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Abstract

This paper is concerned with the static Choquard equation

—Au= ( . |u|P)|u|"-2u inRV,

|x|N—a

where N, p > 2 and max{0, N — 4} < @ < N. We prove that if u € C!(RM) is a stable weak solution of the
equation, then u = 0. This phenomenon is quite different from that of the local Lane-Emden equation,
where such a result only holds for low exponents in high dimensions. Our result is the first Liouville
theorem for Choquard-type equations with supercritical exponents and a # 2.
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1. Introduction

We study the static Choquard equation

—Au = ( * |u|P)|u|P*2u inR", (1.1)

1
|x|N—af
where N,p>2 and O<a <N. If p<(N+a)/(N-2), the energy functional
associated to (1.1) can be defined for any u € H'(RY) by

1 p p
Iw=2 f IVl dx - f f BCPWOI 4y,
2 Jrw 2p Jev Jpv e —yIV@

In such circumstances, problems of type (1.1) have a variational structure and can be
treated by using variational methods (see, for example, [8, 20]). This paper is also
concerned with the supercritical case p > (N + @)/(N — 2). Therefore, throughout the
paper, we study local solutions of (1.1) in the following weak sense.

Derinirion 1.1. We call u € CH(RY) a (weak) solution of (1.1) if
p=2 14
I'(w)g = f Vi - Vodx - f f uCO w0 ;00 (1.2
RV RY JR

lx — y|N-@
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forallp e C g (RM). Moreover, a solution u of (1.1) is called stable if

-2 2
W) im fR Vel dr—(p—1) fR fR G ORI,

x = yIN-e
5 g (1.3)
|~ u() (O~ u(y)e(y)
-p N dxdy >0
RV JrY lx — ¥l
for all € CL(RV).
Equation (1.1) belongs to a class of generalised Choquard equations
—Au+ V(x)u = ( * Iul”)lul”_Qu in RV, (1.4)
|x|N—a

The Choquard equations arise naturally in various branches of mathematical
physics, such as quantum mechanics, Hartree—Fock theory, the physics of multiple-
particle systems and the physics of laser beams (see [16, 19, 22]). Several variational
techniques have been developed to deal with these equations. For example, the
papers by Lieb [15], Lions [17], Ma—Zhao [18] and Moroz—Van Schaftingen [20]
discuss the existence, symmetry and uniqueness of solutions of (1.4). A survey on
the mathematical treatment of Choquard-type equations can be found in the recent
review paper [21].

In this paper, we study the Liouville theorem on nonexistence of nontrivial solutions
of (1.1). Numerous attempts have been made to establish such theorems for several
types of equations after the pioneering paper of Gidas—Spruck [7], where they proved
that the Lane—-Emden equation,

—Au=u" inR"V, (1.5)

has no positive classical solution in the subcritical case with 1 < p < (N + 2)/(N —2)
(= 400 if N =2). For the static Choquard equation (1.1), the Liouville theorem
is known to hold for positive classical solutions in the subcritical range, that is,
1 <p<(N+a)/(N-2),and such a result is sharp (see [12, 14, 24]).

Analogous results could be asked for sign-changing solutions belonging to some
particular classes, such as the stable one. From a physical point of view, a system is
in a stable state if it can recover from perturbations. Hence, a small change will not
prevent the system from returning to equilibrium. From that intuition, stable solutions
are those for which the energy of the system attains a local minimum. For more
physical background and motivation on stable solutions, we refer to the monograph
[5] by Dupaigne.

In his celebrated paper, Farina [6] showed that the Lane—-Emden equation (1.5) has
no nontrivial stable classical solution if 1 < p < p;.. Here,

+00 if N <10,
pi={(N-2)2—4N+8 VN1

N-2(V-10) if N>11
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is called the Joseph—Lundgren exponent [10]. The Joseph—Lundgren exponent is
always greater than the Sobolev one, that is, p;;. > (N + 2)(N —2). Farina’s work
showed that the Joseph—Lundgren exponent divides the range of nonexistence and
existence of stable solutions, a role similar to the Sobolev exponent for positive
solutions. Farina’s results have been extended to p-Laplace equations in [1, 3, 13],
Kirchhoff equations in [9], bi-harmonic equations in [4] and Grushin equations in
[11]. For all these equations, the Joseph—Lundgren exponents for Liouville’s theorem
for stable solutions have been explicitly computed and are finite in high dimensions.

Liouville’s theorem for stable solutions of Choquard-type equations is not fully
understood, although there are some recent partial results. In [14], Lei established a
Liouville theorem for positive stable classical solutions of (1.1) in the case @ =2 < N.
Lei’s method relies heavily on a comparison property deduced from an equivalent
semilinear elliptic system and hence cannot be extended to sign-changing stable
solutions or to the case a # 2. Zhao [25] proved a Liouville theorem for finite Morse
index classical solutions, which includes the stable ones. However, Zhao’s result only
holds for the subcritical case 2 < p < (N + @)/(N —2).

This paper is the first attempt to establish an optimal Liouville theorem for stable
solutions of (1.1) in the case that o # 2 and p may be a supercritical exponent. Our
main result is the following theorem.

Turorem 1.2. Assume that N, p > 2 and max{O,N —4} <a <N. Ifue C'R") is a
stable weak solution of (1.1), then u = 0.

RemMark 1.3. Our theorem agrees with [14, Theorem 1.8] in the case @ = 2 with the
corresponding dimensions N = 3,4, 5. Let us emphasise that our result is new even in
this case because the stable solutions are assumed to be positive and classical in [14].

Remark 1.4. Our result reveals that the Joseph—Lundgren exponent for the static
Choquard equation with max{0, N — 4} < @ < N is infinite in any dimension. This
phenomenon is very different from that of the local equations mentioned above, where
the Joseph—Lundgren exponents are finite in high dimensions.

Remark 1.5. In [6], Farina proved a Liouville theorem for stable classical solutions
of (1.5). Here, we adapt some ideas in [3] to deal with stable solutions of (1.1)
which only belong to the C'(R") class. Nevertheless, when p = (N + @)/(N - 2) and
in some circumstances, solutions in H'(R") or positive solutions in D'*(RY) of (1.1)
are known to be classical ones (see [2, 8]). Similar Liouville-type results for stable
Hll0 C(RN ) solutions of Hénon equations were obtained in [23]. However, it is not clear
how to adapt the techniques in [23] to study (1.1) due to the presence of a nonlocal

term in the right-hand side of (1.1).

The next section is devoted to the proof of our main result. Throughout the paper,
we use C to denote various positive constants. At times, we append subscripts to C
to specify its dependence on the subscript parameters. We also denote by By the ball
with centre 0 and radius R > 0. Our proof is inspired by the method of energy estimates
from the work of Farina and his collaborators [3, 6].
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2. Proof of the main result
We begin with the following technical lemma.

Lemma 2.1. If N, p > 2 and max{0, N — 4} < a < N, then there exists y > 1 such that

ax{%()%l)2+l,y;3}<p<%[(y+l)%—()f—l)]. 2.1)

Proor. For each y > 0, we define
Liy+1y? y+3 1 N+a
=—|— 1 = — = - D———-(y-D)].
f» y( 5 )+ - 8 =H— h) 2[(7+ N2~ )]

From @ > N — 4, we deduce that h(y) > g(y). By direct computations, h(y) > f(y)
if y> (N —-2)/(6 +2a— N). Since @ > N — 4, we see that (N —2)/(6 +2a — N) < 1.
Hence, the interval (max{f(y), g(y)}, h(y)) is not empty for all y > 1. Moreover,

f)=g)=2 and lim max{f(). g} = +oo.
Therefore, the conclusion follows immediately from the continuity of f, g, h. O

Proor oF THEOREM 1.2. Choose y > 1 satisfying (2.1) in Lemma 2.1 and suppose
¥ € CL(RY) is a nonnegative function.
Applying (1.2) with ¢ = |u[”~'uy?, since

Vo = ylul 'y Vu + 20ul " up Vi,

for any positive number € < v,

+y-1 2
y fR RV d - fR fR GO YOI

lx =y

=2 f ul " uyVu - Vi dx
RN

<2 f |l Y| Vul Vil dx
RN

<e f ul "'y Vul? dx + C, f ul” ! |V dx.
RN RN

That is,

+y-1 2
('}’_8) LN |u|y—1w2|vu|2 dXS LN LN |u(x)|p 4 I!’(x) |M(Y)|p dxdy

lx = yIN=e

(2.2)
+Co | |V dx.
RN

Applying (1.3) with ¢ = |u|"~Y"?uy, since
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1
Vo = Lo 2y Vi 4+ 11O uvy,
we have
()P () ()
e-n [ [ VOO gy
RN JRV lx =yl
N f f O+~ () ()P0 1)/2¢(y)
p o dy
+R’1V RV lx =yl (2.3)
< f L2 O D2y Y+ 1>/2uw/' dx
RN
cavo L) [ i c, [ ek

where we have used the inequality |A + B> < (1 + &)|A|* + C,|BJ? in the last estimation.
Combining (2.2) and (2.3),

(-1 f Ju (P~ () () dxdy
RN JRN

[x — y|N=@
f f ()P0 D 2y () lu(y)lP 1)/zl//(y)
+p N—-a
RN JRV lx =yl
1 1 2 p+y-1 2 14
cLreprel) f f G e EO 5 60 LNy f W Tyl
y—e\ 2 RN JRN |x — y|N= RV
That is,
1+ 7+1 . ()17 ()2 |u(y)|?
p—-1- N dxdy
y-¢ lx =yt
p+(7 /2 p+(y=1/2
f f o) Vluty) VO) gy 24)
lx = y|¥=
<Cy | ||Vl dx.
RN
Since

1 12 Ly +1)2
lim[p—l— +8(7+ )]zp—l——(Y+ )>o
&—0* y—e\ 2 y\ 2

thanks to (2.1) in Lemma 2.1, we can fix &€ > 0 sufficiently small such that

2
1+£(y+1) 0.
y—e\ 2

p—1-
We also choose ¥ =}y, where

C
ng=1inBg, nrg=0inRY\ By, 0<nr<1 and IVnRISEinRN
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and m is a positive integer such that (m — 1)(2p + ¥y — 1)/(y + 1) > m. Then (2.4) yields

f ()P 2R oy u(y) PO 2R ()™
RN JRN |x — y|N-

dxdy
<C IuI7+1772’” 2|Vngl* dx

_ 2(y+1)/2p+y-1)
_2\Cp+y=D/2(y+1)
RN

_ e (2p-y-3)/2p+y-1)
2\2p+y-1/2p-y-3)
< ([ (wner) dx
RN
2(y+1)/@2p+y-1)
<C(f |u|”+(7")/2nmdx)

2p-y-3)/2p+y-1)
% ( f V2P r=DI2p=y=3) dx) (2.5)
]RN

On the other hand,
([ rro-r '"dx) _ f f GO 2 () (PO~ P ()" e dly
R

pH(y=1)/2 m p+(y-1)/2 m
copr [ [ MOPO R MO O
RN JRN

|x — y|N-

Substituting (2.6) into (2.5),

I o ()P D gy 2pDICPD
= yive dxd)

< CR(N—a)(7+1)/(2p+7—1) (f |VnR|2(2p+7—1)/(2p—7—3) dx
RN

< CRN-2)r+D)/@2p+y=D+(N=-Q2Q2p+y=1)/2p=y=3)2p-y=3)/2p+y-1)

)(2P—7—3)/(2P+)’—1)

_ CRN—2—(N+04)()’+1)/(2p+y—1) .

Since N-2—-(N+a)(y + 1)/2p +y —1) <0 thanks to (2.1), we may let R — +oo to

get
p+(y-1)/2 p+(y-1)/2
f f PO u(y)| dxdy—0.
lx = yV-e
That is, u = 0. This completes the proof of Theorem 1.2. O
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