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We study the joint mixing of colloids and salt released together in a stagnation point
or in a globally chaotic flow. In the presence of salt inhomogeneities, the mixing
time is strongly modified depending on the sign of the diffusiophoretic coefficient
Ddp. Mixing is delayed when Ddp > 0 (salt-attracting configuration), or faster when
Ddp<0 (salt-repelling configuration). In both configurations, as for molecular diffusion
alone, large scales are barely affected in the dilating direction while the Batchelor
scale for the colloids, `c,diff , is strongly modified by diffusiophoresis. We propose
here to measure a global effect of diffusiophoresis in the mixing process through
an effective Péclet number built on this modified Batchelor scale. Whilst this small
scale is obtained analytically for the stagnation point, in the case of chaotic advection,
we derive it using the equation of gradients of concentration, following Raynal &
Gence (Intl J. Heat Mass Transfer, vol. 40 (14), 1997, pp. 3267–3273). Comparing to
numerical simulations, we show that the mixing time can be predicted by using the
same function as in absence of salt, but as a function of the effective Péclet numbers
computed for each configuration. The approach is shown to be valid when the ratio
D2

dp/DsDc� 1, where Dc and Ds are the diffusivities of the colloids and salt.

Key words: chaotic advection, colloids

1. Introduction

Mixing is the operation by which inhomogeneities of a scalar are attenuated by the
combined action of advection by a flow and molecular diffusion. In this context, it is
interesting to predict the time needed to achieve mixing as a function of the Péclet
number, Pe, which has been done for a variety of simple flows at the heart of our
understanding of mixing, and for chaotic advection by laminar flows (Metcalfe et al.
2012; Sundararajan & Stroock 2012; Villermaux 2019).

In the case of mixing of colloids in the presence of salt inhomogeneities, the
situation is more complex as salt gradients can enhance or delay mixing depending
on whether colloids and salt are released in the same patch or with complementary
profiles (Abécassis et al. 2009; Deseigne et al. 2014; Volk et al. 2014; Mauger et al.
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2016). This is a situation which occurs frequently in microfluidic devices where
salt and buffer are added to stabilize colloidal suspensions. Although this strong
modification of the mixing time is due to compressible effects, which act as a source
of scalar variance (Volk et al. 2014), attempts were made to describe diffusiophoresis
as an effective diffusion, and Deseigne et al. (2014) proposed to rescale the mixing
time by using an effective Péclet number for the colloids based on the expression
of the effective diffusivity derived in Abécassis et al. (2009). Using the Ranz model
of mixing (Ranz 1979), they were able to achieve a good rescaling of the mixing
time measured in the salt-repelling case, but no expression was proposed in the
salt-attracting case of delayed mixing as the Ranz method does not apply.

In this article, we study the joint mixing of colloids and salt released together by
a two-dimensional (2-D) velocity field v(x, y, t) with characteristic velocity V . In the
presence of salt gradients, the colloids do not strictly follow the fluid motions due to
electrochemical phenomena but have a velocity vcol = v + vdp, where vdp =Ddp∇ ln S
is the diffusiophoretic velocity, Ddp the diffusiophoretic coefficient and S the total
salt concentration (Anderson 1989; Abécassis et al. 2009). The concentrations of the
salt and colloids, S and C, evolve following the set of coupled advection–diffusion
equations

∂tS+∇ · Sv =Ds ∇
2S, (1.1)

∂tC+∇ ·C(v + vdp)=Dc ∇
2C, (1.2)

where Ds, Dc are the diffusion coefficients of each species. Note that, although
throughout this article we will refer only to diffusiophoresis, the equations are
unchanged when dealing with thermophoresis, where particles move under the action
of a temperature gradient.

In the following we will consider the special case for which salt and colloids are
released in the same patch with characteristic scale `0 at t = 0. The time needed to
achieve mixing of the colloids, denoted Tmix, is governed by the colloids Péclet number
Pec = V`0/Dc, the salt Péclet number Pes = V`0/Ds, and the diffusiophoretic number
Ddp/Ds. The case of attenuated mixing will correspond to Ddp > 0 (salt-attracting),
while enhanced mixing will be modelled by Ddp < 0 (salt-repelling). This second
situation, also encountered in nature (Banerjee et al. 2016) and already used in
Raynal et al. (2018), will allow for a comparison of diffusiophoretic effects in all
situations without changing the shape of the profiles.

The study will be divided into two main sections. In the first section we will address
the pedagogical case of mixing of a Gaussian patch, containing salt and colloids, by a
linear straining velocity field v= (σx,−σy) (σ > 0) in the salt-attracting configuration.
In this case, the patch of colloids is exponentially stretched in the x-direction and
compressed towards the modified Batchelor scale `c,diff =

√
DcDs/σ(Ddp +Ds) along

the y-direction (Raynal et al. 2018). In this first example, it is possible to define
an effective Péclet number for the colloids based on the modified Batchelor scale,
Peeff =Pec(1+Ddp/Ds), which takes into account the effects of diffusiophoresis. Using
this effective Péclet number, we find that it is possible to rescale all the values of
the mixing time, computed from the analytical solution of Raynal et al. (2018), on a
single curve derived from the case with no diffusiophoresis.

In the second section, we address the case of chaotic mixing of a sinusoidal
patch, with scale L, containing salt and colloids by a 2-D time-periodic flow.
This second situation is much more complex and requires specific analysis based
on the equation for the gradients of concentration to compute an expression for
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the Batchelor scale. Following the analysis developed in Raynal & Gence (1997),
which links the mixing time and the time needed for the patch to reach the Batchelor
scale, we define the effective Péclet number using the modified Bathelor scale in
order to rescale the measurements of the mixing time as a function of Peeff in all
situations. By examining how concentration gradients are generated in the presence
of diffusiophoresis, we derive expressions for the effective Péclet number both in the
salt-attracting (Peeff =PecD2

dp/DcDs�Pec, attenuated mixing), and in the salt-repelling
(Peeff =PecDcDs/D2

dp�Pec, enhanced mixing) cases. It is shown that these expressions
allow collapsing all numerical results for the mixing time in a single curve provided
D2

dp/DcDs > 1.

2. Pure strain
The case of the joint evolution of Gaussian patches of salt and colloids released at

the origin (0, 0) in a pure strain flow v = (σx,−σy) (σ > 0) was solved analytically
in Raynal et al. (2018) so that we only briefly recall the steps leading to the solution.
The Péclet numbers are Pes=σ`

2
0/Ds for the salt and Pec=σ`

2
0/Dc for the colloids. As

the salt and colloids concentration profiles are initially Gaussian, they remain Gaussian
at all times when deformed by a linear velocity field (Bakunin 2011). Introducing the
moments of the salt distribution:

〈xαyβ〉s(t)=

∫∫
∞

xαyβS(x, y, t) dx dy∫∫
∞

S(x, y, t) dx dy
, (2.1)

and similar equations for the colloids, the method of moments (Aris 1956; Birch,
Young & Franks 2008) allows the finding of a closed set of ordinary differential
equation (ODEs) for the second-order moments.

2.1. Case with no diffusiophoresis
2.1.1. Case of salt

For an initially round patch (〈x2
〉s(0)= 〈y2

〉s(0)= `2
0, 〈xy〉s(0))= 0, the solution is

〈x2
〉s(t) =

(
`2

0 +
Ds

σ

)
exp(2σ t)−

Ds

σ
, (2.2)

〈y2
〉s(t) =

(
`2

0 −
Ds

σ

)
exp(−2σ t)+

Ds

σ
, (2.3)

〈xy〉s(t) = 0. (2.4)

A large patch such that `2
0 � Ds/σ (satisfied whenever Pes � 1), is exponentially

stretched in the dilating direction (since 〈x2
〉s(t) ≈ `2

0 exp(2σ t)), and exponentially
compressed towards the Batchelor scale `s =

√
Ds/σ in the compressing direction

(following 〈y2
〉s(t)≈ `2

0 exp(−2σ t)+Ds/σ ).
Neglecting diffusion at short time, it is possible to estimate the time needed for

the patch to reach the Batchelor scale under exponential contraction: τs= ln(`0/`s)/σ .
This expression can be expressed using the Péclet number Pes = `

2
0/`

2
s as

στs =
1
2 ln Pes. (2.5)
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Of course all the previous reasoning is valid for the mixing of colloids in the
absence of diffusiophoresis. By replacing s by c in the expressions, one finds that
the Péclet number Pec is linked to the Batchelor scale `c by the relation

Pec = `
2
0/`

2
c . (2.6)

This can be also written as

`c

`0
=

1
√

Pec
, (2.7)

which shows that the Batchelor scale of the colloids is smaller than that of the salt
as one usually has Pec� Pes.

2.1.2. Mixing time
It is interesting to note that the time τc, needed for the patch of colloids to be

compressed towards the Batchelor scale, is directly connected to the mixing time,
Tmix, here defined as the time needed for the concentration, c(t), to decrease by 50 %.
Indeed, using (2.2) and (2.3) one can estimate the concentration of the colloids patch:

c(t)
c(0)
=

`2
0√

〈x2〉c(t)〈y2〉c(t)
≈

1
√

1+ 1/Pec exp(2σ t)
. (2.8)

At time t= Tmix,c, c is half of its initial value so that one gets

σTmix,c ≈ ln
√

3Pec = στc +
ln 3
2
, (2.9)

where τc is the time to reach the Batchelor scale (2.5). The two times follow a similar
(logarithmic) scaling as functions of the Péclet number, and are found to be linked by
an affine transformation whose coefficients will depend on the precise definition of the
mixing time.

2.2. Batchelor scale with diffusiophoresis
When salt and colloids are mixed together, salt is advected by the linear velocity
v = (σx, −σy) while the colloids velocity field is v + vdp. As the salt concentration
remains Gaussian at all times with 〈xy〉s = 0, the diffusiophoretic velocity field is
vdp = (−Ddpx/〈x2

〉s(t), −Ddpy/〈y2
〉s(t)), which is also a linear flow. The colloids

concentration field therefore remains Gaussian at all time, its shape being given by
the second-order moments 〈x2

〉c(t), 〈y2
〉c(t), and 〈xy〉c(t). In the case of an initially

round patch of radius `0, one still has 〈xy〉c(t)= 0 and the equations for 〈x2
〉c(t) and

〈y2
〉c(t) read (Raynal et al. 2018)

d〈x2
〉c

dt
= −2Ddp

〈x2
〉c

〈x2〉s
+ 2σ 〈x2

〉c + 2Dc, (2.10)

d〈y2
〉c

dt
= −2Ddp

〈y2
〉c

〈y2〉s
− 2σ 〈y2

〉c + 2Dc. (2.11)

This system has a complicated analytical solution given in Raynal et al. (2018).
However the behaviour of its solution may be obtained in the limit of small colloids
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822 F. Raynal and R. Volk

diffusion coefficient Dc/Ds� 1 for which salt is mixed in a much shorter time than
the colloids so that one has 〈y2

〉s ' `
2
s for t> Tmix,s and

d〈x2
〉c

dt
' 2σ 〈x2

〉c, (2.12)

d〈y2
〉c

dt
' −2

(
σ +

Ddp

`2
s

)
〈y2
〉c + 2Dc. (2.13)

Equation (2.12) shows that the large scale 〈x2
〉c is barely affected by diffusion or

diffusiophoresis, a fact that can be easily understood as x is the dilating direction,
with exponential stretching by the flow. In the y-direction, using `2

s = Ds/σ , we see
that the colloids concentration field is now compressed towards the modified Batchelor
scale

`2
c,diff =

Dc

σ(1+Ddp/Ds)
. (2.14)

2.3. Effective Péclet number
Because we want to quantify mixing through an effective Péclet number, and because
mixing quantities are closely related to the Batchelor scale, we propose to use (2.6)
and define the effective Péclet number Peeff using the modified Batchelor scale as

Peeff = `
2
0/`

2
c,diff . (2.15)

Using (2.14), its expression reads

Peeff = Pec

(
1+

Ddp

Ds

)
. (2.16)

We have tested this prediction by computing the mixing time of the colloids,
defined as the time needed for c(t)/c(0) = `2

0/
√
〈x2〉c(t)〈y2〉c(t) to decrease by 50 %.

The evolution of Tmix,c is displayed in figure 1 as a function of Pec = σ`
2
0/Dc (a),

and as a function of the effective Péclet number Peeff = Pec(1 + Ddp/Ds) (b), for
a wide range of parameters. In this case, the mixing time was computed without
approximations by using the complicated analytical solution given in Raynal et al.
(2018) where Dc, Ds and Ddp > 0 were varied over several orders of magnitude. It
is remarkable to observe the almost perfect rescaling of Tmix,c as a function of Peeff
spanning over height decades.

In the case of non-Gaussian patches, because patches tend to relax towards a
Gaussian shape after a transient under the combined action of diffusion and stretching
by the flow (Villermaux 2019), the scaling given in (2.16) should remain the same.

Note that in the case of a simple shear, also studied in Raynal et al. (2018), the
concentration field does not reach a state with a constant Batchelor scale at large time,
so that it is not possible to derive an effective Péclet number for any linear flow with
this method.

3. Chaotic advection
In the case of chaotic advection, we also expect the large scale of the colloids patch,

governed by exponential stretching by the flow, to be sensitive to neither diffusion nor
diffusiophoresis; therefore, like in the pedagogical analytical example presented above,
diffusiophoretic effects should be visible only when considering the Batchelor scale of
the flow.
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FIGURE 1. (Colour online) σTmix for different Ddp > 0, Ds and σ , as a function of the
Péclet number Pe (a), and of the effective Péclet number Peeff (b). Black solid line:
no salt; — · — : Ds = 1360 µm2 s−1, Ddp = 290 µm2 s−1; ∗: Ds = 1360 µm2 s−1,
Ddp= 1000 µm2 s−1;A: Ds= 1360 µm2 s−1, Ddp= 104 µm2 s−1; ×: Ds= 1360 µm2 s−1,
Ddp = 105 µm2 s−1; E: Ds = 10 µm2 s−1, Ddp = 104 µm2 s−1; +: Ds = 10 µm2 s−1,
Ddp = 105 µm2 s−1; - - -: time needed to reach the Batchelor scale; note that this latter
follows the same scaling as the mixing time.

3.1. Estimation of the Batchelor scale without diffusiophoresis
In order to derive the Batchelor scale, it is useful to investigate how small scales are
produced, which can be done by looking at the equation for the scalar gradient G=
∇C. In the absence of diffusiophoresis it reads

1
2 DtG2︸ ︷︷ ︸
(0)

=Dc Gi∂
2
j Gi︸ ︷︷ ︸

(a)

−GiGj∂ivj︸ ︷︷ ︸
(b)

, (3.1)

where we have used the convention of summation over repeated indices, and Dt= ∂t+

vk∂k stands for the material derivative. In the case of chaotic advection by a large-scale
velocity field, small scales are produced by stretching (term (b)) until they become
so small that the Batchelor scale is reached so that a balance between dissipation and
diffusion takes place. When mixing is efficient enough, which is the case of global
chaos, a quasi-static situation takes place where the left-hand side of (3.1) is negligible
compared to the two other terms so that the balance reads (Raynal & Gence 1997):

Dc Gi∂
2
j Gi︸ ︷︷ ︸

(a)

≈GiGj∂ivj︸ ︷︷ ︸
(−b)

. (3.2)

Given the characteristic length scale L= `0 and velocity scale V of the velocity field,
to get an order of magnitude of the stretching rate ∂ivj ∼ V/L, one can use this last
equation to derive the Batchelor scale for both species:

`c ∼
L
√

Pec
(colloids, no diffusiophoresis), (3.3)

`s ∼
L
√

Pes
(salt), (3.4)

with Pec = VL/Dc and Pes = VL/Ds. Using these relations, the time needed to
mix a patch of scalar of size L will follow the same scaling relation as the time
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824 F. Raynal and R. Volk

τB = ln Pe/Λ, needed to reach the Batchelor scale, where Λ ∝ V/L is the most
negative Lyapunov exponent of the flow (Raynal & Gence 1997; Bakunin 2011).
In the case of joint mixing with diffusiophoresis, the Batchelor scale (`c,diff ) will
have a different expression so that the relation (3.3) is not expected to hold anymore.
However we shall follow the path of the previous section to derive an effective Péclet
number based on the modified Batchelor scale through the relation

`c,diff ∼ L/
√

Peeff (3.5)

so as to rescale all measurements of the mixing time as a function of Peeff .

3.2. Batchelor scale in the case of diffusiophoresis

In absence of diffusiophoresis, we found the Batchelor scale to be `c = L/
√

Pec =√
Dc/σv with σv = V/L. This expression being the same as the one found for the

pure strain flow of § 2.1, it may be anticipated that the effective Péclet number for
the mixing of colloids is given by the relation Peeff = Pec(1 + Ddp/Ds). However as
we shall see in the following, the simple result of § 2.1 will not hold in the case of
chaotic advection. In order to derive a correct expression for the Batchelor scale with
diffusiophoresis, we must again look carefully at the equation for ∇C in the presence
of the velocity drift vdp =Ddp∇ ln S. Taking the gradient of (1.2), we obtain

∂tGi + vj∂jGi + vdp j∂jGi +Gi∂jvdp j +Gj∂ivj +Gj∂ivdp j +C∂i∂jvdp j =Dc ∂
2
j Gi, (3.6)

which we shall multiply by Gi and sum over all components to get

1
2

DtG2︸ ︷︷ ︸
(0)

=Dc Gi∂
2
j Gi︸ ︷︷ ︸

(a)

−GiGj∂ivj︸ ︷︷ ︸
(b)

−vdp jGi∂jGi︸ ︷︷ ︸
(c)

−G2∂jvdp j︸ ︷︷ ︸
(d)

−GiGj∂ivdp j︸ ︷︷ ︸
(e)

−CGi∂i∂jvdp j︸ ︷︷ ︸
( f )

. (3.7)

As opposed to (3.1), equation (3.7) contains four additional terms involving the
diffusiophoretic drift vdp=Ddp ln S. In order to get an order of magnitude of each term,
one needs to estimate the magnitude of vdp. This can be done in the case Dc� Ds
for which the salt patch is compressed towards `s long before diffusion affects the
colloids concentration field. The magnitude of diffusiophoretic drift is then

Vdp ∼
Ddp

`s
=

Ddp

L

√
Pes, (3.8)

in agreement with the numerical simulations of Volk et al. (2014).
Estimating the different terms of (3.7) in the quasistatic regime, when the colloids

patch has been compressed towards its Batchelor scale `c,diff so that G∼C/`c,diff , we
get

(a) ∼
G2Dc

`2
c,diff
=

G2Dc

L2
Peeff , (3.9)

(b) ∼
G2V

L
=

G2Dc

L2
Pec, (3.10)

(c) ∼
G2

`c,diff

Ddp

`s
=

G2Dc

L2

Ddp
√

DcDs

√
Pec Peeff , (3.11)
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(d) ∼
G2Ddp

`2
s

� (c), (3.12)

(e) ∼
G2Ddp

`2
s

� (c), (3.13)

( f ) ∼ G2`c,diff
Ddp

`3
s

� (c). (3.14)

As one has `c,diff � `s, the last three terms are always much smaller than (c) so that
they will be neglected in the analysis.

3.3. Effective Péclet number in the salt-attracting case (Ddp > 0)
This configuration, which was not addressed in the case of chaotic advection, is
similar to the case of pure deformation addressed in § 2. As colloids and salt are
released together, the velocity drift is opposed to molecular diffusion so that the
mixing time of colloids increases compared to the case with no diffusiophoresis,
leading to

Peattract
eff � Pec. (3.15)

In the quasistatic regime, where production and dissipation balance, the dominant
terms are then (a) and (c) so that filaments are produced by diffusiophoresis and
dissipated by diffusion, as was the case in the analytical example. Equating (a) and
(c), we get

Peattract
eff ∼

D2
dp

DcDs
Pe. (3.16)

Note that, because of hypothesis (3.15), the analysis can only be true if one has D2
dp�

Dc Ds, which is satisfied in experiments as Ddp ∼ Ds and Dc � Ds (Abécassis et al.
2009; Deseigne et al. 2014).

The effective Péclet number found here is completely different from that of (2.16)
(linear strain). This is not surprising: whilst both flows display exponential stretching,
in the chaotic advection case, as explained, a quasi-stationary state is reached where
gradients of concentration are created by the flow and dissipated by diffusion at the
same rate. This is completely different in the case of the simple strain: because this
linear flow is barely mixing, when the Batchelor scale is reached, all terms in the
equation of gradients (3.1) decay at the same exponential rate, so that the left-hand-
side (term (0)) is far from negligible compared to the two others.

3.4. Effective Péclet number in the salt-repelling case (Ddp < 0)
This second configuration was first addressed in Deseigne et al. (2014) where the
authors proposed an expression Perepell

eff ∝ VL/Deff , with Deff ∝ D2
dp/Ds, based on the

Ranz model of mixing (Ranz 1979). In this configuration, diffusiophoresis acts as an
enhanced diffusion so that we will assume

Perepell
eff � Pe, (3.17)
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and the quasistatic equilibrium is now given by (b)∼ (c), with gradients produced by
the flow and smoothed by diffusiophoresis. Under this assumption we obtain the same
result as proposed in Deseigne et al. (2014):

Perepell
eff ∼

DcDs

D2
dp

Pec, (3.18)

which, using hypothesis (3.17), is found to hold under the same hypothesis D2
dp �

Dc Ds as in the salt-attracting case.

3.5. Comparison with numerical simulations
We have tested the two scaling relations in numerical simulations of chaotic mixing
by a sine flow with random phase, which ensures that global chaos is achieved
(Pierrehumbert 1994, 2000) so that the mixing time is expected to scale linearly
with the logarithm of the Péclet number. The flow is a modified version of the one
used in Volk et al. (2014): it is composed of two sub-cycles of duration T/2 for
which the velocity field is v(r, t)= ( f (t) sin(y+ φn), 0) for nT 6 t< (n+ 1/2)T and
v(r, t)= (0, f (t) sin(x+ψn)) for (n+ 1/2)T 6 t<(n+ 1)T , where (φn,ψn)n>1 ∈ [0, 2π]2

are sequences of random numbers and f (t)= 2 sin2(2πt/T). Because
∫ T/2

0 f (t) dt = 1,
this flow corresponds to the same iterated map as the one with f (t) = 1 without
temporal discontinuities.

The equations were solved in a square periodic domain of length L = 2π, with
T = 1.6 π and identical concentration profiles C(x, y, t= 0)= S(x, y, t= 0)= 1+ sin x,
with the same code as used in Volk et al. (2014). In order to test the scaling relations,
we performed a set of simulations while keeping the same sequence of random phases,
varying Dc ∈ [2 × 10−5, 8 × 10−4

], Ds = (0.25 × 10−2, 0.5 × 10−2, 10−2), and Ddp =

(±10−3, ±2 × 10−3, ±4 × 10−3). This corresponds to Péclet numbers Pec ∈ [7.8 ×
103–3× 105

] for the colloids, Pes ∈ [600–2500] for the salt.
The evolution of the mixing time of the colloids, Tmix,c, as a function of Pec is

displayed in figure 2(a) for all simulations with D2
dp/DcDs > 1, and different symbols

for the salt-attracting case (circles) and the salt-reppelling case (triangles). The solid
line is a fit for the non-diffusiophoretic cases (salt or colloids without salt), defined
as

Tmix = 3.2 log(Pe/120) (3.19)

for this particular flow.
As shown in figure 2(b), all values of the mixing time are found to follow well

the curve obtained without diffusiophoresis when they are plotted as a function of the
effective Péclet numbers Peattract

eff = (D2
dp/DcDs)Pe for ‘salt-attracting’ case, and Perepell

eff =

(DcDs/D2
dp)Pe for the ‘salt-repelling’ case; note also that the effective Péclet number

varies here over five orders of magnitude.
The validity of our analysis can be further checked by focusing on the salt-repelling

case. In that case the relation (3.18) is indeed equivalent to having an effective
diffusivity

Drepell
eff ∼

D2
dp

Ds
, (3.20)
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FIGURE 2. (Colour online) (a) Mixing time of the colloids, Tmix,c, as a function of the
Péclet number for all numerical simulations with D2

dp/(DcDs) > 1; the evolution of the
flow is kept identical, varying Dc, Ddp and Ds. (b) Tmix,c as a function of the effective
Péclet number. +: Mixing of colloids without diffusiophoresis (Ddp = 0); ×: mixing of
salt;u: ‘salt-attracting’ case (Ddp > 0);q: ‘salt-repelling’ case (Ddp < 0). The solid line is
a curve of expression Tmix,c = 3.2 ln(Pe/120).
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FIGURE 3. (Colour online) Mixing time Tmix as a function of the Péclet number for
different values of Ddp and Ds in the salt-repelling case (Ddp < 0); @: Ddp = 10−3; E:
Ddp = 2 × 10−3; C: Ddp = 4 × 10−3; ——: Ddp/Ds = 0.1; · · · · · ·: Ddp/Ds = 0.2; — · —:
Ddp/Ds = 0.4; – –: Ddp/Ds = 0.8; — · · —: Ddp/Ds = 1.6 The full symbols are those for
which D2

dp/(DcDs)> 10; open symbols: D2
dp/(DcDs) < 10.

or an effective Péclet number independent of Dc, such that the mixing time becomes
independent of Pec. Figure 3 displays Tmix,c, as a function of Pec in the salt-repelling
case (Ddp< 0), linking the data points corresponding to the same values of Ddp and Ds.
As predicted, the different curves seem to exhibit a plateau when Pec is large enough
so that D2

dp/DcDs > 10 (filled symbol).

4. Summary and conclusion

We have studied the joint mixing of colloids and salt in a stagnation point and in a
globally chaotic flow, and investigated how the mixing time is modified by varying the
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diffusivities of the colloids and salt diffusivities, Dc and Ds, and the diffusiophoretic
coefficient Ddp.

In the case of the dispersion of Gaussian patches in a pure deformation flow,
diffusiophoresis led to a modification of the Batchelor scale `c,diff =

√
DcDs/σ(Ddp +Ds)

which was used to derive an effective Péclet number Peeff through the relation
`c,diff /`0 = 1/

√
Peeff . It was thus possible to achieve a remarkable rescaling of the

mixing time as a function of Peeff , on the same curve as the one used in the absence
of diffusiophoresis, as obtained from the analytical solution of Raynal et al. (2018).

The case of chaotic advection being far more complex than the one of a linear
velocity field, we used the equation for the scalar gradients to derive expressions for
the Batchelor scale, by balancing production and dissipation of scalar gradients in the
presence of a diffusiophoretic drift with magnitude Vdp ∼ Ddp/`s. The approach
allowed us to define an effective Péclet number Perepell

eff ∼ Pec DcDs/D2
dp in the

salt-repelling (Ddp < 0) case, which is the same expression as the one proposed
by Deseigne et al. (2014) based on the approach of Ranz. However our analysis was
not limited to that configuration and we derived an expression for the salt-attracting
case Peattract

eff ∼ Pec D2
dp/DcDs, both expressions being valid under the same assumption

D2
dp/DcDs � 1. The prediction was tested using numerical simulations of chaotic

advection, which allowed us to compute the mixing time for a large range of
parameters Dc, Ds and Ddp, and we observed a very good rescaling of the results
provided D2

dp/DcDs > 1. It confirmed the observation of Deseigne et al. (2014) who
found that the mixing time was almost independent of Dc (D2

dp/DcDs ' 30 in their
experiments).

In this second case, both patches of salt and of colloids were injected at the scale of
the flow and mixed due to Lagrangian chaos so that the effective Péclet number was
obtained using an argument based on the Batchelor scale. Another situation, which
deserves further attention, corresponds to the dispersion of patches of scalars whose
spatial variations are much larger than the flow scale. In this large-scale dispersion
problem, effective diffusivities would typically be obtained using an homogenization
method (Biferale et al. 1995; Frish 1995) with imposed mean gradients of salt and
colloids. It would then be interesting to investigate if the various methods lead to
similar scalings.

Another interesting aspect concerns the mixing of salt and colloids in a turbulent
flow. This is of course the most challenging as diffusiophoresis leads to clustering of
colloids at very small scales due to the large value of the Schmidt number, Sc= ν/Ds

(with ν the kinematic viscosity), for any salt dissolved in water (Schmidt et al. 2016;
Shukla et al. 2017). If the two scalings derived in the present article would not be
correct in the turbulent case, the present method is not limited to laminar flows so
that it could be possible to derive an effective Péclet number for the turbulent case
following Raynal & Gence (1997).
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