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On the existence and formation of multi-scale
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Direct numerical simulations of particle-laden turbulent channel flows at friction Reynolds
number Reτ from 600 to 2000 have been performed to examine the near-wall particle
streaks. Different from the well-observed small-scale particle streaks in near-wall
turbulence of low Reτ , the present results show large-scale particle streaks through the
computational domain formed for relatively high-inertia particles at high Reτ . Transferred
by large-scale sweep and ejection events (Q−), these high-inertia particles preferentially
accumulate in near-wall regions beneath the large-scale low-speed flow streaks observed
in the logarithmic region. The corresponding Stokes numbers are associated with the
lifetime of large-scale Q− structures, which increases as the Reynolds number grows. The
small-scale particle streaks with a typical Stokes number Stν ≈ 30 are mainly driven by the
Q− structures in the buffer layer, whose lifetime is approximately 30 in viscous time unit.
Therefore, we propose a new structure-based Stokes number normalized by the lifetime
of Q− structures of different scales. The relevant flow scales that control the formation of
the large-scale particle streaks are parameterized by the structure-based Stokes number.
The small-scale (large-scale) particle streaks are most prominent when the buffer-layer
(large-scale) structure-based Stokes number approaches unity. The present findings reveal
that formation of near-wall particle streaks is governed by the Q− structures of different
scales, and the particles with different inertia respond efficiently to the Q− structures of
corresponding scales with respect to the particle translational motion.

Key words: suspensions, particle/fluid flow, turbulence simulation

1. Introduction

Typical particle suspensions include flows in biomass combustors containing fuel
particles, sandstorms, and tap water laden with tiny plastic particles. Usually, the Reynolds
number of particle-laden flows is high in industry and nature, often associated with solid
walls. Thus it is of great importance to understand the translation and clustering of
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particles in wall turbulence, especially at high Reynolds numbers (Eaton & Fessler 1994;
Balachandar & Eaton 2010).

It is widely observed that preferentially, particles migrate towards the wall and distribute
non-uniformly in the vicinity of walls in turbulence (Fessler, Kulick & Eaton 1994;
Marchioli et al. 2008; Fong, Amili & Coletti 2019). Caporaloni et al. (1975) and Reeks
(1983) uncovered the turbophoresis mechanism that particles tend to drift towards the low
turbulence intensity regions and explained the near-wall accumulation through analysing
the translation equation of a particle. McLaughlin (1989) performed a direct numerical
simulation (DNS) of turbulent channel flow with particles and showed that particles
aggregate into elongated clusters in low-speed streaks near the wall. Accumulation of
particles in near-wall low-speed streaks hinders the particle transport in the streamwise
direction (Eaton & Fessler 1994). Rouson & Eaton (2001) found that particles with Stokes
numbers scaled by the Kolmogorov time scale of the order of unity tend to concentrate into
longitudinal bands in a turbulent channel flow at Reτ = 180, while larger inertia particles
distribute randomly, suggesting that clustering is associated with some specific scales of
flow motion. Marchioli & Soldati (2002) found that the transport of particles is driven
by near-wall sweeps and ejections in a low-Reynolds-number channel flow. The existence
of quasi-streamwise vortices prevents near-wall particles from escaping to the outer layer
region, resulting in near-wall high concentration. A similar mechanism was later confirmed
by Picano, Sardina & Casciola (2009) in turbulent pipe flows. The streamwise length of
particle streaks for intermediate inertial particles is longer than that of low-speed flow
streaks. The spanwise spacing of particle streaks is approximately 120 (160) viscous length
units in turbulent channel (pipe) flows (Sardina et al. 2011). Moreover, Sardina et al. (2012)
showed that the streamwise length of these particle streaks is around 500–1000 viscous
units. They also revealed that clustering near the wall is most prominent for particles with
viscous Stokes number around 10–50, and the corresponding response time is of the same
order of magnitude as the Kolmogorov time scale in the buffer layer (≈ 5–10).

The dynamics of particles are influenced by turbulent coherent structures, which are
multi-scale and contain a large proportion of the total kinetic energy in the turbulence field,
especially at high Reynolds numbers (Balakumar & Adrian 2007). Turbulent structures
like low- and high-speed flow regions in the logarithmic layer could be extremely long
with meandering features (Hutchins & Marusic 2007a). However, due to the limitation
of experiment facilities and computational capability, a number of previous studies on
wall-bounded turbulence laden with particles are confined to relatively low Reynolds
numbers. The segregation between small- and large-scale motion is not evident in turbulent
channel flows at a low Reynolds number, while large-scale motions are more outstanding in
turbulent Couette flows at a similar Reτ . Therefore, Bernardini, Pirozzoli & Orlandi (2013)
compared particle distributions in a turbulent Poiseuille flow and in a turbulent Couette
flow to investigate the role of large-scale structures in the Couette flow. Large-scale particle
streaks, with larger streamwise length and spanwise spacing than the near-wall small-scale
streaks in the turbulent Poiseuille flow, are observed in the Couette flow, attributed to the
presence of large-scale structures. Bernardini (2014) found that the turbophoretic drift of
particles with intermediate inertia tends to be independent of the large-scale outer motion,
while large inertial particles responded mainly to the outer-layer structure in channel flows
at Reτ up to 1000. Recently, Wang & Richter (2019) performed two-way coupled DNS of
particle-laden channel flows at Reτ = 550 and 950. They found that low- and high-inertia
particles enhance very-large-scale motions (VLSMs). Distinct clustering structures in the
outer layer are found for high-inertia particles. They later showed that particles of different
inertia react to buffer-layer large-scale motions (LSMs) and VLSMs in distinct ways (Wang
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& Richter 2020). Jie, Andersson & Zhao (2021) found that the clustering of particles
is affected by the quiescent core region in a turbulent channel flow at Reτ = 600. The
coherent clusters of inertial particles have drawn attention in the community. Baker et al.
(2017) showed that coherent clusters tend to sample high-strain and low-vorticity regions,
and align themselves with the local vorticity vector. Oujia, Matsuda & Schneider (2020)
found that the divergence of particles is most evident in cluster regions and enhances
when the Stokes number increases. A recent experimental study in turbulent boundary
layers at friction Reynolds number up to Reτ = 19000 (Berk & Coletti 2020) showed that
the particles are often found in ejection events for a wide range of wall-normal distance
y+ and Stokes number. Interestingly, Scherer et al. (2022) recently studied the formation
of subaqueous sediment ridges on a sediment bed at Reτ ∈ [250, 850] and found that the
ridges tend to appear in regions below the large-scale low-speed flow streaks.

On the one hand, the clustering and transport of particles are affected by turbulent
structures (Bernardini et al. 2013; Wang & Richter 2020; Jie et al. 2021). On the other
hand, it is shown by spectral analysis that VLSMs make a significant contribution to
both Reynolds shear stress and turbulent kinetic energy, and the significance grows with
increasing Reynolds number (Balakumar & Adrian 2007; Smits, McKeon & Marusic
2011). Therefore, we expect that the effects of large-scale motions/structures on particle
behaviours become increasingly prominent and important at high Reynolds numbers.
However, studies about the effects of turbulent structures in wall turbulence on particle
dynamics are still rare, especially at relatively high Reτ . The main goal of the present work
is to study the near-wall accumulation of particles and the correlation between particle
distribution and the surrounding turbulent structures at high Reynolds numbers. Section 2
provides numerical details of the simulations. Instantaneous and statistical results are
provided and discussed in § 3, and conclusions are drawn in § 4.

2. Method

The incompressible Newtonian fluid flows considered in the present study are governed by
the mass conservation and Navier–Stokes equations:

∂ui

∂xi
= 0,

∂ui

∂t
+ uj

∂ui

∂xj
= − 1

ρ

∂p
∂xi

+ ν
∂2ui

∂xj ∂xj
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.1)

where ui is the velocity component in the xi direction of an inertial Cartesian frame, and
p denotes the pressure. Air is considered as the fluid phase with kinematic viscosity
ν = 1.364 × 10−5 m2 s−1 and density ρ = 1.225 kg m−3. The equations are solved
with periodic boundary conditions in the homogeneous streamwise (x) and spanwise (z)
directions, and no-slip/no-penetration conditions at both walls (y = 0, 2h, where h is the
half-height of the channel). Physical variables are labelled by a superscript + after being
normalized by the viscous units such as the time unit τν = ν/u2

τ and length unit δν = ν/uτ .
The friction velocity is uτ = √

τw/ρ, where τw denotes the average wall shear stress. A
pseudo-spectral method is adopted in the streamwise and spanwise directions, while a
second-order finite difference scheme is employed in the wall-normal direction. Utilizing
a second-order Adams–Bashforth scheme for time evolution, four turbulent channel flows
with different Reτ = uτ h/ν ranging from 600 to 2000 are simulated as summarized in
table 1.

935 A18-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

8 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.8


Y. Jie, Z. Cui, C. Xu and L. Zhao

Name Reτ Domain size Grids �y+
w �y+

c Np per sort Stν range

S6h 600 2πh × 2h × πh 384 × 384 × 384 0.9425 5.1786 5 × 105 0–1500
S1k 1000 2πh × 2h × πh 576 × 384 × 576 0.8689 7.6545 5 × 105 0–2000
L1k 1000 8πh × 2h × 3πh 2304 × 384 × 1728 0.8689 7.6545 5 × 105 0–200
S2k 2000 2πh × 2h × πh 1280 × 600 × 1280 0.9547 8.4984 5 × 105 0–2000

Table 1. Summary of simulation parameters, where �y+
w and �y+

c denote the grid spacing at the wall and the
centreline, respectively, and Np is the particle number of each type. Particles with Stν = 0 are tracers.

The turbulent channel flows are suspended with spherical point particles, which
are tracked individually using a Lagrangian approach. The mass of a particle is m =
4πa3ρp/3, where ρp is the density of particle and a represents the radius. The particles
are sub-Kolmogorov, namely sufficiently small, and much heavier than the fluid so that
we consider only the Stokes drag force. Moreover, a semi-empirical correction for Stokes
drag (Schiller & Naumann 1933) is adopted to guarantee a reasonable drag force, while
the average particle Reynolds numbers Rep = 2a‖u − v‖/ν of all cases are smaller than
1 in the present study (not shown). A sufficiently dilute suspension of sub-Kolmogorov
particles is considered so that it is justified to adopt the assumption of one-way coupling
without including a feedback force term in (2.1). Gravity is neglected for the sake of
highlighting the effects of particle inertia and turbulent structures. The particle Froude
numbers Frp = Ub/gτp considered in the present study are all larger than 1, where Ub
is the bulk velocity of the channel flow, supporting that the gravity effect is negligible
compared with the effect of the bulk motion of fluid flow (Milici et al. 2014). One should
note that the gravity effect in the wall-normal direction might be non-negligible compared
to the turbophoresis effect, even when the settling number is smaller than one (Bragg,
Richter & Wang 2021). All the particles considered in the present study have a normalized
diameter D+ = 0.6 < 1, which leads the magnitude of the Saffman lift force to be much
smaller than the Stokes drag force (Costa, Brandt & Picano 2020). Therefore, we neglect
the lift force in the present study, while one should note that the effect of the wall-normal
lift force may arise for the particles embedded in the sublayer, where these particles
normally stay for a long time. The governing equations of particle motion are

vi = dxi

dt
,

dvi

dt
= 1

τp
(up,i − vi)(1 + 0.15Re0.687

p ),

⎫⎪⎪⎬
⎪⎪⎭

(2.2)

where up,i is the velocity of fluid at particle position, and τp = 2a2ρp/9ρν is the particle
response time. In our study, three different Stokes numbers are considered, and their
expressions are given as

viscous Stokes number Stν = τp/τν,

Kolmogorov Stokes number Stη = τp/τη,

structure-based Stokes number StQ− = τp/TQ−,

⎫⎪⎬
⎪⎭

(2.3)

non-dimensionalized by the viscous time unit τν , the local Kolmogorov time unit τη and
the lifetime of a typical Q− structure TQ− (Lozano-Durán & Jiménez 2014), respectively.
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The lifetime of the Q− structures and the structure-based Stokes number will be discussed
in detail in § 3.

The collisions are fully elastic between the solid walls and particles, while periodic
boundary conditions are employed in the spanwise and streamwise directions. Particles
are released randomly into the domains after the flows are statistically fully developed at
t+ = 0. Particle number and Stokes numbers are given in table 1. Since channels S6h,
S1k and S2k contain large-inertia particles with Stν > 200, the following statistical results
are collected mainly from these channel flows in the time windows t+ = 2337.1–5842.6,
t+ = 2502.6–5005.1 and t+ = 2570.3–4443.0, respectively. Please note that the statistics
of particle concentration in the wall-normal direction are not yet statistically steady,
which requires a long time computation (Bernardini 2014). However, qualitatively the
conclusions of the present cases are valid since the focus is on understanding the formation
of near-wall particle streaks and the interaction between inertial particles with a certain
Stokes number and the primary turbulent structures, to which these particles respond most
quickly and efficiently and thus form near-wall streaky patterns in a short time. Concerning
the time window for obtaining statistics adopted in the present study, particles are allowed
to travel in the domain during O(10) times of TQ−(LS), which is the average lifetime of the
large-scale Q− structure. According to the results shown in the following section, the time
window chosen in the present study is enough for the particles to form long streaks under
the influence of primary Q− structures.

3. Results

3.1. Particle streaks
First, an instantaneous streamwise–spanwise plot of two-dimensional Voronoï cells is
shown in figure 1(a) for Stν = 200 particles at y+ ∈ [2, 4]. The Voronoï tessellation
is a method to identify and quantify clustering of particles (Monchaux, Bourgoin &
Cartellier 2012). Each particle has a unique Voronoï cell, which contains the area that
is closer to the particle than to any others. Hence the area of a Voronoï cell reflects
the local clustering degree directly. The Voronoï areas are all normalized by the mean
value in the selected plane. Note that only the Voronoï cells with a normalized area
smaller than unity are shown, indicating the regions where particles are preferentially
accumulated. Several particle streaks are present in the vicinity of the wall, with the
streamwise and spanwise scales much larger than those well-observed small-scale ones in
low-Reynolds-number wall-bounded turbulence, typically for Stν ≈ 30 particles (Sardina
et al. 2011). These large-scale particle streaks are straight, and long enough to penetrate
the whole computational domain with streamwise length L+

x ≈ 25 133, while the length
of conventional particle streaks observed in earlier studies is only around 500–1000
viscous units (Sardina et al. 2012). The corresponding instantaneous streamwise velocity
fluctuations at y+ ≈ 125 are shown in figure 1(b), which reveals the correlation between
large-scale particle streaks and large-scale motions of the turbulence at y+ = 3.9

√
Reτ ≈

123.3, namely the middle of the log layer (Mathis, Hutchins & Marusic 2009). As shown
in figure 1(b), the particle streak at z+ ≈ 2000 is related to the low-speed flow streak at
z+ ≈ 2000, both of which are elongated throughout the computational domain at the same
spanwise location.

The flow streaks near walls have been investigated in earlier studies of experiments
and simulations (Kline et al. 1967; Kim & Adrian 1999). The spanwise spacing of
the near-wall fluid velocity streaks is around 80–120 viscous units and is almost
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Figure 1. (a) Instantaneous streamwise–spanwise plot of two-dimensional Voronoï areas of aggregated
particles with Stν = 200 at y+ ∈ [2, 4]. The pictured Voronoï cells all have normalized areas smaller than
1, indicating the clustering region of particles. (b) The corresponding instantaneous contour of the streamwise
fluid velocity fluctuation u′

1 at y+ ≈ 125 in channel L1k.

Reynolds-number-independent, while the streamwise length of these streaks can be larger
than 1000δν . In addition to the near-wall streaks, very large-scale motions with the
largest scale of the order of the streamwise length of the domain have been observed
in pipe flows (Kim & Adrian 1999; Monty et al. 2009). Balakumar & Adrian (2007)
adopted a wavelength of 3 pipe radii as a nominal criterion to distinguish the LSMs and
VLSMs. Very long meandering low- and high-speed flow streaks are also observed in the
logarithmic regions of wall-bounded turbulence (Hutchins & Marusic 2007a). The length
of these streaks can exceed 20δ, and penetrate throughout the domain, consistent with the
present observations in figure 1(b).

Figure 1 shows that large-scale particles streaks are prominent near the wall in the
‘footprint’ of flow structures in the logarithmic regions. In figures 2 and 3, we choose
the near-wall regions to examine the particle distribution since the clustering pattern of
particles is most observable there. The autocorrelation of particle concentration fluctuation
is computed to quantify the clustering of particles in the viscous sublayer (0 < y+ < 5),
which is defined as

Rcc(�z+) = 〈c′(x+, z+) c′(x+, z++�z+)〉
〈c′(x+, z+) c′(x+, z+)〉 , (3.1)

where c′ is the particle concentration fluctuation computed in equally-spaced subdivided
bins with streamwise size �x+ and spanwise size �z+. The autocorrelation coefficients
Rcc in channels S6h, S1k and S2k are shown in figure 2. The size of the box adopted to
compute the local concentration c is given by �x+ = 300, �z+ = 10.5 and 0 < y+ < 5
in channels S6h and S1k. The streamwise length of small-scale particle streaks is of the
magnitude of 103 viscous units according to Sardina et al. (2012), while the spanwise
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spacing between these structures is around 120 inner units in channel flows (Sardina et al.
2011). �x+ is chosen to be less than the mean length of particle streaks, and �z+ = 10.5
is small enough to distinguish adjacent particle streaks in the box-counting approach. A
larger box with �x+ = 900, �z+ = 21.0 and 0 < y+ < 20 is employed in channel S2k
to ensure enough particles for obtaining smooth statistics in the boxes since the size is
smaller than those in channels S6h and S1k if normalized by the outer scales. A box of the
same size as that in channels S6h and S1k has been adopted to compute the autocorrelation
coefficients in channel S2k (not shown), and it is found that the peaks of the coefficients are
still present for different Stokes numbers although the curves are not as smooth as those in
figure 2(c). The correlation peak values are sensitive to the bin size but the peak position
is almost bin-size independent (Sardina et al. 2011). The large-scale particle streaks are
very long and straight as shown in figure 1(a), hence it is reasonable to adopt larger boxes
in channel S2k and it does not change our further conclusions.

In figure 2, the particles at Reτ = 600 are divided into three groups: tracer-like and
ballistic particles with Stν = 0, 1000 in figure 2(a1); relatively light particles with Stν =
10, 30, 50 in figure 2(a2); relatively heavy particles with Stν = 150–300 in figure 2(a3).
There is no obvious valley and secondary peak for tracer-like and ballistic particles in
figure 2(a1), since their distribution is nearly random and no obvious particle streaks are
formed. However, the effects of two different scales are observed for the other two groups.
Small-scale particle streaks are found in figure 2(a2). The first valley shows up around
�z+ ≈ 50, indicating the spacing of small-scale particle streaks about �z+ ≈ 50 × 2 =
100, which is consistent with the findings by Sardina et al. (2011). On the other hand, a
large-scale valley resides around �z+ ≈ 300, as shown in figure 2(a3). Two prominent
large-scale peaks are present at �z+ ≈ 500 and 800, which are both around �z ≈ h in the
outer unit.

Figure 2(b) displays the correlation coefficients of particles in channel S1k, showing
a multi-scale feature similar to that in figure 2(a). A clearly small-scale valley of Rcc
in figure 2(b2) resides around �z+ ≈ 50 for relatively light particles with Stν = 10, 30
and 50, which form small-scale particle streaks. Large-scale valleys of Rcc are shown at
�z+ ≈ 500–600 in figure 2(b3), suggesting that large-scale streaks are more obvious for
relatively heavy particles with Stν = 150–300. The spanwise spacing of large streaks is
also around �z = h in this case. As inertia keeps increasing, the large-scale valleys/peaks
are diminished since larger inertia particles ignore fluctuations of small scales and thus
distribute randomly (figure 2b1). The correlation coefficients of particles in channel
S2k at Reτ = 2000 are shown in figure 2(c). Please note that the magnitudes of the
autocorrelations are relatively smaller than those in figure 2(a,b). Statistically, the speed of
particle accumulation in the wall region depends on the flow Reynolds number (Bernardini
2014), and the wall-normal accumulation is slower for the higher Reτ case. It leads to
smaller Rcc values in the Reτ = 2000 case at a similar t+. Small-scale streaks, suggested
by the local valleys in figure 2(c2) around �z+ ≈ 50, are observable for the particle
group with intermediate inertia (Stν = 10–50). The autocorrelation is nearly zero for tracer
and ballistic particles as Stν = 0 and 1000 in figure 2(c1). Local peaks are present in
figure 2(c3) at �z+ = 1500–2000, indicating the existence of large-scale particle streaks
with a spanwise spacing roughly 1500–2000, while the peaks are not as prominent as
those shown in figure 2(a3,b3). The local peaks could be more observable if the statistical
box size is extended further (not shown) while the characteristic large-scale wavelength of
the autocorrelation Rcc curves remains the same. However, the following analysis of the
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Figure 2. Autocorrelation coefficients of particle concentration fluctuation c′ at (a) Reτ = 600, (b)
Reτ = 1000, and (c) Reτ = 2000.

spectrum of Rcc reveals that there are also large-wavelength components of Rcc in the S2k
case.

Figure 2 indicates multi-scale effects of underlying turbulence on particle distributions
and shows that particles with different Stν form the streaks with different spanwise spacing.
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Figure 3. Spectrum of Rcc versus the spanwise wavelength λ+z in channel (a1) S6h, (b1) S1k, (c1) S2k.
Corresponding mean values of S(Rcc) in sections [100, 200] and [0.7, 1.5] × h+ in channel (a2) S6h, (b2)
S1k, (c2) S2k.

To reveal the characteristic spacings of streaks and to find out the corresponding Stokes
numbers, the spectrum of the particle concentration fluctuation, S(Rcc), is computed
and shown versus the spanwise wavelength λ+z in figure 3. As pointed out by Sardina
et al. (2011), small-scale particle streaks have typical spanwise spacing Δ+

z ≈ 120. In
the present study, the characteristic spanwise spacing of large-scale particle streaks is
about h (see figure 2), which, in our view, is related to the spanwise spacing of the
underlying flow streaks. Hutchins & Marusic (2007a) observed very-long meandering
streaks in the logarithmic region and showed that the spanwise spacing between adjacent
streaks is roughly �z ≈ δ through the spanwise two-point correlations of the streamwise
velocity fluctuation. As indicated by figure 3(a1), the spectrum values S(Rcc) of particles
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with intermediate Stokes number (Stν = 10, 30, 50) are higher than those of others at the
spanwise wavenumber λ+z around 120, whereas spectrum values of Stν = 10–50 particles
are lower than those of high-inertia particles with Stν = 100–300. As for tracers (Stν = 0)
and heavy ballistic particles (e.g. Stν = 1000), there is no prominent spectrum component
at almost all wavelengths λ+z compared to the intermediate inertial particles. The local
maximum around λ+z ≈ 120 is related to the small-scale particle streaks with mean spacing
Δ+

z ≈ 120, while the local maximum of wavelength λz around h is associated with the
large-scale particle streaks shown in figure 1(a) and revealed by figure 2(c). Similar
local peaks around both λ+z ≈ 120 and λz ≈ h are also present in figure 3(b1,c1). The
peak around λ+z ≈ 1500 in figure 3(c1) corresponds to the peak at �z+ = 1500–2000
in figure 2(c3). For the purpose of evaluating quantitatively the significance of particle
streaks at various Stokes numbers, two intervals of the wavelength are chosen to compute
the averaged spectrum values S(Rcc). One interval is λ+z ∈ [100, 200], as shown between
the vertical black dotted lines in the left-hand panels (a1,b1,c1) of figure 3, while the
other is λz ∈ [0.7, 1.5] × h between the vertical blue dotted lines. The choice of lower and
upper limit values (0.7h and 1.5h) does not affect the following qualitative conclusions.
The average spectrum values in the two intervals are shown in the right-hand panels
(a2,b2,c2) of figure 3, in which the peaks of the black dashed lines all locate at Stν =
30, and the secondary ones are at Stν = 10. It suggests that the Stokes number of the
particles forming the most prominent small-scale streaks is Stν ≈ 30 (10 < Stν < 50 in
the present study), which keeps almost unchanged as Reτ is up to 2000. Nevertheless,
the locations of peaks for the blue lines vary. A Gaussian fitting method is adopted
to identify the peaks of the blue lines in figure 3(a2,b2,c2). The corresponding peaks
are found to locate at Stν = 136.07, 155.75, 250.15 for channels S6h, S1k and S2k,
respectively. These Stokes numbers are Reynolds-number-dependent and are classified as
prominent Stokes numbers (Stν = Stν( pro) = τp( pro)/τν) hereinafter. Here, τp( pro) is the
corresponding particle response time. The Stν( pro) value increases as Reτ grows, and seems
to be proportional to the scale of the underlying flow structures.

3.2. The effect of large scale motion on particle streaks
Inspired by the correlation between large-scale particle streaks in the viscous sublayer
and large-scale low-speed motion in the middle of the log layer, conditional averages
are further performed to investigate the the mechanism of formation of the large-scale
particle streaks. To quantitatively determine the centre of the large-scale particle streaks in
an instantaneous field, particles inside a three-dimensional subdomain with streamwise
length �x+ = 40, wall-normal location in 0 < y+ < 5, and spanwise location in 0 �
z+ � L+

z are extracted to draw the kernel density estimation (KDE) of particle distribution
with kernel width b+ = 100. The peaks of the KDE are then identified. The peaks’
corresponding spanwise location z+ is treated as the centre of large-scale particle streaks
in the subdomain, labelled as �z+ = 0 later in the figures. Afterwards, a conditional
average along the particle streaks is calculated based on the identified locations. The
conditional average of natural logarithm of particle concentration ln(c+) is calculated
and shown in figure 4(a) for particles with Stν = 200 in channel S1k. The accumulation
of particles around �z+ ≈ 0 denotes the large-scale particle streaks. Note that the
contours around �z+ ≈ 0 are bulgy toward the outer region even at y+ ≈ 100, which
indicates that the large-scale particle streaks can reach the logarithmic region, whereas
particle concentrations are relatively lower, around �z+ ≈ ±300 compared to that about
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�z+ ≈ 0 at the same y+ plane. The conditional-averaged streamwise velocity fluctuations
sampled in the same time window are shown in figure 4(b), where the background
colour represents the streamwise velocity fluctuations and the vectors (white arrows)
show the relative magnitude and direction of the velocity projection in the plane. The
blue region around �z+ ≈ 0 represents a large-scale low-speed streak of fluid flow.
Two large-scale high-speed regions, coloured in red, are present around the low-speed
streak. The side-by-side high- and low-speed regions indicate the existence of a clockwise
vortex (�z+ ≈ 150) and an anticlockwise one (�z+ ≈ −300), which are visualized by
the vectors. Moreover, the upward flow in the blue region denotes a large-scale ejection
(Q2) event while the downward flow in the red areas represents two large-scale sweep (Q4)
events. Q1 events denote u′ > 0, v′ > 0, Q2 events denote u′ < 0, v′ > 0, Q3 events have
u′ < 0, v′ < 0 and Q4 events have u′ > 0, v′ < 0 hereinafter. According to figure 4, we
find that particles are transferred by large-scale Q2, Q4 events and the two large vortices,
and eventually accumulate around the large-scale low-speed regions about �z+ ≈ 0.
This finding is consistent with the experimental observation in high-Re wall turbulence
by Berk & Coletti (2020), who found that inertial particles preferentially stay in the
regions of negative streamwise fluctuations, especially in Q2 events, and this tendency is
observed for a wide range of Stokes number, indicating a multi-scale nature of preferential
concentration. The formation of small-scale streaks has been studied by Marchioli &
Soldati (2002). But in contrast to these small-scale streaks, the time and length scales
of particle streaks and flow vortices observed in figure 4 are both much larger. In our view,
both small- and large-scale particle streaks are related to the counter-rotating vortices and
Q2, Q4 events, but the particles of different inertia respond to the flow motions of different
scales.

3.3. Relationship of the time scale between large-scale flow structures and particles
Two scales of particle streaks are observed in figure 2, namely small-scale ones of Stν ≈ 30
particles and large-scale ones, such as Stν ≈ 150 particles at Reτ = 1000. The small-scale
ones are most prominent when Stν ≈ 30, which seems independent of Reτ . We therefore
infer that the formation of small-scale particle streaks is governed mainly by the near-wall
structures, whose time scale is nearly constant with increasing Reτ , while the large-scale
streaks are induced mainly by the structures of turbulence whose time scale increases when
Reτ grows.

As shown in figure 4, particle translation in the wall-normal direction is affected by
sweep (Q4) and ejection (Q2) events. Thus it is reasonable to study the correlation between
particle streaks and Q2, Q4 structures (i.e. Q− structures). We notice that the time-resolved
evolution of coherent structures has been studied systemically by Lozano-Durán &
Jiménez (2014). They tracked the coherent structures of quadrant events (Q1 to Q4) and
evaluated the lifetime of structures. The quadrant events satisfy

|u′(x) v′(x)| > H u′
rms( y) v′

rms( y), (3.2)

where −u′(x) v′(x) is the instantaneous tangential Reynolds stress, and H = 1.75. Regions
with Reynolds stress satisfying (3.2) are identified first and then classified into different
structures based on the connectivity of the points. The Q− structures are different objects
with different characteristic heights and time scales. Lozano-Durán & Jiménez (2014)
found that the Q− in the buffer layer have a lifetime of 30 in viscous units, and the lifetime
of the primary large-scale Q− is proportional to the local eddy-turnover time T+ ≈ l+y ,
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Figure 4. Conditional average of (a) particle concentration ln(c+) (base e), (b) the surrounding flow field
along the large-scale particle streaks for Stν = 200 particles in channel S1k.

where l+y is the mean height of large-scale structures. Therefore, the lifetime of large-scale
structures can be estimated by the typical height of structures (T+ ≈ l+y ≈ y+

LS).
Furthermore, Marusic, Mathis & Hutchins (2010) showed that the inner peak in the

premultiplied energy spectra of streamwise velocity fluctuation is around y+ ≈ 15, namely
in the buffer layer, while the outer peak locates around the middle of the log layer,
where y+

LS1 ≈ 3.9
√

Reτ . It suggests that large-scale motions of this magnitude are most
prominent. Therefore, the time scale of the large-scale structures can be estimated as
T+

LS ≈ y+
LS1 = 3.9

√
Reτ . On the other hand, since the particle translation is strongly

associated with the Q− events, the lifetime of the Q− structures can be adopted to estimate
T+

LS. The wavenumber-premultiplied energy spectral densities −kzEu′v′/u2
τ of turbulent

channel flows are computed as in figure 5 using data from an online database (Lee &
Moser 2015). Evident outer peaks appear when Reτ is high enough, i.e. Reτ = 1000, 2000
and 5200. The peaks are found to follow y+

LS2 ≈ 0.25Reτ in the Reτ range up to 5200 as
indicated by the blue dash-dotted lines in figure 5. Thus the second estimation of the time
scale of the large-scale structures is T+

LS ≈ y+
LS2 ≈ 0.25Reτ . The two estimations of the

characteristic length scale of large-scale structures, y+
LS1 ≈ 3.9

√
Reτ and y+

LS2 ≈ 0.25Reτ ,
are both derived from the location of the outer peak in different premultiplied energy
spectra. It is reasonable that their magnitudes are similar since they both represent the
wall-normal characteristic height of the large-scale structures in the outer region.

For the sake of analysing the change in Stν( pro) versus Reynolds number, the prominent
Stokes numbers Stν( pro) at three Reynolds numbers are shown in figure 6, together with
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Figure 5. Wavenumber-premultiplied energy spectral density −kzEu′v′/u2
τ of turbulent channel flows at (a)

Reτ = 550, (b) Reτ = 1000, (c) Reτ = 2000, and (d) Reτ = 5200. The horizontal black dashed lines denote
y+

LS1 = 3.9
√

Reτ , and the blue dash-dotted lines are y+
LS2 = 0.25Reτ (y/δ = 0.25). Data are from an online

database (Lee & Moser 2015).
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Figure 6. Prominent Stokes numbers Stν( pro) at different Reτ and two estimated lifetimes of large-scale Q−
structures in turbulent channel flows. The black circles represent the particles with Stν = Stν( pro) as defined in
figure 3(a2,b2,c2). The black squares stand for the characteristic Stν for small-scale streaks.

two estimated lifetimes of large-scale Q− structures in turbulent channel flows. The black
circles represent the particles with prominent Stokes numbers, which are identified by the
peaks of the Gaussian fitting method in figure 3(a2,b2,c2). These particles tend to form the
most prominent large-scale streaks. The black squares stand for the particles with Stν = 30
that tend to aggregate into small-scale streaks. Two estimations of the height of large-scale
structures are adopted in figure 6 through evaluating the location of the outer peak in a
premultiplied energy spectrum. All Stν( pro) dots are confined in the region between the
two estimations. We conclude that Stν( pro) keeps increasing with Reτ in accordance with
the lifetime of large-scale structures, which also grows when Reynolds number rises. The
values between 3.9

√
Reτ and 0.25Reτ can be used to estimate Stν( pro) in the present Reτ

range.
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Generally, a particle is driven mainly by its surrounding flow, and the translation of
particles in flow structures is then affected by the birth and death of the structures.
Therefore, it is reasonable that the behaviours of particles are associated with the lifetimes
of turbulent structures. The aforementioned results reveal that the primary small- and
large-scale flow structures greatly affect the particle near-wall clustering, and therefore
we propose a newly-defined Stokes number, the structure-based Stokes number (StQ− =
τp/TQ−), scaled by the lifetime of typical flow structures of wall turbulence.

Typical Stν of small-scale particle streaks in the vicinity of walls is Stν ≈ 30. It is a
long-lasting puzzle that the strongest clustering in the vicinity of walls is shown at Stν ≈
30 at low Reτ , but no widely-accepted physical explanation is given. The structure-based
Stokes number StQ−(BF) based on the time scale of the buffer layer Q− is StQ−(BF) =
τp/TQ−(BF). Since TQ−(BF) ≈ 30τν , the structure-based Stokes number StQ− of Stν ≈ 30
particles is approximately unity, suggesting that the response times of these particles are
comparable with the lifetime of the Q− in the buffer layer (BF indicates ‘buffer layer’).
In our view, the underlying mechanism for the formation of large-scale particle streaks
is similar to that for small-scale streak formation, while the large-scale particle streaks
are induced by the Q− structures with large scales. Since the lifetime of these large-scale
Q− is between 3.9

√
Reτ and 0.25Reτ (figure 6), the structure-based Stokes number of the

particles with Stν = Stν( pro) follows StQ−(LS) = τp(Stν = Stν( pro))/TQ−(LS) ≈ 1. A simple
linear fitting expression of Stν( pro), based on the data points (circles in figure 6), is

Stν( pro) ∝ 0.1Reτ , or τp( pro) ∝ 0.1 × h
uτ

, (3.3)

to roughly describe the relationship between the prominent Stokes numbers and Reynolds
number (or the time scale of primary large-scale structures). However, in reality, such
as in sandstorms, the upper limit of the particle Stokes number depends on the limits
of density ratio and particle size. For instance, the Stokes number of PM10 particles is
Stν = 260–1700 in sandstorms (Wang, Gu & Zheng 2020). The effect of gravity will also
show up if the particle size is sufficient large. Hence the predicted Stν( pro) may be not in
the range of realistic Stν at Reτ above 104, and the gravity effect may play a role for large
particles, which is not considered in the present work.

As a remark, to estimate the near-wall accumulation of particles in wall turbulence,
the structure-based Stokes number proposed in this study performs better than the
Kolmogorov–Stokes number. Small-scale clustering is most prominent for particles
with Kolmogorov–Stokes number Stη = τp/τη ≈ 1 in homogeneous isotropic turbulence,
where τη is the Kolmogorov time scale, while the wall-normal accumulation of particles
is not well correlated with the Kolmogorov–Stokes number, which reflects only the effect
of small-scale turbulence fluctuations. The Kolmogorov–Stokes number Stη normalized
by the Kolmogorov time scale τη( y+) ranges from 3 (near-wall region) to 30 (central
region) for the Stν = 30 particles at Reτ = 1000. Therefore, the Stη for the particles of the
strongest near-wall clustering with Stν = 30 is always larger than 3, which suggests that
the Kolmogorov–Stokes number Stη may not be a good criterion to estimate the near-wall
accumulation of particles.

4. Conclusions

The accumulation of solid particles in turbulent channel flows has been studied
numerically to investigate the geometrical features of different-scale particle streaks and
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Figure 7. A schematic diagram of the formation mechanism of both small- and large-scale particle streaks.
Here, u′

L represents the large-scale component of the streamwise velocity.

the role of the flow structures that control the particle streaks at Reτ ranging from 600 to
2000, which is, to the best of the authors’ knowledge, the highest Reynolds number of DNS
of particle-laden wall turbulence. Inertial particles are found to accumulate preferentially
in the vicinity of walls and form elongated particle streaks of different scales. In addition
to the well-observed small-scale ones, long and straight large-scale streaks are observed
for relatively heavy particles for the first time, e.g. Stν ≈ 150 particles at Reτ = 1000.

A schematic diagram showing the underlying mechanism of the multi-scale nature of
particle streaks is provided in figure 7. In low-Reynolds-number wall-bounded turbulence,
Marchioli & Soldati (2002) found a strong correlation between the particle fluxes and fluid
momentum fluxes where particles are transferred by coherent sweep and ejection events
in the buffer layer. In the present study, we observed that the particles with certain Stokes
numbers are transferred by large-scale Q− structures. The large-scale Q4 structures contain
momentum fluxes towards the wall, inducing particle fluxes from the logarithmic region
to the wall. Subsequently, the spanwise motions of flow structures drive the near-wall
particles to accumulate beneath the large-scale Q2 events, where the streamwise velocity
fluctuation is negative, as shown in figure 4(b), while the Q2 structures induce particle
fluxes to the central region of the channel. Wang & Richter (2020) examined the effects
of LSMs and VLSMs on inertial particles. In the one-way coupled regime, they find that
low-inertia particle motion is affected by both LSMs and VLSMs. The turbophoretic effect
of low-inertia particles is enhanced by VLSMs, while high-inertia particles are influenced
mainly by VLSMs. Therefore, we infer that in the present study the Stν = 30 particles
are also affected by VLSMs and LSMs. The particle flux towards the wall for Stν = 30
particles might be enhanced by the presence of VLSMs, while the Stν = Stν( pro) particles
(high-inertia particles), in our view, ignore LSMs but are mostly driven by VLSMs, which
induce the near-wall large-scale particle streaks as shown in figure 1(a).

In summary, figure 7 highlights schematically our essential findings that the formation
of multi-scale particle streaks is induced by Q− structures of different scales. The Stokes
number of those particles that most preferentially accumulate into large-scale streaks as
shown in figure 1(a) is defined as Stν( pro). It is found that the value of τp( pro) corresponds
to TQ−(LS). It is then natural to propose a new type of Stokes number scaled by the
time scale of primary Q− structures, i.e. the structure-based Stokes number StQ− . We
show that StQ− is approximately 1 for the particles forming the most prominent streaks
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of both small and large scale, indicating that this structure-based Stokes number is a
useful physical parameter to infer the particle behaviour in high-Reynolds-number wall
turbulence. Furthermore, the existence of multi-scale particle streaks in high-Reτ wall
turbulence discovered in the present study reflects the important role of multi-scale flow
structures in particle dynamics, which is expected to be more significant as Reτ increases.
The present study focuses on suspensions of sub-Kolmogorov particles in a dilute regime.
However, it is interesting to explore further the behaviour of supra-Kolmogorov particles
affected by large-scale structures based on the understanding of near-wall streak formation
of finite-size particles in low Reτ flows by particle-resolved simulations (Costa et al. 2020).
For the dilute suspensions of supra-Kolmogorov particles, the flow modulations due to the
presence of particles are negligible and we infer that the newly-defined Stokes number can
still be a useful indicator to infer the large-scale particle streaks. However, the particle
streaks may not be as prominent as those of the point-particle cases. Point particles of
small size are found to locate in low-speed streaks for a long time (Soldati & Marchioli
2009; Sardina et al. 2012), while supra-Kolmogorov particles near the wall have shorter
residence time before resuspending into the bulk flow because of the Saffman lift force,
which plays a significant role for large-sized particles (Costa et al. 2020).
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