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DNS study of decaying homogeneous isotropic
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In order to investigate the turbulent drag reduction phenomenon and understand
its mechanism, direct numerical simulation (DNS) was carried out on decaying
homogeneous isotropic turbulence (DHIT) with and without polymer additives. We
explored the polymer effect on DHIT from the energetic viewpoint, i.e. the decay of
the total turbulent kinetic energy and energy distribution at each scale in Fourier space
and from the phenomenological viewpoint, i.e. the alterations of vortex structures, the
enstrophy and the strain. It was obtained that in DHIT with polymer additives
the decay of the turbulent kinetic energy is faster than that in the Newtonian fluid
case and a modification of the turbulent kinetic energy transfer process for the
Newtonian fluid flow is observed due to the release of the polymer elastic energy into
flow structures at certain small scales. Besides, we deduced the transport equations of
the enstrophy and the strain, respectively, for DHIT with polymer additives. Based on
the analyses of these transport equations, it was found that polymer additives depress
both the enstrophy and the strain in DHIT as compared to the Newtonian fluid
case, indicating the inhibition effect on small-scale vortex structures and turbulence
intensity by polymers.
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1. Introduction
The so-called Toms effect was discovered in 1949 (Toms 1949). It says that adding

a minute amount of long-chain polymer or some kinds of surfactant additives into
a turbulent liquid flow in a pipe or channel may cause a dramatic frictional drag
reduction (DR). The DR rate can even be more than 80 %. The Toms effect has great
potential in industrial applications, such as in saving pumping power in a water-
circulating device such as a district heating/cooling system, long-distance liquid
transportation pipeline systems, etc. To interpret this intriguing phenomenon of
turbulent DR, many researchers have paid much attention to theoretical, experimental
and numerical simulation studies on drag-reducing flows by additives.

During the last several decades, some theories about the mechanism of turbulent
DR have been proposed (e.g. Lumley 1973; De Angelis, Casciola & Piva 2002a;
Ptasinski et al. 2003). In these theories, the presence of a wall plays a major role.
A great wealth of experimental studies have also been carried out on turbulent
drag-reducing channels, pipe or boundary-layer flows with polymer or surfactant
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additives, particularly after the emergence of modern experimental techniques such as
laser-Doppler velocimetry (e.g. Walker & Tiederman 1990; Den Toonder et al. 1997;
Sreenivasan & White 2000; Ptasinski et al. 2001, 2003; Li, Kawaguchi & Hishida
2004) and particle image velocimetry (e.g. Warholic et al. 2001; Liberatore et al.
2004; Li et al. 2005, 2006; Cai et al. 2009). On the other hand, the investigation
of turbulent DR mechanisms has flourished significantly with the development of
computational fluid dynamics techniques, particularly direct numerical simulation
(DNS) for wall-bounded turbulent drag-reducing flows (e.g. Den Toonder et al. 1997;
Sureshkumar, Beris & Handler 1997; Beris & Dimitropoulos 1999; Min, Yoo & Choi
2001; Ptasinski et al. 2003; Yu & Kawaguchi 2004).

In spite of the extensive theoretical, experimental and numerical studies on
wall-bounded turbulent drag-reducing flows, the underlying physical mechanism
of DR remains poorly understood. This is not surprising, since the problem
itself is twofold, including two poorly understood problems: turbulence and
additives dynamics. In the wall-bounded turbulent flows, the inhomogeneous nature
makes it difficult to analyse the interaction between turbulence and polymer
microstructures, due to the multitude of competing effects. In contrast, by removing
the inhomogeneity emerging from the wall, such as for homogeneous isotropic
turbulence (HIT) or bulk turbulence, it is easier to isolate and study the
interactions between turbulence and polymer microstructures. Therefore, studies of
this kind of turbulence with drag-reducing additives have fundamental importance
towards understanding the physics of additives–turbulence interactions. So far,
several studies have been carried out based on HIT or bulk turbulence in dilute
polymer or surfactant solution through experimental, theoretical and numerical
methods and a preliminary understanding of the flow characteristics has been
obtained.

To remove the inhomogeneity generated by the wall, the experiments were carried
out on grid-generated turbulence or bulk turbulence in drag-reducing fluids. It
was found that in grid-generated turbulence in dilute polymer solution, there is
a significant alteration of turbulent kinetic energy distribution among scales (Fabula
1966; McComb, Allan & Greated 1977) and energy budget (Friehe & Schwarz 1970)
compared with pure water flow and the overall turbulent intensity and pressure drop
decrease (Friehe & Schwarz 1970). With the presence of polymers, the flow gives
rise to a smaller dissipation rate than that expected for a corresponding Newtonian
fluid flow (Van Doorn, White & Sreenivasan 1999). Besides, by flow visualization
a suppression of small-scale structures was also obtained which is attributed to
an elastic absorption of energy on those scales, and finally results in a truncation
of energy cascade (Barnard & Sellin 1969; Van Doorn et al. 1999). The above
experimental studies of grid turbulence in a dilute polymer solution suggested that
DR also exists even in situations where the wall plays no apparent role. Except for
grid-generated turbulence, DR was also found in bulk turbulence generated between
several counter-rotating disks, using a smooth forcing (Cadot, Bonn & Douady 1998;
Bonn et al. 2005; Drappier et al. 2006; Liberzon et al. 2005, 2006). Similarly, a
significant decrease in the Lagrangian acceleration variance and a modification of the
Eulerian structure function in a dilute polymer solution also indicated the suppression
of viscous dissipation and modification of the turbulent energy cascade (Crawford
et al. 2008; Ouellette, Xu & Bodenschatz 2009).

Based on the experimental results of grid turbulence in a drag-reducing polymer
solution, Tabor & De Gennes (1986) and De Gennes (1986) proposed an elastic
theory for DR and provided an alternative explanation for the drag-reducing
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effect in HIT based on the idea that polymers in turbulent flow exhibit elastic
properties even at very low concentrations. They argued that the viscous effects
which play a crucial role in Lumley’s theory (Lumley 1973) are not at all relevant
to the phenomenon of DR. In the theory, two scales are defined for a dilute
polymer solution in HIT. (i) r∗ the trapping length, indicating the scale of the
turbulence at which stretching of polymers begins; it is independent of polymer
concentration, but dependent on both the relaxation time of polymers and turbulent
kinetic dissipation rate. (ii) r∗∗ the scale at which the polymer elastic energy is
comparable to the turbulent kinetic energy of that scale. They concluded that polymers
truncate the classical cascade when r∗∗ becomes larger than the usual Kolmogorov
scale.

Recently, with the development of numerical simulation many researchers have
carried out DNS for forced HIT (FHIT) and decaying HIT (DHIT) to study the
additives–turbulence interaction and physical mechanism of DR. In FHIT with the
presence of polymers, the energy cascade is deeply altered, i.e. a substantial part
of the energy income does not follow the classical Kolmogorov cascade towards
viscous dissipation. Instead, it is moved to the microstructures to feed an additional
cascade (De Angelis et al. 2002b, 2005; Vaithianathan & Collins 2003; Jin 2007). A
new component in the energy flux is introduced according to the Kármán–Howarth
equation (De Angelis et al. 2002b, 2005) and the turbulent kinetic energy spectra
at intermediate scales is reduced, while at high wavenumbers it is increased with
the presence of polymers (Vaithianathan & Collins 2003). However, the DNS results
of Berti et al. (2006) suggested that polymers only partially suppress the turbulent
cascade below the Lumley scale, and the velocity at large scales is found to be
unaffected and small-scale statistics, such as acceleration, display features typical of
Newtonian fluid turbulence. In DHIT with polymer additives, a remarkable alteration
of the turbulent kinetic energy spectrum similar to that in FHIT (Vaithianathan &
Collins 2003) appeared, and was interpreted based on the effective scale-dependent
viscosity (Perlekar, Mitra & Pandit 2006). Moreover, numerical simulation results
showed that both the energy dissipation rate and intermittency in the dissipation range
are reduced compared to its Newtonian fluid counterpart, and small-scale structures
are suppressed (Kalelkar, Govindarajan & Pandit 2005; Perlekar et al. 2006). Based
on the decrease in energy dissipation rate, Kalelkar et al. (2005) proposed a definition
of DR rate and found that DR rate increases with the polymer concentration, but
decreases with Weissenberg number, inconsistent with that in turbulent channel flow.
In a nutshell, the above numerical simulation results also show DR exists in HIT,
and the important turbulence parameters change remarkably due to the addition of
polymers which are qualitatively consistent with experimental results.

These important previous studies were mainly focused on the DR phenomenon and
the characteristics of HIT with polymer additives. However, how the flow structures
interact with polymer microstructures has still not been investigated in detail. This
is the motivation of our study. As is known, the enstrophy (the strength of the
vortex structures) and the strain (directly corresponding to energy dissipation rate)
are suitable for describing vortex dynamics and strongly related to energy cascades,
and their generation is considered as the impetus of flow maintenance. To explore
how the flow is influenced by drag-reducing polymer additives and how polymers
contact with flow structures, we carried out DNS of low-Reynolds-number DHIT in
a dilute polymer solution and studied the DR mechanism not only through analysing
the turbulent-kinetic-energy equation, but also for the first time through analysing
the enstrophy and strain transport equations.
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2. Governing equations and numerical details
In order to study the additives–turbulence interaction by DNS, an additional

polymer stress term to Navier–Stokes equation should be included. There are two
major difficulties in the DNS of polymer solution flow: (i) how to model polymers
accurately and efficiently; (ii) how to simulate the equation without incurring
numerical instabilities. There have been some important conformation models, such
as the Oldroyd-B, FENE-P and Giesekus models used in turbulent drag-reducing
channel-flow simulations (Sureshkumar & Beris 1995; Dimitropoulos et al. 1998; De
Angelis et al. 2002a). Among these models, FENE-P is the most widely used due to
its relatively accurate representation of polymers dynamics, minimal computational
complexity and its ability to show the drag-reducing behaviour of dilute polymer
solution in wall-bounded flows analogous to the experimental results (Sureshkumar
et al. 1997; De Angelis et al. 2002a). Therefore, FENE-P is also adopted in our
simulation. However, due to the hyperbolic nature of constitutive models it is easy
to generate Hadamard instabilities and cause divergence in numerical simulations
(Dupret & Marchal 1986). Most studies have solved this problem based on adding
an artificial diffusion term (Sureshkumar & Beris 1995), continuous decomposition
(Vaithianathan & Collins 2003) or Cholesky decomposition (Vaithianathan & Collins
2003) and a high-order discrete scheme for conformation equations such as the
MINMOD scheme (Yu & Kawaguchi 2004). Vaithianathan et al. (2006) discussed
the remaining questions of the above methods and proposed the Kurganov–Tadmor
(KT) scheme to solve the Hadamard instabilities. The scheme is second-order accurate
in space everywhere except for the grid points losing symmetric positive definite (SPD)
property. Where it occurs the scheme automatically becomes first-order accurate for
these points to maintain the SPD property. To guarantee the SPD property of the
conformation tensor at all times and all points, the KT scheme was used in our
numerical simulations.

The governing equations for dilute polymer solutions in DHIT are

∂u
∂t

+ u · ∇u = − 1

ρ
∇p +

1

ρ
∇ · T[s] +

1

ρ
∇ · T[p], (2.1)

∂C

∂t
+ u · ∇C = C · ∇u + ∇uT · C − f (r)C − I

τp

. (2.2)

where u(x, t) is the velocity vector, p is the local pressure, ρ is the fluid density,
T[s] = 2ρν[s]S is the Newtonian stress tensor due to the solvent, ν[s] is the solvent
kinetic viscosity and S =(Γij + Γji)/2 is the rate of strain tensor, ∇u = Γij = ∂ui/∂xj

and ∇uT = Γji = ∂uj/∂xi , T[p] = (ρν[p]/τp)(f (r)C − I) is the additional elastic stress
tensor due to polymers, ν[p] is the polymer viscosity and I is the unit tensor, τp is the
polymer-relaxation time, C is the polymer conformation tensor. In the FENE-P model,
f (r) = (L2 − 3)/(L2 − r2) ensures the finite extensibility, r =

√
trace(C) and L are the

extension length and the maximum possible extension of polymers, respectively.
To solve (2.1), a standard pseudo-spectral code with 963 collocation points in the

periodic cubic domain of size � =2π cm is used for spatial discretization (Rogallo
1981; Canuto et al. 1988). Note that in the simulations the spatial resolution is
sufficient to capture the information at the smallest scale, i.e. the Kolmogorov scale.
Our low-resolution results are similar to the high-resolution results of Perlekar et al.
(2006), and a second-order Adams–Bashforth scheme is adopted for time marching
with all the nonlinear terms fully de-aliased by the 3/2 rule. The spectral and
high-order compact schemes are not suitable for solving (2.2), as they lose spectral
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convergence in the vicinity of the discontinuities (Vaithianathan et al. 2006). Therefore,
in our simulations for (2.2), the finite difference method is used. For time marching,
a second-order Adams–Bashforth scheme is adopted. In spatial domain, we use
a second-order central difference scheme except for the convective term. For the
convective term in (2.2), a second-order KT scheme is used, and it can be discretized
as follows (Vaithianathan et al. 2006):

u · ∇C =
Hx

i+1/2,j,k − Hx
i−1/2,j,k

�x
+

Hy

i,j+1/2,k − Hy

i,j−1/2,k

�y
+

Hz
i,j,k+1/2 − Hz

i,j,k−1/2

�z
,

(2.3)
where the convective flux in each direction is given by

Hx
i+1/2,j,k = 1

2
ui+1/2,j,k(C

+
i+1/2,j,k + C−

i+1/2,j,k) − 1
2
|ui+1/2,j,k|(C+

i+1/2,j,k − C−
i+1/2,j,k),

Hy

i,j+1/2,k = 1
2
vi,j+1/2,k(C

+
i,j+1/2,k + C−

i,j+1/2,k) − 1
2
|vi,j+1/2,k|(C+

i,j+1/2,k − C−
i,j+1/2,k),

Hz
i,j,k+1/2 = 1

2
wi,j,k+1/2(C

+
i,j,k+1/2 + C−

i,j,k+1/2) − 1
2
|wi,j,k+1/2|(C+

i,j,k+1/2 − C−
i,j,k+1/2).

⎫⎪⎪⎬⎪⎪⎭
(2.4)

The superscripts ‘+’ and ‘−’ on the right-hand side in (2.4) designate values of the
conformation tensor at the interface obtained in the limit approaching the point of
interest from the right (+) or left (−) side. The conformation tensor C at the interface
is constructed from the following second-order, piecewise, linear approximations:

C±
i+1/2,j,k = Ci+1/2±1/2,j,k ∓

(
�x

2

)(
∂C

∂x

)
i+1/2±1/2,j,k

,

C±
i,j+1/2,k = Ci,j+1/2±1/2,k ∓

(
�y

2

)(
∂C

∂y

)
i,j+1/2±1/2,k

,

C±
i,j,k+1/2 = Ci,j,k+1/2±1/2 ∓

(
�z

2

)(
∂C

∂z

)
i,j,k+1/2±1/2

.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(2.5)

Here, potential candidates for approximating the gradients are

(
∂C

∂x

)
i,j,k

=

⎧⎪⎨⎪⎩
(Ci+1,j,k − Ci,j,k)/�x,

(Ci,j,k − Ci−1,j,k)/�x,

(Ci+1,j,k − Ci−1,j,k)/(2�x).

(2.6)

We selected a derivative approximation that can yield SPD results for C+
i−1/2 and

C−
i+1/2. When two or more candidates satisfy the criterion, we select the one which

maximizes the minimum eigenvalue for these two tensors. When none of them meet
this criterion, the derivative is set to zero, reducing to first-order accurate. The finite-
volume update for C requires the area-averaged velocities at the edge of the volume
surrounding each grid point. The following method is used (Vaithianathan et al.
2006):

ui±1/2,j,k = F −1

{
ûe±ikx�x/2 sin(ky�y/2)

ky�y/2

sin(kz�z/2)

kz�z/2

}
,

vi,j±1/2,k = F −1

{
v̂e±iky�y/2 sin(kz�z/2)

kz�z/2

sin(kx�x/2)

kx�x/2

}
,

wi,j,k±1/2 = F −1

{
ŵe±ikz�z/2 sin(kx�x/2)

kx�x/2

sin(ky�y/2)

ky�y/2

}
,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(2.7)
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Cases δt(s) L ν[s](cm2 s−1) τp(s) β

Run 96-A 1.0 × 10−3 100 10−2 0.1 0.6,0.7,0.8,0.9
Run 96-B 1.0 × 10−3 100 10−2 0.15 0.6,0.7,0.8,0.9
Run 96-C 1.0 × 10−3 100 10−2 0.2 0.6,0.7,0.8,0.9
Run 96-D 1.0 × 10−3 100 10−2 0.08,0.12,0.18 0.6
Run 96-E 1.0 × 10−3 0 10−2 0 1

Table 1. The parameters δt , L, ν[s], τp and β for our runs. Run 96-A, Reλ =26.2, Wi =0.62;
Run 96-B, Reλ = 26.2, Wi = 0.93; Run 96-C, Reλ = 26.2, Wi = 1.24; Run 96-D, Reλ = 26.2,
Wi =0.50, 0.74, 1.11; Run 96-E, Reλ =26.2, Wi = 0, Newtonian fluid case. We use ρ = 1 g cm−3

for all simulations. β = ν[s]/(ν[s] + ν[p]) is a dimensionless measure of dilute polymer solution
concentration, and smaller β corresponds to denser polymer solution.

where ui±1/2,j,k , vi,j±1/2,k and wi,j,k±1/2 are the area-averaged velocities at the edge of the
volume surrounding each grid point; û(kx, ky, kz), v̂(kx, ky, kz) and ŵ(kx, ky, kz) are
the Fourier coefficients of velocities at each grid point. Hereafter variables with
hats ‘ˆ’ are in Fourier space.

Simulations are based on the divergence-free initial velocity field û0(k), i.e.
∇ · û0(k) = 0, which is generated in Fourier space according to Rogallo’s procedure
(Rogallo 1981)

û0(k) =
α(k)kk2 + β(k)k1k3

k
√

k2
1 + k2

2

e1 +
β(k)k2k3 − α(k)kk1

k
√

k2
1 + k2

2

e2 −
β(k)

(
k2

1 + k2
2

)
k2

2

e3, (2.8)

where α(k) =
√

(E0(k)/4πk2)eiθ1 cos φ, β(k) =
√

(E0(k)/4πk2)eiθ2 sinφ, θ1, θ2 and φ are
uniform random variables between 0 and 2π; e1, e2 and e3 are the unit vectors along
the three axes in k space; k is the wave vector with component km =(−N/2, . . . ,

−1, 0, 1, . . . , N/2 − 1), k = |k|, and initial energy spectrum E0(k) = 0.01k4e−0.14k2

. For
the initial conformation field, polymers were assumed non-stretched, corresponding
to C0

ij (x) = δij (Vaithianathan & Collins 2003; Perlekar et al. 2006).
In Fourier space, the turbulent kinetic energy spectra E(k, t) = (1/2)

Σk−1/2<k′�k+1/2|u(k, t)|2; the total turbulent kinetic energy in Fourier space
ξ (t) = ΣkE(k, t) and in physical space ξ (t) =

∫
�3 1/2u2

i (x, t) dV ; the energy dissipation

rate in Fourier space ε(t) = ν[s]Σkk
2E(k, t) and in physical space ε(t) =

∫
�3 ν[s]Γ 2

ij dV .
The Taylor-scale Reynolds number, Reλ, and the Weissenberg number, Wi , are defined

as Reλ =
√

20ξ [N]
m /

√
3ν[s]ε

[N]
m , Wi = τp

√
ε

[N]
m /ν[s], respectively, where ξ [N]

m and ε[N]
m are

at t = tm in Fourier space; here, tm corresponds to the moment at which ε[N] reaches
to its maximum amplitude; the superscript ‘N ’ represents the Newtonian fluid case
(Perlekar et al. 2006). The parameters for all simulations are shown in table 1.

3. Results and discussions
3.1. Some characteristics of decaying homogeneous isotropic turbulence

In our numerical simulations, we firstly confirmed that 〈u2〉 ≈ 〈v2〉 ≈ 〈w2〉 and
〈uv〉 ≈ 〈uw〉 ≈ 〈vw〉 ≈ 0, which is an indication of isotropic turbulence characteristics
of DHIT for Newtonian fluid and polymer solution cases. One of the most meaningful
parameters in DHIT is the Taylor microscale λ=

√
15νξ/ε, as shown in figure 1. λ

decreases at first and then grows quickly, which implies the development of small-scale
structures occurring in the energy propagation period (EPP) and the decay of
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Figure 1. Temporal evolution of Taylor microscales, λ, in DHIT for Newtonian fluid and
polymer solution cases.

small-scale structures in the energy decay period (EDP) (Kraichnan 1964; Meng
2004). Further, in EPP λ[p] ≈ λ[N] (hereinafter, the superscripts ‘p’ represent the
polymer solution case) and in EDP λ[p] > λ[N], suggesting that the decay of small-
scale structures in the polymer solution case is faster than that in the Newtonian
fluid case, i.e. an inhibition of turbulent motions at small scales. It can be regarded
as the polymer’s effect on flow structures and an origin of DR. Later we will discuss
drag-reducing effects in detail from other viewpoints.

Next, we will analyse the energy budget of DHIT in both the Newtonian fluid and
polymer solution cases. In the Newtonian fluid case, there is no external forcing and
no mean shear, but only viscous dissipation, so we can obtain the turbulent kinetic
energy budget equation as follows:

dξ [N]

dt
= −ε[N]. (3.1)

In the polymer solution case, however, it is different from that in the Newtonian
fluid case due to the effect of polymer elastic stress, as follows (Jin 2007):

dξ [p]

dt
= −ε[p] − G, (3.2)

where G represents energy transfer between flow structures and polymer
microstructures; in physical space G =

∫
�3 ΓijT

[p]
ij dV and in Fourier space

G =ΣkIm(k) = Σk(Γ̂ij (T̂
[p]
ij )∗ + (Γ̂ij )

∗T̂
[p]
ij ), where ()∗ indicates the complex conjugate

and Im(k) is the energy transfer spectrum at wavenumber k. G > 0 implies energy
transfer from flow structures to polymer microstructures and G < 0 implies the
contrary energy transfer process. Because of its flexibility, polymers can absorb
energy from flow structures to store it as the polymer elastic energy and dissipate it
by elasticity. So another equation is used to show this relationship, which is as follows
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Figure 2. Energy budget in DHIT of polymer solution in physical space, Wi = 0.62, β = 0.7.
(a) energy budget based on (3.2); (b) energy budget based on (3.3).

(Jin 2007):

de[p]

dt
= G − ζ [p], (3.3)

where e[p] is the polymer elastic energy in physical space given by
e[p] =

∫
�3 (ν

[p]L2/2τp)logf (r) dV , and ζ [p] is the polymer elastic dissipation rate in
physical space given by ζ [p] =

∫
�3 f (r)T [p]

ii /(2τp) dV . The energy budget in the polymer
solution case is shown in figure 2. In EPP, due to the development of small-scale
structures polymers shift from the equilibrium to a stretched state and absorb a part
of the turbulent kinetic energy (De Angelis et al. 2005). In EDP, due to the decrease
in motions at all scales, polymers can not be stretched as much as in EPP so that
polymers may release a part of the elastic energy and absorb less energy from flow
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Figure 3. Temporal evolution of (a) decay rate of the turbulent kinetic energy (dξ/dt),
energy dissipation rate (ε) and (b) the total turbulent kinetic energy (ξ ).

structures. In any case the results show that polymers always absorb the turbulent
kinetic energy (G > 0) from flow structures during all the periods, leading to weaker
remaining turbulent kinetic energy.

In DHIT, the initial energy is the initial turbulent kinetic energy, and the larger
decay rate of the turbulent kinetic energy represents a more marked inhibition of
turbulence and a stronger tendency to make flow regular, analogous to the drag-
reducing effect in wall-bounded turbulent flows. In figure 3, we show the temporal
evolution of dξ/dt , ε and ξ in the Newtonian fluid and polymer solution cases,
respectively. From (3.1), we can see that in the Newtonian fluid case the unique
dissipative mode is due to viscosity; however, in polymer solution case, there exist
two modes due to viscosity and elasticity, respectively. The decay processes in the two
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cases experience both the periods (EPP and EDP), but it presents a larger decay rate
during the whole EPP and the early stage of EDP, and a smaller decay rate during
the later stage of EDP in the polymer solution case, as shown in figure 3(a). And
according to the rapid decay in the former period, the decay of the turbulent kinetic
energy is eventually much faster in the polymer solution case, indicating that DR
occurs in DHIT with polymer additives without a solid boundary layer. However, this
is inconsistent with the numerical results of Vaithianathan & Collins (2003) in which
the decay rate of the turbulent kinetic energy is smaller than that in the Newtonian
fluid case due to the non-zero of the initial conformation field or the non-zero elastic
energy. Further, figure 3(a) clearly shows that, due to the energy-absorption effect of
polymers, the viscous dissipation rate in the polymer solution case is smaller. The
decrease of energy dissipation rate corresponding to the nonlinearity of turbulence
further proves the existence of the DR effect from another point.

According to the above analysis, it is known that DR is directly related to the decay
rate of turbulent kinetic energy. Hence, through examining the decaying process in
DHIT for the polymer solution case, we propose an intuitive and natural definition
for the DR rate occurring in DHIT based on the statistical kinetic energy decay,
different from that in Kalelkar et al. (2005) and Perlekar et al. (2006) based on the
energy dissipation rate, as follows:

DR(%) =

∫ tm

0

(dξ/dt)[p] dt −
∫ tm

0

(dξ/dt)[N] dt∫ tm

0

(dξ/dt)[N] dt

× 100 % =
�ξ [p]

m − �ξ [N]
m

�ξ
[N]
m

× 100 %,

(3.4)

where tm is the time when the Newtonian dissipation rate reaches its maximum and
�ξ [N]

m and �ξ [p]
m are the decrease of turbulent kinetic energy from t = 0 to t = tm in

the Newtonian fluid case and polymer solution case, respectively. As for the definition
of DR based on dissipation rate in Kalelkar et al. (2005) and Perlekar et al. (2006),
a smaller dissipation rate compared with that of the Newtonian fluid is the outcome
of DR, so the definition is from the resultant viewpoint.

As an example, DR versus β is plotted in figure 4 for Wi = 0.93, showing that DR
decreases with β (i.e. DR increases with the polymer concentration). In the inset of
figure 4, the relation between DR and Wi shows DR decreases with Wi , unlike in the
turbulent channel flow, but qualitatively consistent with the results of Perlekar et al.
(2006). We also investigate the temporal evolution of mean relative conformation rate
with different concentrations, as shown in figure 5. It shows that during the EDP
the mean relative extension decreases with the polymer concentration and is almost
the same during the EPP. The reason is that for larger concentration more marked
DR occurs, and at the same time the mean velocity gradient generated by turbulent
fluctuations weakens, leading to a smaller polymer extension.

3.2. Spectral analysis in DHIT

For the classical turbulent energy cascade in the Newtonian fluid turbulent flow, larger-
scale structures transfer the turbulent kinetic energy into smaller-scale structures until
the smallest scale (dissipative scale), where the energy is exhausted as heat loss due
to viscosity. To investigate the multiscale interaction between flow structures and
polymer microstructures, we pay attention to the E(k) and Im(k) in Fourier space.
The temporal evolution of E(k) in the Newtonian fluid and polymer solution cases
are shown in figures 6(a) and 6(b), respectively. During the EPP, nonlinear energy
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Figure 4. DR rate versus β in DHIT with polymer additives, Wi = 0.93. Inset: DR rate
versus Wi , β = 0.6.
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Figure 5. The time evolution of r2/L2 for different concentrations.

transfer dominates and the energy is transferred from small wavenumbers to large
wavenumbers so as to raise the tail of energy spectra, but during the EDP, the viscous
effect dominates so that the dissipation always lowers the tail of energy spectra.
However, E[p](k) is apparently different from E[N](k), especially in the EDP, where
E[p](k) < E[N](k) at large and intermediate scales and E[p](k) 	 E[N](k) at small scales,
as shown in figure 6(b). Besides, E[p](k) keeps nearly constant at some scales range,
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Figure 6. Turbulent-kinetic-energy spectra E(k) in DHIT. (a) Newtonian fluid case; (b)
polymer solution case, Wi = 0.62, β = 0.7; (c) E(k) for Newtonian fluid case and E(k) and
Im(k) for polymer solution case, Wi = 0.62, β = 0.7 at t = 5.0 s.
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Figure 7. The evolution of S∂u in DHIT of Newtonian fluid and polymer solutions.

i.e. the polymer dominant scale range, and this range becomes wider with advancing
time, straightforwardly indicating that the turbulent kinetic energy transfer process for
the Newtonian fluid flow which has been modified in DHIT with polymer additives
is consistent with the experimental result of Fabula (1966) and numerical results of
Perlekar et al. (2006). To interpret this intriguing phenomenon, Im(k) is shown in
figure 6(c). It is found that at large and intermediate scales Im(k) > 0, indicating
that polymers absorb turbulent kinetic energy from flow structures to store it as the
elastic energy and dissipate it by elasticity; however, at the special polymer dominant
scale range (E[p](k) keeps nearly constant), Im(k) < 0, adequately suggesting that the
energy is transferred from polymer microstructures to the small-scale flow structures,
resulting in E[p](k) 	 E[N](k) at these scales.

In summary, we have obtained that, in DHIT with polymer additives: (i) polymers
absorb the turbulent kinetic energy from large and intermediate scales flow structures;
(ii) at large and intermediate scales, the turbulent kinetic energy transfer process is
partly similar to the classical Kolmogorov energy cascade; (iii) when it comes to the
polymer-dominant-scale range, the energy cascade is modified, i.e. part of the energy
is transferred from the polymer microstructures into the flow structures of this range
to make the turbulent kinetic energy keep nearly constant at this range of scales.

3.3. Intermittency analysis in DHIT

The velocity-derivative skewness S∂u = −〈(∂u/∂x)3〉/〈(∂u/∂x)2〉3/2 is a measure of the
nonlinearity of Navier–Stokes equation and is directly related to the production of
the dissipation rate of the turbulent kinetic energy, or, equivalently, the production
of the enstrophy (Mansour & Wray 1994). Figure 7 shows the temporal evolution
of S∂u: it drops rapidly at first and then bounces back and varies slowly. The
rapid drop corresponds to the development of turbulence in the EPP, and the small
variation implies that turbulence remains at some level even in the EDP. Also, in
the polymer solution case S∂u is smaller in amplitude during the later stage of the
EDP, representing smaller production of the dissipation rate of the turbulent kinetic
energy and weaker nonlinearity of Navier–Stokes equation due to less turbulent
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Figure 8. Flatness of each velocity component versus wavenumber for DHIT of Newtonian
fluid and polymer solutions cases. (a) t = 0.6 s; (b) t = 2 s; (c) t = 5 s and (d ) t = 8 s.

kinetic energy contained compared with that in the Newtonian fluid case (as shown
in figure 3b). From this viewpoint, the existence of the DR effect by polymer additives
can also be demonstrated.

Further, we also explore the multiscale property of flatness (or kurtosis)
Fui

=(〈û4
i 〉k)/(〈û2

i 〉2
k), in DHIT for both cases (here ûi represents the velocity in

Fourier space at each scale, and k is the wavenumber), as shown in figure 8. For
the two cases, turbulence structures at small scales display stronger intermittency
with a peak value of Fui

and at large scales are almost non-intermittent. With time
evolution, the strong intermittent scale range moves towards large scales and the
intermittency at small scales nearly disappears. Comparing these two cases, we can
find that the intermittency for large-scale flow structures in polymer solution case
is almost unaltered, but suppressed for small-scale flow structures. But in the later
EDP (figure 8d at t = 8 s), the small-scale flow structures in the polymer solution case
behave more intermittently than that in the Newtonian fluid case.

3.4. Enstrophy, vortex structures and strain in decaying homogeneous isotropic
turbulence

The existence of coherent or quasi-ordered structures in turbulent flow fields has
been known since the direct observation of these structures in numerically simulated
stationary HIT by Siggia (1986) and experimental observation by Douady, Couder &
Brachet (1991). Coherent structures may be divided roughly into two groups: tube-
like and sheet-like vortex structures. Jiménez & Wray (1998) confirmed that the
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tube-like vortex structures are the dominant structures of isotropic turbulence at high
vorticity amplitudes. Up to now, different mathematics-based (particularly based on
the kinematics implied by the velocity-gradient tensor) methods for the identification
of the tube-like vortex structures have been introduced, such as (i) the D criterion,
based on the complex eigenvalues of the velocity-gradient tensor (Perry & Chong
1987); (ii) the Q criterion, based on the second invariant of the velocity-gradient
tensor (Zhong, Huang & Adrian 1998); (iii) the λci criterion, based on the imaginary
part of the complex eigenvalue pair of the velocity-gradient tensor (Zhou et al. 1999);
(iv) the λ2 criterion, based on the analysis of the Hessian tensor of the pressure
(Jeong & Hussain 1995). Examining coherent structures of DHIT with and without
polymers and investigating their characteristics will help us further to understand the
drag-reducing effect of polymers. So, next we will study the influence of polymers
on the tube-like vortex structures in DHIT by investigating the characteristics of the
enstrophy and strain and visualizing them based on the Q criterion.

The enstrophy indicates the strength of the tube-like vortex structures and mainly
generated by the stretch of the tube-like vortex structures, which is regarded as the
impetus of flow maintenance. To show the polymer effect, we study the polymer
contribution to the enstrophy in DHIT. Based on (2.1), the enstrophy transport
equation for DHIT with polymer additives can be deduced as follows:

∂〈Ω〉
∂t︸ ︷︷ ︸
Rens

= 〈ωiSijωj 〉︸ ︷︷ ︸
Sens

+

〈
ν[s] ωi∂

2ωi

∂xj∂xj

〉
︸ ︷︷ ︸

Vens

+

〈
ωi

∂2T
[p]
mj

∂xm∂xn

εnji

〉
︸ ︷︷ ︸

Pens

, (3.5)

where the operator 〈·〉 denotes ensemble average; εnji is the permutation symbol; ωi

is the ith component of the vorticity, ω = ∇ × u and Ω = ωiωi/2 is the enstrophy; Rens

is the increase rate of Ω; Sens is the enstrophy production due to vortex stretching;
Vens is the enstrophy dissipation and Pens is the polymer effect, which does not appear
in the Newtonian fluid case.

Firstly, the temporal evolution of Ω in both the Newtonian fluid and polymer
solution cases, and each term in (3.5), are shown in figures 9(a) and 9(b), respectively.
In the EPP, Ω increases and vortex structures are stretched, indicating the generation
of the small-scale vortex structures. In the EDP, Ω and Sens decrease, indicating
the suppression and dissipation of the vortex structures. It is consistent with the
temporal evolution of the turbulent kinetic energy spectra (showing in the EPP
the turbulent kinetic energy of small-scale structures increases and in the EDP the
turbulent kinetic energy of all scales decreases, as mentioned previously). In both EPP
and EDP, the enstrophy in polymer solution case is remarkably weak compared with
its Newtonian counterpart. Besides, figure 9(b) shows that Pens < 0 and S[p]

ens <S[N]
ens ,

adequately suggesting the inhibition effect of vortex structures by polymers. To show
the influence of polymers on the enstrophy in detail, probability density functions of
sens =ωiSijωj and pens =ωi(∂

2T
[p]
mj /∂xm∂xnεnji) are calculated and shown in figure 10.

The results show that sens is positively skewed, i.e. it tends to stretch flow vortices.
However, s[p]

ens is weaker than s[N]
ens and pens is negatively skewed, i.e. the stretch of

flow vortices and the growth of enstrophy are inhibited by the polymers. In summary,
adding polymer additives to DHIT can reduce the strength of vortex stretching (which
is the source and impetus of small-scale turbulence generation) and the growth of the
enstrophy, so as to produce the drag-reducing phenomenon.

To make a further intuitive confirmation of the above analysis, we visualize the
evolution of the tube-like vortex structures in both the Newtonian fluid and polymer
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Figure 9. Temporal evolution of (a) the enstrophy and (b) each term in the enstrophy
transport (3.5), Wi = 0.62, β = 0.6.

solution cases in EDP, as shown in figure 11. A marked inhibition of small-scale
structures in polymer solution case can be observed. With advancing time, the strength
of the tube-like vortex structures decreased in EDP, and in polymer solution case,
the decrease of the tube-like vortex strength is much faster as compared with its
Newtonian fluid counterpart, due to the suppression effect of vortex stretching by
polymer additives as discussed above.

Tennekes & Lumley (1972) argued that vortex stretching is the physical mechanism
leading to the hypothesized energy cascade from large to small scales. However,
Tsinober (2000) noted that in physical space the mechanism of the energy cascade is
not exactly due to vortex stretching, but due to vortex compression which contributes
to large strain generation. He emphasized the importance of strain (as Kolmogorov
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Figure 10. Probability distribution of sens and pens in DHIT for Newtonian fluid and polymer
solution cases (Wi = 0.62, β = 0.6), sens =ωiSijωj , pens = ωi(∂

2T
[p]
mj /∂xm∂xn)εnji . (a) t = 0.6 s; (b)

t = 2 s.

pointed in 1941) as the vorticity in the context of creation and maintenance of
turbulence. So to further investigate the influence on DHIT introduced by polymer
additives, we also study the strain field in the Newtonian fluid and polymer solution
cases. Firstly, we deduced the mean total strain transport equation for DHIT with
polymer additives based on (2.1):

∂〈�〉
∂t︸ ︷︷ ︸
Rstr

= −〈SikSkjSij 〉︸ ︷︷ ︸
Sstr

−1

4
〈ωiωjSij 〉︸ ︷︷ ︸

Wstr

+ ν[s]〈Sij ∇2Sij 〉︸ ︷︷ ︸
Vstr

+

〈
∂2T

[p]
ik

∂xk∂xk

Sij

〉
︸ ︷︷ ︸

Pstr

,

(3.6)
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Figure 11. Constant Q isosurfaces at different times during EDP in DHIT with and without
polymer additives. (a) t = 0.6 s,Q = 20; (b) t =2 s,Q = 5; (c) t = 5 s,Q = 0.8. (a–c) Newtonian
fluid case; (a′–c′) polymer solution case, Wi = 0.62, β = 0.7.

where � = (1/2)SijSij is the total strain, Rstr is the increase rate of 〈�〉, Sstr is the total
strain production generated by self-amplification, Wstr is the enstrophy production
effect on the total strain;, Vstr is the strain viscous dissipation and Pstr is the polymer
effect, which does not appear in the Newtonian fluid case.
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Figure 12. Temporal evolution of (a) the total strain and (b) each term in the strain
transport (3.6), Wi = 0.62, β = 0.6.

According to (3.5) and (3.6), we can see that the main source of the enstrophy
is from the interaction of vorticity with the strain field, whereas the production
of the total strain mainly comes from the self-amplification of the strain field, i.e.
Sstr = −〈SikSkjSij 〉. Moreover, the enstrophy production term, Sens , also appears in
(3.6), i.e. Wstr = −(1/4)〈ωiωjSij 〉 = −(1/4)Sens , showing that vortex stretching tends to
suppress the production of the strain, but vortex compression aids it. As is known,
energy dissipation is associated precisely with the strain field in both the Newtonian
and non-Newtonian fluids. So, we now show the temporal evolution of the total strain
and each term in its transport equation in two cases, in figure 12. The results show
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that the total strain is smaller in the polymer solution case, indicating that polymers
reduce the total strain by elastic stress. With the smaller strain, the turbulent kinetic
energy dissipation is decreased (as shown in figure 3a). From figure 12(b), each term
in (3.6) is reduced in the polymer solution case due to the polymer effect. Further, it
is noteworthy that the polymer effect term, Pstr , is marked and negatively skewed (as
shown in figure 12b), which is the source of the strain reduction. Based on the above
analyses of the enstrophy and the strain, we arrive at the following conclusions: in
DHIT for polymer solution case, polymer additives suppress not only the stretching
of the tube-like vortex structures, but also the strain production due to its elasticity.
These two factors are often considered as the impetus of small-scale vortices. As a
result, the flow with polymer additives does not display as strong multiscale features
as the Newtonian fluid flow, consistent with the results of E(k) (as shown in figure 6b).

4. Conclusions
DNS of DHIT with and without polymer additives have been carried out based on

Navier–Stokes equations coupled with the FENE-P constitutive model. We studied
the influence of polymer additives on DHIT through analysing the Taylor microscale,
the decay of total turbulent kinetic energy and energy distribution at each scale in
Fourier space, the multiscale intermittency, and the enstrophy and the strain field,
respectively. Firstly, an increase of the Taylor microscale is found in DHIT for the
polymer solution case, which is the symptom of the drag-reducing effect. Then, the
temporal evolution of the balance of energy budget is investigated. It is found that
the interaction between turbulence and polymer microstructures leads to larger decay
rate of the turbulent kinetic energy in the polymer solution case, i.e. the inhibition of
turbulence intensity, or the so-called turbulent DR. An intuitive and natural definition
of DR rate for DHIT is proposed based on the integral decay rate of turbulent kinetic
energy. Turbulent kineticenergy spectra, E(k), and energy transfer spectra, Im(k),
between turbulent structures and polymer microstructures show that E[N](k) > E[p](k)
at large and intermediate scales and E[p](k) 	 E[N](k) at small scales due to the
role of Im(k), indicating that the turbulent kinetic energy transfer process for the
Newtonian fluid flow becomes unsuitable for the polymer solution case and should
be modified especially in the range of scales, where the polymer effect dominates.
Analyses of the enstrophy and the strain indicate that both the enstrophy and the
strain and their generation terms in polymer solution case are remarkably weaker
than in the Newtonian fluid case because of the negative effect of polymer additives,
i.e. Pens < 0 and Pstr < 0, implying the inhibitive effect on small-scale turbulent vortex
structures and the turbulent multiscale property. The visualization of the tube-like
vortex structures based on the Q criterion further supports the above results. The
investigations of the velocity-derivative skewness and the flatness of velocity fields
also support the existence of the drag-reducing effect in DHIT with polymer additives.
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