can
show that this follows from the results in [3, Section III.5]. We instead use the contraction
method, which exploits the recursive structure of the process. We sketch the argument here,
and refer the reader to [15] and [16] for further details and references.

Proof. Let τ be the first event time in the process X(t). With probability p, this event is
a birth, and with probability 1 − p, it is a death (which then forces X(t) = 0 for all t > τ ).
This leads to the distributional equality

X(t)
d= 1{τ≤t}Y (X′(t − τ) + X′′(t − τ)) + 1{τ>t},

where X(t), X′(t), and X′′(t) are identically distributed, Y ∼ Ber(p) and τ ∼ Exp(1), all
mutually independent. The indicator is denoted by 1. Normalising, we obtain

X(t)

e(2p−1)t

d= e−(2p−1)τ 1{τ≤t}Y
(

X′(t − τ)

e(2p−1)(t−τ)
+ X′′(t − τ)

e(2p−1)(t−τ)

)
+ 1

e(2p−1)t
1{τ>t}.

Note that 1{τ>t}
a.s.−→ 0 as t → ∞; similarly 1{τ≤t}

a.s.−→1 as t → ∞. It can be shown
that X(t)/e(2p−1)t is a nonnegative martingale, so by the martingale convergence theorem it
converges almost surely to some random variable U , which then must satisfy the distributional
equality

U
d= e−(2p−1)τ Y (U ′ + U ′′), (2)

where U , U ′, and U ′′ are identically distributed, Y ∼ Ber(p) and τ ∼ Exp(1), all mutually
independent.

Consider the space M of distributions with finite second moment and first moment equal
to 1, equipped with the Wasserstein metric

d(λ1, λ2) = inf ‖Z1 − Z2‖2,

where the infimum is over all random variables Z1 and Z2 with Z1 ∼ λ1 and Z2 ∼ λ2

and ‖ · ‖2 denotes the L2-norm. Let T : M → M be the distributional operator T Z
d=

e−(2p−1)τ Y (Z′ + Z′′), with τ ∼ Exp(1), Y ∼ Ber(p), and Z′, Z′′ distributed like Z, all
mutually independent. Note, in particular, that T Z ∈ M for any Z ∈ M, so this operator is well
defined. It can be shown that (E[2e−2(2p−1)τ Y 2])1/2 = (2p/(4p − 1))1/2 < 1 is a contracting
factor in the Wasserstein metric for the operator T . By the Banach fixed point theorem, it
follows that (2) has a unique solution in M, see, e.g. [16, Theorem 2.2]. By computing the
first two moments, it can be shown that the distribution (1 − γ ) Exp(1/β) + γ δ0 lies in M.
Furthermore, the method of moments shows that this distribution satisfies (2), so this must
be the unique solution. It suffices now to show that the distribution of U lies in M, i.e. that
E[U ] = 1 and E[U2] < ∞. From [3, Section III.4–5], it follows that

var(X(t)) = e2(2p−1)t (1 − e−(2p−1)t )

2p − 1
,
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which implies that var(X(t)/e(2p−1)t ) ≤ 1/(2p − 1) for all t ≥ 0 and, in particular, that the
second moment of the limiting random variable U is finite. Therefore, the first moment of U is
also finite, and it follows that E[U ] = 1 since U is the limit of a uniformly integrable martingale
sequence with expectation 1. Therefore, the distribution of the limiting random variable must
be in M, so the contraction method shows that U ∼ (1 − γ ) Exp(1/β) + γ δ0. �

Using this we can relate the growth rate of a fixed colour to the growth rate of the entire urn.

Theorem 1. Let Xn be the size of a fixed colour at time n. Conditional on survival of this
colour, there exists a positive random variable ν such that

Xn
a.s.∼ νN

1/β
n .

Proof. We make use of the continuous-time embedding described earlier. For this purpose,
let X(t) be the number of balls of a fixed colour at time t in the corresponding continuous
model. Suppose that this colour was born at time t0. By Lemma 1, conditional on survival, we
have X(t)

a.s.∼e(2p−1)(t−t0)U , where U ∼ Exp(1/β). Denoting by N(t) the total number of balls
by time t , similarly one can show that N(t)

a.s.∼eptV , where V ∼ Exp(1). This was carried out
in [5]. Therefore, conditional on survival of the fixed colour, we have X(t) ∼ νN(t)(2p−1)/p

almost surely, where ν is a positive random variable (that depends on t0, U , and V ).
Now, let Tn be the nth birth or death of the process (X(t))t≥0. Observing the values

(X(Tn))
∞
n=1 gives us the discrete urn process, so it suffices to show that Tn

a.s.−→∞ as n → ∞.
This is well known if p = 1, see, e.g. [3, Section III], and is equivalent to showing that the
process does not explode in finite time. But we can couple our birth–death process X(t) for
1
2 < p < 1 to a pure birth process with p = 1, in such a way that it grows slower. Hence, it
also cannot explode in finite time, so Tn

a.s.−→∞ on the event of nonextinction. Recall now that
(2p − 1)/p = 1/β. Then Xn

a.s.∼νN
1/β
n . �

As mentioned, a colour survives with probability 1 − γ and goes extinct with probability γ ,
so this gives us the following corollary.

Corollary 1. Let Xn be the size of a fixed colour at time n. Then there exists a random variable
ν ≥ 0 such that P[ν = 0] = γ , P[ν > 0] = 1 − γ , and Xn

a.s.∼νN
1/β
n .

Let us now turn to the joint behaviour of two fixed colours. To do this, we consider the
projection of the entire urn onto two colours. That is, we study an urn model with balls of two
colours, black and white say. Initially, there are B0 = b black balls and W0 = w white balls.
Sequentially sample balls from the urn, uniformly at random. With probability 1

2 < p < 1,
return the ball to the urn with a ball of the same colour, and with probability 1 − p remove the
ball from the urn. To avoid degeneracies we stop the evolution of the urn if one of the colours
disappear from the urn. Conditional on Bn �= 0, Wn �= 0, the transition probabilities are given
by

(Bn+1, Wn+1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(Bn + 1, Wn) with probability p(Bn/(Bn + Wn))

(Bn, Wn + 1) with probability p(Wn/(Bn + Wn))

(Bn − 1, Wn) with probability (1 − p)(Bn/(Bn + Wn))

(Bn, Wn − 1) with probability (1 − p)(Wn/(Bn + Wn)).

See Figure 1 for a simulation of this model.
A similar urn model was studied in [10], where the urn came with an additional immigration

procedure to ensure that both colours survive. We mention Janson [11], who, to a large extent,
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Figure 1: Simulation of a single instance of the urn model with (b, w) = (2, 3) and p = 3
5 , with 300

drawings (left). Simulation of 30 trials with 20 000 each, and parameters (b, w) = (2, 3) andp = 3
4 (right).

In particular, note that diagonal crossing and absorption tends to happen early, if at all. The simulations
were carried out in MATLAB®.

solved the case of so-called tenable urn models. Our urn model does not fall into this category
(in particular, the condition of irreducibility is not satisfied, i.e. that any configuration of the urn
can be reached from any starting configuration). However, the process (Bn, Wn)

∞
n=0 can be seen

as a triangular urn scheme with random replacement matrix, allowing for nonnegative entries.
Triangular urn schemes with deterministic replacement matrix were considered by Janson [12],
the results of which were extended by Aguech [1] to random triangular replacement matrices.
The latter, however, imposed that the random variables be nonnegative to ensure the survival
of the urn. Our urn model does not have nonnegative entries; however, the condition p > 1

2
implies that the replacement distribution has positive expectation, so the colours (and the urn)
survive with positive probability.

We are interested in the joint behaviour of two colours, or, more precisely, the proportion

fb,w(n) = Bn

Wn + Bn

.

As mentioned, we stop whenever fb,w(n) = 0 or fb,w(n) = 1, so these are absorbing states
of the process (fb,w(n))∞n=0. Alternatively, instead of stopping the process here, we could
condition on being on the event of nonextinction, i.e. that not all balls disappear from the urn.
The probability of this event, which is positive, will appear implicitly later on.

We shall again use the continuous-time embedding to evaluate the evolution of the urn. That
is, we consider independent black and white birth–death processes (Bi(t))

b
i=1 and (Wi(t))

w
i=1

started at Bi(0) = Wi(0) = 1, with birth rates p and death rates 1 − p. It is again easy to show
that the discrete process (Bn, Wn)

∞
n=0has the same transition probabilities as the continuous

process (
∑b

i=1Bi(t),
∑w

i=1Wi(t))t≥0, so we will study the quantity

gb,w(t) =
∑b

i=1 Bi(t)∑b
i=1 Bi(t) + ∑w

i=1 Wi(t)

instead of its discrete analogue fb,w(n). Again, we stop the process if we ever reach gb,w(t) = 0
or gb,w(t) = 1. Since the processes are equivalent, we will be able to show that almost sure
convergence of gb,w(t) implies the almost sure convergence of fb,w(n) to the same limit.
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Proposition 1. The limit limt→∞ gb,w(t) exists almost surely, and its distribution is given by
the mixture

rb,wδ0 + r∗
b,wbeta(Gb, Hw) + rw,bδ1,

where

rb,w = γ b

(
1 − b

b + w
γ w

)
, rw,b = γ w

(
1 − w

b + w
γ b

)
, r∗

b,w = (1 − γ b)(1 − γ w),

and Gb, Hw are independent discrete random variables with probability mass functions

P[Gb = k] = 1

1 − γ b

(
b

k

)
(1 − γ )kγ b−k, k = 1, . . . , b,

P[Hw = k] = 1

1 − γ w

(
w

k

)
(1 − γ )kγ w−k, k = 1, . . . , w,

i.e. binomial random variables conditioned on not being 0.

Proof. Let τb = inf{t : ∑b
i=1Bi(t) = 0} and σw = inf{t : ∑w

i=1Wi(t) = 0} be the
extinction times of the two processes. The event that the white process dies out is {σw < ∞},
and similar for the black process. Note, in particular, that these events are independent.

On the event {τb < σw < ∞} ∪ {τb < σw = ∞}, we have gb,w(τb) = 0. The first
event occurs with probability (w/(w + b))γ b+w, since the probability that one of the w white
processes is the last one to die is w/(w + b) (conditional on all b + w processes dying) by
symmetry, and both processes die with probability γ b+w by independence. The second event
occurs with probability γ b(1 − γ w), and the sum of these probabilities is rb,w. By symmetry,
the probability of the event {σw < τb < ∞} ∪ {σw < τb = ∞} is rw,b.

It is clear that gb,w(τb) = 0 on {τb < σw < ∞} ∪ {τb < σw = ∞}. Since 0 is an
absorbing state, this gives a point mass at 0 with relative mass rb,w. Similarly, gb,w(σw) = 1
on {σw < τb < ∞} ∪ {σw < τb = ∞}, giving a point mass at 1 with relative mass rw,b.

The event that neither process dies out (so at least one white and at least one black process
survives) is the event {τb = ∞, σw = ∞}. By independence this has probability

P[τb = ∞, σw = ∞] = (1 − γ b)(1 − γ w) =: r∗
b,w.

Let Gb and Hw be as in the statement. On the event {τb = ∞, σw = ∞}, we have at least
one surviving process of each kind. Conditional on this, since each black process survives
with probability 1 − γ independently of the other, the number of surviving black processes
is distributed like Gb. Similarly, the number of surviving white processes on this event is
distributed like Hw. Recall the scaling limit in Lemma 1, which holds for each surviving
process separately. Therefore, on this event

gb,w(t) = e−(2p−1)t
∑Gb

i=1 Bki
(t)

e−(2p−1)t
∑Gb

i=1 Bki
(t) + e−(2p−1)t

∑Hw

i=1 Wki
(t)

a.s.−→ U

U + V
as t → ∞,

where U ∼ 	(Gb, 1/β) and V ∼ 	(Hw, 1/β). But then U/(U + V ) ∼ beta(Gb, Hw). �
Proposition 1 immediately transfers to the discrete-time urn model.

Theorem 2. With the same notation as in Proposition 1, limn→∞ fb,w(n) exists almost surely,
with distribution given by the mixture

rb,wδ0 + r∗
b,wbeta(Gb, Hw) + rw,bδ1.
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Proof. Let Tn be the time of the nth birth or death in the process (
∑b

i=1Bi(t),
∑w

i=1Wi(t)),
conditional on survival. Since fb,w(n) = gn,w(Tn), it suffices to show that Tn

a.s.−→∞ as n → ∞.
The proof of this is similar to the argument in the proof of Lemma 1. �

It is natural to extend the above results to k colours rather than 2. This corresponds to
projecting our infinite urn model onto k fixed colours. Namely, consider an urn with k colours,
and let Xi(n) denote the number of balls of colour i at time n, with initial condition Xi(0) > 0.
At each time step, draw a ball uniformly at random. With probability p, replace it to the urn
along with a ball of the same colour. With probability 1 − p, remove it from the urn. Let
S(n) = X1(n) + · · · + Xk(n). With the same method as above, it is not difficult to show, on
the event of nonextinction of the urn, that(

X1(n)

S(n)
, . . . ,

Xk(n)

S(n)

)
a.s.−→ (Y1, . . . , Yk),

where (Y1, Y2, . . . , Yk) is distributed as a mixture of Dirichlet distributions (possibly degenerate
to subspaces), the parameters of which will be binomially distributed conditioned on not all
being 0. We leave the details for the reader.

We remark that p = 1 gives us the original Pólya urn model. Indeed, for p = 1, we have
γ = 0, and it is readily checked that the limit in Theorem 2 reduces to beta(b, w), which is
a classical result in the literature. We also point out that all birth–death processes go extinct
almost surely in the p ≤ 1

2 case, so we would have convergence of gb,w(t) and fb,w(n) to a
convex combination of two point masses at 0 and 1. However, even such urns have been studied
in the literature, see, e.g. [14] in which the authors studied a class of diminishing urn processes.
For instance, our urn model with p = 0 may be seen as sampling without replacement.

Let us return to the supercritical case p > 1
2 and concentrate on the event that there is an

equal number of black and white balls in the urn. It is easy to show that this occurs at most
finitely many times.

Corollary 2. With probability 1, the event Bn = Wn occurs for at most finitely many n.

Proof. For all possible realisations ofGb andHw, the distribution beta(Gb, Hw) is absolutely
continuous on (0, 1), so the mixture in Theorem 2 is also absolutely continuous on (0, 1).
Therefore, Bn/(Wn + Bn) converges almost surely to some constant c �= 1

2 . But this means
that the fraction is equal to 1

2 at most a finite number of times. �
Knowing that Bn = Wn for at most finitely many n, it is natural to ask what the probability

is that this event occurs at all. Galashin [9] and Antal et al. [2] considered this problem for
p = 1, i.e. the classical Pólya urn model. They viewed the process (Bn, Wn) as a random walk
on Z

2. For p = 1, this process can only go right or up, so it is possible to count the number
of lattice paths from a given starting point to a fixed point on the diagonal. Using the fact that
these paths are exchangeable and summing over all points on the diagonal, it is possible to
bound the probability that the process ever hits the diagonal. For p < 1, there are infinitely
many paths to any point on the diagonal, so this approach is not possible here, but an argument
given by Wallstrom [18] for the p = 1 case can easily be adapted to our setting.

Proposition 2. Suppose that b > w. Using the same notation as in Proposition 1, let Fb,w

be the distribution function of the mixture rb,wδ0 + r∗
b,wbeta(Gb, Hw) + rw,bδ1. Let P(b, w)

denote the probability that Bn/(Bn + Wn) = 1
2 for some n. Then

P(b, w) = 2Fb,w

( 1
2

)
.
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Proof. Let ϕ be the random limit of fb,w(n) = Bn/(Bn + Wn), and let

E = inf
{
n ≥ 0 : fb,w(n) = 1

2

}
.

We have

{E < ∞} = {
E < ∞, ϕ > 1

2

} ∪ {
E < ∞, ϕ < 1

2

} ∪ {
E < ∞, ϕ = 1

2

}
,

where P[{E < ∞, ϕ = 1
2 }] = 0. The process (BE+n, WE+n)

∞
n=1 is Markovian, so it depends

only on (BE , WE ). Thus, on the event E < ∞, the limit ϕ is chosen according to FBE ,BE , which
is symmetrical around 1

2 . Therefore, P[E < ∞, ϕ < 1
2 ] = P[E < ∞, ϕ > 1

2 ]. But, since
b > w, we have that {ϕ < 1

2 } ⊆ {E < ∞}, so P[E < ∞, ϕ < 1
2 ] = P[ϕ < 1

2 ]. Thus,

P(b, w) = P[E < ∞] = 2P
[
ϕ < 1

2

] = 2Fb,w

( 1
2

)
. �

Later on it will be useful to have a bound on the probability P(b, 1) for large b. This will
gives us the probability that a new colour (which starts with a single ball) in the infinite-colour
urn model ever catches up with an old colour. In the next lemma we show that this probability
decreases at least exponentially in b.

Lemma 2. The equalisation probability P(b, 1) satisfies the inequality

P(b, 1) ≤ 2

(
1

2p

)b

.

Proof. By Proposition 2, we have

P(b, 1) = 2Fb,1
( 1

2

)

= 2γ b

(
1 − b

b + 1
γ

)

+ 2(1 − γ b)(1 − γ )

b∑
k=1

k

∫ 1/2

0
xk−1(1 − x)1−1 dx

(
b

k

)
(1 − γ )kγ b−k

1 − γ b

≤ 2γ b + 2
b∑

k=1

1

2k

(
b

k

)
(1 − γ )kγ b−k

= 2
b∑

k=0

(
b

k

)(
1 − γ

2

)k

γ b−k

= 2

(
1 − γ

2
+ γ

)b

= 2

(
1

2p

)b

. �

We now finally return to the urn model with an infinite number of colours. The bound on
P(b, 1) gives us good enough control over the probability that a small colour ever overtakes a
large colour. Using this bound and the Borel–Cantelli lemma, we show now that there could
have been at most a finite number of colours that were ever the leader. The proof relies on
Lemma 2 and the growth rate in Lemma 1.
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Proposition 3. Almost surely there could have been at most finitely many leading colours.

Proof. Let (Tn)
∞
n=1 be the birth times of new colours. Let Hn be the event that the colour

born at time Tn ever becomes as large as the leading colour at time Tn. The joint behaviour of the
sizes of a new colour and the currently leading colour is described by the two-dimensional urn
model above started from (Mn, 1). Now, for any r ∈ N, we let Cr be the event that Mn ≥ n1/2β

for all n > r . Note that this implies that Mn ≥ r−1/2βn1/2β for all n ≥ 1. For each fixed r , we
have

P[Hn ∩ Cr ] ≤ sup
A≥r−1/2βn1/(2β)

P (A, 1) ≤ 2

(
1

2p

)r−1/2βn1/2β

,

∞∑
n=1

P[Hn ∩ Cr ] ≤ 2
∞∑

n=1

(
1

2p

)r−1/2βn1/2β

< ∞,

where the sum converges by, e.g. integral comparison. The Borel–Cantelli lemma implies that
Hn ∩Cr occurs for infinitely many n with probability 0. Recall Theorem 1, i.e. that the number
of balls of any fixed colour, conditional on survival, grows like νN

1/β
n , where ν is some positive

random variable. Therefore, P[Cr ] → 1 as r → ∞, which implies that Hn occurs for infinitely
many n with probability 0. Therefore, with probability 1, only finitely many colours could have
been leaders. �
Theorem 3. Almost surely there is a dominating colour.

Proof. By Proposition 3 there could have been at most a finite number of colours of maximal
size, and by Corollary 2 these could have changed leader at most finitely many times. Therefore,
with probability 1, there is a colour that is always the largest after some random but finite time.
This completes the proof. �

In the corresponding random graph model, this says that almost surely there is a persistent
clique-hub. Recall that Mn denotes the size of the leading colour at time n and Nn the total
number of balls in the urn at time n. Since there almost surely is a dominating colour and we
know the growth rate of any fixed colour by Theorem 1 (in particular that of the dominating
colour), we obtain the following theorem.

Theorem 4. There is a random variable μ > 0 such that Mn
a.s.∼ μN

1/β
n .

By taking logarithms, this also implies the strengthening of the result of Backhausz and
Móri [4] mentioned in the introduction.
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