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This paper is concerned with the high Reynolds number flow over a spanwise-periodic
array of roughness elements with interelement spacing of the order of the local
boundary-layer thickness. While earlier work by Goldstein et al. (J. Fluid Mech.,
vol. 644, 2010, pp. 123–163) and Goldstein et al. (J. Fluid Mech., vol. 668, 2011,
pp. 236–266) was mainly concerned with smaller roughness heights that produced
relatively weak distortions of the downstream flow, the focus here is on extending the
analysis to larger roughness heights and streamwise elongated planform shapes that
together produce a qualitatively different, nonlinear behaviour of the downstream
wakes. The roughness scale flow now has a novel triple-deck structure that is
somewhat different from related studies that have previously appeared in the literature.
The resulting flow is formally nonlinear in the intermediate wake region, where
the streamwise distance is large compared to the roughness dimensions but small
compared to the downstream distance from the leading edge, as well as in the far
wake region where the streamwise length scale is of the order of the downstream
distance from the leading edge. In contrast, the flow perturbations in both of these
wake regions were strictly linear in the earlier work by Goldstein et al. (2010, 2011).
This is an important difference because the nonlinear wake flow in the present case
provides an appropriate basic state for studying the secondary instability and eventual
breakdown into turbulence.

Key words: boundary layers, boundary layer control, boundary layer receptivity

1. Introduction
It is generally agreed that the streaks induced by three-dimensional (3-D) distributed

surface roughness play an important role in the so called bypass transition that often
occurs in linearly stable or weakly unstable boundary-layer flows. In fact, it is well
known that certain types of streak-like perturbations of linearly stable shear flows
may undergo a transient algebraic growth prior to an eventual exponential decay
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ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

26
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:Marvin.E.Goldstein@nasa.gov
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.269&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.269&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.269&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.269&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.269&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.269&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.269&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.269&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.269&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.269&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.269&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.269&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.269&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.269&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.269&domain=pdf
https://doi.org/10.1017/jfm.2016.269


Nonlinear wakes behind a row of elongated roughness elements 517

(Case 1960; Ellingson & Palm 1975; Landahl 1980). It is, therefore, important to
understand the physical mechanisms related to potential disturbance growth in the
wake flow behind the surface roughness.

Ergin & White (2006) investigated the steady and unsteady disturbances generated
by a spanwise array of cylindrical roughness elements in the context of transient
algebraic growth. They found that the steady disturbance energy decreases rapidly
just behind the roughness element with transient growth occurring further downstream.
But transition to turbulence resulting from rapid exponential growth of secondary
instabilities only occurred for larger roughness Reynolds numbers. They concluded
that the transition behind the roughness elements can be viewed as a competition
between the unsteady secondary disturbance growth and the relatively fast relaxation
of the basic steady flow toward a spanwise uniform Blasius flow. Rapid transition
occurs when the steady disturbance generated by the roughness element is large
because the unsteady secondary instabilities are then able to reach transitional
amplitudes before the steady disturbance induced by the roughness elements relaxes
to a stable state.

Algebraic or non-modal growth is believed to arise from the ‘lift-up’ effect
associated with spanwise varying displacement of a two-dimensional (2-D) shear
flow (Case 1960; Stuart 1965; Landahl 1980). This phenomenon is typically found
to take place over streamwise length scales that are comparable to the downstream
distance from the leading edge (e.g. Andersson, Berggren & Henningson 1999),
but Goldstein et al. (2011, hereafter referred to as GSDC-2), showed that a purely
transcendental (algebraic/logarithmic) growth can occur on a much shorter streamwise
length scale that is large compared to the roughness elements themselves, but small
compared to the distance from the leading edge. Non-modal growth over the longer
streamwise length scale is best characterized as transient growth since the disturbance
eventually decays on the same scale.

Experiments by Fransson et al. (2004) have shown that steady (and stable) laminar
streaks are capable of delaying transition by decreasing or eliminating the growth of
Tollmien–Schlichting (T–S) waves without introducing streak instabilities. Fransson
et al. (2004) also found that the stabilization of T–S disturbances increases with
increasing streak amplitude for a prescribed spanwise periodicity of the streaks. They
were able to obtain steady streak amplitudes of up to 12 % of the free stream velocity
using roughness elements with circular planform, while Fransson & Talamelli (2012)
were recently able to use vortex generators to generate stable streaks of even larger
amplitudes.

GSDC-2 and Goldstein et al. (2010, hereafter referred to as GSDC-1) obtained
an asymptotic high Reynolds number solution for the flow over a spanwise-periodic
array of relatively small roughness elements whose spanwise separation and plan form
dimensions are of the order of the local boundary-layer thickness δ∗. They showed
that the local flow in the vicinity of the roughness has a double layer structure
that is the same as in Choudhari & Duck (1996). But this result becomes invalid
over downstream distances comparable to the distance, say x∗0, from the leading
edge. Non-parallel effects come into play in this region and the flow is governed by
the boundary region equations (BRE) of Kemp (1951). The numerical results show
that the wake velocity perturbations exhibit transient growth in the BRE region, but
the flow perturbations always remained linear in this region even when the flow is
nonlinear in the vicinity of the roughness elements. The earlier studies (Case 1960;
Stuart 1965; Landahl 1980) only considered exactly parallel base flows with inviscid
streaks that exhibited purely temporal growth and were completely independent of the
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streamwise coordinate. Case (1960), for example, analysed the initial value problem
for small-amplitude disturbances on linearly stable parallel shear flows and showed
that certain types of streak-like perturbations can grow algebraically in time before
exhibiting exponential decay.

Calculations presented in GSDC-1 and GSDC-2 suggest that the roughness elements
with the largest roughness heights produced flows that develop recirculating flows
immediately downstream of the roughness elements which are likely to break down
and initiate vortex shedding before the streak amplitudes can become large enough
to produce O(1) changes in the downstream flow. But (as shown in § 7, below) the
breakdown of the recirculating flow can be made to occur at larger roughness heights
by increasing the aspect ratio of the roughness elements (i.e. making them more
elongated in the streamwise direction) and therefore decreasing the slope of their
downstream surfaces. The elongated elements can also provide a better representation
of the vortex generators used by Fransson & Talamelli (2012) and the roughness
element shapes used by Downs & Fransson (2014).

A major purpose of the present paper is to show that streamwise elongated
roughness elements can lead to a more interesting flow regime involving stationary
streaks with relatively large, i.e. nonlinear amplitudes in the downstream region. The
analysis is again based on an asymptotic high Reynolds number solution for the flow
over a spanwise-periodic array of relatively small roughness elements whose spanwise
separation is of the order of the local boundary-layer thickness δ∗ (figure 1). But in
order to maximize the strength of the downstream wakes while maintaining a steady
flow by delaying the potential breakdown of the flow in the immediate vicinity of
the roughness elements, the focus is now on roughness elements with streamwise
length scales of the order of the triple-deck length scale. The increased streamwise
scale causes the roughness scale flow to become interactive even though it is only
slightly longer that than the O(δ∗) length scale considered in GSDC-1 and GSDC-2.
More important, the resulting intermediate scale flow and therefore the BRE flow
further downstream is now formally nonlinear at lowest order of approximation. It is
worth noting that in the related but somewhat different context of a single roughness
element in a hypersonic boundary layer, Ruban & Kravtsova (2013) have shown that
a fully interactive high Reynolds number flow can remain nonlinear asymptotically
far downstream in the viscous wake region when the roughness height is sufficiently
large.

Downs & Fransson (2014) used a spanwise-periodic array of streamwise elongated
(i.e. rib-like) roughness elements to study the effect of their wakes on the amplification
of T–S waves – presumably because the longer streamwise length scales allowed
them to obtain larger amplitude steady wakes. These rib-like roughness elements had
hemispherical caps and hence involved two disparate length scales corresponding to
the roughness element tips and the roughness mid-region, respectively. The present
paper is quite germane to this experiment, even though it only considers roughness
elements with a single streamwise length scale over the entire extent of the element.
It is also worth mentioning that the motivation for the Downs & Fransson (2014)
experiment was the stabilization of T–S waves while that the present work may be
more relevant to the study of secondary instability.

The solution for the roughness wake flow (which exhibits transient growth) is now
governed by the nonlinear form of the BRE at the lowest order of approximation
and can, therefore, provide an appropriate base flow for studying the secondary
instability and the eventual breakdown into turbulence that was noted by Ergin &
White (2006). But, the second-order term in the BRE solution, which is O(R−1/8)
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FIGURE 1. Boundary-layer flow structure, (a) side view, (b) cross-sectional view.

relative to the zeroth-order solution and formally corresponds to the linear solution
given in GSDC-2, turns out to be much larger than the leading-order nonlinear
contribution at the start of the BRE region (at least at the finite Reynolds numbers
relevant to the experiments). The second-order term can, therefore, not be entirely
neglected even though its amplitude decreases with increasing downstream distance
while the nonlinear term undergoes transient growth and eventually becomes dominant.
Another advantage of the present scaling is that it increases the maximum allowable
roughness height to the order of the triple-deck height. The near-field flow behind the
streamwise elongated roughness elements considered in this paper directly matches
onto the outer BRE flow and therefore possesses a much simpler asymptotic structure
than the shorter roughness planforms with an O(1) aspect ratio that were considered
in GSDC-1 and GSDC-2.

The relevant problem for the streamwise elongated roughness elements is formulated
in § 2 and the local solution for the flow in the main boundary layer is considered
in § 3. As usual, the main-deck solution becomes invalid near the wall and the
appropriate equations for the wall region are derived in § 4. The resulting triple-deck
structure is rather novel in that it is a hybrid between the fully interactive and
compensation regimes which seems to be somewhat different from what has previously
appeared in the literature (e.g. Bogolepov & Lipatov 1985; Duck & Burggraf 1986;
Bogolepov 1987; Bogolepov 1988). Its numerical solution is discussed in § 4.2.
Section 5 considerers the asymptotic behaviour of the roughness scale solution at
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large downstream distances and shows that this solution eventually becomes invalid
at a downstream distance of the order of the streamwise length scale x∗0. A new outer
scale solution that matches onto the inner roughness scale solution is discussed in
§ 6. Its numerical solution is discussed in § 6.4 and the results and conclusions are
presented in § 7 where it is shown that the true asymptotic behaviour of the wall
layer solution can only be found by considering the fully nonlinear roughness scale
solution, no matter how small the roughness height h may be. It is also shown that
the roughness elements can have a circular planform at moderate Reynolds numbers
when their scaled streamwise length is only slightly smaller than their scaled spanwise
length. The present results are therefore expected to be directly applicable to many of
the previously reported experimental roughness studies involving roughness element
plan forms with an O(1) aspect ratio. The analysis can even be applied to the stable
flows produced by the miniature vortex generators studied by Siconolfi, Camarri &
Franson (2015) (see also, Fransson & Talamelli 2012), but results are only presented
for smooth roughness elements in § 7. Some concluding remarks are given in § 8. The
short roughness problem is revisited in appendix C where it is shown that the present
long streamwise length scale solution is also needed in order to extend the short
streamwise length scale solutions of GSDC-1 and GSDC-1 into the fully nonlinear
intermediate scale regime.

2. Formulation and scaling
Our interest here is in studying the transient growth of the wakes behind a linear

array of roughness element, which usually occurs in a region where their spanwise
length scale is of the order of the local boundary-layer thickness (e.g. Ergin & White
2006) and (as will be shown below) the flow is governed by the BRE. We, therefore,
consider an incompressible flat-plate boundary layer that is perturbed by a spanwise-
periodic linear array of roughness elements at some downstream location, say x∗= x∗0,
where the boundary-layer thickness is large compared to the roughness height, and
the spanwise wavelength of the array, say 2πl δ∗, where l is an O(1) constant, is
comparable to the local value of the boundary-layer thickness δ∗ ≡ x∗0/

√
R = x∗0δ (or

equivalently, the similarity length scale) at x∗0 where R ≡ x∗0U∞/ν∗ is the Reynolds
number based on x∗0 and the free stream velocity U∞, with ν∗ being the kinematic
viscosity and δ ≡ R−1/2� 1 being the scaled boundary-layer thickness at x∗0.

(Note that we have omitted the star superscript on U∞ even though it denotes a
dimensional quantity.) Then, in order to maximize the wake perturbation at the O(x∗0)
downstream distances where (as shown in § 6 below) the streamwise ellipticity effects
decay out and the motion is governed by the BRE, we require that the height of the
roughness elements be as large as possible (as was done in in GSDC-1 and GSDC-2).
But we now allow their streamwise length scale to be much larger than their spanwise
length scale δ∗ (but small compared to x∗0) in order to minimize the recirculating flow,
and thereby insure that the flow remains steady. The roughness scale flow will now
match directly onto the outer BRE solution (and therefore, as noted in the introduction
and as can be seen from appendix C below, result in a much simpler asymptotic flow
structure than that of the short roughness element flows considered in GSDC-1 and
GSDC-2) if we take this longer streamwise length scale to be of the order of ε3x∗0
where ε≡R−1/8= δ1/4� 1. (Notice that ε is now defined differently than in GSCD-2.)

The velocity components u(X, yr, z), v(X, yr, z), w(X, yr, z) satisfy the no-slip
boundary condition

u(X, yr, z)= v(X, yr, z)=w(X, yr, z)= 0 (2.1)
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Roughness length Roughness height Roughness width

GSDC-1, GSCD-2 δ∗ δ∗R−1/6 δ∗

Present paper δ∗R1/8 δ∗R−1/8 δ∗

TABLE 1. Comparison of the present scaling with the GSDC-1/GSCD-2 scaling (actual
physical lengths are equal to order-one constants times the scale factors).

at the wall, where
yr = εhF(X, z) (2.2)

is the roughness height, z≡ z∗/δ∗, y≡ y∗/δ∗, X≡ (x∗ − x∗0)/ε
3x∗0 and, as usual, the fluid

velocity
v = {u, v,w} (2.3)

and pressure p are normalized by U∞ and ρ∗U2
∞, respectively with ρ∗ being the fluid

density.
The scaled roughness shape function

F(X, z)→ 0, as X→±∞ (2.4)

is assumed to be more or less localized (see (7.1) and (7.7) below) in the streamwise
direction and we require that

p(X, y, z)→ 0, as X→∞ (2.5)

and
u(X, y, z)→UB(y), v→ δVB(y), as X→−∞, (2.6a,b)

where
UB = dFB/dy→ λy+O(y4), as y→ 0 (2.7)

and δVB denote the streamwise and transverse components of the Blasius velocity with
the Blasius function FB is determined by

d3FB

dy3
+ 1

2
FB

d2FB

dy2
= 0, (2.8)

with FB= dFB/dy= 0 at y= 0, dFB/dy= 1 at y=∞ and λ≈ 0.33206, since y is equal
to the Blasius variable at x∗ = x∗0.

The present scaling is compared with the GSDC-1/GSCD-2 scaling in table 1.

3. Asymptotic structure of near-field solution and governing equations
3.1. Main boundary layer

As will become clear subsequently, it is appropriate to divide the boundary-layer flow
into an inner streamwise region in the vicinity of the roughness elements (referred to
herein as the near field of the roughness array) and an outer region (referred to here
as the far field) that lies further downstream (see figure 1a). In the main boundary
layer, where y= O(1) and the upstream velocity is large, the near-field solution can
be linearized and should, therefore, expand like

{u, v,w, p} = {UB, 0, 0, 0} + ε{u0(X, y), εv0(X, y), εP(X)}
+ ε2{u1(X, y, z), εv1(X, y, z), εw1(X, y, z), εp(1)0 (X, y)+ ε2p1(X, y, z)} + · · · . (3.1)
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As will be shown below the 2-D O(ε) terms are produced the 2-D distortion
generated by nonlinear interactions in the wall layer (and would, therefore, be absent
if the scaled roughness height were infinitesimally small). Substituting (3.1) into the
incompressible Navier–Stokes equations shows that these terms exhibit a triple-deck
structure and are determined by the 2-D triple-deck equations

u0 =U′B(y)A(X), v0 =−UB(y)
dA(X)

dX
, (3.2a,b)

d2A(X)
dX2

=− 1
π

∫ ∞
−∞

dP(X̃)/dX̃

X − X̃
dX̃, (3.3)

with the latter equation coming from the flow in the upper deck. But the smaller
3-D O(ε2) perturbations {u1, v1,w1, P1, p1} are now governed by the inhomogeneous
linearized Euler equations

∂p(1)0 (X, y)
∂y

=U2
B

d2A
dX2

, (3.4)

∂u1

∂X
+ ∂v1

∂y
+ ∂w1

∂z
= 0, (3.5)

UB(y)
∂u1

∂X
+ v1U′B =

1
2

dA2

dX
U2

B

[
d
dy

(
dUB/dy

UB

)]
− dP

dX
(3.6)

and

UB
∂v1

∂X
=−∂p1

∂y
+UB

dUB

dy

(
A

d2A
dX2
− d A

d X
d A
d X

)
, (3.7)

where the prime on the Blasius velocity UB denotes differentiation with respect to y.
We now introduce the decomposition

{u1, v1, p1} = {ū1, v̄1, p̄1} + {u′1, v′1, p′1} (3.8)

of the flow into its spanwise mean components (denoted by the over bars) and its
spanwise varying components with a zero mean and rewrite these equations in the
following form

∂2p′1
∂y2
+ ∂

2p′1
∂z2
− 2

dUB/dy
UB

∂p′1
∂y
= 0, (3.9)

UB(y)
∂2u′1
∂X2
=
(

dUB/dy
UB

)
∂p′1
∂y
, (3.10)

UB
∂v′1
∂X
=−∂p′1

∂y
, UB

∂w1

∂X
=−∂p′1

∂z
(3.11a,b)

ū1 = ∂ψ̄
∂y
, v̄1 =−∂ψ̄

∂X
, (3.12a,b)

∂ p̄1

∂y
= d2

dX2
(UBψ̄)+ dU2

B/dy
2

[
A

d2A
d X2
−
(

dA
d X

)2
]
, (3.13)
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where we have put

ψ̄ ≡ UB(y)
[[

A1(X)− P(X)
{∫ y

0

[
1

U2
B(y)
− 1
(λy)2

]
dy− 1

λ2y

}]]
+ dUB

dy
A2(X)

2
. (3.14)

Notice that the present scaling is different from that in GSDC-2 and that the O(ε2)

pressure is now independent of z. It, therefore, only affects the spanwise mean velocity
ū1 and does not contribute to (3.10) for the spanwise variable velocity u′1 which causes
it to differ from (3.3) of GSDC-2.

Equation (3.3) implies that the Fourier transforms

{P(X), A(X)− A0} =
∫ ∞
−∞
{P̃(k), Ã(k)}eikX dk (3.15)

of the zeroth-order pressure and displacement perturbations {P(X), A(X)− A0} (where
A0 is an arbitrary constant) are related by√

k2 + 02P̃= k2Ã, (3.16)

where
√

k2 + 02 ≡ √k+ i0
√

k− i0 with the branch cut for
√

k± i0 taken along the
negative/positive imaginary axis. Since the flow is assumed to be periodic in the
spanwise direction, it follows from (3.9) that the spanwise variable pressure must
possess the Fourier expansion

p′1(X, y, z)=
n=∞∑

n=−∞
n6=0

πn(y)P̃(1)n (X)e
in z/l (3.17)

in terms of the solution πn(y) to the unit boundary value problem

U2
B(y)

d
dy

[
1

U2
B(y)

dπn

dy

]
−
(n

l

)2
πn = 0, n=±1,±2, . . . , (3.18)

πn(0)= 1, πn(y)→ 0, as y→∞, (3.19a,b)

for the nth Fourier harmonic of the main-deck pressure (which is now simpler than
the boundary-value problem (3.9) and (3.10) of GSDC-2). The spanwise Fourier
coefficients P̃(1)n (X) of the limiting surface pressure distribution are given by

P1(X, z)≡ p′1(X, 0, z)=
n=∞∑

n=−∞
n 6=0

P̃(1)n (X)e
in z/l. (3.20)

Then since y= 0 is a regular singular point of (3.18), it follows from (3.19) and the
method of Frobenius that the solution of (3.18) behaves like

πn(y, k)∼ 1− 1
2

(n
l

)2
y2 + bn

3! y
3 +O(y4), as y→ 0, (3.21)
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where bn is a constant. And it then follows from (2.7), (3.2), (3.10), (3.11), (3.20) and
(3.21) that

u0→ λA(X), as y→ 0, (3.22)
∂2u′1(X, y, z)

∂X2
→ 1
λ y
∂2P1(X, z)

∂z2
, as y→ 0 (3.23)

and
∂w1(X, y, z)

∂X
→− 1

λy
∂P1(X, z)

∂z
, as y→ 0. (3.24)

4. Wall layer/inner
4.1. Formulation and scaling

The cross-flow velocity w1 has a critical layer singularity as y→ 0 which causes the
expansion (3.1) to break down when

Ŷ ≡ y/ε=O(1), (4.1)

and it is therefore necessary to obtain a new solution in this region, which brings
in viscous and non-parallel flow effects (see figure 1a). Equations (3.1), (3.2),
(3.12)–(3.14), (3.23) and (3.24) show that the solution in this critical layer region
where the upstream velocity is small (which we refer to here as the wall layer) is
nonlinear and must expand like (see Choudhari & Duck 1996)

{u, v,w, p} = ε{U, ε2V̆, εW, εP(X)+ ε3P1(X, z)} + · · · , (4.2)

where P(X) is the leading-order spanwise invariant pressure perturbation that appears
in the main-deck expansion (3.1) and the spanwise variable component P1(X, z) of
the lower-deck pressure is related to the second-order main-deck pressure p′1(X, 0, z)
by (3.20).

The Prandtl transformation

Y ≡ Ŷ − hF(X, z), (4.3)
V ≡ V̆ − h(FXU + FzW) (4.4)

can be used to express the leading-order solution {U, V̆,W, P+ ε2P1} in terms of the
solution to the 3-D boundary-layer equations

UX + VY +Wz = 0, (4.5)
UUX + VUY +WUz =−dP(X)/dX +UYY, (4.6)

UWX + VWY +WWz =−∂P1(X, z)/∂z+WYY, (4.7)

subject to the boundary conditions

U = V =W = 0, at Y = 0, (4.8)

U→ λY; V,W→ 0, as x→−∞, (4.9a,b)
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and the matching conditions

U→ λ[Y + A(X)+ hF(X, z)] − 1
λY
∂2P†(X, z)

∂z2
, as Y→∞, (4.10)

∂2P†(X, z)
∂X2

≡−P1(X, z), (4.11)

∂W
∂X
→− 1

λY
∂P1(X, z)

∂z
, as Y→∞, (4.12)

where we have used equations (2.7), (3.1), (3.22)–(3.24), (4.1)–(4.3), (3.22)–(3.24) to
obtain the latter conditions.

It should be noted that the spanwise mean and spanwise variable components of
the pressure, P(X) and P1(X, z) respectively, are not externally imposed in this case
but are determined as part of the viscous–inviscid interactive solution – with the
novel feature being that P1(X, z) satisfies the zero displacement requirement implied
by (4.10) while P(X) is related to the mean boundary-layer displacement A(X) in
the usual way by (3.3). This is different from the more conventional boundary-value
problem (3.19)–(3.24) of GSDC-2 which involves the single (internally determined)
pressure variable P.

4.2. The numerical solution
The numerical scheme for treating (4.5)–(4.6) is an adaptation of the spectral method
of Duck & Burggraf (1986). Differentiating (4.6) with respect to Y and invoking the
continuity equation (4.5) yields

τ̂YY − λY τ̂X + λWz = τ̂UX +Uτ̂X + VY τ̂ + V τ̂ +WYUz +W τ̂z ≡ R(X), (4.13)

where we have written U = λY +U and set

τ̂ =UY (4.14)

so that the hat and script variables are zero in the case of undisturbed flow and satisfy
the transverse boundary conditions

U → λ[A(X)+ hF(X, z)], τ̂→ 0, as Y→∞, (4.15a,b)

U = 0, τ̂Y = dP/dX, at Y = 0. (4.16a,b)

Correspondingly we write (4.7) in the form

WYY − λYWX − P(1)z =U WX + VWY +WWz ≡ R(z), (4.17)

where W satisfies the obvious homogeneous boundary conditions at Y= 0 and Y→∞.
It is natural to use a spectral method in the spanwise direction z since the flow

is periodic in that direction, but we also use a spectral method in the streamwise
direction (X) and, therefore, Fourier decompose the solution in those directions to
obtain

{τ̂ ,U ,W, P1, F} =
∞∑

n=−∞
einz/`

∫ ∞
−∞
{τ̃n, Ũn, W̃n, P̃

(n)
1 F̃n}eikX dk. (4.18)
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The Fourier transforms of the momentum equations, (4.13), (4.14) and (4.17) can then
be written in the following symbolic form, for each choice of k and n:

τ̃nYY − ikλY τ̃n + iλ(n/l)W̃n = R̃(X)
n , (4.19)

W̃nYY − ikλYW̃n + i(n/l)P̃ (1)
n = R̃(z)

n , (4.20)

where R̃(X)
n and R̃(z)

n represent the double spectral decompositions of R(X) and R(z)

respectively and it follows from (4.16), (4.15a,b) and (3.16) that τ̃n satisfies the
following conditions ∫ ∞

0
τ̃n dY = λ(h Fn + δn,0P̃

√
k2 + 02/k2), (4.21)

τ̃nY = ikδn,0P̃, for Y = 0, (4.22)

where δi,j denotes the Kronecker delta and P̃(k) is defined by (3.15). Note that some
of the integration contours in (4.18) have to be deformed in the manner described in
§ 5 below because some of the quantities on the left-hand side become unbounded as
X→∞ and that (4.15a,b) implies that τ̃n→ 0 as Y→∞.

Second-order finite differencing was employed in the Y-direction in conjunction
with a non-uniform grid that concentrated grid points close to Y= 0 and also extended
the grid to relatively large values in Y in order to capture the algebraic decay as
Y→∞. Generally we used the transformation Y = Y1/(1− Y1) with a uniform grid
in Y1.

In Duck & Burggraf (1986) the nonlinear contributions to the momentum equations
were evaluated using a pseudo-spectral approach, using fast Fourier transform (FFT)
algorithms to switch between physical and spectral space (taking advantage of the
associated speed up in computation). However, although an FFT procedure was
implemented, a convolution procedure to evaluate the nonlinear terms was preferred.
The reason for this was that the far downstream (X→∞) behaviour of the solution
is of particular interest in this study. While some of the integrals in (4.18) have
to be interpreted as contour integrals because their integrands become singular as
k→ 0 only integrable singularities appeared in the integrals used in the computations
and the integrations could be carried out along the real axis. But this still required
the use of an extremely fine spectral resolution in k-space in order to perform
accurate computations of the downstream asymptotes. Consequently, a non-uniform
grid was again taken, specifically, k = k1(1 − exp(−k2

1)), which had the effect of
concentrating points close to k = 0 when a uniform grid in k1 space was taken.
Needless to say, extensive numerical grid studies were undertaken in order to confirm
the accuracy/integrity of our computations. The Hermitian property of the transform
variables was also exploited. The downside is that this renders the overall system
inconvenient for FFT procedures. An iterative approach which first considered all k
points and then all n terms in turn, was repeatedly used , until the required level of
tolerance had been achieved.

5. Asymptotic structure of near-field solution at large downstream distances

When X → ∞, the second-order surface pressure P1(X, z) is expected to decay
like (ln X1/3)β/Xα (see GSDC-1 and GSDC-2) which means that the first-order
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displacement must grow like (ln X1/3)β/X(α0−1) in order to balance the nonlinear
terms (see analysis in appendix A), i.e.

A(X)− A0 ∼ Â[ln(X/λ)1/3]β/(X/λ)(α0−1) (5.1)

and

P1(X, z)∼ p̂(0, z)
[ln(X/λ)1/3]β
(X/λ)α

, as X→∞, (5.2)

where Â, α0, α, β are constants (see GSDC-1 and GSDC-2) and we have introduced
the p̂(0, z) term in anticipation of the p̂(0, z) term that appears in the downstream
asymptote of the main-deck solution. It then follows from (3.17) and (3.20) that the
spanwise variable pressure in the main deck has the downstream asymptote given by

p′1(X, y, z)∼ p̂(y, z)[ln(X/λ)1/3]β/(X/λ)α, as X→∞, (5.3)

where

p̂(y, z)≡
n=∞∑

n=−∞
n6=0

πn(y)Ãneinz/l. (5.4)

Substituting the expansion (3.21) for the near-wall behaviour of the unit solutions πn

into (5.4) yields

p̂(y, z)∼
n=∞∑

n=−∞
n6=0

[
1− 1

2

(n
l

)2
y2 +O(y3)

]
Ãneinz/l (5.5)

as y→ 0.
Deforming the integral (3.15) onto the contour C shown in figure 2 and inserting

the pressure-displacement relation (3.16) yields

{P(X), A(X)} =−
∮

c
{ς 2/

√
ς 2 + 0, 1}Ã(ς)eiXς dς. (5.6)

It then follows from equations (6.1.4) and (6.1.17) of Abramowitz & Stegun (1965)
that ∫

C
eiXςς ν dς = (e

iπν/2 − e−3iπν/2)Γ (ν + 1)
iX(ν+1)

(5.7)

and ∫
C

eiXς ς ν√
ς + i0

√
ς − i0

dς = (e
iπν/2 + e−3iπν/2)Γ (ν)

Xν
, (5.8)

where ν < 1 denotes a non-integer constant, the branch cut of ς ν is taken along the
positive imaginary axis and Γ (ν) denotes the Gamma function. (This also follows
from (3.15) and Table I of Lighthill 1964.)

Then A(X) will exhibit the asymptotic behaviour (5.1) when α0 is not an integer
and β = 0 if Ã(k) behaves like

Ã(k)→ aeiπ(α0−2)/2(kλ)α0

λk2
, as k→ 0, (5.9)
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C

Branch cut for

Branch cut for

Re

Im k

k

FIGURE 2. Integration contour for (5.6) with X > 0.

where a is related to the constant Â in (5.1) by

Â=−2a sin π(α0 − 2)Γ (α0 − 1). (5.10)

In which case (5.8) would show that

P̃(k)→ aeiπ(α0−2)/2(kλ)α0

λ
√

k+ i0
√

k− i0
, as k→ 0 (5.11)

and, therefore, that the leading-order spanwise-invariant pressure perturbation in the
main deck has the downstream asymptote

P(X)∼ P̂/(X/λ)α0, X→∞, (5.12)

where
P̂≡ −2a cos π(α0 − 2)Γ (α0)

λ
. (5.13)

Aside from its scaling, the downstream flow is similar to that in GSDC-2, which
shows that it is completely linear when α is sufficiently large and that solutions
only exist when α = n/3, for n = 1, 2, . . . . However, GSDC-1 also showed that
the wall layer equations can become nonlinear when α is decreased to 4/3 with
β = 0. And since our interest here is in maximizing the strength of the downstream
we now choose α = 4/3, β = 0 and set α0 = 2/3 in order to match the resulting
main-deck solutions to the similarity wall layer solution. (It will show in § 7 below
that this scaling is consistent with the asymptotic behaviour of the numerical near-field
solutions for fairly generic roughness shapes.)
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The main-deck equations (3.2) and (3.10)–(3.14) then possess the exact solution

u0 = U′B(y)Â (X/λ)
1/3, (5.14)

v0 = −UB(y)Â/[λ3(X/λ)2/3], (5.15)

P(X) = P̂/(X/λ)2/3, (5.16)

p̄1(X, y) = − 2Â
(3 λ)2(X/λ)5/3

∫ y

0
U2

B(y) dy, (5.17)

p′1(X, y, z) = p̂(y, z)/(X/λ)4/3, (5.18)

u′1(X, y, z) = −(3λ)
2(X/λ)2/3

2
U′B(y)
U2

B(y)
∂

∂y
p̂(y, z), (5.19)

v′1(X, y, z) = 3λ
(X/λ)1/3UB(y)

∂ p̂(y, z)
∂y

, (5.20)

w1(X, y, z) = 3λ
(X/λ)1/3UB(y)

∂ p̂(y, z)
∂z

, (5.21)

which can be regarded as the leading-order terms in an asymptotic expansion of the
solution to the complete boundary-value problem. It then follows from (2.7), (3.17),
(3.21), (5.1) and (5.5) that

u0 ∼ λÂX1/3, (5.22)

w1(X, y, z) ∼ 3
(X/λ)1/3y

∂ p̂(0, z)
∂z

, (5.23)

u′1(X, y, z) ∼ −32λ(X/λ)2/3

2y
∂2p̂(0, z)
∂z2

, (5.24)

as y→ 0.
Equation (5.16) implies that the spanwise mean pressure must drop out of the wall

layer equations (4.5)–(4.12) when X→∞ and the resulting equations then an exact
similarity solution, which corresponds to setting λ = 4/3 in the general (4.12) of
GSDC-2 and is therefore of the form

W = (X/λ)−2/3W̃(η, z), U = λ(X/λ)1/3Ũ(η, z), V = (X/λ)−1/3Ṽ(η, z), (5.25a−c)

with the similarity variable η given by

η≡ Y/(X/λ)1/3 (5.26)

and Ũ, Ṽ, W̃ are determined by

1
3(Ũ − ηŨη)+ Ṽη + W̃z = 0, (5.27)

−1
3

Ũ(2W̃ + ηW̃η)+ ṼW̃η + W̃W̃z =−∂ p̂(0, z)
∂z

+ W̃ηη, (5.28)

1
3 Ũ(Ũ − ηŨη)+ ṼŨη + W̃Ũz = Ũηη, (5.29)

subject to the no-slip/impermeability boundary conditions

Ũ(0, z)= Ṽ(0, z)= W̃(0, z)= 0. (5.30)
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Equations (3.1), (4.2) and (5.22)–(5.25) show that these solutions will match onto the
near-wall behaviour of the main boundary-layer solution if we require that

W̃(η, z) → 3
η

∂ p̂(0, z)
∂z

, (5.31)

Ũ(η, z) → η+ Â− 32

2η
∂2p̂(0, z)
∂z2

, (5.32)

as η→∞.
Equations (5.27)–(5.29) can be simplified by introducing the variable

Ṽ ≡ Ṽ − η
3

Ũ (5.33)

to obtain

2
3 Ũ + Ṽη + W̃z = 0, (5.34)

−2
3

ŨW̃ + Ṽ W̃η + W̃W̃z =−∂ p̂(0, z)
∂z

+ W̃ηη, (5.35)

1
3 Ũ2 + Ṽ Ũη + W̃Ũz = Ũηη. (5.36)

And it now follows from (5.32)–(5.34) that

Ṽη→− 2
3(η+ Â)+O(η−2), as η→∞ (5.37)

while (5.30), (5.34) and (5.33) show that

Ṽ = Ṽη = 0, at η= 0. (5.38)

Using (5.34) to eliminate Ũ in (5.35) yields

(Ṽ W̃)η + (W̃2)z =−∂ p̂(0, z)
∂z

+ W̃ηη. (5.39)

The system (5.34)–(5.38) can be further reduced to a set of two equations in the two
independent variables W̃ and Ṽ by using (5.34) together with this result to eliminate
Ũ in (5.36) to obtain

− 3
2
(Ṽη + W̃z)

2 + [Ṽ (Ṽη + W̃z)]η − (W̃W̃z + Ṽ W̃η)z = ∂
2p̂(0, z)
∂z2

+ Ṽηηη. (5.40)

However, it turns out to be more convenient for numerical purposes to solve system
(5.34), (5.36) and (5.39) rather than (5.39) and (5.40) and the former were therefore
used for the computations described in § 7 of this paper. It is easy to construct
an analytical solution to the boundary-value problem obtained by linearizing these
equations about Ũ = η and Ṽ = −η2/3. We obtain the solution to the nonlinear
problem by iterating about the linear result since the numerical computations show
that Ũ − η is quite small and, hence, the linear solution is expected to be a fairly
accurate approximation to the solution to the nonlinear problem. The details are given
in appendix A and the exact solution to the linearized problem is given by (A 6),
(A 10) and (A 11) with F=G= 0.
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The exact homogeneous solution (5.14)–(5.21) and (5.25) does not satisfy the
complete boundary-value problem (4.5)–(4.12), but the asymptotic solution to this
problem can be found by treating this solution as the lowest-order term in an
asymptotic expansion in inverse powers of X1/3. For example, the spanwise variable
pressure is expected to expand like

p′1(X, y, z)= p̂(y, z)/(X/λ)4/3 + p̂1(y, z)/(X/λ)5/3 + · · · , (5.41)

while the wall layer solution should have an expansion of the form

W = (X/λ)−2/3W̃(η, z)+ (X/λ)−1W̃1(η, z)+ · · · ,
U = λ[(X/λ)1/3Ũ(η, z)+ Ũ1(η, z)+ · · ·],

V = (X/λ)−1/3Ṽ(η, z)+ (X/λ)−2/3Ṽ1(η, z)+ · · · .

 (5.42)

The second-order terms are important because, as will be shown in § 7 below (see
figures 8 and 11), p̂1(0, z) turns out to be much larger than p̂(0, z). This implies
(among other things) that the leading-order terms only become dominant at very large
positive values of X (see figure 7 below).

6. Far-field solution and matching with the near field (see figure 1a)
Inserting (5.22) and (5.24) into the expansion (3.1) shows that the near-field solution

breaks down when X1/3ε = O(1) because the O(ε) and O(ε2) terms then become of
the same order of magnitude. It is, therefore, necessary to obtain a new expansion in
the far-field (or outer region) where

x≡ x∗/x∗0 = ε3X + 1, (6.1)

is O(1). The flow in this (outer) region now has an expansion of the form

{u, v,w, p} = {ũ(x, y, z), δṽ(x, y, z), δw̃(x, y, z), δ p̃0(x)+ δ2p̃(x, y, z)}
+ ε{ũ1(x, y, z), δṽ1(x, y, z), δw̃1(x, y, z), δ p̃(1)(x)+ δ2p̃1(x, y, z)} + · · · , (6.2)

with δ≡R−1/2= ε4 and the lowest-order solution {ũ, ṽ, w̃, p̃} being determined by the
full nonlinear BRE

ũx + ṽy + w̃z = 0, (6.3)
ũũx + ṽũy + w̃ũz = ũyy + ũzz, (6.4)

ũṽx + ṽṽy + w̃ṽz =−p̃y + ṽyy + ṽzz, (6.5)
ũw̃x + ṽw̃y + w̃w̃z =−p̃z + w̃yy + w̃zz, (6.6)

indicating that spanwise ellipticity effects must be preserved in this region. The
leading-order flow variables must satisfy the wall-normal boundary conditions

ũ, ṽ, w̃= 0; for y= 0; ũ→ 1, w̃, p̃→ 0, as y→∞, (6.7a,b)

along with appropriate upstream matching conditions.

6.1. Main boundary layer
It can be verified by direct substitution that (6.3)–(6.6) permit a solution with an inner
(i.e. upstream) limit of the form

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

26
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.269


532 M. E. Goldstein, A. Sescu, P. W. Duck and M. Choudhari

ũ=UB(y)+ (x− 1)1/3ũ(0)(y)+ (x− 1)2/3ũ(1)(y, z)+ · · · , (6.8){
ṽ

w̃

}
=
{
δVB(y)

0

}
+ 1
(x− 1)2/3

{
ṽ(0)(y)

0

}
+ 1
(x− 1)1/3

{
ṽ(1)(y, z)
w̃(1)(y, z)

}
+ · · · , (6.9)

p̃(x, y, z)= P(1)(y)/(x− 1)5/3 + p̃(1)(y, z)/(x− 1)4/3 + · · · , (6.10)

as x→ 1 with y = O(1), where the coefficients ũ(1), ṽ(1), w̃(1), p̃(1) satisfy the linear
equations

2
3 ũ(1) + ṽ(1)y + w̃(1)

z = 0, (6.11)
2
3 UB(y)ũ(1) + ṽ(1)U′B(y)= 0, (6.12)

−1
3

UB(y)
{
ṽ(1)

w̃(1)

}
=−

{
p̃(1)y

p̃(1)z

}
. (6.13)

Eliminating ũ(1), ṽ(1), w̃(1) between (6.11)–(6.13) shows that p̃(1) satisfies

∂2p̃(1)

∂y2
+ ∂

2p̃(1)

∂z2
− 2

U′B
UB

∂ p̃(1)

∂y
= 0. (6.14)

6.2. Matching
It now follows from (6.1) and (6.8)–(6.10) that the inner expansion of the outer
solution as x→ 1 is

ũ ∼ UB(y)+ εX1/3ũ(0)(y)+ ε2X2/3ũ(1)(y, z)+ · · · , (6.15)

δ

{
ṽ
w̃

}
∼
{
δVB(y)

0

}
+ ε2 1

X2/3

{
ṽ(0)(y)

0

}
+ ε3 1

X1/3

{
ṽ(1)(y, z)
w̃(1)(y, z)

}
+ · · · , (6.16)

δ2 p̃ ∼ ε3 P(1)(y)
X5/3

+ ε4 p̃(1)(y, z)
X4/3

+ · · · . (6.17)

Substituting (6.12) and (6.13) into the above confirms that the result will match onto
the outer expansion (5.14)–(5.21) of the near-field solution (3.1) if

ũ(0)(y)=U′B(y)Â/λ
1/3, (6.18)

ṽ(0)(ŷ)=−UB(y)Â/λ1/33, (6.19)

P(1)(y)=− 2Â
32λ1/3

∫ y

0
U2

B(y) dy (6.20)

and
p̃(1)(y, z)= λ4/3p̂(y, z), (6.21)

where p̂(y, z) is given by (5.4), since (3.9), (5.18), (6.10) and (6.14) show that
the spanwise variable pressure p̃(1)(y, z) satisfies the same equation and boundary
conditions as the near-field pressure p̂.

However, the solutions (6.11)–(6.13) do not satisfy the correct wall boundary
condition since (3.21), (5.5)–(6.13) and (6.21) show that w̃(1)→∞ as y→ 0. In fact
it follows from (5.5) and (6.21) that

p̃(1) ∼ p̃(1)(0, z)+ y2

2
∂2

∂z2
p̃(1)(0, z)+ · · · , (6.22)
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when p̃(1)(0, z) is non-zero, which implies that

w̃(1) ∼ 3
λy
∂ p̃(1)(0, z)

∂z
, (6.23)

ṽ(1) ∼ 3
λ

∂2

∂z2
p̃(1)(0, z), (6.24)

ũ(1) ∼ −32

2yλ
∂2

∂z2
p̃(1)(0, z), (6.25)

as y→ 0.

6.3. Wall layer
The lowest-order terms in the expansion (6.8)–(6.10) satisfy inviscid equations and,
therefore, clearly cannot satisfy the no-slip condition at the wall. This means that it
is necessary to derive solutions in a viscous wall layer near the surface of the plate.
The viscous and inertial terms will be of the same order of magnitude in the BRE
when y/(x− 1)∼ 1/y2, which suggests introducing the similarity variable

η= λ1/3y
(x− 1)1/3

. (6.26)

It then follows from the spanwise momentum equation (6.6) and the expansions
(6.8)–(6.10) that the viscous and inertial terms will balance the spanwise pressure
gradient if w̃ is of the form

w̃= λ2/3(x− 1)−2/3W̃(η, z) (6.27)

while the continuity and the streamwise momentum equations (6.3) and (6.4) then
imply that ũ and ṽ must be of the form

ũ= λ2/3(x− 1)1/3Ũ(η̂, z) (6.28)

and
v̂ = (x− 1)−1/3λ1/3Ṽ(η, z). (6.29)

Inserting (6.27) and (6.28) into the BRE (6.3)–(6.6) shows that Ũ(η, z), Ṽ(η, z),
W̃(η, z) must satisfy (5.27) to (5.29) subject to the boundary conditions (5.30)–(5.32)
but with η now given by (6.26) instead of by (5.26). The outer (or far wake) wall
layer solution is therefore identical to the asymptotic wall layer of § 5 – in fact (2.4),
(4.1), (4.3) and (6.26) show that it is merely the continuation of that layer into
the outer region. These results imply that there is an overlap domain in which the
far downstream asymptotic form of the near-field solution matches onto the inner
expansion of the BRE solution that satisfies (6.8)–(6.10) as x→ 1 in the main part
of the boundary layer.

Since the BRE are parabolic in the streamwise direction, (6.8)–(6.10) and
(6.26)–(6.29) provide appropriate upstream boundary conditions for those equations in
their appropriate range of validity. These conditions are best implemented numerically
by solving the BRE system (6.3)–(6.7) subject to the uniformly valid composite
upstream boundary conditions (Van Dyke 1975, pp. 94–96)

p̃(x, y, z) → − 2Â
32λ1/3(x− 1)5/3

∫ y

0
U2

B(y) dy+ λ
4/3p̂(y, z)
(x− 1)4/3

, (6.30)
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ũ → UB(y)− λŷ+ (x− 1)1/3
{
[U′B(y)− λ]λ1/3Â+ (x− 1)1/3

[
ũ(1)(y, z)

+ 32λ1/3

2

[[
p̂zz(0, z)/y+ 1

2
p̂yyy(0, z)(1− tanh η)

]]]
+λ2/3Ũ(η, z)

}
,

(6.31)

ṽ(x, y, z) → VB(y)− 1
(x− 1)1/3

{
[UB(y)− λy]λ1/3Â

(x− 1)1/33
− ṽ(1)(y, z)

+ 3λ1/3 ∂
2

∂z2
p̂(0, z)− λ1/3Ṽ(η, z)

}
, (6.32)

w̃(x, y, z) → 1
(x− 1)2/3

{
(x− 1)1/3

[
w̃(1)(y, z)− 3λ1/3

y
∂ p̂(0, z)
∂z

]
+ λ2/3W̃(η, z)

}
,

(6.33)

as x→ 1. The various terms in these equations can be obtained from (6.12), (6.13)
with Ũ(η, z), Ṽ(η, z), W̃(η, z) being obtained by solving the boundary-value problem
(5.34)–(5.38) and (5.30)–(5.32) with η now given by (6.26). We have included the
higher-order term proportional to p̂yyy(0, z) in the wall layer solution in order to insure
that ũ= 0y= 0 when x− 1 is reasonably large. The (1− tanh η) factor eliminates the
contribution from the main boundary layer.

The O(ε) terms in the expansion (6.2) satisfy linearized equations and match
onto the second terms in the expansions (5.41) and (5.42) in the limit as x → 1.
The relative size of the first two terms in (6.2) is therefore expected to be
O(εmax{p̂1(0, z)/p̂(0, z)}) when x− 1 is sufficiently small.

6.4. Numerical solution
The nonlinear BRE (6.3)–(6.7) are parabolic in the streamwise x-direction and can,
therefore be solved by a marching algorithm. The wall-normal (y-direction) and
spanwise (z-direction) derivatives were discretized by a centred finite-difference
scheme that was second order in the y-direction and fourth order in the z-direction.
A backward finite difference scheme of first order of accuracy is utilized in
the streamwise x-direction. The pressure and velocity fields were computed on
separate grids that were staggered in the wall-normal y-direction, in order to avoid
pressure–velocity decoupling that could contaminate the solution by generating
spurious waves (Harlow & Welch 1965). No wall boundary condition was required
for the pressure component, while the velocity components were set to zero there
(no-slip condition). Due to the spanwise symmetry of the flow with respect to the
centre of the roughness elements, we were able to use symmetry conditions for the
pressure, streamwise and wall-normal components of velocity, and anti-symmetry
condition for the spanwise component of velocity to compute the numerical solution
on half of the spanwise length (representing the distance between the centres of two
roughness elements). A relaxation algorithm, with pseudo-time derivatives added to
the equations was used to solve the resulting system of nonlinear discretized equations
(Jameson 1991), which were then converged to the final solution via a Runge–Kutta
method with appropriate preconditioning applied to the first equation (6.3) to avoid
stability issues.
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The initial/upstream conditions for this solution are given by the uniformly valid
composite solution (6.30)–(6.33), with the similarity variables Ũ(η, z), Ṽ(η, z), W̃(η, z)
obtained by using the iterative procedure described in appendix A to solve the
boundary-value problem (5.34)–(5.38) and (5.30)–(5.32). Gauss quadrature was used
to approximate all integrals in (A 12)–(A 20) and a relaxation method was used to
solve (A 14) for (Young 1954), Ũ(η, z), in order to avoid approximating the triple
integrals in (A 10), which are prone to errors. Second-order finite-difference schemes
were used to approximate all first-order derivatives in (A 12) and (A 14). Only three or
four iterations, depending on the roughness element height, were needed to converge
the similarity solution.

7. Results and discussion
The previous sections provide a theoretical description of the near-field, intermediate-

field and far-field flow over a spanwise-periodic array of elongated roughness elements
with a fundamental spanwise spacing of the order of the boundary-layer thickness.
The numerical behaviour of these flows will be discussed in this section and all
computations will be based on the smooth shape function

F(X, z)= F̂(z)
1+ (X/d0)2

, (7.1)

where F̂(z) is taken to be the compact infinitely differentiable function

F̂(z)=
exp

{
−(z−πl)2

d2

[
κ2 + d2

d2 − (z−πl)2

]}
, for (z−πl)2 < d2

0, for (z−πl)2 > d2,

(7.2)

with d<πl. The coefficients in its Fourier expansion

F̂(z)≡
n=∞∑

n=−∞
Bneinz/l (7.3)

are then given by

Bn = 1
2πl

∫ 2πl

0
e−inz/lF̂(z) dz=De−inπ

∫ 1

0
cos(Dπnς) exp

[
−ς 2(κ2 + 1

1− ς 2
)

]
dς,

(7.4)
where

D≡ d/πl< 1. (7.5)

The compact infinitely differentiable shape function

F(x, z)= F̂(z)

exp

{
−
(

x
d0

)2 [
κ2 + d2

0

d2
0 − x2

]}
for x2 < d2

0

0 for x2 > d0

(7.6)

will also be discussed. These roughness shapes are amenable to future experiments
which we hope will be inspired by this analysis.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

26
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.269


536 M. E. Goldstein, A. Sescu, P. W. Duck and M. Choudhari

0 0.5

0.50

1

2

4
8

1.0–1.0 –0.5

 0.5

 0

1.0

FIGURE 3. Spanwise shape function F̂(z) versus (z−πl)/d for D≡ d/πl= 1/2.

Figure 3 is a plot of F̂(z) versus (z−πl)/d for D= 1/2.
The roughness elements will have a circular planform when R = 38 = 6561 for a

roughness array corresponding to the compact shape function (7.7) with d0= 3d. The
present elongated roughness scaling is therefore an attractive alternative to the short
equi-dimensional planform scaling in appendix C even for the circular shapes since
the latter leads to a considerably more complicated analysis than the former.

7.1. The near-field solution
Since the near-field problem has a somewhat novel asymptotic structure, it seems
appropriate to plot some typical results for the quantities usually calculated in
triple-deck papers. The wall shear parameter λ can be scaled out of the near-field
triple-deck problem in the usual way and it follows from (4.5)–(4.12) and (7.2)
that the scaled wall pressure P(1)(X, z)/λ3 and scaled wall shear UY/λ can only
depend on the scaled roughness shape parameters λ3/4h, l, λ5/4d0, D ≡ d/πl, κ and
κ0 when considered as functions of the scaled coordinates λ5/4X and z. The results
are, therefore, quite universal and, in particular, apply to any flow originating from a
2-D upstream boundary layer with O(1) wall shear. Boundary-layer profiles with near
zero wall shear are not formally governed by the present asymptotic structure. The
largest scaled roughness height, 3h/4 = 4, considered in the following computations
corresponds to an actual roughness height that lies between five and ten percent
of the local boundary-layer thickness. The unit Reynolds numbers R/x∗0 would lie
between 105 m−1 and 106 m−1 for free stream speeds between 1.5 and 15 m s−1

in air and between 0.1 m s−1 and 1 m s−1 in water and, with a reference location
of 0.1–1.0 m, would require the use of plate lengths of approximately 2 m in the
relevant experiments, which is not too unreasonable. The roughness spacing would
lie between 1.28 mm and 0.04 mm when R is between 105 and 106 and x∗0 = 0.1 m,
and between 12.8 mm and 4 mm when R is between 105 and 106 and x∗0 = 1.0 m.

Figure 4, which shows the wall shear distribution along the symmetry plane
z/l = π of the roughness element, gives some indication of the local flow field for
O(1) values of h. The shear perturbation downstream of the peak roughness height
at X = 0 is somewhat similar to that shown in figure 2 of GSDC-2 for roughness
element planforms with an O(1) aspect ratio. Both figures imply that there is a smooth
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FIGURE 4. Scaled wall shear distribution along the symmetry plane z = πl of the
roughness element for d0 = 1/2, d/πl= 1/2, κ = 2, d= 1 and various values of h.

retardation of the near-wall flow behind the crest of the roughness element, followed
by a local minimum in skin friction that leads to the slow recovery in near-wall
velocities at large X. There are, however, several noteworthy differences between the
wall shear distributions along the centre plane in these two cases. First, there is a
local (but not global) minimum in skin friction near X ≈ 1 which corresponds to a
rather weak perturbation relative to the unperturbed boundary layer (less than 5 %
change) while this downstream minimum was also the global skin friction minimum
in GSDC-2 and the skin friction was nearly reduced to zero for the largest roughness
height investigated in that study. Furthermore, the skin friction minimum in figure 2
of GSDC-2 was located much farther behind the roughness element crest than that
shown in figure 4 indicating that the region of flow deceleration is considerably
shorter in the present case. Finally, the wall shear approached the unperturbed wall
shear monotonically for all roughness heights considered in GSDC-2, while figure 4
shows that, the wall shear perturbation actually crosses over into a positive region
at a finite wake location when h> 3 (i.e. faster near-wall flow than the unperturbed
boundary layer) and eventually approaches a constant non-zero value at the larger
values of X, which is consistent with the continuous growth in the streamwise velocity
perturbation noted in § 7.2 below.

These differences in the downstream wall shear are preceded by more dramatic
differences in the upstream region. The upstream behaviour was rather simple for the
O(1) aspect ratio roughness elements considered in GSDC-2 and indicated that there
was a slow, mild deceleration of the unperturbed boundary layer as it approached the
roughness element followed by a relatively rapid acceleration up to just upstream of
the roughness element crest. In contrast, the wall shear distribution in figure 4 suggests
a more complex behaviour involving a slow deceleration followed by an acceleration
to a positive wall shear perturbation, which is, in turn, followed by another region
of deceleration that leads to a global minimum in wall shear ahead of the roughness
element, and eventually, a rapid acceleration up to the crest of the roughness element
at X= 0. Another important difference between the two roughness shapes is related to
the overall minimum in wall shear, which indicates a flow that is far from separation
even at λ1/3h = 4 while the minimum skin friction for the same roughness height
would have been less than 20 % of the unperturbed wall shear (in comparison with the
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FIGURE 5. Normalized spanwise variable component of surface pressure distribution over
the roughness elements computed from the near-field solution for d0 = 1/2, d/πl = 1/2,
κ = 2, d= 1 and various values of h.

minimum of nearly two-thirds of the unperturbed wall shear in figure 4) in the GSDC-
2 case. The increased resistance to flow separation in the present case is consistent
with the expected behaviour for streamwise elongated roughness planforms, which
provide a stronger spanwise relief for the flow approaching the surface obstacle. Given
the robust, positive wall shear values for all roughness heights shown in figure 4, a
spontaneous onset of unsteady vortex shedding within the wake region (as observed by
Acarlar & Smith (1987) and Klebanoff, Cleveland & Tidstrom (1992) for roughness
elements with O(1) aspect ratios) is deemed to be rather unlikely for the roughness
shapes being considered in the present paper.

Figure 5 displays the numerically computed spanwise variable component of the
surface pressure normalized by λ3. It is similar to figure 3 of GSDC-2, but carries
the computations to slightly higher h values. The results show the increasing effects
of nonlinearity as h becomes large, especially along the peaks and valleys of the
streamwise pressure distribution. Although not shown here, the pressure perturbation
decays monotonically upstream of the region plotted in figure 5, i.e. there is no
correlation between the upstream pressure distribution and the local minimum and
maximum in wall shear within the region Xλ5/4 < −5 in figure 4. The acceleration
of the near-wall flow in between the local extrema is caused by a non-monotonic
behaviour in the spanwise pressure gradient that leads to lateral convergence of the
perturbed flow within that region.

The scaled pressure perturbation p1 is smaller than that for the roughness
elements with O(1) aspect ratio planforms and the unscaled pressure perturbation
is asymptotically smaller than the wall shear perturbation by a factor of ε4 in the
asymptotic regime of interest. Figure 4 shows that the unscaled normalized wall shear
∂U/∂Y varies between 0.055 and 0.134 when R= 105 and between 0.04 and 0.1 when
R = 106, while figure 5 shows that normalized unscaled wall pressure perturbation
ε4p1(X, 0,πl) varies between −2.71 × 10−4 and 1.085 × 10−4 when R = 105 and
between −8.6× 10−5 and 3.4× 10−5 when R= 106.

7.2. Intermediate scale flow
The intermediate scale flow (where X is large compared to the dimensions of the
roughness elements but small compared to the downstream distance from the leading

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

26
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.269


Nonlinear wakes behind a row of elongated roughness elements 539

–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

–0.05

0

 0.05

20 400–20 0 20 40 60 80

(a) (b)

FIGURE 6. (a) A(X) versus (b) A(X)/(X/λ)1/3 versus X computed from the near-field
solution for d0 = 1/2, d/πl= 1/2, κ = 2, d= 1 and h= 3, 3.5 and 4.

edge) is similar to that in GSDC-2, which shows that this flow is completely linear
when the coefficient α in the asymptotic expansion is sufficiently large and that
solutions only exist when α = n/3, for n = 1, 2, . . . . GSDC-1 obtained a linear
solution for small h and found that α = 8/3 and β = 0 while GSDc-2 extended the
analysis to second order, i.e. to O(h2), and showed that α = 5/3 and β = 1 in that
case, which suggests that the small-h asymptotic expansion breaks down (or becomes
disordered) when X becomes sufficiently large. Analogous behaviour is expected
to occur in the present case. In fact, an analysis similar to that given in GSDC-2
suggests that p′1(X, y, z) should expand like

p′1(X, y, z)= hp̂1(y, z)+ · · ·
X8/3

+ h2 ln X1/3p̂2(y, z)+ · · ·
X5/3

+ · · · , (7.7)

when h→ 0 and X→∞: which implies that

lim
X→∞

lim
h→0

p′1(X, y, z) 6= lim
h→0

lim
X→∞

p′1(X, y, z). (7.8)

The results given in GSDC-1 imply that the asymptotic wall layer flow can only
become nonlinear when the spanwise variable component of the wall pressure decays
like 1/X4/3. Section 5 shows that the resulting flow still possesses a similarity solution
even though it is now (at least formally) governed by nonlinear equations. The
asymptotic behaviour of spanwise mean displacement A(X) is primarily determined
by the spanwise mean flow generated by the local nonlinear effects, which explains
why the numbers are so small. Figure 6 clearly shows that it exhibits the assumed
asymptotic behaviour (5.1) with α0 = 2/3 and β = 0 as postulated in § 5 (in the
paragraph below (5.13)).

Figure 7, which is a plot of p′1(X, 0, z)(X/λ)4/3 in the range 1000< X λ5/4 < 3500
and p′1(X, 0, z)(X/λ)5/3 in the range 50 < X λ5/4 < 400, with z = πl shows that the
spanwise variable wall pressure eventually decays like X−4/3 when X becomes very
large and that it exhibits the X−5/3 decay found in GSDC-2 at moderately large values
of X. This verifies that p′1(X, 0, z) exhibits the limiting behaviour identified in (5.41)
with p̂1(0, z)� p̂(0, z).
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FIGURE 7. Scaled surface pressure p′1(X, 0, z)/λ3 = P1(X, z)/λ3 versus X λ5/4 computed
from the near-field solution directly behind the roughness element for λ3/4h= 3, 3.5 and
4 and d0= 1/2, d/πl= 1/2, κ = 2, d= 1 (a) P1(X, z)X5/3/λ3 in the range 50<X λ5/4< 400,
(b) P1(X, z)X4/3/λ3 in the range 1000< X λ5/4 < 3500.

It should be noted that only the spanwise variable component p′1(X, 0, z) of
the wall pressure contributes to the asymptotic wall layer flow, even though the
corresponding spanwise mean component P(X) of the pressure decays more slowly
than the former. The intermediate scale wall layer flow, therefore becomes relatively
generic at very large values of X and only depends on the near-field flow in the
vicinity of the roughness through the coefficient p̂(0, z) of the first term in the
asymptotic expansion (5.41) of the spanwise variable component of the surface
pressure P1(X, z)= p′1(X, 0, z).

The computations shown in this subsection were very challenging numerically
and required great care because (i) the asymptotic (far downstream) growth of the
dependent variables corresponds to a singular behaviour of their Fourier transforms as
k→ 0 and (ii) because, as shown in figure 7, the final downstream asymptotic state
is only achieved at very large downstream distances (even when h is fairly large)
while the magnitude of the leading-order coefficient p̂(y, z) of the asymptotic pressure
expansion (5.41) turns out to be exceedingly small relative to the coefficient p̂1(y, z)
of the second-order term.

The iterative solution constructed in appendix A shows that the similarity solution
will exist even when the coefficient p̂(0, z) of 1/X4/3 in the asymptotic expansion of
spanwise variable component of the surface pressure becomes arbitrarily small and
the intermediate scale flow becomes linear. This suggests that the spanwise variable
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FIGURE 8. Scaled asymptotic surface pressure coefficient p̂(0, z) versus z computed
from the near-field solution for d0 = 1/2, d/πl= 1/2, κ = 2, d= 1λ3/4h= 3, 3.5, 4.

pressure will exhibit this 4/3 decay rate even when h→ 0, which again implies that
the inequality (7.8) should hold. This leads to the rather surprising conclusion that the
true asymptotic behaviour of the wall layer solution can only be found by considering
the full nonlinear near-field solution no matter how small the roughness height h
may be. This is, of course, distinctly different from the near-field roughness scale
nonlinearity considered in GSDC-2.

There are, therefore, two types of linearization that can be used to simplify the
asymptotic solution of the nonlinear wall layer equations (4.5)–(4.7). The first is
a linearization of the near-field solution obtained by expanding in powers of h
and the second is a linearization of the intermediate scale solution with h = O(1).
Unfortunately there does not appear to be any natural expansion parameter and
therefore no formal asymptotic limit associated with this latter linearization. However,
we capitalize on this linearization in appendix A to construct a rapidly convergent
iterative solution to the fully nonlinear equations (5.34), (5.36) and (5.39).

Figure 8 is a plot of the lowest-order scaled asymptotic surface pressure coefficient
p̂(0, z) in the asymptotic pressure expansion (5.41). It shows that the highest pressures
directly behind the roughness element (z= πl) and, as expected, that it increases in
magnitude with increasing h.

Equations (5.25) and (5.26) show that the ratio

U(X, Y, z)− λY
λY

= Ũ(η, z)− η
η

, (7.9)

of the maximum distortion velocity U − λY to the local undisturbed velocity at η =
ηmax where

Ũ(ηmax, z)− ηmax =Max{|Ũ(η, z)− η| | 0 6 η <∞; z= constant} (7.10)

does not actually grow in magnitude as X→∞ but merely moves up into a higher
velocity region. In other words, the distortion velocity does not increase relative to the
local mean flow velocity in the intermediate scale (overlap) region. It does, however
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FIGURE 9. Streamwise distortion Ũ(η, z) − η versus η computed from the similarity
solution with p̂(0, z) determined from the near-field solution with d0 = 1/2, d/πl= 1/2,
κ = 2, d= 1: (a) λ3/4h= 3, (b) λ3/4h= 4.
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FIGURE 10. Level surfaces of Ũ(η, z)− η as a function of z with p̂(0, z) determined from
the near-field solution with d0= 1/2, d/πl= 1/2, κ = 2, d= 1: (a) λ3/4h= 3, (b) λ3/4h= 4.

increase like X1/3 relative to the free stream velocity even though this only occurs
because the X1/3 increase in wall layer thickness causes distortion to move up into a
higher undisturbed velocity region. So in this sense the distortion does not actually
grow but merely persists over long streamwise distances until the action of viscosity
in the BRE region causes it to decay on the long streamwise length scale. It does,
however increase like X1/3 relative to the free stream velocity. This is in contrast to
the linear wake distortions considered in GSDC-1 and GSDC-2 which decay relative
to the local mean flow.

Figure 9 is a plot of the streamwise distortion Ũ(η, z)− η versus η computed from
the similarity solution at various values of z with p̂(0, z) calculated from the near-field
solution.

The corresponding level surfaces of Ũ(η, z)− η are plotted against z in figure 10.
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FIGURE 11. Plot of p̂′1(0, z) versus z determined from the best fit of the full two-term
expansion (5.41) to the numerically computed p̂′1(X, 0, z) for d0 = 1/2, d/πl = 1/2,
κ = 2, d= 1 and h= 2, 3, 3.5 4.

These figures show that the intermediate scale similarity solution (5.25) has a
streak-like structure which is presumably due to a horseshoe vortex system at the
leading edge. But the true nature of the downstream distortion can only be assessed
by considering the flow in the longer outer region where the wall layer fills the entire
boundary layer.

7.3. Far-field solution
The flow in this region, where the normalized streamwise coordinate x− 1=O(1), is
governed by the nonlinear BREs discussed in § 6. The relevant solution is obtained
by using the numerically computed wall pressure coefficients p̂(0, z) and p̂1(0, z) in
the intermediate scale expansion (5.41) to calculate the upstream boundary conditions
for the BREs that describe the flow on the long streamwise length scale x− 1. The
solutions are, therefore, less universal than the near-field solutions discussed in the
previous subsection, but the analysis can be extended to any flow originating from
a 2-D upstream boundary layer by inserting the appropriate, externally determined,
streamwise pressure gradient term in the streamwise momentum equation (6.4).

Figure 11 is a plot of the second-order (linear) surface pressure coefficient p̂1(0, z)
determined from the best fit of the full two-term expansion (5.41) to the numerically
computed p′1(X, 0, z). The figure shows that it increases fairly rapidly with increasing
h. Comparison with figure 8 shows that p̂1(0, z) is approximately an order of
magnitude larger than the nonlinear coefficient p̂(0, z) even for the relatively large
roughness heights considered in this paper – which means that, as noted at the end
of § 6, the second term in the outer BRE expansion (6.2), which satisfies linearized
equations, will be larger than the first when x is close to 1 and the Reynolds number
is not too large. But, as shown below, the second term either remains constant
or decays while the nonlinear term initially exhibits spatial growth and therefore
becomes dominant over the long outer length scale on which the transient growth
occurs. The figure also shows that the pressure maximum is no longer directly behind
the roughness elements.

The nonlinear scale factor p̂(0, z) in (5.41) could be larger for other roughness
shapes. But since it is quite small in the present case the nonlinear effects can be
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FIGURE 12. Scaled streamwise velocity distortion directly behind the roughness elements
computed from the first term in the expansion (6.2) for d0= 1/2, d/πl= 1/2, κ = 2, d= 1:
(a) λ3/4h= 3, (b) λ3/4h= 4.

neglected when calculating the second-order solution to both the BRE solutions and
the asymptotic near-field (intermediate scale) flow. This means that the results can be
well approximated by linearizing about the Blasius flow. The appropriate linearized
BRE for the resulting linear O(ε) term in the outer expansion (6.2) are given by
(5.3)–(5.7) of GSDC-1 and the corresponding upstream matching conditions, which
are only given implicitly in that reference, are written out explicitly in appendix B
for convenience.

The extension of the GSDC-1 and GSDC-2 equi-planform-dimension solution to the
fully nonlinear case, which was precluded in those references by the requirement that
the near-field pressure vanish at downstream infinity, is discussed in appendix C. The
results show, among other things, that the solution to this problem would also lead to
an asymptotic pressure perturbation of the form (5.41) in the large X limit.

The present results show that the leading-order terms in (5.41) and (5.42) are quite
small (at least for h and R-values being considered here) and p̂(0, z) can be set to
zero when calculating the second-order term in these expansions – which is precisely
what was done in GSDC-1 and GSDC-2. The present analysis, therefore, justifies the
results given in GSDC-1.

Some typical streamwise velocity profiles computed from the BRE equations with
the upstream boundary conditions determined by the numerically computed pressure
coefficients shown in figures 8 and 11 are displayed in figures 12–20. Figure 12 is a
plot of the streamwise velocity perturbation profiles produced by the first (nonlinear)
term in the outer expansion (6.2) at the roughness centreline z = πl, and Figure 13
is a plot of the corresponding perturbation profiles between the adjacent roughness
elements (at z= 0).

Figures 12 and 13 clearly show that the nonlinear (i.e. lowest-order) term in the
outer expansion (6.2) continues to grow over a significant distance before it begins to
decay. The peak velocity perturbation is found at x− 1= 0.285 or x− 1= 0.572 for
both λ3/4h=3 and λ3/4h=4, depending on the spanwise location and roughness height
parameter. In other words, it exhibits transient growth over the long streamwise length
scale x−1. They also show that the corresponding velocity profiles are jet-like directly
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FIGURE 13. Same as figure 12, except z= 0 instead of z=πl: (a) λ3/4h= 3, (b) λ3/4h= 4.

behind the roughness elements and wake-like between the elements. Previous studies
have shown that the velocity profiles behind the roughness elements can be either
jet-like or wake-like depending on nature of the horseshoe vortex system (formed
by the wrapping of spanwise vorticity lines in the incoming boundary layer) which,
in turn, depends on the shape parameters of the roughness elements (see Fransson
et al. 2004; Choudhari & Fischer 2005 for a summary of the available literature).
The jet-like profiles occur because the horse shoe vortex system induces a down
welling along the roughness centreline, which accelerates the flow directly behind the
roughness elements and progressively counteracts the velocity defect created by the
upstream flow retardation due to the presence of the surface obstacle. The figures also
show that the velocity minimum/maximum moves up towards the outer edge of the
boundary layer with increasing downstream distance. The peak velocity perturbation
more than doubles in magnitude with an approximately 33 % increase in roughness
height from λ3/4h = 3 to λ3/4h = 4, indicating the strongly nonlinear dependence of
wake perturbations on the roughness height parameter. Similar dependence has been
previously found for roughness element planforms with an O(1) aspect ratio (White
& Ergin 2003).

The transient growth behaviour on the longer BRE scale is more clearly depicted
in figure 14, wherein a representative streak amplitude is plotted as a function of
x− 1 for selected values of the roughness height parameter hλ3/4. For simplicity, this
amplitude is defined as the peak streamwise velocity perturbation directly behind the
roughness element, which is not identical to the amplitude measure used by Fransson
et al. (2004), but is expected to closely approximate the latter metric over most of
the wake region of interest. Figure 14 shows that the maximum streak amplitude is
achieved at downstream distances from the roughness elements that are comparable
to their distance from the leading edge. The figure also shows that the distance from
the roughness array to the peak amplitude location (i.e. the approximate range of
locations over which transient growth occurs) increases with roughness height. These
findings are in qualitative agreement with the experimental measurements by Fransson
et al. (2004) and Fransson & Talamelli (2012) for roughness elements in the form of
cylindrical disks and micro vortex generators, respectively.
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FIGURE 14. Peak velocity distribution directly behind roughness element computed from
the first term in the expansion (6.2) for d0 = 1/2, d/πl= 1/2, κ = 2, d= 1.
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FIGURE 15. Scaled streamwise velocity distortion directly behind the roughness elements
computed from the second (linear) term in the expansion (6.2) for d0 = 1/2, d/πl= 1/2,
κ = 2, d= 1: (a) λ3/4h= 3, (b) λ3/4h= 4, (a,b) h= 4.

Figure 15 is a plot of the streamwise velocity perturbation profiles computed from
the second term in the outer expansion (6.2) at the roughness centreline, and figure 16
is a plot of the corresponding perturbation profiles between the adjacent roughness
elements (at z= 0).

These figures show that while the linear (second) term in the outer expansion
(6.2) is much larger than the nonlinear term, the velocity perturbation either remains
constant or decays with increasing downstream distance, which means that the
nonlinear term will eventually dominate over the linear contribution. They also show
that while the velocity profiles between the roughness elements are always wake-like
the profiles directly behind the elements change from wake-like to jet-like with
increasing downstream distance.
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FIGURE 16. Same as figure 15, except z= 0 instead of z=πl: (a) λ3/4h= 3, (b) λ3/4h= 4.
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FIGURE 17. Scaled streamwise velocity distortion directly behind the roughness elements
computed from the two-term expansion (6.2) for λ3/4h = 4, d0 = 1/2, d/πl = 1/2, κ = 2,
d= 1: (a) R= 105, (b) R= 106.

This behaviour is shown more clearly in figures 17 and 18, with figure 16 showing
the streamwise velocity perturbation computed from the full two-term expansion (6.2)
at the roughness centreline z= πl and figure 18 showing corresponding perturbation
profiles at a spanwise location in between the adjacent roughness elements (at z =
0). The maximum streak amplitudes are rather small compared to the free stream
velocity, but the present results suggest that other roughness shapes and larger height
parameters can lead to much stronger streaks without producing any flow separation
in the vicinity of the roughness element.

Figures 19 and 20 show contours of constant streamwise velocity perturbation over
the cross-section of the wake at various values of x, with the Reynolds number R
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FIGURE 18. Same as figure 16, except z= 0 instead of z=πl: (a) R= 105, (b) R= 106.

equal to 105 in the first of these and 106 in the second. Visual inspection of these
figures suggests that the initial wake structure is dominated by the second harmonic
in z, which coincides with the spanwise width of the roughness element. However,
the fundamental mode corresponding to the spanwise spacing between the adjacent
roughness elements becomes dominant farther downstream which is consistent with
the numerical simulations of Choudhari & Fischer (2005) (a strong second harmonic
would produce additional peaks and valleys within the contours). This implies that
the emergence of the fundamental mode as the dominant harmonic takes place over
the longer scale of the BRE region since figure 10 shows the asymptotic near-field
solution is dominated by the second harmonic.

The wake evolution in figures 18 and 19 further shows that the peak in the
streamwise velocity distortion is initially concentrated in the wall layer in the
intermediate (algebraic growth) region, X� 1, x− 1� 1 but again moves out into the
main boundary layer at downstream locations and that the lowest-order (nonlinear)
contribution eventually dominates and causes the total velocity perturbation to exhibit
streamwise growth. But even the total streamwise velocity perturbation eventually
saturates and undergoes a slow decay with further increase downstream distance –
which is why we refer to this outer region as the transient growth region.

8. Summary and concluding remarks

This paper is based on a high Reynolds number asymptotic solution for the
flow over a spanwise-periodic array of relatively small roughness elements. The
roughness elements are assumed to be elongated in the streamwise direction with
both the spanwise dimension and the array spacing being of the order of the
local boundary-layer thickness and the streamwise dimension being of the order
of the local triple-deck length scale. The roughness height is assumed to be small
enough to produce only local separation. The problem is formulated for a flat-plate
boundary layer but the results can easily be extended to boundary layers with arbitrary
pressure gradient by inserting an appropriate streamwise pressure gradient term in
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FIGURE 19. Contour plot of surfaces of constant streamwise velocity perturbation at
various values of x, with λ3/4h = 4, d0 = 1/2, d/πl = 1/2, κ = 2, d = 1, and R = 105:
(a) x− 1= 0.013, (b) x− 1= 0.285, (c) x− 1= 1.051, (d) x− 1= 1.627.

the BRE (6.4) which only depends on the slow streamwise coordinate x and can
be computed from the external potential flow. The results show that the downstream
wakes are comprised of positive and negative streak-like perturbations that exhibit
algebraic growth and that their maximum amplitude increases with Reynolds number.

The maximum streak amplitudes are somewhat small (less than two percent of
the free stream velocity) at finite values of the Reynolds number. However, suitable
modifications to the roughness shape should increase the streak amplitudes. And
more importantly, the above streak amplitudes can be achieved in the present
asymptotic regime without any flow reversal that could otherwise precipitate an onset
of other unsteady phenomena via Kelvin–Helmholtz instabilities of the separated flow.
This finding makes the present regime particularly relevant to potential control of
Tollmien–Schlichting waves via the stationary streaks. It is, however, worth noting
that Goldstein & Wundrow (1995) and Wu & Luo (2003) both showed that even
small-amplitude streaks can support inviscid instabilities.

Transient growth over long streamwise length scales of the order of the downstream
distance from the leading edge was identified by Andersson et al. (1999), Luchini
(2000) and Tumin & Reshotko (2001) in the context of the linearized boundary
region equations. But these studies were based on optimal growth theory which
addresses a hypothetical initial value problem that determines the initial disturbance
profiles at a given station that would maximize the energy growth up to a specified
downstream location. It does not involve any consideration of whether or not the
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FIGURE 20. Same as figure 19, except for R= 106: (a) x− 1= 0.013, (b) x− 1= 0.285,
(c) x− 1= 1.051, (d) x− 1= 1.627.

optimal initial disturbance profiles will be excited in practice as a result of naturally
occurring external disturbances. In fact, it does not even provide any information
about what type of actuation could be used to excite a disturbance field that
would match the optimal growth predictions starting from the initial station of
interest. The present paper treats a concrete physical problem that can be easily
simulated in an experiment. The resulting transient growth is, therefore, realizable.
The present paper examines realizable transient growth behaviour in the context of
the nonlinear boundary region equations together with a modified form of the usual
interactive boundary-layer equations and shows that the leading-order streak-like
velocity perturbations can exhibit a weaker, i.e. suboptimal growth of the form X1/3

as X→∞ on the roughness scale before exhibiting transient growth on the longer
downstream length scale. However, the second-order term in the large-X asymptotic
expansion, which does not exhibit streamwise growth, turns out to be numerically
much larger than this term (at finite values of R) and, therefore, tends to dominate
the intermediate scale flow as well as the initial behaviour of the BRE solution
in the downstream region. But, the initially small nonlinear term corresponding to
the zeroth-order BRE solution undergoes transient growth and eventually becomes
dominant. So the algebraically growing solution, which is initially hidden in the
background in the intermediate scale (algebraic growth) region eventually becomes
dominant and produces transient growth on the outer BRE scale. While it would
have been difficult to discover these results with a strictly numerical approach, the
overall behaviour of the present asymptotic solution is roughly consistent with the
finite Reynolds number computations of Choudhari & Fischer (2005).
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Since the theoretical formulation is valid for arbitrary roughness configurations,
the present computations can easily be extended to other roughness shapes and, in
particular, to compact shapes such as mini-vortex generators or circular disks, which
are likely to result in flow separation at smaller values of roughness height than for
the smoother shapes considered herein.

Appendix A. Iterative solution to nonlinear problem
A.1. Basic equations

The comments following (5.40) suggest that W̃ will be a relatively small perturbation
of the undisturbed flow Ũ = η. We can capitalize on this by noting that the
system (5.34), (5.36) and (5.39) shows that

Û ≡ Ũ − η, V̂ ≡ Ṽ + 1
3
η2 = Ṽ − η

3
(Ũ − η) (A 1a,b)

are determined by

2
3 Û + V̂η + W̃z = 0, (A 2)

1
3
(η2W̃)η + W̃ηη = [e−η3/9(eη

3/9W)η]η = ∂ p̂(0, z)
∂z

+ ∂F
∂η
, (A 3)

− 2
3 Ûη− V̂ + 1

3η
2Ûη + Ûηη =G, (A 4)

F≡
∫ η

0
[(V̂ W̃)η + (W̃2)z] dη= V̂ (n)W̃ +

∫ η

0
(W̃2)z dη, G≡ Û2 + (V̂ Û)η + (W̃Û)z,

(A 5a,b)

together with the transverse boundary conditions implied by (5.30)–(5.32).
Equation (A 3) can be formally integrated to obtain

W̃ = e−η
3/9 ∂ p̂(0, z)

∂z

∫ η

0
ηeη

3/9 dη+ e−η
3/9
∫ η

0
eη̃

3/9F(η̃, z) dη̃

+ ã(z)e−η
3/9
∫ η

0
eη

3/9 dη (A 6)

which satisfies the boundary condition (5.31), since successive integrations by parts
shows that

e−η
3/9
∫ η

0
ηeη

3/9 dη= 3
η
+ 9
η4
+ · · ·→ 0, e−η

3/9
∫ η

0
eη

3/9 dη= 3
η2
+ 2 · 9

η5
+ · · ·→ 0

(A 7a,b)

as η→∞.
Eliminating V̂ on the left side of (A 4) shows that

e−η
3/9(eη

3/9Ûηη)η + W̃z = ∂G
∂η

(A 8)
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which upon integrating with respect to η, using (A 1), (5.29) and (5.30), and
integrating the result by parts shows that

Ûηη = −∂
2p̂ (0, z)
∂z2

e−η
3/9
∫ η

0
η̄(η− η̄)eη̄3/9 dη̄− e−η

3/9
∫ η

0
(η− η̄)eη̄3/9 ∂F(z, η̄)

∂z
dη̄

− dã(z)
dz

e−η
3/9
∫ η

0
(η− η̃)eη̃3/9 dη̃+ e−η

3/9
∫ η

0
eη̃

3/9 ∂G̃
∂η̃

dη̃ (A 9)

and it follows from (A 1), (5.30) and (5.32) that

Û = ∂2p̂(0, z)
∂z2

∫ η

0

∫ ∞
η

[∫ η̃

0

˜̃η(η̃− ˜̃η)e( ˜̃η3−η̃3)/9 d ˜̃η
]

dη̃ dη

+
∫ η

0

∫ ∞
η

e−¯̄η
3/9

[∫ ¯̄η
0
( ¯̄η− η̄)eη̄3/9 ∂F(z, η̄)

∂z
dη̄

]
d ¯̄η dη

+ dã(z)
dz

∫ η

0

∫ ∞
η

e−¯̄η
3/9
∫ ¯̄η

0
( ¯̄η− η̃)eη̃3/9 dη̃ d ¯̄η dη

−
∫ η

0

∫ ∞
η

e−η̄
3/9
∫ η̄

0
eη̃

3/9 ∂G
∂η̃

dη̃ dη̄ dη (A 10)

which will satisfy all the transverse boundary conditions provided dā(z)/dz and Â
satisfy the solvability condition

dã (z)
dz

∫ ∞
0
η

[∫ η

0
(η− ˜̃η)e( ˜̃η3−η3)/9 d ˜̃η

]
dη

=−∂
2p̂(0, z)
∂z2

∫ ∞
0
η

[∫ η

0

˜̃η(η− ˜̃η)e( ˜̃η3−η3)/9 d ˜̃η
]

dη

−
∫ ∞

0
η

∫ η

0
e(η̃

3−η3)/9
[
(η− η̃)∂F(z, η̃)

∂z
− ∂G(z, η̃)

∂η̃

]
dη̃ dη− Â, (A 11)

where we have again integrated by parts to obtain this result.

A.2. Numerical procedure
It now follows from (5.37) (A 2), (A 5)–(A 9) and (A 11) that the nonlinear problem
can be solved iteratively by using the following equations to determine the determine
the nth approximation ã(n)(z), W̃ (n), Û(n), V̂ (n) to a(z), W̃, Û, V̂

dã(n)(z)
dz

= ∂
2p̂(0, z)
∂z2

Π

−
−
∫ ∞

0
η

∫ η

0
e(η̃

3−η3)/9

[
(η− η̃)∂F(n−1)(z, η̃)

∂z
− ∂G(n−1)(z, η̃)

∂η̃

]
dη̃ dη− Â(n)∫ ∞

0
η

∫ η

0
e(η̃

3−η3)/9(η− η̃) dη̃ dη
.

(A 12)
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The preceding equations suggest the following iteration procedure be used to
determine W̃ (n) and Ũ(n)

W̃ (n) = e−η
3/9

{
∂ p̂ (0, z)
∂z

∫ η

0
ηeη

3/9 dη+
∫ η

0
eη

3/9F(n−1) (η) dη+ ã(n) (z)
∫ η

0
eη

3/9 dη
}
,

(A 13)

Û(n)
ηη =−e−η

3/9

{
∂2p̂ (0, z)
∂z2

∫ η

0
η̃(η− η̃)eη̃3/9 dη̃+ dã(n) (z)

dz

∫ η

0
(η− η̃) eη̃

3/9 dη̃

−
∫ η

0
eη̃

3/9

[
∂G(n−1) (z, η̃)

∂η̃
− (η− η̃) ∂F(n−1) (z, η̃)

∂z

]
dη̃
}
, (A 14)

Û(n) (0, z)= 0, Û(n)
η (η, z)=O(η−2), as η→∞, (A 15a,b)

V̂ (n) ≡ Ṽ (n) − η
3

Û(n) =−
∫ η

0

(
2
3

Û(n) + W̃ (n)
z

)
dη, (A 16)

for n= 1, 2, 3, . . . , where

Π ≡−

∫ ∞
0
η

[∫ η

0
η̃ (η− η̃) e(η̃

3−η3)/9 dη̃
]

dη∫ ∞
0
η

[∫ η

0
(η− η̃) e(η̃

3−η3)/9 dη̃
]

dη
, (A 17)

F(0) (z, η)=G(0) (z, η)= A(1) = 0, (A 18)

G(n) (z, η)≡ 1
3 [Û(n)]2 + V̂ (n)Û(n)

η + W̃ (n)Û(n)
z , (A 19)

F(n) (z, η)= V̂ (n)W̃ (n) + ∂

∂z

∫ η

0

[
W̃ (n) (z, η̃)

]2
dη̃, (A 20)

for n= 1, 2, 3, . . . . Note that ã(n)(z) is determined by the spanwise variable component
of (A 12) and can therefore be taken to have zero spanwise mean, while Â(n) is
determined by the spanwise mean component of that equation.

Appendix B. Summary of upstream matching conditions for second-order BRE
solution

p̃ (x, y, z)→ λ
5/3p̂ (y, z)
(x− 1)5/3

, (B 1)

ũ→ (x− 1)1/3 ũ1(y, z)+ λŨ1(η, z)+ 32λ2/3

2
p̂1zz (0, z) /y, (B 2)

ṽ(x, y, z)→ 1
(x− 1)2/3

{
ṽ1(y, z)− 3λ2/3

2
∂2

∂z2
p̂1(0, z)− λ2/3Ṽ1(η, z)

}
, (B 3)

w̃(x, y, z)→ 1
(x− 1)

{
(x− 1)1/3

[
w̃1(y, z)− 3λ2/3

2y
∂ p̂ (0, z)
∂z

]
+ λW̃1(η, z)

}
, (B 4)

2
3 UB(y)ũ1 + ṽ1U′B(y)= 0, (B 5)

2
3

UB(y)
{
ṽ1
w̃1

}
= λ5/3

{
p̂1y
p̂1z

}
. (B 6)
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Ũ1(η, z)= ∂
2p̂1 (0, z)
∂z2

3
2

[∫ η

0
e−η̃

3/9
∫ η̃

0
e ˜̃η

3/9 d ˜̃η dη̃

+ [Γ (1/3)]
2
√

3
2π31/3

∫ η

0
e−η

3/9U(1/3, 2/3, η3/9) dη

−B0

∫ η

0
e−η̃

3/9 dη̃
]
, (B 7)

Ṽ1 = ∂
2p̂1(0, z)
∂z2

[
3
2
− [Γ (1/3)]

2
√

3
4π34/3

e−η
3/9η2U(4/3, 5/3, η3/9)

]
, (B 8)

W̃1 =−∂ p̂1 (0, z)
∂ z

η

2
e−η

3/9

(∫ η

0
eη̃

3/9 dη̃− B0

)
, (B 9)

where

B0 ≡

∫ ∞
0

(
e−η̃

3/9
∫ η̃

0
e ˜̃η

3/9 d ˜̃η
)

dη̃+
[
Γ (1/3)

]2√3
2π31/3

∫ ∞
0

e−η
3/9U(1/3, 2/3, η3/9)dη∫ ∞

0
e−η̃

3/9 dη̃
,

(B 10)

and U(a, b, z) denotes the Hypergeometric function defined by (13.1.3) of Abramowitz
& Stegun (1965).

Appendix C. Short roughness elements with similar streamwise and spanwise
length scales

Instead of solving the near-field boundary-value problem described in §§ 3 and 4,
we could consider the initial value problem obtained by setting roughness shape
function F(X, z)= 0 and specifying an upstream boundary condition at X = 0. Since
equations (5.14)–(5.21) are an exact solution to the main-deck equations (3.2)–(3.14)
they can also be thought of as the leading terms in an X→ 0 asymptotic expansion
of a solution to these equations and, therefore, be taken as the initial conditions for
the complete boundary value problem which satisfies (2.5) at downstream infinity.
But it is more interesting to consider the slightly different case where

P(X)→ λ2P̂(X/λ)2/3, X→ 0 (C 1)

which corresponds to setting α0 = −2/3 in (5.1) rather than to +2/3 as was done
previously. It then follows from (5.1), (5.10) and (5.13) (which remain valid when
the ∼ symbol is replaced by an equals sign) that

A(X)→ A0 + Â (X/λ)5/3 , as X→ 0, (C 2)

where, as before, Â is a constant related to P̂. The solution is still exact but the
spanwise mean conditions (5.14) and (5.15) must be replaced by

u0 =U′B(y)[A0 + Â(X/λ)5/3], (C 3)

v0 =−5UB(y)Â(X/λ)2/3/λ3. (C 4)
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The wall layer flow still possess the exact similarity solution (5.25) but with the
streamwise momentum equation (5.29) replaced by

1
3 Ũ(Ũ − ηŨη)+ ṼŨη + W̃Ũz =− 1

3 p̂0 + Ũηη. (C 5)

Introducing the inner variable

X = X̄(ε̄/ε)3, (C 6)

where ε̄≡R−1/6, into (5.18)–(5.21), (5.25) and (C 1)–(C 4) shows the result will match
onto the two layer inner expansion

{u, v,w, p} = {UB + εŪ1 (y) , ε̄3VB, 0, 0
}

+ ε̄2{ū0(X̄, y, z), v̄0(X̄, y, z), w̄0(X̄, y, z), p̄0(X̄, y, z)} + · · · , (C 7)

for y=O(1) and

{u, v,w, p} = ε̄{Ū(X̄, Ȳ, z), ε̄V̄(X̄, Ȳ, z), W̄(X̄, Ȳ, z), ε̄P̄(X̄, z)} + · · · , (C 8)

for Ȳ ≡ y/ε̄=O(1), whose first-order terms behave like

ū0→U′B(y)Â (X̄/λ)
5/3 − (3λ)

2(X̄/λ)2/3

2
U′B(y)
U2

B(y)
∂

∂y
p̂(y, z),

v̄0→−5UB(y)Â(X̄/λ)2/3/3λ+ 3λ
(X̄/λ)1/3UB(y)

∂ p̂(y, z)
∂y

,

 (C 9)

p̄0(X̄, y, z)→ λ2p̂0(X̄/λ)2/3 + p̂(y, z)/(X̄/λ)4/3, (C 10)

w̄0(X̄, y, z)→ 3λ(
X̄/λ

)1/3
UB(y)

∂ p̂(y, z)
∂z

, (C 11)

as X̄→∞ for y=O(1) and like

W̄→ (X̄/λ)−2/3W̃(η, z), Ū→ λ(X̄/λ)1/3Ũ(η, z), V̄→ (X̄/λ)−1/3Ṽ(η, z),
(C 12a−c)

with W̃(η, z), Ũ(η, z), Ṽ(η, z) determined by the similarity equations (5.26)–(5.28)
and (C 5) for Ȳ =O(1) since

η≡ Y/(X/λ)1/3 = Ȳ/(X̄/λ)1/3. (C 13)

This is precisely the asymptotic behaviour that the near-field solution constructed
GSDC-1and GSDC-2 would have had if the decay exponent α were taken to be
4/3 (instead of 5/3) in the main boundary-layer asymptotic solution (4.1), and
(4.3)–(4.5) of GSDC-2 with the explicit form of the spanwise mean terms determined
by using the small k asymptotic expansion of π0(y, k) given by (A 7) of GSDC-1.
This corresponds to the fully nonlinear case, which must satisfy (C 10) and was,
therefore, precluded in GSDC-1 and GSDC-2 by the requirement that the near-field
pressure vanish at downstream infinity. The present result shows that the required
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pressure decay is actually produced by the outer solution which applies on the long
triple-deck length scale X = O(1) and eventually exhibits the asymptotic behaviour
(5.14)–(5.21) and (5.25) as X→∞.

An alternative approach was used by Smith (1973) and Smith et al. (1981) to
embed a short (boundary-layer length scale) 2-d hump in an outer triple-deck solution.
Their analysis, which is based on shrinking a triple-deck scale roughness element
down to a short boundary-layer length scale element, indicates that the roughness
(hump) behaves like a small-amplitude (i.e. small h) element with delta function
shape in so far as the outer scale flow is concerned and they conclude from this
that the flow must be linear. The present result shows that the corresponding outer
flow can, at least in principal, be nonlinear in the 3-D case. A complete proof would
require that a numerical solution to the governing equations be constructed, which
is beyond the scope of the present paper where the focus is on elongated roughness
elements. The present analysis does not seem to apply to the 2-D flow considered by
Smith. In fact Ruban & Kravtsova (2013) argue that the nonlinear wake behaviour is
associated with the roll-up of streamwise vortices.
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