
An Adaptive Sensor Fusion Method
with Applications in Integrated

Navigation

Dah-Jing Jwo and Tsu-Pin Weng

(National Taiwan Ocean University)
(E-mail : djjwo@mail.ntou.edu.tw)

The Kalman filter (KF) is a form of optimal estimator characterized by recursive evaluation,
which has been widely applied to the navigation sensor fusion. Utilizing the KF requires that
all the plant dynamics and noise processes are completely known, and the noise process is
zero mean white noise. If the theoretical behaviour of the filter and its actual behaviour

do not agree, divergence problems tend to occur. The adaptive algorithm has been one of the
approaches to prevent divergence problems in the Kalman filter when precise knowledge on
the system models is not available. Two popular types of adaptive Kalman filter are the

innovation-based adaptive estimation (IAE) approach and the adaptive fading Kalman filter
(AFKF) approach. In this paper, an approach involving the concept of the two methods is
presented. The proposed method is a synergy of the IAE and AFKF approaches. The ratio

of the actual innovation covariance based on the sampled sequence to the theoretical inno-
vation covariance will be employed for dynamically tuning two filter parameters – fading
factors and measurement noise scaling factors. The method has the merits of good compu-

tational efficiency and numerical stability. The matrices in the KF loop are able to remain
positive definitive. Navigation sensor fusion using the proposed scheme will be demon-
strated. Performance of the proposed scheme on the loosely coupled GPS/INS navigation
applications will be discussed.
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1. INTRODUCTION. The Kalman filter (KF) (Brown and Hwang, 1997,
Gelb, 1974) not only works well in practice, but it is also theoretically attractive
since it has been shown that it is the filter that minimizes the variance of the esti-
mation mean square error (MSE). Nevertheless, the fact that KF depends highly
on a predefined dynamics model is a major drawback. To achieve good filtering re-
sults, the designers are required to have the complete a priori knowledge of both the
dynamic process and measurement models. In addition there is an assumption that
both the process and measurements are corrupted by zero-mean Gaussian white se-
quences.

In Kalman filter designs, the divergence due to modelling errors is critical. If the
input data does not reflect the real model, the KF estimates may not be reliable. The
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case that the theoretical behaviour of a filter and its actual behaviour do not agree
may lead to divergence problems. For example, if the Kalman filter is provided
with information that the process behaves in a certain way, whereas, in fact, it
behaves in a different way, the filter will continually intend to fit an incorrect process
signal. Furthermore, when the measurement situation does not provide sufficient
information to estimate all the state variables of the system, i.e. the estimation error
covariance matrix becomes unrealistically small, the filter will disregard the
measurement. In various circumstances where there are uncertainties in the system
model and noise description, the assumptions on the statistics of disturbances are
violated since in a number of practical situations, the availability of a precisely known
model is unrealistic. This can be due to the fact that in the modelling step, some
phenomena are disregarded and a way to take them into account is to consider a
nominal model affected by uncertainty. To fulfil the requirement of achieving filter
optimality or to prevent divergence problems in Kalman filters, the adaptive Kalman
filter (AKF) approach (Ding, et al., 2007; El-Mowafy and Mohamed, 2005; Mehra,
1970, 1971, 1972; Mohamed and Schwarz, 1999; Hide et al., 2003) has been one of
the promising strategies for adjusting dynamically the parameters of the supposedly
optimum filter, based on the estimates of the unknown parameters for an on-line
estimation of motion as well as the available data for signal and noise statistics. Two
popular types of the adaptive Kalman filter algorithms include the innovation-based
adaptive estimation (IAE) approach (El-Mowafy andMohamed, 2005; Mehra, 1970,
1971, 1972; Mohamed and Schwarz, 1999; Hide et al., 2003) and the adaptive fading
Kalman filter (AFKF) approach (Xia et al., 1994), which is a type of covariance
scaling method, for which suboptimal fading factors are incorporated. The AFKF
incorporates suboptimal fading factors as a multiplier to enhance the influence
of innovation information for improving the tracking capability in high dynamic
manoeuvring.

The Global Positioning System (GPS) (Axelrad and Brown, 1996) and inertial
navigation systems (INS) (Farrell, 1998; Salychev, 1998) have complementary oper-
ational characteristics and the synergy of both systems has been widely explored.
GPS is capable of providing accurate position information. Unfortunately, the data is
prone to jamming or being lost due to the limitations of electromagnetic waves, which
form the fundamental of their operation. The system is not able to work properly in
some areas due to signal blockage and attenuation that may deteriorate the overall
positioning accuracy. The INS is a self-contained system that integrates three accel-
eration components and three angular velocity components with respect to time and
transforms them into the navigation frame to deliver position, velocity and attitude
components. The three orthogonal linear accelerations are continuously measured
through three-axis accelerometers while three gyroscope sensors monitor the three
orthogonal angular rates in an inertial frame of reference. For short time intervals,
the integration with respect to time of the linear acceleration and angular velocity
monitored by the INS results in an accurate velocity, position and attitude. However,
the error in position coordinates increase unboundedly as a function of time. The
GPS/INS integration is an adequate solution to provide a navigation system that has
superior performance in comparison with either a GPS or an INS stand-alone system.
GPS/INS integration is typically carried out through a Kalman filter. Therefore, the
design of GPS/INS integrated navigation systems depends heavily on the design of
the sensor fusion method.
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This paper is organized as follows. In Section 2, preliminary background on
adaptive Kalman filter is reviewed. The proposed adaptive sensor fusion strategy is
introduced in Section 3. In Section 4, simulation experiments and analysis are carried
out to evaluate the performance of the approach in comparison to those by conven-
tional approach. Conclusions are given in Section 5.

2. ADAPTIVE KALMAN FILTER. The process model and measurement
model are represented as:

xk+1=Wkxk+Gkwk (1a)

zk=Hkxk+vk (1b)

where the state vector xks<n, process noise vector wks<n, measurement vector
zks<m, and measurement noise vector vks<m. In Equation (1), both the vectors wk

and vk are zero mean Gaussian white sequences having zero cross correlation with
each other:

E[wkw
T
i ]=

Qk, i=k
0, ilk

�
; E[vkv

T
i ]=

Rk, i=k
0, ilk

�
; E[wkv

T
i ]=0 for all i and k (2)

where Qk is the process noise covariance matrix, Rk is the measurement noise
covariance matrix, Wk=eFDt is the state transition matrix, and Dt is the sampling
interval, E [.] represents expectation, and superscript ‘‘T’’ denotes matrix transpose.

The discrete-time Kalman filter algorithm is summarized as follows:

Prediction steps/time update equations:

x̂x
x
k+1=Wkx̂xk (3)

Px
k+1=WkPkW

T
k+Qk (4)

Correction steps/measurement update equations:

Kk=Px
k HT

k [HkP
x
k HT

k+Rk]
x1 (5)

x̂xk=x̂x
x
k +Kk[zkxHkx̂x

x
k ] (6)

Pk=[IxKkHk]P
x
k (7)

The innovation sequences have been utilized by the correlation and covariance-
matching techniques to estimate the noise covariances. The basic idea behind
the covariance-matching approach is to make the actual value of the covariance of
the residual consistent with its theoretical value. The implementation of IAE based
AKF to navigation design has been widely explored (Hide et al, 2003, Mohamed
and Schwarz 1999). Equations (3)–(4) are the time update equations of the
algorithm from k to step k+1, and Equations (5)–(7) are the measurement update
equations. These equations incorporate a measurement value into a priori estimation
to obtain an improved a posteriori estimation. In the above equations, Pk is the error
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covariance matrix defined by E [(xkxx̂xk)(xkxx̂xk)
T], in which x̂xk is an estimation

of the system state vector xk, and the weighting matrix Kk is generally referred to as
the Kalman gain matrix. The Kalman filter algorithm starts with an initial condition
value, x̂x

x
0 and P0

x. When new measurement zk becomes available with the pro-
gression of time, the estimation of states and the corresponding error covariance
would follow recursively.

From the incoming measurement zk and the optimal prediction x̂x
x
k obtained in the

previous step, the innovations sequence is defined as:

nk=zkxẑz
x
k (8)

The innovation reflects the discrepancy between the predicted measurement Hkx̂x
x
k

and the actual measurement zk. It represents the additional information available
to the filter as a consequence of the new observation zk. The weighted innovation,
Kk(zkxHkx̂x

x
k ), acts as a correction to the predicted estimate x̂x

x
k to form the esti-

mation x̂xk. Substituting the measurement model Equation (1b) into Equation (8)
gives :

nk=Hk(xkxx̂x
x
k )+vk (9)

which is a zero-mean Gaussian white noise sequence. An innovation of zero
means that the two are in complete agreement. The mean of the corresponding
error of an unbiased estimator is zero. By taking variances on both sides, we have
the theoretical covariance, the covariance matrix of the innovation sequence is
given by:

C�k=E [nkn
T
k ]=HkP

x
k HT

k+Rk (10a)

which can be written as:

C�k=Hk(WkPkW
T
k+CkQkC

T
k )H

T
k+Rk (10b)

Defining ĈC�k as the statistical sample variance estimate of C�k , matrix ĈC�k can be
computed through averaging inside a moving estimation window of size N :

ĈC�k=
1

N

Xk
j=j0

njn
T
j (11)

where N is the number of samples (usually referred to the window size) ; j0=kxN+1
is the first sample inside the estimation window. The window size N is chosen
empirically (a good size for the moving window may vary from 10 to 30) to give some
statistical smoothing. More detailed discussion can be obtained by referring to Gelb
(1974) and Brown & Hwang (1997).

The benefit of the adaptive algorithm is that it keeps the covariance consistent with
the real performance. The innovation sequences have been utilized by the correlation
and covariance-matching techniques to estimate the noise covariances. The basic
idea behind the covariance-matching approach is to make the actual value of the
covariance of the residual consistent with its theoretical value. This leads to an esti-
mate of Rk :

R̂Rk=ĈC�kxHkP
x
k HT

k (12)
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Based on the residual based estimate, the estimate of process noise Qk is obtained:

Q̂Qk=
1

N

Xk
j=j0

DxjDx
T
j +PkxWkPkx1W

T
k (13)

where Dxk=xkxx̂x
x
k . This equation can also be written in terms of the innovation

sequence:

Q̂Qk � KkĈC�kK
T
k (14)

For more detailed information on the derivation of these equations, see Mohamed &
Schwarz (1999).

3. THE PROPOSED ADAPTIVE SENSOR FUSION STRATEGY. A new
strategy for tuning the filter parameters is presented. The conventional KF
approach is coupled with the adaptive tuning system (ATS) to provide two system
parameters : fading factor and noise covariance scaling factor. In the ATS mechan-
ism, both adaptations on process noise covariance (also referred to as P-adaptation
herein) and on measurement noise covariance (also referred to as R-adaptation
herein) are involved. The idea is based on the concept that when the filter achieves
estimation optimality, the actual innovation covariance based on the sampled se-
quence and the theoretical innovation covariance should be equal. In other words,
the ratio between the two should equal one.

3.1. Adaptation on process noise covariance. One of the approaches for adaptive
processing is the incorporation of fading factors. Xia et al. (1994) proposed a concept
of adaptive fading Kalman filter and solved the state estimation problem. In
the AFKF, suboptimal fading factors are introduced into the nonlinear smoother
algorithm. The idea of fading Kalman filtering is to apply a factor matrix to the
predicted covariance matrix to deliberately increase the variance of the predicted
state vector. To account for the uncertainty, the covariance matrix needs to be
updated, in the following way. The new P

x
k can be obtained by multiplying Pk

x by the
factor lP :

P
x
k =lPP

x
k (15)

and the corresponding Kalman gain is given by:

Kk=P
x
k HT

k [HkP
x
k HT

k+Rk]
x1 (16a)

If representing the new variable Rk=lRRk, we have:

Kk=P
x
k HT

k [HkP
x
k HT

k+lRRk]
x1 (16b)

From Equation (16b), it can be seen that the change of covariance is essentially
governed by two of the parameters : P

x
k and Rk. In addition, the covariance matrix at

the measurement update stage, from Equation (7), can be written as:

Pk=[IxKkHk]P
x
k (17a)

and

Pk=lP[IxKkHk]P
x
k (17b)
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Furthermore, based on the relationship given by Equation (15), the covariance ma-
trix at the prediction stage (i.e., Equation (4)) is given by:

P
x
k+1=WkPkW

T
k+Qk (18)

or, alternatively:

P
x
k+1=lPWkPkW

T
k+Qk (19a)

On the other hand, the covariance matrix can also be approximated by:

P
x
k+1=lPP

x
k+1=lP(WkPkW

T
k+Qk) (19b)

where lP=diag (l1, l2…, lm). The main difference between different adaptive fading
algorithms is on the calculation of scale factor lP. One approach is to assign the scale
factors as constants. When lif1 (i=1,2,…, m), the filtering is in a steady state pro-
cessing while li>1, the filtering may tend to be unstable. For the case li=1, it dete-
riorates to the standard Kalman filter. There are some drawbacks with constant
factors, e.g., as the filtering proceeds, the precision of the filtering will decrease
because the effects of old data tends to diminish. The ideal way is to use time
varying factors that are determined according to the dynamic and observation model
accuracy.

When there is deviation due to the changes of covariance and measurement noise,
the corresponding innovation covariance matrix can be rewritten as:

C�k=HkP
x
k HT

k+Rk

and
C�k=lPHkP

x
k HT

k+lRRk (20)

To enhance the tracking capability, the time-varying suboptimal scaling factor is
incorporated, for on-line tuning the covariance of the predicted state, which adjusts
the filter gain, and accordingly the improved version of AFKF is obtained. The op-
timum fading factors can be calculated through the single factor:

li=(lP)ii=max 1,
tr(ĈC�k )

tr(C�k )

( )
, i=1, 2 . . . ,m (21)

where tr[.] is the trace of matrix; lio1, is a scaling factor. Increasing li will improve
tracking performance.

3.2. Adaptation on measurement noise covariance. As the strength of measure-
ment noise changes with the environment, incorporation of the fading factor only is
not able to restrain the expected estimation accuracy. To resolve these problems, the
ATS needs a mechanism for R-adaptation in addition to P-adaptation, to adjust the
noise strengths and improve the filter estimation performance.

A parameter which represents the ratio of the actual innovation covariance, based
on the sampled sequence to the theoretical innovation covariance matrices, can be
defined as one of the following methods :

(a) Single factor

lj=(lR)jj=
tr(ĈC�k)

tr(C�k)
, j=1, 2 . . . , n (22a)
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(b) Multiple factors

lj=
(ĈC�k)jj
(C�k)jj

, j=1, 2 . . . , n (22b)

It should be noted from Equation (20) that increasing Rk will lead to increasing C�k ,
and vice versa. This means that time-varying Rk leads to time-varying C�k . The value
of lR is introduced in order to reduce the discrepancies between C�k and Rk. The
adaptation can be implemented through the simple relation:

Rk=lRRk (23)

Further detail regarding the adaptive tuning loop is illustrated by the flow charts
shown in Figures 1 and 2, where two architectures are presented. Figure 1 shows
System architecture #1 and Figure 2 shows System architecture #2, respectively. In
Figure 1, the flow chart contains two portions, for which the block indicated by the
dotted lines is the adaptive tuning system (ATS) for tuning the values of both P and R

kRk RλR =

−
0x̂  and −

0P

−−= kkk zzυ ˆ

kkk xΦx ˆˆ 1 =−
+

)(1 k
T
kkkPk QΦPΦλP +=−

+

1TT ][ −−− += kkkkkkk RHPHHPK

]ˆ[ˆˆ −− −+= kkkkk zzKxx

[ ] −−= kkkk PHKIP

{ }iiPiiP )(1max)( λ,λ =

∑=
=

k

jj
jjNk

0

T1ˆ υυCυ

kkkk
RHPHC += − T

υ

)(

)ˆ(
)(

k

k

tr

tr
jjR

υ

υ

C

C
λ =

)(

)ˆ(
)(

k

k

tr

tr
iiP

υ

υ

C

C
λ =

(Adaptive Tuning System) 

R-adaptation  P-adaptation  

Figure 1. Flow chart of the proposed AKF method – System architecture #1.
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parameters ; in Figure 2, the flow chart contains three portions, for which the
two blocks indicated by the dotted lines represent the R-adaptation loop and
P-adaptation loop, respectively.

An important point needs to be made. When System architecture #1 is employed,
only one window size is needed. It can be seen that the measurement noise covariance
of the innovation covariance matrix has not been updated when performing the
fading factor calculation. In System architecture #2, the latest information of the
measurement noise strength was already available when performing the fading
factor calculation. However, one should notice that utilization of the ‘old’ (i.e.,
before R-adaptation) information is required. Otherwise, unreliable results may
occur since the deviation of the innovation covariance matrix due to the measurement
noise cannot be correctly detected. One strategy for avoiding this problem is using
two different window sizes, one for R-adaptation loop and the other for P-adaptation
loop.

kRk RλR =

−
0x̂  and −

0P

−−= kkk zzυ ˆ

kkk xΦx ˆˆ 1 =−
+

)(1 k
T
kkkPk QΦPΦλP +=−

+

1TT ][ −−− += kkkkkkk RHPHHPK

]ˆ[ˆˆ −− −+= kkkkk zzKxx

[ ] −−= kkkk PHKIP

∑=
=

k

jj
jj

PNk
0

T1ˆ υυCυ

{ }iiPiiP )(1max)( λ,λ =

∑
=

=
k

jj
jj

RNk

0

T1ˆ υυCυ

kkkk
RHPHC += − T

υ

)(

)ˆ(
)(

k

k

tr

tr
jjR

υ

υ

C

C
λ =

)(

)ˆ(
)(

k

k

tr

tr
iiP

υ

υ

C

C
λ =

kkkk
RHPHC += − T

υ

R-adaptation loop P-adaptation loop 

Figure 2. Flow chart of the proposed AKF method – System architecture #2.

712 DAH-JING JWO AND TSU-PIN WENG VOL. 61

https://doi.org/10.1017/S0373463308004827 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463308004827


4. SIMULATION EXPERIMENTS AND ANALYSIS. Simulation ex-
periments have been carried out to evaluate the performance of the proposed ap-
proach in comparison with the conventional methods for GPS/INS navigation
processing. The loosely coupled GPS/INS architecture is presented for demon-
stration. Figure 3 provides the strategy for the GPS/INS navigation processing
based on the ATS-coupled AKF mechanism. The GPS navigation solution based
on the least squares (LS) is solved at the first stage. The measurement is the residual
between GPS LS and INS derived data, which is used as the measurement of
the KF.

Simulation was conducted using a personal computer. The computer codes were
constructed using the Matlab1 6.5 version software. The commercial software
Satellite Navigation (SATNAV) Toolbox by GPSoft LLC was employed for gener-
ating the satellite positions and pseudoranges. The satellite constellation was simu-
lated and the error sources corrupting GPS measurements include ionospheric delay,
tropospheric delay, receiver noise and multipath. It was assumed that the differential
GPS mode was used and most of the errors could be corrected, but the multipath and
receiver thermal noise cannot be eliminated.

The differential equations describing the two-dimensional inertial navigation state
are (Farrell, 1998) :

_nn
_ee
_vvn
_vve
_yy

2
66664

3
77775=

vn
ve
an
ae
vr

2
66664

3
77775=

vn
ve

cos (y)aux sin (y)av
sin (y)au+ cos (y)av

vr

2
66664

3
77775 (24)

where [au, av] are the measured accelerations in the body frame, vr is the measured
yaw rate in the body frame, as shown in Figure 4. The error model for INS is aug-
mented by some sensor error states such as accelerometer biases and gyroscope
drifts. Actually, there are several random errors associated with each inertial sensor.
It is usually difficult to set a certain stochastic model for each inertial sensor that
works efficiently in all environments and reflects the long-term behaviour of sensor
errors. The difficulty of modelling the errors of INS raised the need for a model-less

INS

GPS KF
+

-

measurement prediction 

)( *xh

ATS 

+
+

xGPS

xINS

Determination of  

Estimated 

INS Errors

Corrected output x̂

Innovation 
information  λP and λR

Figure 3. GPS/INS navigation processing using the proposed AKF.
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GPS/INS integration technique. Linearization of Equation (24) results in the fol-
lowing set of linearized equations:

d _nn
d _ee
d _vvn
d _vve
d _yy

2
66664

3
77775=

0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

2
66664

3
77775

dn
de
dvn
dve
dy

2
66664

3
77775+

0
0
wn

we

wy

2
66664

3
77775 (25)

which will be utilized in the integration Kalman filter as the inertial error model. In
Equation (25), dn and de represent the east, and north position errors ; dvn and dve
represent the east, and north velocity errors ; and dy represent yaw angle, respect-
ively. The state transition matrix for the model can be found to be:

Wk=

1 0 Dt 0 0
0 1 0 Dt 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

2
66664

3
77775

The measurement model governed by (1b) leads to:

dn
de

� �
= nINS

eINS

� �
x nGPS

eGPS

� �
= 1 0 0 0 0

0 1 0 0 0

� � dn
de
dvn
dve
dy

2
66664

3
77775+

vn
ve

� �
(26)

An experiment was conducted on a simulated vehicle trajectory originating from
the (0, 0) m location. The simulated outputs for the accelerometers and gyroscope are
shown as in Figure 5. The trajectory of the vehicle can be approximately divided into
two categories according to the dynamic characteristics. The vehicle was simulated
to conduct constant-velocity straight-line during the three time intervals, 0–300,
901–1200 and 1501–1800s, all at a speed of 10 pm/s. Furthermore, it conducted a
counter-clockwise circular motion with radius 3000 metres during 301–900, and

ψ

East

North 

va

ua

Figure 4. Two-dimensional inertial navigation (Farrell, 1998).
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1201–1500s where high dynamic manoeuvring is involved. The following parameters
were used: window size Np=15 NR=20; the values of noise standard deviation are
1e-3 m/s2 for accelerometers and gyroscopes.

The trajectory for the simulated vehicle (solid) and the unaided INS derived
position (dashed) is shown in Figure 6 and Figure 7 shows the east and north com-
ponents of INS navigation errors. Figure 8 provides the positioning solution from
the integrated navigation system (without adaptation) as compared to the GPS
navigation solutions by the LS approach, while Figure 9 gives the positioning results
for the integrated navigation system with and without adaptation. Substantial im-
provement in navigation accuracy can be obtained.

In the real world, the measurement will normally be changing in addition to the
change of process noise or dynamics such as manoeuvring. In such cases, both
P-adaptation and R-adaptation tasks need to be implemented. In the following dis-
cussion, results will be provided for the case when measurement noise strength is
changing in addition to the change of process noise strength. The measurement noise
strength is assumed to be changing with variances of the values r=42p162p82p32,
where the ‘arrows (p) ’ are employed for indicating the time-varying trajectory of
measurement noise statistics. That is, it is assumed that the measure noise strength
is changing during the four time intervals : 0–450s (N(0,42)), 451–900s (N(0,162)),
901–1350s (N(0,82)), and 1351–1800s (N(0,32)). However, the internal measurement
noise covariance matrix Rk is set unchanged all the time in simulation, which uses
rjyN(0,32), j=1,2…,n, at all the time intervals.

Figure 10 shows the east and north components of navigation errors and the 1-s
bound based on the method without adaptation on measurement noise covariance

Figure 5. The simulated outputs for the accelerometers and gyroscope.
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matrix. It can be seen that the adaptation of P information without correct R infor-
mation (referred to as partial adaptation herein) seriously deteriorates the estimation
result. Figure 11 provides the east and north components of navigation errors and the

Figure 7. East and north components of INS navigation errors.

Figure 6. Trajectory for the simulated vehicle (solid) and the INS derived position (dashed).
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Figure 9. The solutions for the integrated navigation system with and without adaptation.

Figure 8. The solution from the integrated navigation system without adaptation as compared

to the GPS navigation solutions by the LS approach.
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Partial adaptation

Partial adaptation

Figure 10. East and north components of navigation errors and the 1-s bound based on the

method without measurement noise adaptation.

Full adaptation

Full adaptation

Figure 11. East and north components of navigation errors and the 1-s bound based on the

proposed method (with adaptation on both estimation covariance and measurement noise co-

variance matrices).
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1-s bound based on the proposed method (referred to as full adaptation herein, i.e.,
adaptation on both estimation covariance and measurement noise covariance
matrices are applied). It can be seen that the estimation accuracy has been substan-
tially improved. The measurement noise strength has been accurately estimated, as
shown in Figure 12.

It should also be mentioned that the requirement (lp)iio1 is critical. An illustrative
example is given in Figures 13 and 14. Figure 13 gives the navigation errors and the 1-
s bound when the threshold setting is not incorporated. The corresponding reference
(true) and calculated standard deviations when the threshold setting is not incor-
porated is provided in Figure 14. It is not surprising that the navigation accuracy has
been seriously degraded due to the inaccurate estimation of measurement noise
statistics.

5. CONCLUSION. This paper has proposed a new strategy of adaptive
Kalman filter approach and provided an illustrative example for integrated navi-
gation application. The conventional KF approach is coupled by the adaptive tun-
ing system (ATS), which gives two system parameters : the fading factor and
measurement noise covariance scaling factor. The ATS has been employed as a
mechanism for the timely detection of the dynamical and environmental changes
and implementation of the on-line parameter tuning by monitoring the innovation
information so as to maintain good tracking capability and estimation accuracy.
Unlike some of the conventional AKF methods, the proposed method has the
merits of good computational efficiency and numerical stability. The matrices in the

Reference (dashed)

Calculated (solid)  

Calculated 
(solid)  

Reference (dashed)  

Figure 12. Reference (true) and calculated standard deviations for the east (top) and north

(bottom) components of the measurement noise variance values.
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Reference (dashed)

Calculated 
(solid)  

Calculated 
(solid)  

Reference (dashed)  

Figure 14. Reference (true) and calculated standard deviations for the east and north compo-

nents of the measurement noise variance values when the threshold setting is not incorporated.

Figure 13. East and north components of navigation errors and the 1-s bound based on

the proposed method when the threshold setting is not incorporated.
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KF loop are able to remain positive definitive. Remarks to be noted for using the
method are:

’ The window sizes can be set to different values to avoid the filter degradation/
divergence;

’ The fading factors (lP)ii should be always larger than one while (lR)ii does not
have such limitation.

Simulation experiments for navigation sensor fusion have been provided to illustrate
the accessibility. The accuracy improvement based on the proposed AKF method has
demonstrated substantial improvement in both navigational accuracy and tracking
capability.
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