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Abstract

We examine the structural stability of Gaussian shadow rate term structure models in a
sample of Treasury yields that includes the “effective lower bound” (ELB) period from 2008
to 2015. After highlighting the challenges of testing for structural breaks in a latent-factor
model, we proceed to document various pieces of empirical evidence for a structural break.
As one of several practical implications, the expected policy rate paths during ELB years are
notably shallower in our model that accommodates a structural break compared with a model
that imposes structurally stability.

I. Introduction

From 2008 to 2015, the U.S. policy rate was set at its effective lower bound
(ELB) for the first time in recent history.1 This experience has provided an impetus
for studying yield dynamics using term structure models that respect the ELB
constraint. Much of that effort has been through the use of shadow rate term
structure models, which have risen in popularity in recent years (e.g., Kim and
Singleton (2012), Krippner (2013), Christensen and Rudebusch (2014), Bauer and
Rudebusch (2016), andWu and Xia (2016)). These models can capture, in a natural
way, some of the key qualitative features of the ELB yield dynamics, such as the
shape of the yield curve near the ELB and the compression of yield volatilities for
short maturities. Another part of the attraction of thesemodels is conceptual: It has a
parallel with macroeconomic models incorporating an ELB in which the policy rate

This article has evolved from our earlier preliminary working paper entitled “Estimation of Multi-
Factor Shadow Rate Term Structure Models.” The analysis and conclusions set forth in this article are
those of the authors and do not indicate concurrence by other members of the research staff or the Board
of Governors of the Federal Reserve System. We thank an anonymous referee, Hendrik Bessembinder
(the editor), Michiel De Pooter, Marco Giacoletti (a referee), Edith Liu, Andrew Meldrum, Hiroatsu
Tanaka, Jonathan Wright, and seminar participants at the Federal Reserve Board for helpful comments.

1The Federal Open Market Committee (FOMC) specified a target range for the federal funds rate
of 0% to 0.25%. Our sample ends before the most recent ELB episode in response to the COVID-19
outbreak.
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is analogously described in a censored form as maxfst,r
�
g, where r

�
is the ELB and st

follows some variant of a Taylor rule.2

Intuitively, many properties of yields can be expected to change once the short
rate is at or near the ELB. Indeed, as further discussed later in the article, principal
component analysis (PCA) of yields has substantially different results for the ELB
period versus the pre-ELB period. This is obviously problematic for standard
affine-Gaussianmodels, in particular, those that use observed principal components
as state variables (e.g., Joslin, Priebsch, and Singleton (2014)). However, onemight
still hope that the nonlinearity of the ELB regime that gives rise to structural break
patterns in affine-Gaussian models and PCA can be captured with a structurally
stable shadow rate term structure model. In this case, the same set of shadow rate
model parameters describes the yield dynamics in the non-ELB and ELB periods,
and therefore, the parameters of a shadow rate model that have been estimated with
a pre-ELB sample can be used for analyzing the ELB sample. This is particularly
convenient, as the shadow rate model can be well approximated by a (more
tractable) affine model in the pre-ELB regime.

However, there are several reasons to believe that even shadow rate models
might not be structurally stable: First, economic intuition suggests that the dynam-
ics of key variables such as inflation and output gap may change once the economy
enters the ELB regime, as conventional monetary policy can no longer provide
policy accommodation. In turn, state variables in term structure models, even in
latent-factor models where they are not explicitly equated to macro variables, are
thought to havemacroeconomic underpinnings. Second, even if the data-generating
(ℙ-measure) state vector dynamics were stable, their market price of risk may not
necessarily remain stable across the non-ELB/ELB regimes. Third, while the
Federal Reserve provided accommodation during the ELB years in the form of
unconventional monetary policy (specifically, forward guidance and asset pur-
chases), it is not clear that the effects of these unconventional tools are well captured
by the same dynamics of the shadow rate and market price of risk that described the
pre-ELB years. Lastly, it is possible that the financial crisis that led to the ELB
regime was so severe that the structure of the economy has changed in a substantial
way since the pre-ELB years, with consequential implications for yield curve
dynamics.

In this article, we empirically examine the potential presence of a structural
break in shadow rate models of the U.S. Treasury yield curve. An investigation of
structural breaks in shadow rate models, and more generally, latent-factor term
structure models (including Dai and Singleton (2000), Ahn, Dittmar, and Gallant
(2002), and Duffee (2002)), raises new challenges that have not been encountered
in the existing literature on structural break tests. In latent-factor models, the state
variables do not have unique, well-defined meaning; a given set of factors can be
“rotated” to another set of factors, with corresponding changes in the model
parameters, in a way that keeps the model’s empirical content the same.3 Therefore,
investigating the change in a specific parameter of the model may not shed much

2See, e.g., Reifschneider and Williams (2000), Eggertsson and Woodford (2003), Johannsen and
Mertens (2016), and Nakata and Tanaka (2016).

3Dai and Singleton (2000) contains an extensive discussion of such invariant transformations.
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helpful light on the structural stability question. Furthermore, Wald-type tests (e.g.,
Andrews and Fair (1988)), in which the parameter vector θ1 estimated from one
subsample is compared to the parameter vector θ2 estimated from another subsam-
ple (i.e., a test of the hypothesis θ1 ¼ θ2) run into further difficulties: Even with
normalization restrictions that are put in place to guarantee econometric identifi-
cation, there are multiple vectors in the parameter space (with the same empirical
contents) linked by discrete transformations (such as a reordering of factors).

In testing for a structural break in shadow rate term structural models, we
address the issues arising from the latent nature of the factors with several comple-
mentary approaches. One is to construct rotation-invariant test statistics (i.e., test
statistics that are unaffected by invariant transformations). Another is to rotate the
factors so that they can be given empirical meaning; specifically, we can transform
the factors such that the transformed factors have interpretation as principal com-
ponents (level, slope, and curvature). We also extensively utilize GMM techniques
with likelihood scores based on the estimation with either the pre-break subsample
(“predictive” tests) or the full sample (Lagrange multiplier tests). These tests do not
run into the problem of multiple equivalent parameter vectors, as they involve only
local changes in the parameter space surrounding an optimum. They also have the
attraction of avoiding estimation based on the post-break subsample alone, which is
relatively short, and entails greater estimation uncertainties. With these estimation
difficulties as caveat, we do also perform an estimation with the post-break sub-
sample, to further characterize the properties of a potential structural break. In this
context, a helpful feature of the shadow rate models in this article that facilitates the
examination of a structural break is that, while the model-implied observed yields
follow nonlinear processes, the so-called “shadow yields” follow structurally stable
Gaussian processes under the null hypothesis of no structural break.

To preview our results, we find extensive evidence pointing to structural insta-
bility, and this instability does not appear to be confined to any readily identifiable
subset of parameters. For example, the innovation vectors for the ELB period implied
by pre-ELB subsample parameter estimates, which should be approximately inde-
pendently and identically distributed (IID) under the null hypothesis of structural
stability, display not only contemporaneous correlations but also serial correlations.
Likelihood-score-based tests soundly reject the hypothesis of structural stability. Our
empirical findings indicate a change not only in theℙ-dynamics of themodel, but also
in the ℚ-dynamics and in risk pricing. This has important practical implications; for
example, ignoring the structural change (i.e., using a structurally stable shadow rate
model) leads to impliedpolicy rate paths during theELByears that are notably steeper
than those implied by a model that allows for a structural break.

This article complements several recent and contemporaneous studies that
have analyzed the behavior of U.S. interest rates over samples including the ELB
period, and found evidence suggestive of structural change. Andreasen and
Meldrum (2019) note that, unlike an affine-Gaussian model estimated on pre-
ELB data, a shadow rate model estimated on a sample of yields that includes the
ELB period no longer matches standard empirical patterns of excess bond return
predictability regression coefficients, even when yields are away from the lower
bound. They attribute this finding to a change in the time-series dynamics of the
pricing factors after 2008. Similarly, Andreasen, Jørgensen, and Meldrum (2019)
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document changing patterns of excess bond return predictability regressions and
long-horizon short rate expectations in the ELB period. They find that a model
featuring both regime switching in the ℙ parameters and a permanent structural
break in the level of the pricing factors is able to replicate the documented
empirical patterns, whereas a single-regime shadow rate model is not. While this
finding strongly points to the presence of structural change, Andreasen et al.
(2019) do not conduct an explicit structural break test. Of note, because their
excess bond return predictability regressions are based on actual yields
(as opposed to shadow yields), the regression coefficients would be expected to
change near the ELB even within a single-regime shadow rate model. In our
framework of analyzing shadow yields, we are able to quantitatively distinguish
the changes in excess return predictability patterns due to ELB effects from those
due to structural change, and to formally test the null hypothesis of structural
stability. Hördahl and Tristani (2019) analyze U.S. term structure dynamics using
a regime-switching model, motivated by their observation that the speed of policy
rate normalization after liftoff in 2015 was much slower than in prior tightening
episodes. However, in light of the flexibility of latent-factor shadow rate term
structure models, it is not a priori obvious that the behavior of the yield curve in
the post-ELB period, including the slower pace of policy rate normalization,
cannot be captured by some set of latent factors in a structurally stable shadow
rate model. Our work, in which the structurally stable shadow rate model is a
special case of the structurally broken model, allows us to formally gauge the
improvement in the statistical goodness of fit when the structural stability restric-
tion is relaxed. Indeed, a key feature of our structurally broken model is that it
produces less steep paths of the expected short rate than the nested structurally
stable model, which lends support to Hördahl and Tristani’s (2019) motivation.
There are also a number of empirical studies outside the no-arbitrage framework
suggesting significant changes in the dynamics of the yield curve and its relation
to macro variables around the ELB period (e.g., Swanson and Williams (2014),
Liu, Theodoridis,Mumtaz, and Zanetti (2019)). Such changesmight be consistent
with either a structural break in model parameters or a single-regime shadow rate
model in which relationships change near the ELB. Our results below provide
statistical evidence of the former.

II. Model and Data

A. Shadow Rate Term Structure Model and Implementation

Webeginwith a discussion of the shadow rate term structuremodel used in this
article. The observed short rate is specified as

rt = maxfst,r
�
g,(1)

where r
�
is the ELB, and the shadow rate st is an affine function of theN -dimensional

vector of latent variables xt:

st = ρ0þρ01xt:(2)
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Let Wℙ
t be N -dimensional standard Brownian motion under the real-world

probability measure ℙ. Assume there is a pricing measure ℚ, equivalent to ℙ, and
denote byWℚ

t Brownianmotion underℚ. Theℙ-measure andℚ-measure dynamics
of the state vector xt are specified as stationary multivariate Ornstein–Uhlenbeck
processes:

dxt = ðkμ0þKμ
1xtÞdtþΣdW μ

t ,(3)

where μ∈ ℙ,ℚf g. Equation (3) implies that the market price of risk vector λt takes
the affine form

λt = λ0þΛ1xt:(4)

The ℙ-measure parameters kℙ0 , K
ℙ
1 and the ℚ-measure parameters kℚ0 , K

ℚ
1 are

linked via market price of risk parameters λ0, Λ1 as

kℚ0 = kℙ0 �Σλ0,(5)

Kℚ
1 =Kℙ

1 �ΣΛ1:(6)

The arbitrage-free time t price of a zero-coupon bond with time to maturity τ is
then given by the ℚ-measure expectation

Pt,τ =E
ℚ
t exp �

Z tþτ

t
rsds

� �� �
,(7)

with associated zero-coupon bond yield

yt,τ = �1

τ
logPt,τ :(8)

The bond yields yt,τ in the model will, in general, be nonlinear functions of xt.
We approximate this function using the second-order method proposed in Priebsch
(2023).

Shadow bond prices and yields are defined analogously, with the shadow short
rate st in place of the observed short rate rt in equation (7). The shadow yields yst,τ
correspond to the arbitrage-free yields in the underlying Gaussian model not con-
strained by the ELB, and take the affine form

yst,τ = a τð Þþb τð Þ0xt,(9)

where a and b are given by the usual recursive formulas (Duffie and Kan (1996)).4

As the lower bound becomes less binding, yields in the shadow rate model will
approach their Gaussian counterpart.5 In this sense, away from the lower bound, the
shadow rate model is approximated by the underlying Gaussian model.

4See Bauer and Rudebusch (2016) for an extensive analysis based on shadow yields.
5Formally, this follows from an application of the Monotone Convergence Theorem to equation (7),

taking r
�
↓�∞.
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On the other hand, as the lower bound becomes more binding, yields and
ℙ-expectations of average future short rates will both converge to r

�
: If the short rate

is currently constrained by the lower bound and is expected with high probability to
remain at the lower bound for an extended period, there is little uncertainty about the
path of the short rate going forward, and therefore, forward rates and ℙ-expected
future short rates will trivially be close to r

�
. By implication, term premiums (the

difference between observed yields and ℙ-expected average future short rates) will
be close to 0. In this way, the shadow ratemodel is able to capture periods of forward
guidance during which policymakers commit to keeping rates at the ELB for an
extended period. Conversely, in the Gaussian model, the term structure of uncer-
tainty about the future short rate is time-invariant (under both ℙ and ℚ).

To estimate the model, we proceed analogously to Kalman filter-based
maximum-likelihood estimation in studies such as Kim and Wright (2005),
Christensen, Diebold, and Rudebusch (2011), and Duffee (2011), except that
our observation equation is nonlinear in the state vector; therefore, we use the
unscented Kalman filter (see, e.g., Wan and van der Merwe (2001)). While the
model can in principle be estimated with yield data alone, the well-known small
sample problem associated with persistent time series such as bond yields pre-
sents significant challenges. To ameliorate this problem, we follow the approach
of Kim and Orphanides (2012) and augment our estimation sample with survey
forecasts of the 3-month Treasury bill rate.6 Therefore, our observation equation
takes the form

~yt
~zt

� �
= h xtð Þþ ey,t

ez,t

� �
,(10)

where ~yt and ~zt are vectors of observed Treasury yields and survey forecasts,
respectively, h xtð Þ is a vector of model-implied counterparts of ½~yt,~zt�0 (generally
nonlinear functions of xt), and ey,t and ez,t are measurement errors for Treasury
yields and survey forecasts, respectively. For the survey forecasts, we use a couple
of near-term horizons (6 months and 12 months) as well as a longer horizon
(5–10 years).

We set the number of factors (the dimension of xt) to N = 3. Measurement
errors are assumed to be mutually independent and independent across time. For
yields, we assume that the measurement error variance δ2y is the same for all
maturities. For surveys, we allow different measurement error variances δ2z,6m,
δ2z,12m, and δ2z,5�10y for the different forecast horizons. The measurement error
variances are treated as estimated parameters. For the 5-to-10-year survey horizon,
we impose a lower bound of 50 basis points on δz,5�10y which is binding in all our
estimated models.7

6See also Li, Meldrum, and Rodriguez (2017) for the use of survey forecast data for addressing
the small-sample problem. Other approaches include adjusting the estimation procedure (Bauer,
Rudebusch, and Wu (2012)), and imposing parameter restrictions (Christensen et al. (2011), Joslin
et al. (2014), and Bauer (2018)); see also Bauer and Rudebusch (2020) for a related discussion.

7See Kim and Orphanides (2012) for a discussion of the rationale for imposing a conservative lower
bound on the error variance for long-term surveys.
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B. Data, Sample Period, and Break Point

As sample period, we take the beginning of 1990 to the middle of 2019.
Where applicable, we assume that the FOMC’s announcement on Dec. 16, 2008,
that it would establish a target range for the federal funds rate of 0 to a quarter
percent represents an unanticipated structural break point. We will somewhat
loosely label the first period (observations from 1990 to mid-Dec. 2008) as
“pre-ELB” and the second period (observations from mid-Dec. 2008 to June
2019) as “(post-)ELB.” Below, we discuss the sensitivity of our findings to this
choice of break date. Our empirical designs in this article focus on structural
change with a single break point at a known time; the cases of a break at an
unknown time or multiple breaks would be even more challenging empirically,
in part because of the limited amount of data.

We use continuously compounded zero-coupon Treasury yield data for matu-
rities of 3 months, 6 months, 1 year, 2 years, 4 years, 7 years, and 10 years, sampled
weekly on Wednesdays (or the prior trading day if Wednesday is a holiday), from
Jan. 3, 1990, to June 26, 2019. For the 3- and 6-monthmaturities, we use secondary-
market Treasury bill rates from the Federal Reserve’s H.15 release (transformed to
zero-coupon-equivalent yields). For maturities of 1 year and longer, we use the
updated zero-coupon yields based on Gürkaynak, Sack, and Wright (2007).

For the survey forecast data, we use the 3-month Treasury bill rate from Blue
Chip Financial Forecasts, linearly interpolated to constant horizons of 6 months,
12 months, and 5–10 years.8 Short-range forecasts are available monthly and long-
range forecasts are available semiannually. Each survey is lined up with the sample
date closest to the actual date on which the survey was likely conducted. For weeks
with no matched survey data, we treat surveys as missing observations.9

III. Empirical Strategies

A. Challenges in Dealing with Latent-Factor Models

We start this section with a discussion of the challenges posed by the latent
nature of the factors in the study of structural stability. Let us consider the possibility
that a latent-factor term structure model is described collectively by parameter
vector θ1 in period 1 (t = 1,…,T1), and by another parameter vector θ2 in period
2 (t = T1þ1,…,T1þT2 � Tð Þ); for later use, define π = T1=T . The null hypothesis
of structural stability is θ1 = θ2.

With the model given in equations (1)–(3), note that we can obtain an obser-
vationally equivalent model by transforming the N -dimensional state vector xt to

x†t = lþLxt(11)

8At or near the ELB, the distribution of the future short rate is arguably skewed (in the shadow rate
model, it is simply a censored Gaussian distribution), so that its mean, median, and mode will not
necessarily coincide. We treat the survey consensus as a noisy observation of the model-implied modal
expectation.

9The addition of the survey data occurs at the estimation stage and leaves the theoretical shadow rate
model setup in Section II.A unaffected.
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(where l is a constant N -vector and L is an invertible N ×N constant matrix), and

transforming the model parameters θ = ðKP
1 ,K

Q
1 ,k

P
0 ,k

Q
0 ,Σ,ρ0,ρ1Þ to

θ† = ðKP†
1 ,KQ†

1 ,kP†0 ,kQ†
0 ,Σ†,ρ†0,ρ

†
1Þ, where

Kμ†
1 = LKμ

1L
�1, kμ†0 = Lkμ0�LKμ

1L
�1l,

Σ† = ðLΣΣ0L0Þ1=2, ρ†0 = ρ0�ρ01L
�1l, ρ†1 = ðL�1Þ0ρ1:

(12)

Because the most general model has an infinite number of equivalent param-
eters linked by such invariant transformations, to estimate these models by maxi-
mizing a log likelihood function (or some analogous GMM criterion) logL, a set of
normalization restrictions is imposed to identify the parameters and thus ensure that
the Hessian matrix ∂2 logL=∂θ∂θ0 is not singular. In the present article, the normal-
ization restrictions we impose for estimation purposes are

kP0 = 0, KP
1 = lower triangular matrix, Σ= cI ,(13)

where I is an identity matrix, and c= 0:01.
In a model with typical normalization (such as the one just mentioned), factors

do not have clear empirical meaning; therefore, examining the change in a specific
parameter (e.g., ½KP

1 �11) across subsamples may not be very meaningful. Nonethe-
less, one may still hope that the Wald test10

λT = Tðθ̂1� θ̂2Þ0ðπ�1V̂ 1þð1�πÞ�1V̂ 2Þ�1ðθ̂1� θ̂2Þ(14)

provides a valid statistic for the test of structural stability. However, even after
imposing normalization restrictions that guarantee a nonsingular Hessian of the
likelihood function around an estimate (such as equation (13)), discrete invariant
transformations (such as permutation and reflection) still remain, which creates
multiple equivalent parameter vectors.

Discrete transformations canmake it difficult to determine how close a param-
eter estimate θ1 for one subsample is from a parameter estimate θ2 for the other
subsample. For example, evenwhen the Euclidean distance θ2�θ1 in equation (14)
is large, it could be that θ1 and θ2 have quite similar empirical contents, whichwould
be the case if θ2 is close to one of the permuted versions of θ1. One might consider
eliminating discrete transformation degrees of freedom such as permutation by impos-
ing a specific ordering of certain parameters (e.g., ½KP

1 �11 > ½KP
1 �22 > ½KP

1 �33).However,
there is no guarantee that such ordering is preserved in small-sample estimates when
the true parameters are close. One could also entertain the idea of

λT = min iTðθ̂1� θ̂
ðiÞ
2 Þ

0
ðπ�1V̂ 1þð1�πÞ�1V̂

ðiÞ
2 Þ

�1
ðθ̂1� θ̂

ðiÞ
2 Þ,(15)

where the θ̂
ið Þ
2 s denote all possible discrete invariant transformations of θ̂2, and V̂

ið Þ
2

denotes the corresponding covariance matrix (i.e., pick the θ̂
ið Þ
2 that produces the

smallest test statistic). However, besides being cumbersome both in implementation

10See, e.g., Andrews and Fair (1988).

Kim and Priebsch 3507

https://doi.org/10.1017/S0022109023000984  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109023000984


and statistical evaluation, such a procedure can be unsatisfactory unless one of the
θ ið Þ
2 s stands out sufficiently low in terms of the test statistic value.11

Below we consider various diagnostics and test statistics that overcome the
problems associated with the latent nature of the factors in the model.

B. Tests for Structural Change

Aside from the issue of latent factors, our structural break test problem is
“classical” in the sense that we consider a single potential break at a known time
(around the onset of the ELB), rather than searching for potentially multiple breaks
at unknown times. In this setting, the available tests for the kinds of nonlinear
estimation problems such as ours can be summarized as follows:

1. Predictive tests: These types of tests are based on the estimation of the pre-ELB
subsample, and examine the properties of objects in the post-ELB subsample
implied by the pre-ELB parameter estimates.

2. Lagrange multiplier (LM) tests: These types of tests are based on the estimation
of the full sample, and examine moment restrictions across the two subsamples.

3. Wald tests: These types of tests involve separate estimations with pre-ELB and
post-ELB subsamples, and analyze potential differences between the two
estimates.

In addition to the identification issue discussed previously, Wald-type tests
can be expected to have low power in our application, as they involve a separate
estimation of the post-ELB subsample. A sample of about 10 years (late 2008 to
mid-2019) may not be long enough to precisely estimate the parameters of the
model, in viewof thewell-known small-sample problemswith term structuremodel
estimation. Moreover, this particular sample period contains only one tightening
cycle (near the end of the period) and limited variability in short rate movements.
While Kim and Orphanides (2012) found that the use of survey forecasts for
Treasury bill yields helps ameliorate some of these concerns, the near-horizon
survey forecast data may be less informative in this subsample, as a substantial
portion of this period had fairly flat forecasts due to the FOMC’s forward guidance;
furthermore, the asymmetric distribution of the short rate process for horizons
beyond the predicted liftoff date (see footnote 8) means that the measurement of
survey forecasts would likely be less reliable than usual. Lastly, we do not wish to
rely on survey data to such a degree as to confound the questions of whether the
structural break occurred in yields or in survey forecasts.12

For evidence regarding structural instability, we therefore focus on predictive
tests and LM tests. Predictive tests are particularly attractive in our context, as we

11As an illustration, consider a 2-factor model whose ℚ-measure dynamics are given by
r = ρ0þρ01½x1t ,x2t �0, dxit = ðkQ0iþ kQi xitÞdtþdWQ

it (i = 1,2). Suppose that ðkQ11,kQ12Þ in the first subsample
is estimated to be (0.1, 0.5), and ðkQ11,kQ12Þ in the second subsample is estimated to be (0.45, 0.15). Then it
would be reasonable to view that the appropriate version of the second subsample estimate to compare is
(0.15, 0.45), i.e., the permuted version ðx1t ,x2tÞ! ðx2t ,x1tÞ. However, if we obtained (0.1, 0.5) for the
first subsample and (0.3, 0.32) for the second subsample, it would be less clear. Note that we have not
spelled out the estimates of other parameters, which can lessen or increase the ambiguity.

12We examine the robustness of our findings to the omission of surveys below.
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only need to estimate a model based on pre-ELB data, where the shadow rate model
is adequately approximated by the affine-Gaussian model. Under the null hypoth-
esis that there is no structural break, the parameters thus estimated should produce a
shadow rate model fitting the post-ELB period adequately. That said, in Section V
we also estimate a model based on the post-ELB subsample, as this estimation may
cast helpful light on how the model structure might have changed.

C. Diagnostics Based on Fitting Errors or Innovation Vectors

Awell-known example of predictive tests for structural breaks in a classical
regression is the Chow (1960) test that examines the residuals from the second
subsample computed with regression coefficients from the first subsample. Though
an exact analog of regression residuals does not exist in our a latent-factor term
structure model setup, we can consider the following:

Fitting errors. While it may be tempting to regard yield fitting error (ey,t in
equation (10)) as an analog, yield fitting errors are generally not a sufficient
diagnostic, especially in the case of flexibly specified latent-factor models such
as ours. Indeed, a small overall fitting error may not necessarily indicate a well-
specified model, as it could be a consequence of the fact that a model with N latent
factors can fitN yields exactly and that yield curves tend to be smooth. Nonetheless,
a meaningful change in the pattern of fitting errors could be indicating a structural
change in ℚ dynamics; we shall therefore examine fitting errors as part of our
structural break diagnostics.

Innovation vectors. If the shadow rate model is structurally stable, the state
variables will follow a standard VAR(1) process. One way to examine this is to look
at the innovation vector εt based on the discretized transition equation under ℙ
derived from equation (3) implied by the θpre estimate, which would be a closer yet
still-imperfect analog of Chow’s regression residuals. A normalized innovation
vector ηt �Ω�1=2εt (whereΩ denotes the covariancematrix of εt) has the theoretical
property:

ηt �N 0N , IN ×Nð Þ:(16)

Furthermore, these innovation vectors are serially uncorrelated, that is,

Eðηtη0tþjÞ= 0N ×N , j ≠ 0:(17)

The innovation vectors implied by the pre-ELB parameter estimate should
satisfy these conditions well in the post-ELB sample (provided, of course, that the
model is reasonably well specified). But if there is a structural change, theymay not
satisfy these conditions in the post-ELB sample; therefore, they could provide
another useful diagnostic check for structural change.

Statistics can be constructed that test the conditions in equations (16) and (17).
A complication in our setting, discussed previously in Section III.A, is that state
variables and their innovation vectors in a generically normalized model (such as
the normalization conditions in equation (13)) do not have specific economic
meaning, as they can be invariantly transformed so that themodel’s content remains
the same. Therefore, departures from these conditions for individual elements of the
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innovation vector (e.g., corrðη1t,η2tÞ ≠ 0) are difficult to interpret. We address this
problem in two ways.

First, we construct aggregate test statistics whose values are unchanged if
the model is re-written with different (transformed) state vectors. In particular, in
Section IA.I of the Supplementary Material, we show that the objects
kT�1P

tηtη
0
t�ukF and kT�1P

tηtη
0
t� IkF remain unchanged under invariant trans-

formations and have the following asymptotic distributions:13

T
1

2

���T�1
X
t

ηtη
0
t� I

���2
F
� χ2ðN2þNÞ=2,(18)

T
���T�1

X
t

ηtη
0
t�u

���2
F
� χ2N2 , u ≠ 0:(19)

Moreover, since the innovation vectors in different subsamples are indepen-
dent, the ratio of χ2 statistics for different periods follows an F-distribution under
the null hypothesis and may give an indication of the relative degree to which
implied innovation vectors deviate from their theoretical distribution.

While these statistics provide useful summary diagnostics regarding structural
stability, in the event they point to a structural change in the post-ELB period, more
granular statistics that shed light on the nature of structural change would be useful.
Therefore, we also examinemore disaggregated test statistics based on state vectors
that have an intuitive interpretation. To this end, we transform the state vectors in
our original normalization to a new set of state variables which can be viewed as
level, slope, and curvature factors. More precisely, we rotate the model to create the
state vector x†t , with the property that the instantaneous changes dx†t are mutually
independent (i.e., dx†t dx

†0
t is a diagonal matrix), and correspond to instantaneous

change in the level, slope, and curvature of the shadow yield curve.14 In discrete
time, the one-period innovation ε†t has variance–covariance matrixΩ† which is not
exactly diagonal but almost diagonal if a single period is sufficiently short, as in our
case (one period being 1 week). Therefore, the innovation vector η†t ð�Ω†�1=2ε†t Þ
can still be well interpreted as changes in level, slope, and curvature factors. We
examine whether the individual elements of η†t have the contemporaneous corre-
lation and serial correlation properties in equations (16) and (17).

D. Tests Based on Likelihood Scores

We can also explore the parameter stability of the model directly by testing the
moment condition

E ∂ logL=∂θð Þ= 0(20)

13The notation ∥A∥F denotes the Frobenius norm of thematrix A. An example of a test statistic that is
not unchanged under invariant transformations is 1

2ðT�1P
tη

2
1t �1Þ2 (which is made up of only the first

element of the ηt vector). It can be shown that if η
†
t is the innovation vector corresponding to an invariant

transformation, in general we do not have 1
2ðT�1P

tη
2
1t �1Þ2 = 1

2ðT�1P
tη

†2
1t �1Þ2.

14This procedure is described in greater detail in Sections V.A and V.B.
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within a GMM framework, either with a predictive approach or with the LM
approach. The idea is that, if there is no change in parameters (θpre = θpost), the
first-order condition in equation (20) will hold in each subsample.

The predictive approach (testing the condition in equation (20) in the post-
ELB sample using the parameter estimates from the pre-ELB sample) corresponds
to the technique of Ghysels and Hall (1990), who showed that, asymptotically,

1ffiffiffiffiffiffi
T2

p
XT1þT2

t =T1þ1

∂ℓtðθ̂1Þ
∂θ0

V̂
�1
2

1ffiffiffiffiffiffi
T2

p
XT1þT2

t = T1þ1

∂ℓtðθ̂1Þ
∂θ

� χ2dimðθÞ,(21)

where V̂ 2 is a consistent estimator of plimT!∞VarðT�1=2
2

PT1þT2
t = T1þ1∂ℓtðθ̂1Þ=∂θÞ.15

The LM approach (testing the condition in equation (20) with parameter
estimates θ̂ based on the full sample) can be viewed as an analog of likelihood
score-based LM tests of Nyblom (1989) and Hansen (1990), (1992). The relevant
testing statistic is given by16

LM=
1ffiffiffiffiffiffi
T 1

p
XT1

t = 1

∂ℓtðθ̂Þ
∂θ0

V̂
�1 1ffiffiffiffiffiffi

T1
p

XT1

t = 1

∂ℓtðθ̂Þ
∂θ

,(22)

where V̂ is a consistent estimate of plimT!∞VarðT�1=2
1

PT1
t = 1∂ℓtðθ̂Þ=∂θÞ:

These likelihood-score-based approaches do not face the problems discussed
in connection with a Wald test of the hypothesis θ1 = θ2 using the statistic in
equation (14), as the score-based tests only look at local changes around an
optimum in the parameter space. This is analogous to the presence of discrete
invariant transformations not causing any difficulties in computing derivative-
based asymptotic standard errors of a parameter estimate.

IV. Empirical Evidence Regarding Structural Instability

A. Yield Fitting Errors and Innovation Vectors

To build intuition and get a preliminary sense of the existence and possible
nature of a regime change, we first evaluate how well a model with pre-ELB
parameters is able to fit the cross-sectional and time-series properties of yields in
the post-ELB period once the lower bound constraint is imposed. For this purpose,
we analyze yield fitting errors and implied innovation vectors from a model whose
parameters are those of an affine-Gaussian model estimated on pre-ELB data,
extended to the post-ELB period as a shadow rate model (i.e., with state variables
filtered from post-ELB data using pre-ELB parameters).17

15Ghysels and Hall (1990) discuss several easily computable candidates for the variance estimator.
16See Hansen (1990) and Andrews (1993).
17We have confirmed that it makes little difference to the estimated parameters whether we estimate

an affine-Gaussianmodel or shadow rate model for the pre-ELB subsample, as long as the lower bound r
�

is set to a plausible value near 0. Because r
�
is poorly identified by pre-ELB data, unless otherwise noted,

we set r
�
to approximately 7:3 basis points in these predictive exercises. This is the estimate we obtain
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1. Yield Fitting Errors

Figure 1 plots a time series of root-mean-squared yield fitting errors (the
difference between observed and model-implied yields, averaged across maturities
on a given date). Fitting errors vary somewhat over time and tend to spike during
periods of financial stress, most notably the financial crisis.18 However, in the later
years of the post-ELB period, beginning in early 2014, there is a more persistent
level shift in fitting errors. The model appears to have more difficulty fitting the
yield curve based on pre-ELB risk-neutral parameters (which determine the model-
implied cross-sectional relationships between yields), even with state variables
filtered through the shadow rate model structure. This could be indicative of a
structural change in the ℚ parameters of the model.

2. Innovation Vectors

Using the samemodel as in Section IV.A.1, we can compute empirical implied
innovation vectors η̂t as defined in Section III.C. Recall from the discussion there
that these vectors theoretically have a contemporaneous covariance matrix equal to
the identity matrix, and no autocorrelation. Since the empirical innovation covari-
ance matrices depend on the chosen model rotation, we rotate the model as pro-
posed by Duffee (2011) and discussed in detail in Section V.B, such that the factors
can be interpreted as level, slope, and curvature of shadow yields. Table 1 reports
the contemporaneous empirical innovation covariance matrices after this rotation,
separately for the pre-ELB and post-ELB subsample periods. While the covariance

FIGURE 1

Yield Fitting Errors

Figure 1 displays the time series of mean-root-squared yield fitting errors in the single-regime model estimated on pre-ELB
data (extended to the post-ELB subsample as a shadow rate model) and the 1-year moving average. The pre-ELB period is
shaded.
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when estimating a single-regime shadow rate model on the full sample. We find that other sensible
choices of r

�
lead to broadly similar results.

18Hu, Pan, and Wang (2013) find that errors in fitting flexible functional forms to Treasury yields
carry meaningful information about liquidity conditions in the market.
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matrix for the pre-ELB period shows some deviation from the identity matrix (most
notably in the third diagonal entry, that is, low variance for the implied innovations
in curvature), the covariance matrix for the post-ELB period displays a number of
more notable departures: All three elements of the innovation vector have contem-
poraneous variances well below 1, and the off-diagonal elements of the covariance
matrix are non-negligible, with particularly pronounced positive association
between level and slope innovations (whose contemporaneous correlation evalu-
ates to about 0.6).19

Figure 2 shows autocorrelograms of the rotated innovation vectors up to lags
of 52 weeks. In the pre-ELB period, autocorrelations are generally insignificant or
at most marginally significant, with no clear pattern across lags; the most notable
excursions are visible in curvature innovations. Conversely, in the post-ELB sub-
sample, the implied innovations to the slope factor (and to a lesser extent the
curvature factor) display significant and prolonged positive temporal dependency.
In other words, the model persistently mispredicts the slope and curvature factors.

The rotation-invariant χ2 statistics introduced in Section III.C and more rig-
orously justified in Section IA.I of the SupplementaryMaterial allow us to quantify
the overall magnitude and significance of the deviations of the implied innovation
vectors from their theoretical properties more formally. As shown in Table 2, these
statistics indicate significant misspecification in both periods at the lags considered.
The overall ratio of post-ELB and pre-ELB statistics is significantly larger than 1 at
the 1% level (suggesting a greater relative degree of misspecification in the post-
ELB period), but the ratios computed separately for lags 0, 1, and 2–12 are not
individually significant. In particular, despite the patterns shown in Table 1 and the
noticeably larger χ2 statistic at lag 0 in the post-ELB period, the evidence based on

TABLE 1

Innovation Vector Covariances

Table 1 displays the empirical covariancematrix of implied innovation vectors (model rotated such that state variables can be
interpreted as principal components).

Panel A. Pre-ELB

0.96 0.00 0.00
0.00 0.93 �0.08
0.00 �0.08 0.68

Panel B. Post-ELB

0.69 0.39 0.22
0.39 0.66 0.23
0.22 0.23 0.64

19Thiswould not be surprising if we tried to fit an affine-Gaussianmodel to the post-ELB subsample:
With the short end of the empirical yield curve constrained at the ELB, any shocks to longer-term yields
could only be captured by that model with offsetting movements in level and curvature (contrary to their
model-implied co-movement), so as to keep the model-implied short rate unchanged. More generally, in
the affine-Gaussianmodel, the short rate is an affine function of the factors (rt = ρ0þρ01xt); therefore, the
short rate being stuck at the ELBwould imply that a linear combination of innovation vectors has to sum
up to 0, i.e., the implied innovation vectors have to be contemporaneously correlated during the ELB
period. Our results here suggest that simply imposing a shadow rate model structure does not fix this
manifestation of model misspecification.
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the empirical instantaneous covariance matrix of implied innovation vectors alone
is not significantly indicative of misspecification.

3. Innovation Vectors in Post-ELB Subsamples

In light of the somewhat mixed evidence emerging from the post-ELB implied
innovation vectors, and the pattern of yield fitting errors in Figure 1 that is not
uniform over our post-ELB sample, it might be natural to ask how sensitive our
results are to our assumption about the timing of the candidate structural break in
late 2008. Indeed, regarding the U.S. experience, some have suggested that the first
calendar-based forward guidance announcement by the FOMC in Aug. 2011 may

FIGURE 2

Innovation Autocorrelations

Figure 2 provides autocorrelations of level, slope, curvature innovations (lags are in weeks). The blue (dashed) lines represent
approximate 95% confidence bounds under the hypothesis of no autocorrelation.
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TABLE 2

Rotation-Invariant Statistics

Table 2 presents rotation-invariant χ2 statistics of implied vectors. Lag 0 corresponds to equation (18), and lags ≥ 1
correspond to equation (19).

Lag Pre-ELB Post-ELB d.f. 1% Cutoff Post/Pre 1% Cutoff

0 55.98 206.73 6 16.81 3.69 8.47
1 108.19 115.59 9 21.67 1.07 5.35
2–12 281.02 380.10 99 134.64 1.35 1.60

Sum 445.19 702.42 114 152.04 1.58 1.55
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have had a more significant impact on yield curve dynamics than the arrival at the
ELB in late 2008.20 Our own Figure 1 shows a deterioration in yield curve fit from
early 2014 onward. Therefore, in Tables 3 and 4, we also examine the empirical
innovation vector covariances as well as the statistics in equations (18) and (19)
based on segments of the post-ELB sample, in particular Dec. 2008 to mid-Aug.
2011 (before date-based forward guidance, segment I), mid-Aug. 2011 toMay 2013
(before the “taper tantrum,” segment II), June 2013 to Dec. 2015 (before liftoff,
segment III), and Jan. 2016 to June 2019 (segment IV).

This more granular analysis indicates that the evidence for a structural break,
at least according to this metric, varies in strength over the different subperiods and
reveals different facets of the misspecification of the structurally stable model. For
example, the Dec. 2008 to Aug. 2011 and Jan. 2016 to June 2019 subperiods show
the most notable signs of misspecification in the contemporaneous (lag 0)

TABLE 3

Innovation Vector Covariances by Subperiod

Table 3 shows the empirical covariances matrix of implied innovation vectors (model rotated such that state variables can be
interpreted as principal components), by post-ELB subperiod. Periods I, II, III, and IV denote 12/2008–8/2011, 8/2011–5/2013,
6/2013–12/2015, and 1/2016–6/2019, respectively.

Panel A. Period I

1.03 0.70 0.32
0.70 0.85 0.41
0.32 0.41 0.79

Panel B. Period II

0.84 0.40 0.34
0.40 0.67 0.54
0.34 0.54 0.74

Panel C. Period III

0.65 0.14 0.26
0.14 0.55 0.04
0.26 0.04 0.71

Panel D. Period IV

0.35 0.24 0.13
0.24 0.33 0.19
0.13 0.19 0.34

TABLE 4

Rotation-Invariant Statistics by Subperiod

Table 4 provides the rotation-invariant χ2 statistics of innovation vectors by post-ELB subperiod. Periods I, II, III, and IV denote
12/2008–8/2011, 8/2011–5/2013, 6/2013–12/2015, and 1/2016–6/2019, respectively.

Lag I II III IV d.f. 1% Cutoff

0 96.85 52.74 23.80 125.50 6 16.81
1 41.07 21.22 93.25 10.64 9 21.67
2–12 192.58 53.78 536.24 54.04 99 134.64

Sum 330.50 127.74 653.29 190.18 114 152.04

20Swanson and Williams (2014), e.g., note that 1-year and 1-year Treasury yields appeared to be
“unconstrained” from 2008 to 2010, and only became more constrained from late 2011 onward.
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properties of innovation vectors. We can glean from Table 3 that shocks in period I
(the immediate aftermath of the financial crisis) were highly positively correlated,
while in period IV, after liftoff in 2015, shocks had unusually small variances as the
Fed raised rates at a much more measured pace than in previous tightening cycles.
Meanwhile, in the June 2013 to Dec. 2015 period III, the serial correlation of
innovation vectors shows prominent signs of misspecification. During this period,
the Fed tapered and eventually ended its purchases of Treasury and mortgage-
backed securities (thus reducing policy accommodation at the long end of the yield
curve) while keeping the federal funds rate at the ELB. The structurally stable
model appears to have difficulty capturing this process, and indeed the autocorre-
lations in the post-ELB period shown in Figure 2 are particularly prominent for the
shocks to the slope factor.21

B. Likelihood-Score-Based Tests

While our findings in Section IV.A point to some signs of greater model
misspecification in the post-ELB period than the pre-ELB period, the results are
arguably not clear-cut and uniform across the considered metrics. Therefore, in this
section, we test for a structural break explicitly, using variants of the moment
restriction in equation (20) based on both the pre-ELB parameter estimate (the
predictive framework) and the full-sample, single-regime estimate (the LM frame-
work). For this purpose, in addition to the model introduced in Section IV.A, we
estimate a single-regime, full-sample shadow rate model.

Consider first the predictive framework. For a model estimated on pre-ELB
data, the pre-ELB-subsample average of empirical scores will be 0, as a first-order
optimality condition of estimation. Intuitively, if there is no structural break, the

TABLE 5

Ghysels–Hall Statistics

Table 5 displays the Ghysels–Hall statistics for null hypothesis of structural stability. In Graphs B and C, r
�
is set to 7.3 basis

points. Periods I, II, III, and IV denote 12/2008–8/2011, 8/2011–5/2013, 6/2013–12/2015, and 1/2016–6/2019,
respectively.
Level of Lower Bound

Panel A. Level of Lower Bound (r
�
) χ2

12.5 299.36
7.3 326.12
5.5 325.20

Panel B. Subsample Period χ2

I 117.18
II 86.42
III 120.53
IV 179.58

Panel C. Survey Inclusion χ2

Included 326.12
Excluded 331.28

21We are grateful to an anonymous referee for suggesting possible linkages between the misspeci-
fication we document and concurrent monetary policy decisions.
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post-ELB sample average of empirical scores (based on pre-ELB parameters)
should be close to 0, with known asymptotic distribution (Ghysels and Hall
(1990)). This exercise requires an assumption on the level of the lower bound r

�
,

since this is not identified from pre-ELB data (see footnote 17). Panel A of Table 5
displays χ2 statistics for a joint test of all moment restrictions, for different values of
the lower bound r

�
.22 The statistics have 25 degrees of freedom (corresponding to the

number of estimated model parameters), with a 5% cutoff of 37.65 and a 1% cutoff
of 44.31. The null hypothesis of structural stability is thus firmly rejected, with a p-
value of virtually 0, and with only modest sensitivity to the exact chosen value of r

�
.

Therefore, for the remaining tests, we use r = 7:3 basis points. Panel B shows
statistics for the various segments of the post-ELB subsample separately. Using
the same four subdivisions as in Section IV.A.3, the null hypothesis that a model
based on pre-ELB parameters captures the behavior of post-ELB yields is solidly
rejected for each of the segments separately. Lastly, when computing the post-ELB
scores, we can include both yield and survey data in equation (10), or yield data
alone. Indeed, one natural question is whether poor forecasting performance by the
survey respondents drives the rejection of the null hypothesis. This does not appear
to be the case, as Panel C shows. When we compute post-ELB scores using only
yield data, the statistic changes little. We thus conclude that the statistical behavior
of post-ELB yield data is sufficient to reject the null hypothesis of structural
stability.

Next, we perform LM tests based on the full-sample, single-regime shadow
rate model parameter estimate. For such a model, the full-sample average of
empirical scores will be identically equal to 0 as a first-order condition. Without
a structural break, the pre- and post-ELB-subsample averages of empirical scores
based on full-sample parameters should individually be close to 0, again with
known asymptotic distribution.23 Since this statistic is based on a single-regime
model estimated on the entire sample, it is computationally cheap to evaluate the
statistic for a range of candidate structural break times around our assumed break
point. As shown in Figure 3, there is strong evidence of a structural break at our
assumed break time, and the statistic is relatively flat in the years before and after,
suggesting that our finding is not locally sensitive to the exact choice of break point
date.24We show in Section IA.III of the Supplementary Material that this finding is
again robust to the omission of survey data.

22A lower bound of 12.5 basis points corresponds to the mid-point of the federal funds target range
during the ELB years. Lower bounds of approximately 7.3 and 5.5 basis points are suggested by our
estimations below that include post-ELB data.

23The pre- and post-ELB subsample averages are linked, as
PTpre

t = 1∂ℓtðθ̂Þ=∂θ =
�PT

t = Tpreþ1∂ℓtðθ̂Þ=∂θ.
24In this article, we do not attempt to estimate the time of structural break empirically. One

straightforward such estimator is the date on which the LM test statistic is largest (the “sup LM” statistic
described by Andrews (1993)). Based on the window considered in Figure 3, this estimator would place
the sample break a fewmonths before our assumed break in Dec. 2008. However, this estimator depends
on the chosen window, with reliance on asymptotic properties becoming increasingly dubious as we
expand the range of candidate break points toward the beginning and end of the sample.
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V. Shadow Rate Model with a Structural Break

The evidence for structural instability discussed in the previous section natu-
rally raises the question how the structure of the model has changed in the post-ELB
period. While some of the diagnostics already shed light on this issue, we further
investigate by estimating a model in which the yield dynamics in the pre-ELB and
post-ELB periods are both described by the shadow rate model, but with different
parameters, θpre and θpost . Practically, this amounts to separate estimations of the
model with pre-ELB and post-ELB subsamples.

Our strategy allows us to analyze the characteristics of the structural break in
the greatest possible generality within the shadow rate model framework. However,
this flexibility comes at the cost of doubling the number of free parameters, and
therefore, we do not intend to propose the structurally broken model in this
section as a general-purpose term structure model. In Section IA.IVof the Supple-
mentary Material, we consider a shadow rate model with a structural break
restricted to a subset of parameters, and we are also cognizant of the possibility
that a different class of nonlinear models (e.g., regime-switching models) might
ultimately turn out to be more promising as a description of U.S. yield dynamics in
the post-ELB era.

A. Comparison of PCs

We begin with a discussion of PCA decomposition. To motivate this analysis,
Panels A and B of Table 6 show the PCA loadings for the first three principal
components of weekly yield changes, for the pre-ELB sample (Panels A and C) and
the post-ELB sample (Panels B and D). The pre-ELB sample loadings show typical
behaviors, consistent with the frequent “level,” “slope,” and “curvature”

FIGURE 3

Lagrange Multiplier Statistics

Figure 3 charts the time series of LagrangeMultiplier Statistics from 2 years before to 2 years after our assumed break point. A
large statistic rejects the hypothesis that the full-sample GMM conditions are satisfied separately in the subsample before the
given date and the subsample after the given date.
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designations of PC1, PC2, and PC3: For example, the PC1 loadings are roughly flat
(at least in the 1-year to 10-year range), while PC2 loadings monotonically increase
with maturity. In the case of the post-ELB sample, however, the loadings do not
display these typical patterns: The PC1 loadings increase with maturity for short
and intermediate maturities, while the PC2 loadings are no longer monotonically
increasing in maturity. The presence of the ELB likely explains much of this
atypical behavior. In particular, the ELB compresses the volatility of short-maturity
yields, and the usual notions of “level” and “slope” get intermingled, as any rise in
the level of the yield curve during the ELB would likely also be associated with an
increase in the slope of the yield curve.

But is the ELB the whole story behind the qualitative difference between the
pre-ELB and post-ELB PCs? Structurally stable shadow rate models, including
those that have been estimated in the literature, would imply so, that is, the PCA
decomposition of the changes in shadow yields (which are unaffected by the ELB)
should be the same in the pre-ELB and post-ELB periods.

Panels C and D of Table 6 show the loadings for the first three components
of changes in shadow yields, implied by the first subsample estimate θ̂pre and by the
second subsample estimate θ̂post . Although shadow yields are unobserved, the PC
loadings based on instantaneous changes in shadow yields implied by the model
parameters can be tractably evaluated. Recall from equation (9) that shadow yields
are affine in the state vector. Denoting the vector of shadow yields at time t for a
given set of m maturities (τ1,τ2,…,τm) as yst , we have, schematically,

yst = aþBxt,(23)

TABLE 6

Principal Component Loadings

Panels A and B of Table 6 show the PC1, PC2, PC3 loadings for the PC decomposition of weekly changes in yields in the pre-
ELB period (Panels A and C) and in the post-ELB period (Panels B and D). Panels C and D show the loadings for the PC
decomposition of instantaneous changes in shadow yields implied by the pre-ELB subsample estimate bθpre (Panel C) and by
the post-ELB subsample estimate bθpost (Panel D). These PCs are based on maturities (τ) of 0.25, 0.5, 1, 2, 4, 7, 10 years.
Standard errors are shown in parentheses.

Panel A. Observed Yields, Pre-ELB Panel B. Observed Yields, Post-ELB

τ PC1 PC2 PC3 PC1 PC2 PC3

0.25 0.2578 �0.7150 0.5128 0.0224 0.1032 0.6425
0.5 0.2829 �0.4273 �0.1066 0.0538 0.2031 0.5739
1 0.3601 �0.1749 �0.4435 0.1318 0.4302 0.2891
2 0.4338 0.0093 �0.4428 0.2900 0.5748 �0.1426
4 0.4599 0.1930 �0.1212 0.4819 0.3552 �0.3192
7 0.4244 0.3167 0.2841 0.5756 �0.1872 �0.0318
10 0.3795 0.3715 0.4873 0.5759 �0.5210 0.2261

Panel C: Model-Implied Shadow Yields, Pre-ELB Panel D. Model-Implied Shadow Yields, Post-ELB

τ PC1 PC2 PC3 PC1 PC2 PC3

0.25 0.22 (0.03) �0.62 (0.02) 0.49 (0.03) 0.11 (0.04) �0.58 (0.02) 0.35 (0.04)
0.5 0.28 (0.02) �0.48 (0.01) 0.10 (0.03) 0.14 (0.04) �0.53 (0.01) 0.19 (0.04)
1 0.37 (0.01) �0.28 (0.03) �0.34 (0.02) 0.18 (0.04) �0.44 (0.02) �0.08 (0.05)
2 0.44 (0.01) �0.03 (0.04) �0.52 (0.01) 0.27 (0.04) �0.27 (0.06) �0.43 (0.04)
4 0.46 (0.01) 0.21 (0.03) �0.19 (0.01) 0.42 (0.02) �0.01 (0.08) �0.57 (0.02)
7 0.43 (0.01) 0.34 (0.02) 0.27 (0.02) 0.56 (0.02) 0.21 (0.05) �0.08 (0.06)
10 0.39 (0.02) 0.38 (0.02) 0.50 (0.02) 0.61 (0.04) 0.29 (0.03) 0.57 (0.02)
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where a is an m-dimensional vector, and B is an m×N matrix. This, together with
equation (3), gives

ðdyst dys0t Þ=dt =BΣΣ0B0:(24)

Therefore, the singular value decomposition of this matrix

BΣΣ0B0 =PΨP0,(25)

where Ψ is a diagonal matrix, gives the PC1, PC2, PC3 loadings implied by the
estimatedmodel parameters (the first three columns of thePmatrix).25 Panels C and
D of Table 6 also provides standard errors based on the delta method formula.
As Duffee (2011) notes, this decomposition depends only on the parameters deter-
mining the risk-neutral dynamics of the model (Kℚ

1 ,k
ℚ
0 ,Σ,ρ0,ρ1), which are gener-

allymore precisely estimated than theℙ-measure parameters. Therefore, even in the
second subsample where the estimates are more uncertain than the first subsample,
the standard errors associated with these loadings are of modest sizes.

Not surprisingly, the pre-ELB period PC decompositions based on θ̂pre, shown
in Panel C of Table 6, are quite similar to those in Panel A, as θ̂pre fits the pre-ELB
period data reasonably well. On the other hand, the post-ELB period shadow yield
PCs based on θ̂post do showdifferences compared to the loadings in Panel B; notably,
the PC2 loadings are now monotonic in maturities. However, the post-ELB period
shadow yield PCs still do not match the pre-ELB period shadow yield PCs well. In
particular, the post-ELB period shadow yield PC1 loadings have notable slope
(i.e., increase with maturity). In other words, PC1 in the post-ELB periods does not
look like a standard “level shock.” The qualitative difference between shadow yield
PC loadings in the pre-ELB and post-ELB periods documented here adds to our
evidence that yield curve dynamics have changed materially. Specifically, this evi-
dence points to a change in the risk-neutral (ℚ) parameters, because, as noted by
Duffee (2011), this construction of PCs involves only risk-neutral parameters.

B. PC-Rotated Parameters

As discussed in Section III.A, the examination of howmuch θ̂2 differs from θ̂1
is complicated by the fact that there are multiple images of θ̂2 with identical
empirical content (discrete invariant transformations). Rotating the state variables
based on the PCA decomposition of shadow yield changes discussed previously
provides a natural means to surmount this problem, as shocks to the transformed
state vector x†t now have a specific meaning as “level,” “slope,” and “curvature”
shocks, thus allowing for an “apples-to-apples” comparison.

Specifically, we perform the transformation in equation (11), with L given by26

L=P0B,(26)

25Note, therefore, that Graphs A and B of Table 6 shows model-implied population loadings (which
allows us to compute standard errors), whereas the top panel shows sample loadings derived from
observed yields.

26Here, we follow Duffee (2011), who considered the PCs of instantaneous changes in yields in
affine-Gaussian models.
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with the P and B matrices in equation (25). The transformed parameters (θ† in
equation (12)) from the first subsample estimation and from the second subsam-
ple estimation (i.e., θ̂

†

pre and θ̂
†

post) can then be compared on an equal footing. One
caveat is that the PCs are defined only up to their sign. For example, if x†2t is a
slope factor, �x†2t is also a slope factor. To eliminate this ambiguity, we define the
factors such that the “level factor” loadings are generally positive (as opposed to
generally negative), the “slope factor” loadings increase with maturity
(as opposed to decreasing with maturity), and the “curvature factor” loadings
are a U-shaped function of maturity (instead of an inverted U-shape). Implicitly,
this imposes an ordering based on principal components, and assumes that the
ordering is preserved in a structural change (e.g., the level factor in the first
subsample does not become the slope factor in the second subsample). We argue
this is a weaker assumption than imposing a more artificial ordering (based on
parameters that are less intuitive).

Table 7 shows the PCA-rotated parameters, θ̂
†

pre for the pre-ELB sample and
θ̂
†

post for post-ELB sample, which were originally estimated based on a generic

TABLE 7

Parameter Estimates (PC Rotation)

Table 7displays thePC-rotation (θ†pre , θ
†
post ) of the estimatedparameters for thepre-ELB subsample andpost-ELB subsample.

Standard errors are shown in parentheses. The parameter vector kℙ
0 is 0 by normalization.

bθ†pre bθ†post bθ†pre bθ†post
½KP†

1 �11 �0.3245 (0.0992) �0.1039 (0.1176) ρ†0 0.0450 (0.0023) 0.0374 (0.0097)

½KP†
1 �21 �0.5771 (0.1076) �0.3488 (0.0839) ½ρ†1 �1 0.1372 (0.0415) 0.0892 (0.0426)

½KP†
1 �31 0.0703 (0.0327) 0.0317 (0.0623) ½ρ†1 �2 �0.7881 (0.0552) �0.6272 (0.0420)

½KP†
1 �12 0.1105 (0.1725) 0.5613 (0.3275) ½ρ†1 �3 1.0756 (0.0469) 0.5382 (0.0320)

½KP†
1 �22 �1.2233 (0.3176) �0.8334 (0.3421) ½Σ†�11 0.0209 (0.0007) 0.0370 (0.0119)

½KP†
1 �32 0.0094 (0.0266) 0.0372 (0.0844) ½Σ†�22 0.0086 (0.0007) 0.0060 (0.0007)

½KP†
1 �13 2.5916 (0.8509) 0.9523 (1.0423) ½Σ†�33 0.0032 (0.0002) 0.0030 (0.0004)

½KP†
1 �23 5.6326 (0.4849) 3.5576 (0.6313) ½λ†0 �1 �0.2102 (0.1844) �0.3395 (0.4170)

½KP†
1 �33 �0.7590 (0.2928) �0.4871 (0.3646) ½λ†0 �2 0.4708 (0.3557) 1.2801 (1.2667)

½KQ†
1 �11 0.5469 (0.0523) 0.2749 (0.0122) ½λ†0 �3 �0.9817 (0.1722) 0.8064 (1.3404)

½KQ†
1 �21 �0.7085 (0.1127) �0.2958 (0.0515) ½Λ†

1 �11 �41.7789 (6.8946) �10.2476 (4.3675)

½KQ†
1 �31 0.1410 (0.0555) �0.0508 (0.0174) ½Λ†

1 �21 15.2818 (8.5456) �8.9001 (9.0878)

½KQ†
1 �12 1.4295 (0.2204) 0.5185 (0.1330) ½Λ†

1 �31 �22.0198 (11.4565) 27.3390 (17.6313)

½KQ†
1 �22 �1.4008 (0.2523) �0.6274 (0.1834) ½Λ†

1 �12 �63.2374 (15.2839) 1.1569 (10.2985)

½KQ†
1 �32 0.2006 (0.0207) �0.0539 (0.0345) ½Λ†

1 �22 20.6275 (15.0579) �34.6007 (27.7273)

½KQ†
1 �13 �2.9793 (0.2268) �0.6228 (0.2122) ½Λ†

1 �32 �59.5334 (8.9792) 30.2072 (24.7968)

½KQ†
1 �23 4.7374 (0.1870) 2.2668 (0.0781) ½Λ†

1 �13 267.0819 (36.9095) 42.6123 (30.4754)

½KQ†
1 �33 �1.3247 (0.2714) �0.1417 (0.1303) ½Λ†

1 �23 104.0556 (59.7746) 216.8494 (86.7756)

½kQ†
0 �1 0.0044 (0.0038) 0.0126 (0.0146) ½Λ†

1 �33 176.1143 (63.0105) �114.5137 (85.4108)

½kQ†
0 �2 �0.0041 (0.0031) �0.0076 (0.0078)

½kQ†
0 �3 0.0032 (0.0004) �0.0024 (0.0040)
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normalization given by equation (13); the standard errors are computed with the
delta method.27 Note that the table shows more parameters than are necessary to
estimate the model, as some of these are linked to each other (e.g., knowing two of
Kℙ

1 , K
ℚ
1 , and Λ1 determines the third (recall equation (6))).
It can be seen that pre-ELB period parameters are often more precisely

estimated than the post-ELB period parameters; in other words, θ†pre tends to have
smaller standard errors than θ†post . In addition, theℚ-measure parameters tend to be
estimated with smaller standard errors than the ℙ-measure counterparts, reflecting
the fact thatℚ-measure parameters are determined in large part from cross-sectional
information. Indeed, the standard errors for most elements of the Kℚ†

1 matrices for
both θ̂pre and θ̂post are small enough to indicate statistically significant changes
in ℚ-measure dynamics. This adds to the indication from the fitting errors
(Section IV.A.1) and PC loadings (Section V.A) that theℚ-measure dynamics have
changed.

The ℙ-measure parameter estimates Kℙ†
1 also indicate substantial change

between the pre-ELB and post-ELB periods. The standard errors are quite sizable,
especially for the post-ELB period estimate, but some of the elements of Kℙ†

1 still
show statistically significant change. Similarly, the matrix Λ†

1 shows substantial
changes, with some of the elements even flipping signs (although the standard
errors here are also fairly large). This suggests significant changes in the structure of
market price of risk, in addition to the changes in ℙ and ℚ dynamics. Below, we
examine how these changes inmarket price of risk translate to different implications
for expectations hypothesis regressions.

Finally, note that the estimate of the long-run mean of the shadow rate (ρ†0) is
somewhat lower in θ†post than in θ†pre, adding further credence to the view that the
natural rate “r-star” has declined since financial crisis, albeit with large estimation
uncertainty.

C. EH Regressions for Shadow Yields

Additional insights into how the model has changed can be gleaned from
model-implied expectations hypothesis (EH) regression coefficients.28

We consider two such regressions, namely the Campbell and Shiller (1991)
regression:

ystþ1,n�1� yst,n = αþβ
1

n�1
ðyst,n� yst,1Þþ etþ1,n,(27)

and the Fama (1984) regression:

ystþn,1� yst,1 = αþβð f st,n� yst,1Þþ etþn,n,(28)

27The original parameter estimates are given in Section IA.II of the Supplementary Material.
28Studies like Backus, Foresi, Mozumdar, and Wu (2001) and Dai and Singleton (2002) have

examined term structuremodel-implied beta coefficients in EH regressions as a part ofmodel evaluation,
while our interest with these model-implied coefficients is in characterizing the change between the two
sample periods (pre-ELB and post-ELB).
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where yst,n is the n-period shadow yield at time t, and f st,n is n-period ahead shadow
forward rate at time t (i.e., f st,n = logðPs

t,n=P
s
t,nþ1Þ).29 We are defining these regres-

sions in terms of shadow yields/forward rates, rather than true yields and forward
rates, to facilitate the investigation of potential differences between the pre-ELB
and post-ELB periods: Because shadow yields/forward rates are unaffected by the
ELB if the model is structurally stable, the βs from the pre-ELB period should equal
the βs from the post-ELB period in these regressions.

Table 8 shows model-implied population EH regression coefficients along
with their standard errors (calculated with the delta method) for both the pre- and
post-ELB parameters.30 The existing literature on expectations hypothesis tests has
found that the Campbell–Shiller regression coefficient is often negative, while the
Fama regression coefficient is typically less than 1 but larger than 0. The implied
regression coefficients for the pre-ELB sample are consistent with these patterns.
Meanwhile, the implied coefficients in the post-ELB period display interesting
qualitative differences from the pre-ELB sample. In particular, both with βCSn and
with βFn , for low n, the coefficients are close to 1; in other words, shadow yield/
forward rate dynamics are close to the EH for short maturities in the post-ELB

TABLE 8

Expectations Hypothesis Regression Coefficients

Table 8 gives the model-implied expectations hypothesis regression coefficients. Panel A shows the Campbell–Shiller
regression coefficients implied by the pre-ELB and post-ELB subsample parameter estimates, bθpre and bθpost . Panel B
shows the implied Fama regression coefficients. Standard errors are shown in parentheses.

Panel A. Campbell–Shiller

n βðθ̂pre Þ βðθ̂post Þ
2 �0.2181 (0.1386) 1.0367 (0.6128)
3 �0.2527 (0.1322) 0.9087 (0.6903)
6 �0.3469 (0.1150) 0.5429 (0.9432)

12 �0.4933 (0.0903) �0.0865 (1.2645)
24 �0.6543 (0.0755) �0.9392 (1.0551)
36 �0.7203 (0.0918) �1.4068 (0.4604)
48 �0.7527 (0.1198) �1.6552 (0.6097)
60 �0.7777 (0.1518) �1.7798 (1.2152)
84 �0.8393 (0.2200) �1.8352 (2.2844)

120 �0.9813 (0.3225) �1.6951 (3.5157)

Panel B. Fama

n βðθ̂pre Þ βðθ̂post Þ
6 0.3173 (0.0668) 0.6428 (0.5004)

12 0.2582 (0.0662) 0.3518 (0.5240)
18 0.2269 (0.0676) 0.1815 (0.4152)
24 0.2120 (0.0699) 0.0820 (0.2855)
30 0.2051 (0.0722) 0.0226 (0.1761)
36 0.2019 (0.0744) �0.0141 (0.0983)

29It can be shown that for n= 2, the Campbell–Shiller and Fama regressions contain the same
information. However, for n> 2, the two regressions probe somewhat different aspects of the departures
from the expectations hypothesis.

30The model-implied regression coefficients are straightforward to compute. For example, in the case
of the Campbell–Shiller coefficient, it is given by βCSn = ðn�1ÞCovðystþ1,n�1� yst,n,y

s
t,n� yst,1Þ=Varðyst,n�

yst,1Þ= ðn�1Þ ðb0n�1e
ð1=12ÞKP

1 �bnÞVxðbn�b1Þ
ðb0n�b01ÞVxðbn�b1Þ for n measured in months, where Vx is the unconditional variance–

covariance matrix of the state variables (implied by the model parameters).
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sample. But as n gets larger, the departures from EH based on the post-ELB sample
estimation get even more pronounced than those based on the pre-ELB sample
estimation, with βCSn and βFn for the post-ELB sample taking lower values than those
for the pre-ELB sample. The Campbell–Shiller beta for larger n’s (such as n= 120
months) taking a more negative value in the post-ELB period than in the pre-ELB
period is reminiscent of Andreasen et al. (2019), who obtain similar results with
actual yields instead of shadow yields.

Somewhat unsurprisingly, with limited amount of post-ELB period data, the
standard errors for that period are fairly large. While these results therefore might
not constitute a sufficient body of evidence by themselves, they are suggestive of a
change in the pricing of interest rate risk, and further add to the finding in
Section V.B that the parameters that describe the market price of risk ðλ†0,Λ†

1Þ have
changed meaningfully between the two periods.

D. Expectations and Term Premiums

Here, we compare some of the predictive outputs from our various models to
illustrate their differences concretely in terms of quantities of economic interest.

We start with implied time series of the shadow rate st. The shadow rate is not a
quantity of economic interest per se. It is an unobserved variable, and its value does
not have a simple relationship with quantities of economic interest such as actual
bond yields, interest rate expectations, and term premiums. Still, as a central
ingredient in the model, the estimates of shadow rates are worth taking a look
at. Figure 4 shows the estimates of the shadow rate over the post-ELB period based
on the pre-ELB sample parameter estimate (structural stability assumption) as well
as post-ELB sample parameter estimate (structural break assumption). Interest-
ingly, the shadow rate assuming a structural break is generally less negative than

FIGURE 4

Shadow Rate Estimates

Figure 4 charts the time series of Estimated Shadow Rates from the structurally stable model based on pre-ELB parameter
estimates (and subsequently extended to the post-ELB period as a shadow rate model), and the structurally broken shadow
rate model.
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the shadow rate assuming structural stability. In particular, the structurally stable
model produces a notablymore negative shadow rate during the 2014–2016 period.

Figure 5 shows the time series of 2-year and 10-year yield term premiums
implied by both models. An especially notable feature in Graph A is that the 2-year
term premium implied by the structurally broken model is generally closer to 0 than
that implied by the structurally stable model; in other words, the structurally broken
model is closer to the expectations hypothesis, consistent with the finding in
Section V.C that the implied Fama regression coefficients based on θ̂post are closer
to 1 (as would be implied by the EH) for short horizons, relative to θ̂pre. For most of
the post-ELB period, the 2-year term premium implied by the structurally stable
model is substantially more negative, implying that the near-term expected path of
the short rate implied by the structurally stable model is steeper than the structurally
broken model counterpart.31 On the other hand, as shown in Figure 5, Graph B, the
10-year term premiums based on the models with and without structural break are
qualitatively more similar to each other. The 10-year term premium based on the
model with structural break is somewhat lower than that from the structurally stable
model in the 2011–2016 period and somewhat higher in the period since 2018.

Due to space constraints, additional results comparing the outputs from the
structurally stable and broken models are provided in Section IA.Vof the Supple-
mentary Material.

FIGURE 5

Term Premium Estimates

Figure 5charts the 2-year (GraphA) and10-year (GraphB) yield TermPremiums implied byour differentmodels, shown for the
post-ELB subsample.
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31Because the sum of term premium and short rate expectation equals forward rate, and because
fitting errors for forward rates and yields are relatively small in latent-factor models, more negative term
premiums translate to higher (i.e., more positive) short rate expectations. Interestingly, themore negative
level of shadow rate does not necessarily translate to a lower level of the near-term expected short rate
path. For example, during 2014–2016, the shadow rate implied by the structurally stable model was
lower than that of the structurally brokenmodel, but (as can be seen in Figure 5) the 2-year term premium
implied by the structurally stable model was less negative than that of the structurally broken model.
The reason is that the short rate expectations depend not only on the current (spot) shadow rate but also on
other factors that affect expectations.
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VI. Economic Interpretations of Structural Break Evidence

The results presented in Sections IV and V indicate that the evidence for a
structural break is broad and covers multiple facets of yield curve dynamics,
including the ℙ-measure dynamics of factors, risk premiums, and the ℚ-measure
dynamics. We now discuss these aspects in turn.

1. Changes in ℙ-measure dynamics: The comparison of PC-rotated parameters in
Table 7 indicates significant changes in the ℙ-measure dynamics of the state
vector. In addition, the innovation vector statistics presented in Section IV.A.2
also point to a change in ℙ-measure dynamics. This change in ℙ-measure
dynamics is consistent with the economic intuition that the evolution and
interplay of key macro variables will change once the economy arrives at the
ELB, since conventional monetary policy can no longer respond to macroeco-
nomic developments and provide monetary stimulus in the ELB regime.32 This
structural instability issue could be especially concerning for those shadow rate
term structure models that havemacro variables (such as inflation andGDP gap)
as part of the state vector.33 However, even pure latent-factor models, in which
all of the state variables are latent, may not be free from these concerns, as latent
variables are typically thought to embodymacroeconomic risks. One potentially
alleviating consideration is that unconventional monetary policy tools may have
helped to soften the blow of the ELB constraint to the real economy. But to what
extent they have done so is still an actively debated topic. Chung, Laforte,
Reifschneider, andWilliams (2012), for example, find that the Federal Reserve’s
asset purchases, while materially improving macroeconomic conditions, did not
prevent the ELB constraint from having first-order adverse effects on real
activity and inflation.

It is possible also that the financial crisis and theGreat Recession resulted in
significant structural changes in the economy, which would be (partly) reflected
through changes in ℙ-measure parameters. Persistent “headwinds” have been
often mentioned in policy discussions in the post-ELB period.

2. Changes in risk premiums: Table 7 also indicates a significant change in risk
premium behavior in the ELB regime; the market price of risk parameters
ðλ0,Λ1Þ in the pre- and post-ELB subsamples differ notably, some even have
different signs. Results in Section V, including the EH regression coefficients
and term premiums implied by pre- and post-ELB subsample estimates, further
add to the evidence of a change in the behavior of risk premiums.

In terms of economic forces behind the change, the state of being in the
ELB regime could be consequential enough to change risk premium behaviors

32This idea is reflected in simple stylized models like Reifschneider andWilliams (2000). Studies of
ELB dynamicswithin a new-Keynesian framework, including Eggertsson andWoodford (2003), Nakata
and Tanaka (2016), and Gust, Herbst, López-Salido, and Smith (2017), also indicate the macro variables
behave differently in ELB versus non-ELB periods.

33Ang and Piazzesi (2003) and Joslin et al. (2014) are examples of term structure models with macro
factors. ELB term structure models withmacro factors include Bauer and Rudebusch (2016) andWu and
Xia (2016).
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(e.g., by affecting economic agents’ risk attitudes and hedging behaviors). But
the onset of ELB in the U.S. also roughly coincided with the start of LSAPs
(an unconventional policy tool which likely contributed substantially to the
change in the behavior of risk premiums) and the transition to an “ample
reserves” regime. A stylized model of King (2019) (a simple shadow rate model
with supply factor) indeed implies that the risk premium behavior changes as the
economy goes into the ELB regime.34 More broadly, we can expect LSAPs to
significantly alter the behavior of risk premiums in bond markets, as the asset
purchases are also believed to directly affect longer-term maturities of the yield
curve through the suppression of term premiums (as opposed to conventional
policy, which affects longer-termmaturities through its effect on expected short-
term rates).35 In addition, forward guidance (the other unconventional policy
tool that the Fed has employed over much of the ELB period) may also have
affected risk premium behavior especially at near- and intermediate-term hori-
zons. Indeed, as Graph A of Figure 5 shows, short-dated term premiums implied
by the structurally broken model are, on average, smaller in magnitude and less
volatile in the ELB period.

3. Changes in ℚ-measure dynamics: The estimated parameters in Table 7 also
indicate a change inℚ-measure dynamics. This is consistent with the patterns in
fitting errors we saw in Section IV.A (the pre-ELB parameters imply notably
larger yield fitting errors in the post-ELB period, especially after 2014). The
change in ℚ-measure parameters is also manifested in the changes in shadow
yield PC patterns, as we saw in Section V.A. Recall from Section II that
ℙ-measure parameters kℙ0 and Kℙ

1 and ℚ-measure parameters kℚ0 and Kℚ
1 are

linked by market price of risk parameters (see equation (6)). As we have noted
previously, empirical evidence and economic intuition support changes in both
the ℙ-measure dynamics of state variables and the behavior of risk premiums.
Therefore, the ℚ-measure parameters are naturally expected to change as well,
unless the changes in ℙ-measure parameter KP

1 and in market price of risk Λ1

exactly offset each other. There appears to be no obvious economic argument for
such cancelation.36

VII. Conclusion

In this article, we examined the structural stability of shadow rate term struc-
ture models as applied to U.S. Treasury yield data. We found various pieces of
evidence pointing to structural instability, including diagnostics based on innova-
tion vectors and yield fitting errors, as well as likelihood score-based tests. To

34In King’s model, the market price of risk vector is an affine function of Gaussian state variables in
the normal regime, but its dynamics become non-Gaussian in the ELB regime.

35For recent reviews, see Bernanke (2020) and Kuttner (2018).
36Some related studies, including Andreasen et al. (2019) and Giacoletti, Laursen, and Singleton

(2021), have assumed that the ℚ-measure dynamics remain structurally stable even as the ℙ-measure
parameters are subject to a structural break. The increased tractability of such a model may justify the
assumption of stable ℚ parameters in some applications even as our statistical evidence indicates a
structural break in them. We discuss this point further in Section IA.IVof the Supplementary Material.
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characterize the changes in yield dynamics as generally as possible, we estimate a
shadow rate model in which the pre-ELB and post-ELB periods are described by
different sets of parameters. Overall, the results presented in this article point to
extensive changes in the shadow yield dynamics since around the financial crisis.
The structural change does not appear to be confined to a single aspect of the model
(say, only the ℙ-dynamics), but instead spans many facets of the model, including
ℙ-dynamics, ℚ-dynamics (and hence the principal components of shadow yields),
and risk pricing. The results also indicate that ignoring structural change can lead to
notable differences in quantities of practical interest (e.g., ignoring structural
change implies generally steeper expected paths of the short rate and generally
more negative near-term term premiums in the post-ELB period).

In sum, we find that the change in yield dynamics in the post-ELB period is not
as simple as suggested by structurally stable shadow rate models, at least in the case
of U.S. data, and that morematerial changes in the dynamics of Treasury yields took
place after the federal funds rate hit the ELB in 2008. Our article has examined this
issue from the perspective of a shadow rate model with a structural break, but the
empirical results herein may also be consistent with broader misspecification of
shadow rate models. It could be that a fundamentally different model would yield a
more satisfying description and richer insights into the dynamics of yields near
the ELB.

Supplementary Material

To view supplementary material for this article, please visit http://doi.org/
10.1017/S0022109023000984.
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