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 SUMMARY
 This paper addresses the tracking control problem of
 robotic manipulators with unknown and changing
 dynamics .  In this study ,  nonlinear dynamics of the
 robotic manipulator is assumed to be unknown and a
 control scheme is developed to adaptively estimate the
 unknown manipulator dynamics utilizing generic artificial
 neural network models to approximate the underlying
 dynamics .  Based on the error dynamics of the controller ,
 a parameter update equation is derived for the adaptive
 ANN models and local stability properties of the
 controller are discussed .  The proposed scheme is
 simulated and successfully tested for trajectory following
 tasks .  The controller also demonstrates remarkable
 performance in adaptation to changes in manipulator
 dynamics .

 KEYWORDS :  Neural network ;  On-line learning ;  Tracking
 control ;  Manipulators .

 1  INTRODUCTION
 Trajectory following control of robotic manipulators has
 been an important research area in the last decade .
 Highly nonlinear and coupled dynamics of the
 manipulators hinder the ef ficient use of well known
 linear control techniques .  Although reasonable trajectory
 following performance can be achieved using linearized
 models of the manipulators ,  nonlinear model based
 (computed torque and feedforward control) methods still
 remain as the most ef ficient control schemes for
 trajectory tracking problems . 1  However these methods
 assume the existence of an exact stationary parametric
 model of the manipulator dynamics .

 In the case of changing dynamics and / or unknown
 dynamics ,  various adaptive control techniques are
 possible .  These usually assume a reduced order simple
 dynamic model of the manipulator 2  or a sophisticated
 parametric model with an adaptation algorithm estimat-
 ing the unknown model parameter . 3 , 4  Craig et al . 3 , 4

 formulated a nonlinear parametric model-based adaptive
 controller based on Lyapunov’s stability theory .  Slotine
 and Li took a slightly dif ferent approach 5  where they
 derive a globally convergent parameter update law based
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 on the passivity properties of the manipulator dynamics
 and the Lyapunov’s stability theory .  A tutorial paper by
 Ortega and Spong 6  gives an overall review on the recent
 developments in adaptive control of manipulators .

 Note that all the adaptive algorithms which are cited in
 this section make use of a parametric model ,  either a
 simple one or a more sophisticated one .  Hence the
 uncertainties involved in these cases are considered as
 structured uncertainties .

 In some cases ,  however ,  the control system designer
 may not have a parametric dynamic model of the system
 and the uncertainties .  In this case ,  a control methodology
 known as  learning control  has been introduced originally
 by Arimoto et al . 7  These schemes are commonly referred
 to as  trajectory learning  schemes due to the repetitive
 nature of these algorithms over one specific trajectory .
 Another important research area in trajectory following
 control is the  table look - up  method .  These tabularization
 methods have been suggested originally by Albus 8  under
 the name Cerebellar Model Articulation Controller
 (CMAC) and extended in the works of Raibert 9  and
 Miller et al . 1 0

 With the resurgence of artificial neural network
 (ANN) research in recent years for various problems of
 nonlinear nature ,  many researchers have attempted to
 apply neurologically inspired algorithms for manipulator
 control .  The main underlying assumption in these
 applications is the ef ficient capability of ANNs to
 approximate multivariable functions .  Researchers from
 dif ferent disciplines have published extensively on the
 use neuromorphic models for the control of nonlinear
 dynamic systems .  Here we quote some of the work , 1 1 – 1 6

 which we believe ,  are most representative of the research
 ef forts in this field .

 In neuromorphic robotic control approaches ,  most of
 the discussion is on the choice of the error signal to drive
 the parameter update dynamics .  If an ANN model is
 used to acquire the manipulator’s forward dynamics ,  the
 choice of error signal is rather trivial (the dif ference
 between the system output and the ANN model output) .
 When ANN models are placed in a controller
 architecture for approximating inverse dynamics of the
 manipulator ,  it is claimed that the teaching signals for
 ANNs can not be derived a priori .  In this respect ,
 Kawato et al . 1 3  used the scaled output position and
 velocity error signals for training which they tried to
 publicize under the name feedback error learning .  Based
 on an error equation derived from closed loop system
 dynamics ,  Ciliz and Is ̧ ik 1 7  also used the scaled position
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 and velocity error signals as the driving term for the
 update dynamics .

 The present paper extends our previous results 17 , 18  in
 the more general framework of closed loop error
 dynamics of adaptive tracking controllers .  Generic
 multilayer ANN models are utilized as parametric
 models of each joint’s dynamics .  Each neural net
 structure is viewed as a nonlinear extension of a
 deterministic auto-regressive model which is commonly
 used in model matching problems for linear systems .
 Closed loop system’s error dynamics is obtained and
 using sliding control concepts an error surface is defined .
 Then a cost function is generated as the squared error
 distance to this surface .  Based on the error dynamics ,
 output tracking error bounds are derived using operator
 algebra techniques .  Adaptation properties of the
 controller is also discussed and simulation studies were
 consistent with our recent results on the stability and
 convergence of localized closed loop dynamics . 1 9

 Proposed controller dif fers from some of the
 previously cited of f-line learning techniques in the sense
 that adaptation algorithm is computed on-line using the
 operational data of actual arm movements based on the
 given desired trajectory .  Whereas in of f-line techniques ,
 ANN models are first trained for identification of system
 dynamics and then placed in a controller architecture . 1 5

 The layout of the present paper is as follows .  First
 basic properties of multilayer ANN models are
 introduced .  Section 3 presents the trajectory following
 problem and discusses the proposed learning control
 architecture for manipulators .  In this section ,  the error
 dynamics equation is generated ,  and the parameter
 update equation is derived .  Based on the closed-loop
 system dynamics ,  a local stability analysis is given which
 is quoted from a recent work by the authors . 1 9  Tracking
 error bounds of the controller are also computed in this
 section .  In Section 4 we give the simulation results of the
 controller for trajectory following and adaptation tasks .
 In Section 5 ,  results and the practical advantages of the
 scheme are discussed .

 2  ARTIFICIAL NEURAL NETWORKS FOR
 SYSTEM MODELING
 A multilayer artificial neural network (ANN) model is
 basically a nonlinear extension of a linear adaptive model
 (i . e .  a model whose output is defined as a linear
 combination of its input variables) .  Such architectures
 received renewed interest in recent years with the
 introduction of new learning paradigms in the works of
 Werbos 2 0  and Rumelhart et al . 2 1  A generic multilayer
 ANn model is illustrated in Figure 1 .  In a multilayer
 ANN model ,  the input vector is processed through the
 intermediate (hidden) layers of adaptive weights of the
 network before reaching the output layer .

 What makes ANN models important tools in nonlinear
 system analysis is their capability of approximating
 multivariable nonlinear functions .  For a given set of
 operational data representing an arbitrary nonlinear
 function over a compact subset of the function’s input

 Fig .  1 .  Architecture of a multilayer Artificial Neural Network
 (ANN) Model .

 space ,  the interconnections (weights) of the ANN model
 are adjusted in such a way that the input-output
 properties of the network approximates those of the
 underlying nonlinear function .  The weight / parameter
 update or adjustment algorithm is based on the idea of
 minimizing a cost function and originally introduced by
 Werbos 2 0  and later widely publicized by Rumelhart et
 al . 2 1  as the  backpropagation  algorithm due to its
 structural properties .  Derivation of the algorithm is
 rather straightforward and can be found in reference 21 .
 Next we discuss the  nonlinear mapping  properties of
 ANN models in a mathematical framework .

 2 . 1  Nonlinear functional approximation by ANN models
 A generic neural network architecture which is
 illustrated in Figure 1 basically defines a mapping
 between two vector spaces .  There has been experimental
 evidence that ANNs are capable of approximating
 arbitrary nonlinear functionals over compact subsets of
 their input space . 22–25  Recently a series of papers also
 appeared in literature stating theorems that show the
 validity of this claim ,  by Funahashi , 2 6  Cybenko , 2 7  and
 Hornik ,  Stinchcombe and White . 2 8  There is active
 research investigating the nonlinear approximation
 capabilities of ANN models and however there are still
 open questions to be answered (especially on the number
 of units needed to attain a given degree of accuracy in
 approximation) .  Here we quote an existence theorem by
 Funahashi [26] on the functional approximation property
 of an ANN model .  Similar results are also reported in
 [27 ,  28] .

 Let the points of an  n -dimensional normed vector
 space  5 n   be denoted by  X  5  ( x 1  ,  .  .  .  ,  x n ) and the  L n

 ̀

 norm of  X  is defined by ,

 i  X  i  ̀  5  max
 i

 ( u x 1 u ,  .  .  .  ,  u x n u )

 Let  K  be a closed bounded subset of  5 n ,  and a real
 vector valued functions  f  ( ? ) be defined on  K ,  as
 f  :  K  ’  5 n

 5  5 .  We would like to approximate this
 function by using a layered network with bounded
 nonlinearities as the activation functions for the hidden
 layers ,  and with linear functions for the input and output
 layers .  Before stating the existence theorem ,  we write the
 input-output relationship of a hidden unit in a multilayer
 network ,  as  y  5  g ( o n

 i 5 1  w i x i ) where  g ( ? ) is a nonconstant ,
 bounded and monotone increasing function (e . g .,  a
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 sigmoid) ,  and  w , x ,  and  y  represent the weights ,  inputs to
 the unit and output of the unit ,  respectively .   n  denotes
 the number of the inputs to that unit .

 Theorem 2 .1  Let g ( ? )  be a nonconstant , bounded and
 monotone increasing continuous function . Let K be a
 compact subset of  5 n  and f  ( x 1  ,  .  .  .  ,  x n )  be a real  y  alued
 continuous function defined on K . Then for an arbitrary
 small positi y  e  »  .  0 , there exists an integer  ‘‘ m ’’  and real
 constants w j  ,  (  j  5  1 ,  .  .  .  ,  m ) , and  y  i j   ( i  5  1 ,  .  .  .  ,  n ;
 j  5  1 ,  .  .  .  ,  m )  such that ,

 f ̂  ( x 1  ,  .  .  .  ,  x n )  5  O m
 j 5 1

 w j g S O n
 i 5 1

 y  i i x i D
 satisfies  max X  P K  u  f  ( x 1  ,  .  .  .  ,  x n )  2  f ̂  ( x 1  ,  .  .  .  ,  x n ) u  #  » . That
 is  i  f  ( X  )  2  f ̂  ( X  )  i  ̀  #  » .

 This theorem shows that for some arbitrary  »  .  0 ,  there
 exists a three layer network whose output functions for
 the hidden layer are  g ( ? ) (e . g .  sigmoid) ,  whose output
 functions for input and output layers are linear and
 which has an input output function  f ̂  ( x 1  ,  .  .  .  ,  x n ) such
 that the approximation ,

 max
 X  P K

 u  f  ( X  )  2  f ̂  ( X  ) u  5  i  f  ( X  )  2  f ̂  ( X  )  i  ̀  #  »  (1)

 holds .  The proof of the theorem is given in reference
 [26] .  A similar result is also given by Hornik and White
 (Theorem 2 . 4 and Corollary 2 . 6 in reference [28]) which
 proves that a single hidden layer neural network can
 approximate any multivariable continuous function
 uniformly on any compact set .

 The above result is quite powerful in presenting the
 existence of nonlinear mapping capabilities of neural
 networks .  Simple nonlinear bounded monotone increas-
 ing continuous functions are assumed as activation
 functions of the nodes ,  hence this justifies the use of
 sigmoidal nonlinearities  (i . e .   g ( x )  5  1 / 1  1  e  2 x ) in our
 application .  The above theorem gives strong mathemati-
 cal justification to utilize neural networks as nonlinear
 functional approximators for adaptive signal processing
 and control systems applications .  In the rest of this
 paper ,  the mathematical analysis of the controller
 architecture is based on the above theorem .

 Before finishing this section ,  we would like to
 emphasize that mathematically proving functional ap-
 proximation properties of ANNs is still an active and
 growing interdisciplinary research area .  However ,  our
 intent here is just to use neural networks as a tool in
 controller algorithms ,  therefore we are content with the
 above theoretical result .

 3  THE PROPOSED CONTROLLER
 ARCHITECTURE
 In this section we briefly discuss the trajectory following
 control problem of rigid mechanical manipulators ,  then
 propose an ANN based controller architecture .  Consider
 the vector representation of an  n  link rigid manipulator

 dynamics ,  given as
 τ  5  M ( q ) q ~  1  v ( q ,  q ~  )  1  g ( q )  (2)

 where  τ   is the  n  3  1 vector of joint torques ,  and  q  is the
 n  3  1   vector of joint positions .  The matrix  M ( q ) is the
 n  3  n  positive definite ‘‘inertia matrix’’ .   v ( q ,  q ~  ) is  n  3  1
 vector function representing centrifugal and Coriolis
 ef fects ,  and finally  n  3  1 vector function  g ( q ) represents
 torques due to gravity .  The derivation of (2) can be
 found in common reference texts . 1  Equation (2) can be
 put in a more compact form as ,

 τ  5  M ( q ) q ~  1  h ( q ,  q ~  )  (3)

 Given a bounded  desired trajectory  in joint variables
 ( q d  ,  q ~  d  ,  q ̈  d ) ,  the control designer’s task is to devise a
 controller to track this desired trajectory as closely as
 possible .  If exact manipulator dynamics is available ,  then
 the  control

 τ  5  M ( q ( K y e ~  1  K p e  1  q ̈  d )  1  h ( q ,  q ~  )  (4)

 will result in error equation of the form ,

 e ̈  1  K y e ~  1  K p e  5  0  (5)

 due to the cancellation of nonlinear terms ,  where
 e  5  q d  2  q  and  e ~  5  q ~  d  2  q ~ .   K y   and  K p   are the diagonal
 matrices of  y  elocity  and position feedback gains ,
 respectively .  Note that the above error equation is a
 decoupled one due to the diagonal nature of the constant
 matrices  K p   and  K y  .  Therefore adjusting these gain
 matrices properly ,  tracking errors can be ef fectively
 forced to zero .

 The equation given in (3) represents the  in y  erse
 dynamics  of a robotic arm .  That is ,  given a set of joint
 variables ,   q ,   q ~  ,   q ̈  ,  (3) gives the corresponding torque to
 drive the actuators .  Based on this assertion ,  the
 manipulator’s direct dynamics can be readily obtained as
 follows ,

 q ̈  5  M 2 1 ( q ) τ  2  M 2 1 ( q ) h ( q ,  q ~  )  (6)

 q ~  5  R ( q ,  q ~ ,  τ  )  (7)

 (Note that positive definiteness of the inertia matrix
 M ( q ) guarantees the existence of its inverse . ) The direct
 dynamics represented in short by  R ( q ,  q ~ ,  τ  ) actually
 refers to a  nonlinear transformation  (mapping) from
 manipulator’s input (joint torques  τ  ) to the manipulator’s
 output (joint motion) .  Based on this argument and
 equation (7) ,  the manipulator’s inverse dynamics can
 then be written as ,

 τ  5  R 2 1 ( q ,  q ~ ,  q ̈  )  (8)

 where  R 2 1 ( ? ) is used to denote the inverse transforma-
 tion obtained by inverting the robot direct dynamics
 R ( ? ) .  These nonlinear transformations are time depen-
 dent ,  however in the rest of the text ,  the arguments of  R ,
 R 2 1  and their variants will sometimes be dropped for the
 brevity of the analysis .

 If an accurate parametric dynamic model is available ,
 such as the one given by (3) ,  then a computed torque or
 a feedforward control scheme can be ef ficiently utilized .
 However if such a model is not available ,  the system
 dynamics have to be adaptively identified in order to
 achieve a feedforward compensation .  In such cases ,
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 learning control methods can be used to generate the
 necessary feedforward torques .

 3 .1  ANN-model based adaptive control
 Here we propose the use of a generic ANN architecture
 to model the inverse dynamic structure of each joint . 17 , 18

 Reexamining equation (8) ,  this nonlinear transformation
 can be ef ficiently modeled by ANNs as discussed in
 Section 2 and justified mathematically by Theorem 2 . 1 .

 The manipulator’s inverse dynamics ,  defined by the
 nonlinear transformation  R 2 1 ,  can be decomposed into  n
 transformations ,  namely

 τ  5  R  2 1 ( q ,  q ~ ,  q ̈  )  5 3  r 2 1
 1  ( q ,  q ~ ,  q ̈  )

 ? ? ?
 r 2 1

 n  ( q ,  q ~ ,  q ̈  )
 4  (9)

 where each  r 2 1
 i  ( q ,  q ~ ,  q ̈  ) ,   i  5  1 ,  .  .  .  ,  n  defines the inverse

 dynamics of the corresponding joint ,  that is ,
 r 2 1

 i  ( q ,  q ~ ,  q ̈  ) :  5 3 n
 5  5 ,  with  i  5  1 ,  .  .  .  ,  n .  Based on

 Theorem 2 . 1 ,  each entry  r 2 1
 i  ( ? ) of the vector function

 R 2 1 ( ? )   can be modeled by an ANN such that the overall
 system’s inverse dynamics model is represented by ,

 τ  5  R ̂  2 1 ( q ,  q ~ ,  q ̈  )  5 3  r ̂  2 1
 1  ( q ,  q ~ ,  q ̈  )

 ? ? ?
 r ̂  2 1

 n  ( q ,  q ~ ,  q ̈  )
 4  5 3  N 1 ( q ,  q ~  1 ,  q ̈  ,  p 1 )

 ? ? ?
 N n ( q ,  q ~ ,  q ̈  ,  p n )

 4
 (10)

 where ( ? ̂ ) denotes the  estimated  models ,  and  N i ( ? ) ,
 i  5  1 ,  .  .  .  ,  n  represents the output of each ANN model
 that is used to realize the time dependent nonlinear
 mapping  r 2 1

 i  ( t ) .  p i   can be considered as the vector of all
 adjustable weights of the corresponding ANN model and
 will be defined explicitly in the sequel .

 Here we define an augmented state vector of the robot
 dynamics as ,   z ( t )  5  h q T  ( t ) ,  q ~  T  ( t ) ,  q ̈  T  ( t ) j T  P  5 k   with
 k  5  3 n ,  which denotes a time dependent input vector of
 the inverse dynamics ,   R 2 1 ( z ) [ 18 ] .  Assuming that a
 three-layer ANN with  n  inputs ,   m  hidden layer neurons
 and one output neuron is used to model each individual
 joint’s inverse dynamics ,  we can explicitly write this
 model as ,

 r ̂  2 1
 i  ( z ( t ))  5  N i ( z ( t ) ,  w i ( t ) ,  H i ( t ))  5  w T

 i  ( t ) Y ( H i ( t ) z ( t ))  (11)

 where  w i ( t )  P  5 m   is the output layer weight (parameter)
 vector ,   H i ( t )  P  5 m 3 k   is the hidden layer weight matrix of
 the ‘‘i’’th ANN model .   z ( t )  P  5 k   with  k  5  3 n  is the input
 vector as defined before .  In the rest of the text ,  time
 argument of these vectors will sometimes be dropped for
 the brevity of the analysis .  The hidden layer vector
 function  Y ( ? )  P  5 m   is defined as

 Y ( ? )  5 3  g 1 ( ? )
 ? ? ?

 g m ( ? )
 4  (12)

 where  g i ( ? )  P  5   is by definition a bounded monotone
 increasing function which is taken to be a sigmoid

 function in this case ,  based on the justification given by
 the Theorem 2 . 1 and Theorem 2 . 4 of reference [28] .
 Hence  g i ( x )  5  1 / (1  1  e  2 x ) and it is bounded as
 0  #  g i ( x )  #  1 .  To put the hidden layer weight matrix of
 the ANN model in vectoral form ,  we define  v i  5
 y  ec ( H i )  P  5 m k   where  y  ec ( ? ) operator gives a vector
 which is obtained by stacking the columns of its matrix
 argument .  Then the argument  H i z  of vector function  Y ( ? )
 can be written as ,

 H i z  5  F v i  (13)

 where  v i  5  h H 1 1  ,  H 2 1  ,  .  .  .  ,  H m 1  ,  .  .  .  ,  H 1 k  ,  .  .  .  ,  H m k j T   and
 F  P  5 m 3 nk   is a matrix which can be considered as the
 modified input of the ANN model and is defined as ,

 F  5

 z 1
 0
 ? ? ?
 0

 0
 z 1
 ? ? ?
 0

 .  .  .
 .  .  .
 ?  ?  ?
 .  .  .

 0
 0
 ? ? ?
 z 1

 z 2
 0
 ? ? ?
 0

 0
 z 2
 ? ? ?
 0

 .  .  .
 .  .  .
 ?  ?  ?
 .  .  .

A
 0
 0
 ? ? ?
 z 2

 .  .  .
 .  .  .
 .  .  .
 .  .  .

 z k

 0
 ? ? ?
 0

 0
 z k

 ? ? ?
 0

 .  .  .
 .  .  .
 ?  ?  ?
 .  .  .

 0
 0
 ? ? ?
 z k

 (14)B
 where  z i  P  5   are the elements of the input vector  z  P  5  k .
 Hence (11) can now be written as ,

 r ̂  2 1
 i  ( z ,  w i  ,  v i )  5  N ( z ,  w i  ,  v i )  5  w T

 o Y ( F v i )  (15)

 A similar representation can be obtained for networks
 with more than one hidden layer .  With this implicit
 parametric manipulator model ,  we can investigate the
 controller structure that would be suited for our
 application .  However note that ,  since an ANN model
 basically realizes a  direct implicit transformation  from the
 input vector  z  to joint torques  τ  ,  this model does not
 convey any explicit information on manipulator’s
 estimated dynamic components such as in the inertia
 matrix .  Hence a direct adaptive control architecture
 which would be based on a computed torque-like model
 is  not possible .  With the assumption that a manipulator
 model does not exist ,  generic ANN models can be
 ef fectively used to approximate the manipulator dynam-
 ics .  Then the feedforward torques generated by the ANN
 models can be combined with a feedback servo signal to
 obtain the torques that will finally drive the actuators .
 Hence ,  the control law can be written as ,

 τ  5  R ̂  2 1 ( z )  1  K y e ̂  1  K p e  5  N ( z )  1  K y e ~  1  K p e  (16)

 where  K y  P  5 n 3 n   and  K p  P  5 n 3 n   are the diagonal gain
 matrices with entries  k y   and  k p  ,  respectively ,   R ̂  2 1 ( z )  5
 N ( z )  5  h N 1  ,  .  .  .  ,  N n j T  P  5 n   is the dynamic model estim-
 ate which consists of ‘‘n’’ ANN models which repesent
 the actuators’ inverse dynamics .  A block diagram of the
 proposed controller is shown in Figure 2 .  Note that the
 computation of the transformation  R ̂  2 1 ( q ,  q ~ ,  q ̈  ) in (16)
 requires the information on  q ̈   in addition to the
 manipulator’s state vector  h q ,  q ~  j .  The acceleration vector
 q ̈   can be computed by dif ferentiating the velocity vector
 q ~   using a first order filter .  Although this is not a
 desirable process due to possible side-ef fects such as
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 Fig .  2 .  Block Diagram of the Controller Architecture .

 increasing susceptibility to noise ,  such measurements are
 successfully used in various adaptive control algorithms
 by the authors in real-time applications 29 , 30

 3 .2  Error dynamics and derivation of parameter update
 equation
 With the control vector given in (16) ,  the system’s error
 dynamics can be written by substituting (16) in (3) ,

 R ̂  2 1 ( q ,  q ~ ,  q ̈  )  1  K y e ~  1  K p e  5  M ( q ) q ̈  1  h ( q ,  q ~  )  5  R 2 1 ( q ,  q ~ ,  q ̈  )

 (17)

 K y e ~  1  K p e  5  R  2 1 ( q ,  q ~ ,  q ̈  )  2  R ̂  2 1 ( q ,  q ~ ,  q ̈  )  (18)

 K y e ~  1  K p e  5  R ̃  2 1 ( q ,  q ~ ,  q ̈  )  5  R ̃  2 1 ( z )  (19)

 where  R ̃  2 1 ( q ,  q ~ ,  q ̈  )  5  R ̃  2 1 ( z )  P  5 n   denotes the error
 between the actual inverse dynamics  R 2 1  and the
 estimated model  R ̂  2 1 ,  and can be explicitly written as ,

 R ̃  2 1 ( z )  5 3  r 2 1
 1  ( z )  2  r ̂  2 1

 1  ( z )
 ? ? ?

 r 2 1
 n  ( z )  2  r ̂  2 1

 n  ( z )
 4

 5 3  r 2 1
 1  ( z )  2  N 1 ( z ,  p 1 )

 ? ? ?
 r 2 1

 n  ( z )  2  N n ( z ,  p n )
 4  (20)

 R ̃  2 1 ( z )  5 3  r ̃  2 1
 1  ( z ,  p 1 )

 ? ? ?
 r ̃  2 1

 n  ( z ,  p n )
 4  (21)

 where  r ̃  2 1
 i  ( z ,  p i ) with  i  5  1 ,  .  .  .  ,  n  denotes the error in

 inverse dynamic modeling for each joint ,  and  p i  5
 h w T

 i  ,  v T
 i  j T  P  5 m 1 mk   is the adaptive weight vector of the

 corresponding (‘‘i’’th) ANN model .
 Using (19) and (21) ,  the error dynamics (with diagonal

 K p   and  K y   matrices) for each joint can be written as
 follows ,

 k p ( q i d  2  q i )  1  k y  ( q ~  i d  2  q ~  i )  5  r ̃  2 1
 i  ( z ,  p i ) ,  for  i  5  1 ,  .  .  .  ,  n .

 (22)

 k p e i  1  k y  e ~  i

 s ( t )

 5  r ̃  2 1
 i  ( z ,  p i )  (23) C BDB E

 where  e i   and  e ~  i   denote the position and velocity errors at
 joint  i ,  respectively ,   k p   and  k y   are the individual servo
 gains ,  respectively ,  and  r ̃  2 1

 i  ( z ,  p i ) denotes the error in
 inverse dynamics modeling for joint ‘‘i’’ .  Here we use
 sliding control concepts  and define a time varying surface
 S ( t )   in the  e i   and  e ~  i   space ,  as

 S ( t ) :  s ( e i  ,  e ~  i  ,  t )  5  0

 with  s ( t )  5  s ( e i  ,  e ~  i )  5  k p e i ( t )  1  k y  e ~  i ( t ) .  Hence the scalar
 signal  s ( t ) can be considered as the  distance  to the
 surface  S ( t ) .  The problem of tracking is then equivalent
 to that of minimizing the distance to the surface defined
 by  s ( t )  5  0 .  If this condition is satisfied ,  this leads to a
 homogeneous dif ferential equation  k y  e ~  i  1  k p e i  5  0 whose
 unique solution is  e i  5  0 and  e ~  i  5  0 .  Examining (23) ,
 minimizing the distance to the surface  s ( t )  5  0 is
 equivalent to minimizing the residual nonlinear error
 dynamics  r ̃  2 1 ( ? ) .  Hence we define an instantaneous cost
 function  ( i ( t ) for a specific sampling instant for each
 joint of the manipulator as ,

 ( i ( t )  5  1 – 2 s 2 ( t )  (24)

 This cost function gives the squared distance to the
 surface  s ( t )  5  0 .  Minimizing this cost function over the
 weight space of the corresponding ANN model forms the
 basis of the  weight update algorithm .  Several minimiza-
 tion techniques can be employed on (24) .  Here we utilize
 a simple gradient update algorithm which can be simply
 written as ,

 p ~  i  5  2 a = ( i ( t )  (25)

 a   is the adjustment gain constant (learning rate in
 neural-network terminology) .  Computing the gradient
 = ( i ( t )   with respect to the weight vector  p i  ,  we get ,

 p ~  i  5  2 a s ( t )
  s ( t )
  p i

 5  2 a s ( t )
  r ̃  2 1

 i  ( z ,  p i )
  p i

 (26)

 p ~  i  5  2 a s ( t )
  ( r 2 1

 i  ( z )  2  N i ( z ,  p i ))
  p i

 (27)

 p ~  i  5  a s ( t )
  N i ( z ,  p i )

  p i
 (28)

 where  s ( t ) is as defined in (23) .  Computation mechanism
 of the gradient term in (28) is the so called
 backpropagation algorithm .  Dropping the subscript ‘‘i’’
 for the brevity of the analysis ,  we evaluate (28) explicitly
 for adjustable weight vectors  w  and  v ,  using (15) as ,

 w ~  5  a s ( t )
  N
  w

 5  a s ( t )
  ( w T  Y ( F v ))

  w
 5  a s ( t ) Y ( F v )  (29)

 and

 v ~  5  a s ( t )
  N
  v

 5  a s ( t )
  ( w T  Y ( F v ))

  v
 5  a s ( t ) F T J w  (30)

 where  F  P  5 mk 3 m   is as defined in (14) ,  and  J  P  5 m 3 m   is
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 a diagonal Jacobian matrix ,  whose diagonal entries are
 given as

 J j j  5
  g j ( x )

  x
 U

 x 5 h F v j j

 Writing the above update equations in vectoral form ,  we
 get

 p ~  5 F w ~
 v ~  G  5  a s ( t ) F Y ( F v )

 F T J w

  

 G
 5  a s ( e i  ,  e ~  i )   ( p )  (31)

 C BDB E

 where      can be considered as a nonlinear regressor
 vector .  The  unusual  nonlinear parametric dependence of
 the regressor vector is due to the nonlinearities used in
 the hidden layer .  In this case the regressor system can
 not be represented linearly in terms of the adaptive
 weights (parameters) .  Therefore ,  the well known
 methods of converge analysis for the parametric-linear
 error dynamics can not be employed here .

 Update equation (31) is in fact the backpropagation
 algorithm for a three layer neural network [21] .  For
 networks with more than one hidden layer ,  derivation of
 the update equations is similar and can be realized by
 backpropagation .  Employing the above update equation
 for the weight adaptation minimizes  s ( t ) and in ef fect the
 residual approximation error  r ̃  2 1

 i  .  Hence it ef fectively
 forces the error dynamics towards the surface ,
 s ( e i  ,  e ~  i )  5  0 .

 Note that the above update equations define a system
 of coupled nonlinear dif ferential equations and this
 hampers a global stability analysis of the closed loop
 error dynamics defined by (23) and (31) .  However local
 stability properties of the closed loop system can be
 investigated .  Since the neural network model can be not
 explicitly written in terms of its weights ,  an error
 equation which is linear in unknown weights can not be
 written .  Authors recently proposed a local stability
 analysis of the closed loop system dynamics utilizing
 linearization techniques .  Here we quote some of the
 results of our work .  A detailed exposition of this analysis
 is given in reference 19 .

 3 . 3  Local stability and con y  ergence analysis
 Local stability properties of the closed loop dynamic
 system defined by (23) and (31) can be studied using
 linearization techniques .  Linearization dictates that
 subject to smoothness of the nonlinear operators in (23)
 and (31) ,  one can constitute a linearized system whose
 stability properties are identical to the local stability
 properties of the original system .

 First the closed loop dynamics given by (23) and (31) is
 put into a state-space form as follows (subscript indexes
 are dropped) ,

 x ~  5  A x  1  Br ̃  2 1 ( z ,  p )  and  y  5  cx  (32)

 p ~  5  a s ( x )   ( p )  (33)

 where  x  represents the state of equation (23) ,   A , B  and  c
 are appropriate state matrices .  Then [ x T ,  p T  ] T   forms the

 state vector of the closed loop system .  Based on the
 assumption that the system is operating near a nominal
 state such that the ANN weights are close to their
 desired values and error state  x  is close to zero ,  the state
 equations given in (32) and (33) can be linearized around
 this operating point .  The linearized system can be written
 as follows : 1 9

 F x ~
 p ̃ ~ G  5 F  A

 2 G   T
 * c

 B   *
 0

 G F x
 p ̃  G  (34)

 where  p ̃  5  p *  2  p  is the parameter error vector with
 p *  5  [ w * ,  v * ] denoting the desired weights ,   c  is the
 output vector of the state equation (32) and    *  can be
 considered as the  linearized regressor  y  ector  given as ,

   *  5 F Y ( F * v * )
 F T

 * J * w *
 G  (35)

 where the entries of    *  are evaluated at their nominal
 values (denoted by * signs) .  If the linear part of system
 given in (23) is strictly positive real (SPR) ,  then based on
 Kalman-Yakubovich lemma ,  it can be shown that the
 tracking error vector  x  of linearized system converges to
 zero . 1 9  This basically means that ,  when the control
 system is operating in the neighbourhood of a nominal
 state ,  then the perturbations in the closed loop system
 dynamics can be adaptively compensated and the
 tracking error is forced to zero .  A theorem showing this
 convergence property is given in reference 19 .

 The analysis given above can be used to investigate the
 adaptation properties of controller to changes in the
 manipulator dynamics .  Simulation results of the adapta-
 tion tests are given in Section 4 .  Note that the above
 results are valid only locally .  However they can be used
 to make qualitative statements about the closed loop
 system operating around a nominal state .

 Even though a direct stability and convergence
 analysis is not possible for the nonlinear closed loop
 system dynamics ,  based on the assumption that a close
 approximation of inverse dynamics is achieved by ANN
 models ,  tracking error bounds can be analyzed using
 operator algebra techniques .

 3 . 4  Tracking errors bounds
 In this section ,  we investigate the bounds on the tracking
 errors due to residual nonlinearities generated by the
 ANN approximation of the inverse dynamics .  In the
 following analysis bounded input conditions are assumed
 and operator algebra and  L ̀    norms are used .

 The error equation given in (19) is a linear decoupled
 vector dif ferential equation with a nonlinear forcing
 term .  We first define an operator  *  :  R ̃  2 1 ( z )  5  e  which is
 infact a mapping between two  n -dimensional spaces .  The
 L ̀    gain of  *   can be compute directly in terms of the  L ̀

 gains of the individual mappings for each joint ,  namely
 h i :  r ̃  2 1

 i  5  e i  ,  where  e i   is the position error for joint  i .  We
 rewrite the corresponding joint’s error equation as ,

 k y  e ~  i ( t )  1  k p e i ( t )  5  r ̃  2 1
 i  ( t )  (36)

 where  e i  , e ~  i   and  r ̃  2 1
 i    are all time dependent signals .  By
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 taking the Laplace transform of (36) ,  the transfer
 function of the error equation can be obtained as ,

 e i ( s )
 r ̃  2 1

 i  ( s )
 5  h i ( s )  5

 1
 k y  s  1  k p

 (37)

 The  L ̀    gain 3 1  of the transfer function  h i ( s ) can then be
 computed as  i  h i  i  ̀  5  1 / k p .  Now assuming that servo
 gains are chosen equal for all joints ,   L ̀    gain of the
 operator  *   can be directly written as ,

 i  *  i  ̀  5
 1
 k p

 (38)

 Next we look at the right hand side of (19) .  The
 nonlinear term  R ̃  2 1 ( z ( t )) is in fact a time dependent
 vector transformation representing the error in the
 inverse dynamics modeling for each joint .  That is ,

 R ̃  2 1 ( z ( t ))  5 3  r ̃  2 1
 1  ( z ( t ))

 ? ? ?
 r ̃  2 1

 n  ( z ( t ))
 4

 The  L n
 ̀    norm of  R ̃  2 1  is then by ,

 i  R ̃  2 1 ( z ( t ))  i  ̀  5  max
 i

 sup
 t

 u r ̃  2 1
 i  ( t ) u  (39)

 If the bound on the approximation error of the ANN
 model for each joint is known ,  such that

 i  r 2 1
 i  ( t )  2  r ̂  2 1

 i  ( t )  i  ̀  5  i  r 2 1
 i  ( t )  2  N i  i  ̀  5  i  r ̃  2 1

 i  ( t )  i  ̀  #  » i

 holds ,  with  » i   being a non-negative real number
 representing the approximation error bound for joint  i ,
 then the bound on  R ̃  2 1  can be written as ,

 u R ̃  2 1 ( z )  i  ̀  5  max
 i

 » i  5  »  (41)

 where  »   denotes the maximum of individual joint
 approximation errors .  This leads to the following
 Theorem .

 Theorem 3 .1  If the error bounds on the approximation of
 the manipulator ’ s in y  erse dynamic model by the ANN
 models satisfy ,

 i  R ̃  2 1 ( q ,  q ~ ,  q ̈  )  i  ̀  5  i  R ̃  2 1 ( z ( t ))  i  ̀  #  »

 for some  »  $  0 , then the trajectory tracking error bounds
 on  e  and  e ~   are gi y  en by ,

 i  e  i  ̀  #
 »
 k p

 (42)

 i  e ~  i  ̀  #
 2 »
 k y

 (43)

 where k p  and k y   denote position and  y  elocity gains of each
 joint , respecti y  ely .

 Proof :
 The first inequality can be shown to hold directly ,  since it
 is based on the mapping  *  :  R ̃  2 1

 5  e .  Using the  L ̀    gain
 of the operator  *   given by (38) and the bound on
 R ̃  2 1 ( z ( t )) ,  we get ,

 i  e  i  ̀  #  i  *  i  ̀  i  R ̃  2 1 ( z ( t ))  i  ̀  (44)

 i  e  i  ̀  #
 1
 k p

 i  R ̃  2 1 ( z ( t ))  i  ̀  (45)

 i  e  i  ̀  #
 »
 k p

 (46)

 Using the error dynamics equations (19) and the bound
 on  e ,  the bound on  e ~  can be obtained as follows ,

 e ~  5  2 K 2 1
 y  K p e  1  K 2 1

 y  R ̃  2 1 ( z )  (47)

 taking the norm of both sides of (47) and using the
 triangle inequality of the norms ,  we get ,

 i  e ~  i  ̀  #  i  2 K 2 1
 y  K p  i  i  i  e  i  ̀  1  i  K 2 1

 y  i  i  i  R ̃  2 1 ( Z )  i  ̀  (48)

 where  i  ?  i  i   denotes the induced matrix norm in the  L ̀

 sense .  Since  K 2 1
 y    and  K p   are diagonal matrices with

 diagonal elements 1 / k y   and  k p  ,  respectively ,  induced
 matrix norms can simply be written as ,

 i  2 K 2 1
 y  K p  i  i  5

 k p

 k y

 and  i  K 2 1
 y  i  i  5

 1
 k y

 (49)

 Using (49) and replacing  i  e  i  ̀    in (48) by (46) leads to ,

 i  e ~  i  ̀  #
 »
 k y

 1
 »
 k y

 (50)

 i  e ~  i  ̀  #
 2 »
 k y

 (51)

 This completes the proof .  j

 This theorem basically defines the bounds on the
 tracking errors for a certain level of approximation of
 inverse dynamics by the ANN model structure .  Next we
 present some simulation results for trajectory tracking
 and adaptation tests .

 4  SIMULATION RESULTS
 In order to evaluate various performance measures of
 the controller architecture ,  the proposed scheme is tested
 on a robotic manipulator model using simulation
 techniques .  To verify the results given in Section 3 ,  the
 overall scheme is simulated on a digital computer .

 A two degrees of freedom (d . o . f . ) robotic manipulator
 is simulated in order to demonstrate the various features
 of the controller algorithm .  Gravity ef fects are  not
 compensated throughout the simulation experiments
 except for the PD control experiments for comparison
 tests .  Dynamic equations of a two link manipulator based
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 on the simple mass distribution assumption are given as
 follows ,  and the derivation can be found in any robotics
 text . 1

 τ  1  5  ( l 2
 1 ( m 1  1  m 2 )  1  m 2 l 2

 2  1  2 m 2 l 1 l 2 c 2 ) q ̈  1

 1  ( m 2 l 2
 2  1  m 2 l 1 l 2 c 2 ) q ̈  2  2  2 m 2 l 1 l 2 s 2 q ~  1 q ~  2  2  m 2 l 1 l 2 s 2 q ~  2

 2

 1  ( m 1  1  m 2 ) gl 1 c 1  1  m 2 gl 2 c 1 2  1  y  1 q ~  1  (52)

 τ  2  5  ( m 2 l 2
 2  1  m 2 l 1 l 2 c 2 ) q ̈  1  1  l 2

 2 m 2 q ̈  2

 1  l 1 l 2 m 2 s 2 q ~  2
 1  1  m 2 gl 2 c 1 2  1  y  2 q ~  2  (53)

 τ  1  and  τ  2  denote the torques at the first and the second
 joints ,  respectively and  y  1  and  y  2  are the viscous friction
 coef ficients .  The model parameters are chosen similar to
 the parameters of an experimental SCARA type
 manipulation . 3 2  Parameters are set to  m 1  5  10  kg ,
 m 2  5  8  kg ,   l 1  5  l 2  5  0 . 5 meters ,   y  1  5  y  2  5  3 . 0  N-M
 sec . / rads ,   g  5  9 . 8  kg ? m / sec 2 .  A fourth order Runge-Kutta
 algorithm with a step size of  h  5  0 . 005 is used for the
 simulation .

 Before any manipulator movement ,  the ANN model
 has no a priori information on manipulator dynamics ,
 therefore the adjustable weights of each model are set to
 very small random numbers which are close to zero .  This
 means ,  as the manipulator starts moving it has initially
 just the PD control driving its actuators .  The feedforward
 terms start building up as more and more movements are
 made .

 In all the simulation tests ,  a joint’s desired position
 trajectory is chosen as ,

 θ d  5  a 0  1  b 0  sin  ( t )  1  b 0  sin  (2 t )  (54)

 with the desired trajectories for the velocity and
 acceleration being obtained by simply taking the first and
 the second derivatives of the position trajectory .  The
 duration of the trajectory is chosen as 4 seconds ,  with
 a 0  5  0 . 5   and  b 0  5  0 . 2 .

 4 . 1  Trajectory following and adaptation
 Trajectory following tests :  With the desired trajectory
 given by (54) for both joints ,  position ( k p ) and velocity
 ( k y  )   feedback gains are set to  k p  5  625 and  k y  5  125 for
 both joints .  These gains would result in overdamped

 error dynamics with a bandwidth equal to 25  rad / sec ,
 when a close inverse dynamics approximation is
 achieved .  Setting these gains are instrumental for
 determining the upper bounds for the tracking errors as
 it was shown in the previous section .  However large
 feedback gains would cause instability in the adaptation
 phase of the controller .

 As discussed in Section 2 ,  there is  not  yet a
 well-defined  procedure for the selection of an optimum
 ANN architecture for a given problem .  The common
 approach is to try a few architectures that would give the
 required approximation while keeping the complexity of
 the network at a low level .  A four layer network is
 chosen for our case .  The learning rate  a   and the
 momentum term  m   in the update equation are chosen as
 a  5  0 . 0005   and  m  5  0 . 5 for all the simulations .  One ANN
 model is used at each joint as the adaptive feedforward
 unit as illustrated in Figure 2 .

 Figures 3 and 4 display the tracking position errors for
 the 1st ,  14th and the 25th runs of the controller ,
 respectively ,  along with the PD control outputs with no
 gravity compensation .  Note the significant improvement
 in the tracking performance mainly due to the close
 approximation of the inverse dynamics by the ANN
 models .  Figure 5 displays the position  RMS  errors for
 both joints plotted against the number of trial runs .  As
 seen from the Figure 5 ,   RMS  position errors drop
 significantly after only a few trial runs ,  then reach an
 asymptotic value after around 20 runs .

 For a comparison of performance ,  RMS ,  final position
 and peak position errors are tabulated for a PD
 controller (with gravity compensation) that used the
 same servo gains and the ANN based adaptive controller
 in Table I .

 An important result which shows the ef fectiveness of
 the proposed scheme comes from the observation of the
 feedforward torque profiles for each joint .  We monitored
 the torques generated at the outputs of the ANN models
 during the 25th run of the controller ,  and compared
 these torque profiles with the torques generated by the
 actual dynamic model of the manipulator (i . e .  these
 represent the desired torque profiles) .  This experiment

 Fig .  3 .  Trajectory position errors of the PD Control ( ?  ?  ? ) and the 1st ( –  –  – ) ,  14th ( –  ?  –  ?  – ) and 25th (——) runs of the ANN
 controller for the 1st joint .
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 Fig .  4 .  Trajectory position errors of the PD Control ( ?  ?  ? ) and the 1st ( –  –  – ) ,  14th ( –  ?  –  ?  – ) and 25th (——) runs of the ANN
 controller for the 2nd joint .

 demonstrates the level of approximation of inverse
 dynamics for the specific desired trajectory .  Figure 6
 shows the desired torque profile compared with the
 torque profiles generated by the ANN model during the
 1st ,  14th and 25th runs of the controller for the first joint .
 Similar results are obtained for the second joint .  As seen
 from this figure ANN models do a very job in
 approximating the manipulator dynamics .  This close
 approximation accounts for the fact that very small
 tracking errors are observed after only a few trials of the
 controller algorithm .
 Adaptation Properties of the Controller :  In this section
 we demonstrate the adaptation properties of the scheme
 to sudden changes in the manipulator dynamics .  The
 experimental set-up is the same as in the trajectory
 following experiments .  At the 25th run of the proposed
 controller ,  during which a close inverse dynamics
 approximation is achieved for the specific trajectory ,  the
 second link mass  m 2  is changed from 8 kgs .  to 16 kgs .  at
 the 2 second mark (a 100% change) .  The position errors
 are plotted for both joints in Figure 7 .  This case can be
 considered as a situation where the manipulator suddenly
 picks up a heavy load .  As shown in Figure 7 ,  the
 controller ef fectively reduces the sudden jumps in the
 position errors and brings the errors down approximately
 to their previous levels in about 1  2  1 . 5 seconds .  In order
 to demonstrate the changes in the manipulator’s inverse
 dynamics due to the end ef fector mass change and the

 Fig .  5 .  RMS position errors for joint 1 (——) and joint 2 ( ?  ?  ? )
 at each trial run of the ANN based controller .

 ANN models’ ability to track these changes ,  the torque
 profiles (i . e .  the inverse dynamics) are monitored during
 the adaptation test .  For the test when  m 2  is changed from
 8  kg to 16  kg ,  the desired torque profiles corresponding
 to this change and the torque profiles generated by the
 ANN models of each joint are plotted in Figure 8 .  The
 observed torque profiles converge to their desired values
 by the end of the trajectory .  This convergence
 demonstrates the fast adaptation of the ANN weights to
 generate the required torque output .  This ef fective
 adaptation eventually drives the position errors to their
 previous levels as illustrated in Figure 7 .  In order to
 check ,  if significant adaptation really occured in this
 short time interval ,  in the sense of significant changes in
 weight magnitudes ,  the Euclidean norm ( L 2  norm) of the
 parameter vector  p  for the first joint’s ANN model is
 computed and plotted in Figure 9 for that specific run .
 Note that the parameter vector norm shows a steep
 increase after the 2 second mark due to the sudden mass
 change and then converges in about 1  2  1 . 5 seconds
 which correspond to 200  2  300 adaptation steps for a step
 size of  h  5  0 . 005  sec .  These simulation results are
 consistent with the analysis given in Section 3 . 3 .  When
 the system is operating at a nominal state ,  perturbations
 in system dynamics are compensated ef fectively by the
 adaptive structure of the controller .

 5  DISCUSSION OF THE RESULTS AND
 CONCLUSION
 The simulation experiments clearly demonstrated that
 the proposed architecture is an ef fective approach to the
 control of robotic manipulators with unknown dynamics .
 The proposed scheme is tested successfully for trajectory
 following and adaptation tasks .

 Through simulation results ,  it’s observed that better
 the approximation of the inverse dynamics for a given
 desired trajectory ,  the lower the tracking errors .
 Theorem 3 . 1 dictates that the bounds on the tracking
 errors are directly proportional to the bounds on the
 dynamics model approximation errors .  This fact is
 actually demonstrated in the trajectory following test ,
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 Table I .  Performance comparison between a  PD  controller with  gra y  ity compensation  and the
 proposed controller .

 PD Control
 — — — — — — — — — — — — —

 ANN  Based  Control
 — — — — — — — — — — — — —

 Type of Error  1 st Link  2 nd Link  1 st Link  2 nd Link

 Peak Position ,   pe p
 RMS Position ,   pe R M S
 Final Position ,   pe f

 0 . 018  rad .
 0 . 011  rad .
 0 . 013  rad .

 0 . 008  rad .
 0 . 004  rad .
 0 . 006  rad .

 0 . 002  rad .
 0 . 0017  rad .
 0 . 020  rad .

 0 . 005  rad .
 0 . 0028  rad .
 0 . 0031  rad .

 since very small position tracking errors are obtained
 when the generated torque profiles are closely matched
 with the system’s inverse dynamics .

 Another important result is the ef fective  adaptation
 capability  of the proposed scheme .  It is shown that any
 change in the manipulator dynamics can be accounted
 for using the proposed scheme .  This makes the use of the
 controller very attractive for real time applications where
 manipulator dynamics can experience sudden changes
 due to parameter variations ,  load changes and any
 possible external disturbances .  When the end ef fector
 mass was doubled during the execution of a trajectory
 following task ,  the controller immediately acted to
 recover the sudden jumps in the tracking errors as shown
 in the Figure 7 .  The error recovery time which is about
 1  2  1 . 5 seconds is comparable with the recovery times of
 the more informed parameter based adaptive schemes . 4 , 5

 Fig .  6 .  The desired (——) and observed torque profiles during
 the 1st ( –  –  – ) ,  14th ( ?  ?  ? ) and 25th ( –  ?  – ) runs of ANN
 controller for the 1st joint .

 Fig .  7 .  Trajectory position errors for joint 1 and joint 2 (bold
 line) ,  when the 2nd link mass  m 2  is changed from 8  kgs to
 16  kgs .

 Simulations results are consistent with the local stability
 and convergence analysis given in Section 3 . 3 .

 Perhaps the most important advantage of the proposed
 controller is that it does  not  require a  parametric model
 of the manipulator .  This brings a high level of autonomy
 to the overall system .  In its presented form ,  the
 controller utilizes one generic ANN model per joint .  The
 proposed architecture requires no a priori knowledge of
 the system dynamics and approximates the inverse
 system dynamics for a specific trajectory following task .
 Data describing the mechanics of the manipulator
 become available only after movements have been
 processed .  During this period of data acquisition and
 training period ,  the trajectory following performance will
 gradually improve .  This is one of the major dif ferences of
 the proposed approach compared to other ANN based
 techniques which utilize of f-line training methods . 12 , 15 , 16

 Fig .  8 .  The desired and observed torque profiles for the first
 link when  m 2  is changed from 8  kg to 16  kg

 Fig .  9 .  Change of the Euclidian norm of all the weights of the
 ANN model during the adaptation experiment .
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 Table II .  Performance comparison with other control schemes .

 Controller Type  1 st Link  2 nd Link

 PD Control (without gravity compensation)
 PD Control (gravity compensation)
 Slotine & Li Adaptive Control
 Of f-line ANN training & control
 Proposed ANN Controller

 0 . 1493  rad .
 0 . 011  rad .
 0 . 0011  rad .
 0 . 027  rad .
 0 . 0017  rad .

 0 . 035  rad .
 0 . 004  rad .
 0 . 0012  rad .
 0 . 026  rad .
 0 . 0028  rad .

 For comparison purposes ,  an  of f-line ANN based
 traing  algorithm is tested using the prediction error
 learning method . 1 5  The ANN models for both joints have
 been trained for 25 runs to approximate the inverse
 dynamics of the manipulator .  During this of f-line training
 phase ,  only PD control has been used to drive the
 manipulator .  Servo gains and all other ANN parameters
 were kept the same as in the previous tests .  Nearly after
 20 runs prediction error reached an asymptotic value and
 training was stopped .  Using these ANN models as the
 feedforward elements along with the PD control ,
 tracking errors were monitored .  Additionally a more
 informed controller ,  a parametric adaptive controller
 based on Slotine and Li’s method , 3 3  was also
 implemented .  Again the same servo gains were used for
 a fair comparison and a large update rate was used for
 fast parameter convergence .  The parameter adaptation
 was run for eight times over the same trajectory .  Position
 RMS errors for these two alternative controllers are
 tabulated in Table II along with the RMS errors from
 our proposed controller and the PD control .  Note that
 the of f line training based ANN control didn ot perform
 as well as the proposed on line ANN controller ,  although
 it gave better results than the PD control without gravity
 compensation .  An interesting result is that our proposed
 controller gave a similar tracking performance as the
 more informed parametric adaptive controller which
 assumed the a priori knowledge of the manipulator
 dynamics in parametric form .

 As discussed in Section 3 ,  a global stability analysis of
 the closed loop system is not trivial due to the coupled
 nonlinear dynamics of the update equation given in (31) .
 However a local stability and convergence analysis of the
 closed loop system is possible 1 9  and it is summarized in
 Section 3 . 3 .  Finally ,  the use of the proposed controller is
 not restricted to manipulator control .  It can be ef fectively
 utilized for any state feedback linearizable nonlinear
 system with unknown system dynamics .
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