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Abstract
Based on the framework of disjunctive propositional logic, we first provide a syntactic representation for
Scott domains. Precisely, we establish a category of consistent disjunctive sequent calculi with consequence
relations, and show it is equivalent to that of Scott domains with Scott-continuous functions. Furthermore,
we illustrate the approach to solving recursive domain equations by introducing some standard domain
constructions, such as lifting and sums. The subsystems relation on consistent finitary disjunctive sequent
calculi makes these domain constructions continuous. Solutions to recursive domain equations are given
by constructing the least fixed point of a continuous function.
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1. Introduction
Domains theory provides a coherent framework for describing denotational semantics of func-
tional programming languages. It has been an object of interest, since it was introduced by D. Scott
and Ch. Strachey, on which significant progress has been made by mathematicians and computer
scientists (Erné 2018; Goubault-Larrecq 2013; Ho et al. 2018; Yao 2016; Zhang 1992).

There is a long tradition of finding ways to represent various classes of domains in terms of
logical languages, starting with Scott’s seminal information systems (Scott 1982). An information
system is a set of atomic formulae with a consistent predicates and a binary relation, which pro-
vides an elementary approach to presenting Scott domains. In Larsen andWinskel (1984), Larsen
and Winskel showed how to use the concrete representation of information systems to advantage
in solving recursive domain equations. Since then, many scholars have established several kinds
of information systems for the representations of various domains (Hoofman 1993; Huang et al.
2015; Spreen et al. 2008; Vickers 2004; Wang and Li 2021; Wu et al. 2016).

In another development, Abramsky presented a complete logical system corresponding to Scott
domains, and showed how a logical description can be usefully employed in denotational mod-
els (Abramsky 1987). His work is deliberately suggestive of logical semantics rather than logical
syntax. An important difference from various information systems is that Abramsky’s logic allows
atomic formulae to be combined by conjunctive and disjunctive connectives. In Abramsky (1991),
he extended the work to all SFP domains and led this program to fruition. Many researchers have
tried to apply the Abramsky program to other classes of domains. For example, Jung, Kegelmann
and Moshier (Jung et al. 1999) devised a coherent sequent calculus for strong proximity lattices.
For a variety of results, see Jung (2013), Wang and Li (2020a).
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The most relevant work for us is Chen and Jung’s paper on a logical approach to stable
domains (Chen and Jung 2006), in which they built a framework of disjunctive propositional logic
and proved that the category of algebraic L-domains with stable functions can be described via its
Lindenbaum algebra. This is particularly challenging to transfer Abramsky’s idea to the world of
stable domain theory.

The main contribution of this paper is to make a syntactic representation of Scott domain by
developing the representation theory of disjunctive propositional logic.We show how a consistent
disjunctive sequent calculus represents the Scott domain of its logical states. The category SD of
Scott domains with Scott-continuous functions is an appropriate candidate for the denotational
semantics of functional programming languages. We set up a category of consistent disjunctive
sequent calculi with consequence relations, which is equivalent to the category SD. This demon-
strates the capability of our approach in representing domains, and also exposes interrelationships
and fundamental differences between algebraic L-domains and Scott domains on logical level. It
shows that our method differs from that of Scott’s information system and Abramsky’s logical
form.We neither rely on consistent predicates and atomic formulae to make inferences, nor focus
on the Lindenbaum algebras of the logic.

Another most important part of our paper is to examine how to use the logical nature of con-
sistent finitary disjunctive sequent calculi to solve recursive domains equations. This is based on
a directed complete order� on consistent finitary disjunctive sequent calculi, following the ideas
described in Abramsky (1991), Larsen and Winskel (1984). Some domain constructions such as
lifting and sum are introduced. We choose these domain construction with a bit of care, not only
because they can help us construct the consistent finitary disjunctive sequent calculi we need
but also because they are continuous with respect to �. In this way, the least solution to recur-
sive domain equation can be reduced to the classical construction of the least fixed point of a
continuous function.

The content is arranged as follows. Section 2 gives some basic notions and results on domains
and the framework of disjunctive propositional logic. Section 3 introduces the notions of con-
sistent disjunctive sequent calculi and logical states, and shows that each Scott domain is order
isomorphic to the domain of logical states of some consistent disjunctive sequent calculus. Section
4 extends the relationship between Scott domains and consistent disjunctive sequent calculi
to a categorical equivalence by defining appropriate morphisms between consistent disjunctive
sequent calculi. Section 5 examines how to construct consistent disjunctive sequent calculi we
need, and how to solve recursive domain equations.

2. Preliminaries
We first recall some notational conventions and basic notions needed for what follows. Those
related to domain theory come from Gierz et al. (2003). For any set X, we use the symbols A� X
to mean that A is a nonempty finite subset of X.

Let P be a poset and X ⊆ P. We write
⊔

X for the least upper bound of X. We denote by ↓X the
down set {d ∈ P | (∃x ∈ X)d ≤ x}. Similarly, we denote by ↑X the upper set {d ∈ P | (∃x ∈ X)x≤ d}.
If X is a singleton {x}, then we just write ↓x or ↑x. X is said to be a pairwise inconsistent subset of P
if ↑x ∩ ↑y= ∅ for all x �= y ∈ X. A nonempty subsetD of P is said to be directed if every nonempty
subset of D has a least upper bound in D. P is said to be a complete lattice if every subset of it has a
least upper bound in P. The poset P is said to be pointed if it has a least element ⊥. The poset P is
said to be a dcpo if every directed subset D of it has a least upper bound.

Let P be a dcpo. An element x ∈ P is called a compact element if for any directed subset D of
P the relation x≤ ⊔

D always implies the existence of some d ∈D such that x≤ d. We denote by
K(P) the set of compact elements of P and denote by K∗(P) the set K(P)− {⊥}.
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Definition 2.1. (1) A dcpo P is said to be algebraic if for every element x ∈ P there is a directed
subset D⊆K(P)∩ ↓x such that x= ⊔

D.
(2) An algebraic dcpo is called a Scott domain if any finite subset of it which are bounded above

has a least upper bound.

Example 2.1. Let X be a nonempty subset of real numbers. A partial map from X to X is a map
f : S→ X, where dom(f ), the domain of f , is a subset of X; here S= ∅ is allowed. The set of partial
maps from X to itself is denoted by (X� X). We order (X� X) as follows: given f , g ∈ (X� X),
define f ≤ g if and only if dom(f )⊆ dom(g) and f (x)= g(x) for all x in dom(f ). Then (X� X) is
a Scott domain (Davey and Priestley 2002). In addition,

• Every bounded finite directed set must be a Scott domain.
• (N∪ {ω},≤ ) forms a Scott domain.
• ([0, 1],≤ ) is not a Scott domain.

Definition 2.2. Let P and Q be algebraic dcpos. A function f : P →Q is Scott-continuous if and
only if for all directed subset D of P, we have

f (
⊔

D)=
⊔

{f (x) | x ∈D}.
In Chen and Jung (2006, Definition 2.1), Chen and Jung introduced a framework of disjunctive

propositional logic for algebraic L-domains, in which a sequent is an object � � ϕ such that � is a
finite set of formulae and ϕ is a single formula. As usual logic (Gallier 2015), the interpretation of
a valid sequent � � ϕ is that the formula ϕ can be derived from the conjunction of the formulae
in �.

Definition 2.3. (Chen and Jung 2006). Let P be a set. Every element of P is called an atomic
formula. Likewise, let AP be a set of sequents of the form p1, p2, . . . , pn � F where the pi are
atomic formulae, and F is the syntactic constant for “false”. Each element of AP is called an atomic
disjointness assumption, and the pair (P,AP) is called a disjunctive basis.

The class L(P) of formulae, and the class T(P) of valid sequents are generated by mutual
transfinite induction by the following rules:

• Disjunctive formulae

(At)
φ ∈ P
φ ∈L(P) (Const)

T,F ∈L(P)

(
Conj

) φ,ψ ∈L(P)
φ ∧ψ ∈L(P)

(
Disj

) φi ∈L(P)(all i ∈ I) φi, φj � F(all i �= j ∈ I)∨̇
i∈Iφi ∈L(P)

• Valid sequents

(Ax)
(� � F) ∈AP

� � F
(Id)

φ ∈L(P)
φ � φ

(Lwk)
� �ψ φ ∈L(P)

�, φ �ψ (Cut)
� � φ �, φ �ψ

�,��ψ
(LF)

φ ∈L(P)
F� φ (RT) � T
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(L∧) �, φ,ψ � θ
�, φ ∧ψ � θ (R∧) � � φ ��ψ

�,�� φ ∧ψ
(
L∨̇) �, φi � θ(all i ∈ I) φi, φj � F(all i �= j ∈ I)

�,
∨̇

i∈Iφi � θ
(
R∨̇) � � φi0 (some i0 ∈ I) φi, φj � F(all i �= j ∈ I)

� � ∨̇
i∈Iφi

.

In this paper, we call the proof system of a disjunctive propositional logic a disjunctive sequent
calculus and denote it by (L(P),� ). By Definition 2.3, it is easy to see that the class T(P) of valid
sequents can be determined by a relation �, namely

a sequent � � ϕ is valid if and only if (�, ϕ) ∈� . (1)
In this case, we can verify a pair (L(P),� ) is a disjunctive sequent calculus by checking the
class L(P) with the relation � satisfies all the rules defined in Definition 2.3.

Proposition 2.1. (Chen and Jung, 2006). Suppose (L(P),� ) is a disjunctive sequence calculus.

(1) A sequent �, ϕ,ψ � φ is valid if and only if �, ϕ ∧ψ � φ is a valid sequent.
(2) A sequent � � ϕ ∧ψ is valid if and only if both � � ϕ and � �ψ are valid sequents.
(3) A sequent �,

∨̇
i∈Iφi � θ is valid if and only if φi, φj � F and �, φi � θ are valid sequents for

all i �= j ∈ I.

Lemma 2.1. Suppose (L(P),� ) is a disjunctive sequence calculus.

(1) Let ϕ � φ be a valid sequent. Then the sequent ϕ �ψ is valid if and only if the sequent ϕ ∧
φ �ψ is valid.

(2) If
∨̇

i∈Iφi ∈L(P), then φi � ∨̇
i∈Iφi is a valid sequent for every i ∈ I.

Proof. (1) It suffices to provides the following two derivations:
ϕ �ψ
ϕ, φ �ψ (Lwk)

ϕ ∧ φ �ψ (L∧ )
ϕ ∧ φ �ψ ϕ � φ ϕ � ϕ

ϕ � ϕ ∧ φ (R∧ )

ϕ �ψ (Cut)

(2) By the rule (Id), the sequent
∨̇

i∈Iφi �
∨̇

i∈Iφi is valid. Then with part (3) of Proposition 2.1,
the sequent φi � ∨̇

i∈Iφi is also valid for every i ∈ I.

3. A Syntactic Representation of Scott Domains
In this section, we show how to use disjunctive sequent calculi to represent Scott domains. We
begin by introducing some common notions.

Definition 3.1. Suppose (L(P),� ) is a disjunctive sequent calculus.

(1) A formula ϕ is said to be satisfiable if T� ϕ and ϕ � F are not valid sequents.
(2) A satisfiable formula built up from atomic formulae only by conjunctive connectives is called

a simple conjunction.
(3) A satisfiable formula is said to be a flat formula if it has the form

∨̇
i∈Iμi, whereμi is a simple

conjunction with μi,μj � F is valid for every i �= j ∈ I.
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We use C(P) and 	(P) to denote the sets of simple conjunctions and flat formulae, respectively.

Definition 3.2. If the sequents ϕ �ψ and ψ � ϕ are all valid, then we call ϕ and ψ are logically
equivalent, and denote by ϕ ≈ψ .

As in usual logic, we always assume that each atomic formula is satisfiable and two distinct
atomic formulae are not logically equivalent.

Proposition 3.1. (Chen and Jung, 2006). Let (L(P),� ) be a disjunctive sequent calculus. Then
every satisfiable formula is logically equivalent to a flat formula.

Definition 3.3. Let (L(P),� ) be a disjunctive sequent calculus. A satisfiable formula ϕ is said to be
irreducible provided, if

∨̇
i∈Iμi is a flat formula and ϕ � ∨̇

i∈Iμi is a valid sequent then ϕ �μi0 is a
valid for some i0 ∈ I.

Definition 3.4. A disjunctive sequent calculus (L(P),� ) is said to be consistent if, every simple
conjunction in it is irreducible.

LetN (P)= 	(P)∪ {T}. For every X ⊆L(P), we set
X[� ]= {ϕ ∈N (P) | (∃� � X)� � ϕ ∈ T(P)}. (2)

Then for every pair of formulae ϕ,ψ ∈ X[� ], there is some � � X such that � � ϕ ∧ψ is a valid
sequent by the rule (R∧). Moreover, by part (1) of Proposition 2.1, the sequent � � ϕ ∧ψ is a
valid sequent if and only if

∧
� � ϕ ∧ψ is a valid sequent, where

∧
� is the conjunction built up

from all the formulae in �.

Definition 3.5. Suppose (L(P),� ) is a consistent disjunctive sequent calculus. A logical state of
(L(P),� ) is a nonempty subset S ofN (P) such that the following conditions hold:

(S1) S[� ]⊆ S.
(S2) For every

∨̇
i∈Iμi ∈ S∩ 	(P), there exists some i0 ∈ I such that μi0 ∈ S.

(S3) For every pair of formulae μ, ν ∈ S∩ C(P), the formula μ∧ ν ∈ S∩ C(P).

The following proposition gives some basic properties that will be used frequently.

Proposition 3.2. Suppose (L(P),� ) is a consistent disjunctive sequent calculus.

(1) The singleton {T} is a logical state.
(2) {μ}[� ] is a logical state for every μ ∈ C(P).
(3) If {Si | i ∈ I} is a directed set of logical states, then S= ⋃{Si | i ∈ I} is a logical state.
(4) If S is a logical state and � � S, then there is some ϕ ∈ S such that ϕ ≈ ∧

�.

Proof. The proofs of (1) and (2) are trivial.
To prove (3), we need to check the set S satisfies conditions (S1), (S2) and (S3).
For condition (S1), suppose that ϕ ∈ S[� ]. By Equation (2), we have some � � S such that

� � ϕ. Since the set {Si | i ∈ I} is directed, there is some i0 ∈ I such that � � Si0 . This implies that
ϕ ∈ Si0 [� ]. Note that Si0 is a logical state, it follows that ϕ ∈ Si0 ⊆ S. Thus S[� ]⊆ S. For condition
(S2), suppose that

∨̇
j∈Jμj ∈ S∩ 	(P). Recall that S= ⋃{Si | i ∈ I}, there is some i ∈ I such that∨̇

j∈Jμj ∈ Si ∩N (P). As Si is a logical state, we have some ji ∈ J such thatμji ∈ Si ⊆ S. For condition
(S3), suppose that μ, ν ∈ S∩ C(P). Since the set {Si | i ∈ I} is directed, the set {Si | i ∈ I} ∩ C(P)=
{Si ∩ C(P) | i ∈ I} is also directed. Then μ, ν ∈ Si0 ∩ C(P) for some i0 ∈ I. Using condition (S3) for
Si0 , we know that the formula μ∧ ν ∈ Si0 ⊆ S.

(4) Since the case that
∧
� ≈ T is clear, we now assume that

∧
� is not logically equivalent to T.

Let � − {T} = {ϕ1, ϕ2, · · · , ϕn}. For every 1≤ j≤ n, by part (2) of Lemma 2.1 and condition (S2),
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there is some νj ∈ S such that νj � ϕ is a valid sequent. This implies that ν1 ∧ ν2 ∧ · · · ∧ νn � ∧
�

is a valid sequent. By condition (S3), the formula ν1 ∧ ν2 ∧ · · · ∧ νn ∈ C(P), and hence
∧
� is a

satisfiable formula. By Proposition 3.1, there is a flat formula ϕ logically equivalent to
∧
�. Then

� � ϕ is a valid sequent, and hence ϕ ∈ S[� ]⊆ S.

We denote by |(L(P),� )| the collection of all the logical states of a consistent disjunctive
sequent calculus (L(P),� ).

Proposition 3.3. Let (L(P),� ) be a consistent disjunctive sequent calculus. If S is a logical state,
then for every subset X of S the following set

[X]S =
⋂

{W ∈ |(L(P),� )| | X ⊆W ⊆ S} (3)

is also a logical state.

Proof. For any ϕ ∈ [X]S[� ], by Equation (2), there exists some � � [X]S such that � � ϕ is a valid
sequent. By Equation (3), � �W for allW ∈ |(L(P),� )| with X ⊆W ⊆ S. Thus ϕ ∈W[� ]⊆W,
and therefore ϕ ∈ [X]S. So, [X]S satisfies condition (S1).

To show condition (S2), let
∨̇

i∈Iμi ∈ [X]S ∩ 	(P). Then
∨̇

i∈Iμi ∈W for every W ∈
|(L(P),� )| with X ⊆W ⊆ S. Thus μiW ∈W ∩ 	(P)⊆ S for some some iW ∈ I, and hence
{μiW |W ∈ |(L(P),� )|, X ⊆W ⊆ S} is a subset of S. Note that μi,μj � F are valid for all i �= j ∈ I,
using condition (S3) for the logical state S, it is easy to see that the set {μiW |W ∈ |(L(P),� )|, X ⊆
W ⊆ S} must be a singleton, denoted by {μi0}. Consequently, there exists some i0 ∈ I such that
μi0 ∈ [X]S.

The remainder is to show [X]S satisfies condition (S3). If μ, ν ∈ [X]S ∩ C(P), then μ, ν ∈W ∩
C(P) for every logical state W that satisfies X ⊆W ⊆ S. Using condition (S3) for W, the formula
μ∧ ν ∈W ⊆ [X]S.

The next theorem shows that, in addition to being a dcpo, the set of all logical states of a
consistent disjunctive sequent calculus ordered by set inclusion are also algebraic and bounded
completed.

Theorem 3.1. Suppose (L(P),� ) is a consistent disjunctive sequent calculus. Then the poset
(|(L(P),� )|,⊆ ) is a Scott domain.

Proof. For any directed subset {Si | i ∈ I} of ((L(P),� )|,⊆ ), by part (3) of Proposition 3.2, the
union

⋃{Si | i ∈ I} is a logical state. Then the least upper bound of the set {Si | i ∈ I} exists in
(|(L(P),� )|,⊆ ), and

⊔{Si | i ∈ I} = ⋃{Si | i ∈ I}. Therefore, with part (1) of Proposition 3.2, we
know that (|(L(P),� )|,⊆ ) forms a dcpo with a least element {T}.

We now verify that (|(L(P),� )|,⊆ ) is algebraic and bounded complete. By Definition 2.1, the
proof can be divided into three steps.

Step 1: We prove that, if S is logical state S and � � S then the set [�]S is a compact element of
the dcpo (|(L(P),� )|,⊆ ).

By Proposition 3.3, the set [�]S is a logical state. Suppose {Si | i ∈ I} is a directed subset of the
dcpo (|(L(P),� )|,⊆ ) and [�]S ⊆ ⋃{Si | i ∈ I}. As⋃{Si | i ∈ I} is a logical state, with Equation (3),
it is trivial to check that [�]S = [�]⋃{Si|i∈I}. Since � � ⋃{Si | i ∈ I}, we have some i0 ∈ I such that
� ⊆ Si0 . Therefore, [�]S = [�]⋃{Si|i∈I} ⊆ Si0 .

Step 2: We prove that, for every logical state S, the set {[�]S | � � S} is directed and

S=
⋃

{[�]S | � � S}.
The set {[�]S | � � S} is not empty since S �= ∅. For any �1, �2 � S, we have [�1 ∪ �2]S ∈

{[�]S | � � S}, and [�1]S, [�2]S ⊆ [�1 ∪ �2]S by Equation (3). So, the set {[�]S | � � S} is directed.
Because [�]S ⊆ S for all � � S, it follows that

⋃{[�]S | � � S} ⊆ S. Conversely, if ϕ ∈ S, then ϕ ∈
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[{ϕ}]S ∈ {[�]S | � � S}. This means that S⊆ ⋃{[�]S | � � S}. We have proven that S= ⋃{[�]S |
� � S}.

Step 3: We prove that any two logical states that are bounded above have a least upper bound.
Let S1, S2, and S3 be logical states with S1, S2 ⊆ S3. If one of {S1, S2} equals to the set {T}, then

the other one is the least upper bound of {S1, S2}. If {T} /∈ {S1, S2}, then, by condition (S2), the sets
S1 ∩ C(P) and S2 ∩ C(P) are not empty. In this case, we will check that

S0 = {ϕ ∈N (P) |μ, ν ∈ (S1 ∪ S2)∩ C(P),μ∧ ν � ϕ ∈ T(P))} (4)

is the least upper bound of S1 and S2. For this, we first show S0 is a logical state.
Suppose that ϕ ∈ S0[� ]. Then there is some � � S0 such that � � ϕ is a valid sequent. Let

� = {ϕ1, ϕ2, · · · , ϕ}. For every ϕi ∈ �, there are some μi, νi ∈ (S1 ∪ S2)∩ C(P) such that μi ∧ νi �
ϕi is a valid sequent. Without lose of generality, we assume that μi ∈ S1 and νi ∈ S2 for all i ∈ I.
Then μ1 ∧μ2 ∧ · · · ∧μn ∈ S1 ∩ C(P) and ν1 ∧ ν2 ∧ · · · ∧ νn ∈ S2 ∩ C(P) by condition (S3). Put
μ0 =μ1 ∧μ2 ∧ · · · ∧μn and ν0 = ν1 ∧ ν2 ∧ · · · ∧ νn. By part (1) of Proposition 2.1, we haveμ0 ∧
ν0 � ∧

� is a valid sequent, and thus μ0 ∧ ν0 � ϕ is a valid sequent by the rule (Cut). So ϕ ∈ S0.
Condition (S1) follows.

For condition (S2), let
∨̇

i∈Iμi ∈ S0 ∩ 	(P). Then there are ν1, ν2 ∈ (S1 ∪ S2)∩ C(P) such that
the sequent ν1 ∧ ν2 � ∨̇

i∈Iμi is valid. Since ν1, ν2 ∈ S1 ∪ S2 ⊆ S3, the formula ν1 ∧ ν2 ∈ S3. This
implies that ν1 ∧ ν2 is an irreducible simple conjunction. So, there is some i0 ∈ I such that the
sequent ν1 ∧ ν2 �μi0 is valid, and thus μi0 ∈ S0 by Equation (4).

Assume that μ, ν ∈ S0 ∩ C(P). As we have seen in the above proof for condition (S1), there are
some μ1, ν1 ∈ (S1 ∪ S2)∩ C(P) such that μ1 ∧ ν1 �μ∧ ν is a valid sequent. So, μ∧ ν ∈ S0 ∩ C(P).
This implies that S0 satisfies condition (S3).

We next show S1, S2 ⊆ S0. Let ϕ ∈ S1 ∪ S2. If ϕ = T, then clearly ϕ ∈ S0. If ϕ = ∨̇
i∈Iμi ∈ 	(P),

then by part (2) of Lemma 2.1, μi � ∨̇
i∈Iμi are valid sequent for all i ∈ I. Using condition (S2)

for
∨̇

i∈Iμi, we have some i0 ∈ I such that μi0 ∈ S1 ∪ S2. So μi0 ∧μi0 � ∨̇
i∈Iμi is a valid sequent,

which implies that ϕ ∈ S0.
Finally, let S4 ∈ |(L(P),� )| and S1, S2 ⊆ S4. For every ϕ ∈ S0, there are some μ, ν ∈ (S1 ∪ S2)∩

C(P) such that μ∧ ν � ϕ is a valid sequent. Since μ, ν ∈ (S1 ∪ S2)∩ C(P)⊆ S4, it follows that ν ∧
ν ∈ S4. Then ϕ ∈ S4[� ]⊆ S4, and thus, S0 ⊆ S4.

The above result has shown that each consistent disjunctive sequent calculus represents a Scott
domain. Next, we will see that this is a complete characterization, that is, every Scott domain can
be represented by a consistent disjunctive sequent calculus.

For every Scott domain (D,≤ ), the set

U(D)= {↑A |A is a pairwise inconsistent subset of K(D)} ∪ {∅}. (5)

is closed under finite intersections ∩ and arbitrary disjoint unions
⋃̇
. This allows us to make the

following definition.

Definition 3.6. Suppose (D,≤ ) is a Scott domain and PD = {↑x | x ∈K∗(D)}. Then a set L(PD) of
formulae is defined by induction as follows:

(1) each element ↑x of PD is a formula in L(PD), which is called an atomic formula,
(2) the constant connectives T and F are formulae in L(PD),
(3) if ϕ and ψ are formulae in L(PD), then ϕ ∧ψ is a formula in L(PD),
(4) if {ϕi | i ∈ I} is a subset of formulae inL(PD) such that ϕ̂i ∩ ϕ̂j = ∅ for all i �= j ∈ I, then

∨̇
i∈Iϕi

is a formula in L(PD), where ϕ̂ is the set replacing the connectives F, T,∧ and
∨̇

in ϕ by
∅,D,∩ and

⋃̇
, respectively.
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Proposition 3.4. Suppose (D,≤ ) is a Scott domain and L(PD) is the set of formulae defined in
Definition 3.6. For every � = {ψ1,ψ2, · · · ,ψn} �L(PD) and ϕ ∈L(PD), define

� � ϕ is a valid sequent if and only if ψ̂1 ∩ ψ̂2 ∩ · · · ∩ ψ̂n ⊆ ϕ̂. (6)

Then the pair (L(PD),� ) is a consistent disjunctive sequent calculus.

Proof. The set of atomic formulae has been defined in Definition 3.6, which is {↑x | x ∈
K∗(D)}. Let ↑x1, ↑x2, · · · , ↑xn be atomic formulae. By Equation (6), we know that the sequent
↑x1, ↑x2, · · · , ↑xn � F is valid if and only if ↑x1 ∩ ↑x2 ∩ · · · ∩ ↑xn = ∅. Then, it is trivial but
tedious to check the set L(PD) and the relation � satisfy all the rules of disjunctive formulae and
valid sequents defined in Definition 2.3. Thus the pair (L(PD),� ) is a disjunctive sequent calculus.

Now we have to show that every simple conjunction in (L(PD),� ) is irreducible.
Let ↑x1 ∧ ↑x2 ∧ · · · ∧ ↑xn be a simple conjunction, where {x1, x2, · · · , xn} ⊆K∗(D). Then
↑x1, ↑x2, · · · , ↑xn � F is not a valid sequent, and thus the set ↑x1 ∩ ↑x2 ∩ · · · ∩ ↑xn �= ∅. Since
D is a Scott domain, it follows that

⊔{x1, x2, · · · , xn} ∈D. Put
⊔{x1, x2, · · · , xn} = d. Hence d ∈

K∗(D) and the formula ↑x1 ∧ ↑x2 ∧ · · · ∧ ↑xn is logically equivalent to the formula ↑d. Assume
that ↑x1 ∧ ↑x2 ∧ · · · ∧ ↑xn � ∨̇

i∈Iμi is a valid sequent, where
∨̇

i∈Iμi ∈ 	(PD). By Equation (6),
we have ↑d = ↑̂d = ↑̂x1 ∩ ↑̂x2 ∩ · · · ∩ ↑̂xn ⊆ ⋃̇

i∈Iμ̂i. This implies that there is some i0 ∈ I such
that d ∈ μ̂i0 . Thus the sequent ↑x1 ∧ ↑x2 ∧ · · · ∧ ↑xn �μi0 is valid.

In the sequel, we use (L(PD),� ) to denote the consistent disjunctive sequent calculus defined
by Proposition 3.4.

Lemma 3.1. Suppose (D,≤ ) is a Scott domain. A nonempty subset S of N (PD) is a logical state of
(L(PD),� ) if and only if

S= {ϕ ∈N (PD) | ϕ̂ ∈ U(D), d ∈ ϕ̂},
for some d ∈D, where ϕ̂ is defined in Definition 3.6.

Proof. Let S be a logical state of (L(PD),� ). We have to look for an element dS ∈D such that
S= {ϕ ∈N (PD) | ϕ̂ ∈ U(D), dS ∈ ϕ̂}.

If S= {T}, then S= {ϕ ∈N (PD) | ϕ̂ =D}. Taking ⊥ = dS, we have S= {ϕ ∈N (PD) | ϕ̂ ∈
U(D), dS ∈ ϕ̂}. For the case that S �= {T}, the process is divided into three stages.

(1) For every ψ ∈ S with ψ �= T, there exists some pairwise inconsistent subset A of K∗(D)
such that ψ̂ = ⋃̇

a∈A↑a. Then ∨̇
a∈A↑a ∈ S. Thus ↑a0 ∈ S for some a0 ∈A by condition (S2). So,

{↑a | ↑a ∈ S} �= ∅ and
⋂{ϕ̂ ∈ U(D) | ϕ ∈ S} = ⋂{↑a | ↑a ∈ S}.

(2) We claim that {a ∈K∗(D) | ↑a ∈ S} is a directed set ofD. In fact, we have shown the set {a ∈
K∗(D) | ↑a ∈ S} is not empty. For every a1, a2 ∈ {a ∈K∗(D) | ↑a ∈ S}, by condition (S3), ↑a1 ∧
↑a2 ∈ S. This implies ↑a1 ∩ ↑a2 �= ∅. Since D is a Scott domain, ↑a1 ∩ ↑a2 = ↑b for some b ∈
K∗(D). Therefor, b ∈ {a ∈K∗(D) | ↑a ∈ S} and a1, a2 ≤ b.

(3) Since {a ∈K∗(D) | ↑a ∈ S} is directed, ⊔{a ∈K∗(D) | ↑a ∈ S} ∈D. Set

dS =
⊔

{a ∈K∗(D) | ↑a ∈ S}. (7)

Then
⋂{↑a | ↑a ∈ S} = ↑dS. Now we show S= {ϕ ∈N (PD) | ϕ̂ ∈ U(D), dS ∈ ϕ̂}.

To prove S⊆ {ϕ ∈N (PD) | ϕ̂ ∈ U(D), dS ∈ ϕ̂}, let ψ ∈ S. If ψ = T, then ψ̂ =D. Thus ψ ∈ {ϕ ∈
N (PD) | ϕ̂ ∈ U(D), dS ∈ ϕ̂}. If ψ �= T, then ψ is of the form

∨̇
a∈A↑a, where A is a pairwise

inconsistent subset of K∗(D). This implies that ↑a0 ∈ S for some a0 ∈A, and hence dS ∈ ↑a0 ⊆⋃̇
a∈A↑a= ψ̂ . So we also have ψ ∈ {ϕ ∈N (PD) | ϕ̂ ∈ U(D), dS ∈ ϕ̂}.
To prove {ϕ ∈N (PD) | ϕ̂ ∈ U(D), dS ∈ ϕ̂} ⊆ S, let ϕ ∈N (PD) with dS ∈ ϕ̂ ∈ U(D). If ϕ = T, then

ϕ ∈ S. If ϕ �= T, then dS ∈ ϕ̂ implies that dS ∈ ↑d ⊆ ϕ̂ for some d ∈K∗(D). Since dS = ⊔{a | ↑a ∈
S} and {a | ↑a ∈ S} is directed, by the definition of compact elements of a dcpo, there is some
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a0 ∈ {a | ↑a ∈ S} such that dS ≤ a0. So d ≤ a0, and hence ↑a0 ⊆ ϕ̂. This means that ↑a0 � ϕ is a
valid sequent. By condition (S1), it follows that ϕ ∈ S.

For the converse implication, given a d ∈D, let S= {ϕ ∈L(PD) | ϕ̂ ∈ U(D), d ∈ ϕ̂}. We need to
prove S is a logical state of (L(PD),� ).

Assume that ψ ∈ S[� ]. By Equation (2), there is some nonempty finite subset � of S such that
the sequent � �ψ is valid. Because of the definition of S, it follows that d ∈ ϕ̂ for all ϕ ∈ �. By
Equation (6), we have d ∈ ψ̂ . This implies that ψ ∈ S and hence S[� ]⊆ S. Therefore, the set S
satisfies condition (S1).

For condition (S2), if
∨̇

i∈Iμi is a flat formula in S, then d ∈ ⋃̇
i∈Iμ̂i. This impiles that there is

some i0 ∈ I such that d ∈ μ̂i0 and μ̂i0 ∈ U(D). Therefore, μi0 ∈ S.
Assume that μ, ν ∈ S∩ C(P). Then d ∈ μ̂∩ ν̂ and thus μ̂∩ ν̂ is not the empty set. By

Equation (6), the sequent μ∧ ν � F is not valid. Condition (S3) follows.

Theorem 3.2. If (D,≤ ) is a Scott domain, then it is order isomorphic to the Scott domains of logical
states of some consistent disjunctive sequent calculus.

Proof. Proposition 3.4 has constructed a consistent disjunctive sequent calculus (L(PD),� )
associated with the Scott domain (D,≤ ). Define a function from D to |(L(PD),� )| as follows:

f (d)= {ϕ ∈N (PD) | ϕ̂ ∈ U(D), d ∈ ϕ̂}.
By Lemma 3.1, the set {ϕ ∈N (PD) | ϕ̂ ∈ U(D), d ∈ ϕ̂} is an element of |(L(PD),� )|. So, the func-
tion f is well defined. It is surjection because f (dS)= S for every S ∈ |(L(PD),� )|, where dS is
defined by Equation (7). Furthermore, it is trivial that

d1 ≤ d2 if and only if {ϕ ∈L(PD) | ϕ̂ ∈ U(D), d1 ∈ ϕ̂} ⊆ {ϕ ∈L(PD) | ϕ̂ ∈ U(D), d2 ∈ ϕ̂},
for all d1, d2 ∈D. As a consequence, the function f is an order isomorphism from (D,≤ ) to
(|(L(PD),� )|,⊆ ), which implies that (D,≤ ) is isomorphic to (|(L(PD),� )|,⊆ ).

4. A Categorical Equivalence
In this section, we introduce morphisms between consistent disjunctive sequent calculi, called
consequence relations, which induce a category equivalent to SD.

For convenience, we next write a consistent disjunctive sequent calculus with subscripts.

Definition 4.1. Suppose P= (L(P),�P ) and Q= (L(Q),�Q ) are consistent disjunctive sequent
calculi. A consequence relation from P toQ, denoted by� : P→Q, is a binary relation�⊆ C(P)×
L(Q) that satisfies

(C1) if (ν,ψ) ∈�, μ ∈ C(P) and μ�P ν is a valid sequent, then (μ,ψ) ∈�.
(C2) if (μ, ϕ1), (μ, ϕ2) ∈� and ϕ1 ∧ ϕ2 �Q ψ is a valid sequent, then (μ,ψ) ∈�.
(C3) if (μ,ψ) ∈� and ψ ∈ 	(Q), then (μ, ν) ∈� and ν �Q ψ is a valid sequent for some ν ∈

C(Q).
(C4) (μ, F) /∈� for every μ ∈ C(P).

Intuitively, a consequence relation expresses how some formula in one consistent disjunctive
sequent calculus entails formulae in another.

Proposition 4.1. Consistent disjunctive sequent calculi with consequence relations form a category,
written as CDC.

Proof. Let � : P→Q and �′ :Q→R be consequence relations. Define a relation �′ ◦�⊆
C(P)×L(R) by

(μ, ϕ) ∈�′ ◦�⇔ (∃ν ∈ C(Q))((μ, ν) ∈�, (ν, ϕ) ∈�′). (8)
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Then it is easy but tedious to check that �′ ◦� satisfies the axioms for a consequence relation.
The composition ◦ is clearly associative, the proof being identical to that for a traditional relation
composition. Conditions (C1) and (C2) ensure that the identity morphism is given by a relation
idP ⊆ C(P)×L(P), defined as follows:

(μ, ϕ) ∈ idP ⇔μ�P ϕ ∈ T(P). (9)

We complete the proof.

Given a consequence relation� : P→Q and a subset X of L(P), set
�[X]= {ϕ ∈N (Q) | (∃μ ∈ X ∩ C(P))(μ, ϕ) ∈�}. (10)

Proposition 4.2. Let� : P→Q be a consequence relation.

(1) If S is a logical state of P, then�[S] is a logical state ofQ.
(2) If μ ∈ C(P), then �[{μ}]=�[{μ}[�P ]]. Moreover, (μ,ψ) ∈� if and only if there is some

φ ∈�[{μ}] such that ψ ≈ φ.

Proof. (1) We first show (�[S])[�Q ]⊆�[S]. To this end, let ϕ ∈ (�[S])[�Q ]. According to
Equations (2) and (10), there areμ ∈ S∩ C(P) andψ ∈L(Q) such that (μ,ψ) ∈� and the sequent
ψ �Q ϕ is valid. Using condition (C2), it follows that (μ, ϕ) ∈�, and thus ϕ ∈�[S].

Next, let
∨̇

i∈Iμi ∈�[S]∩ 	(P). Then there is some μ ∈ S∩ C(P) such that (μ,
∨̇

i∈Iμi) ∈�.
Using condition (C3), we have some ν ∈ C(Q) such that (μ, ν) ∈� and the sequent ν �Q

∨̇
i∈Iμi

is valid. Thus there is some i0 ∈ I such that the sequent ν �Q μi0 is valid. Using condition (C2)
again, it follows that (μ,μi0 ) ∈�, and hence μi0 ∈�[S].

Finally, let μ, ν ∈�[S]∩ C(Q). By Equation (10), there are μ1, ν1 ∈ S∩ C(P) such that
(μ1,μ), (ν1, ν) ∈�. Since μ1, ν1 ∈ S, it follows that μ0 �P μ1 and μ0 �P ν1 are all valid sequents
for some μ0 ∈ S∩ C(P). Then (μ0,μ), (μ0, ν) ∈�, and hence (μ0,μ∧ ν) ∈�. With conditions
(C2) and (C4), it is easy to see that the sequent μ∧ ν is not logically equivalent to F. So,
μ∧ ν ∈�[S]∩ C(Q), as we required.

(2) For every μ ∈ C(P), since μ�P μ is a valid sequent, it follows that {μ} ⊆ {μ}[�P ]. Then
by Equation (10), it is clear that �[{μ}]⊆�[{μ}[�P ]]. Conversely, let ϕ ∈�[{μ}[�P ]]. Then
there is some ν ∈ {μ}[�P ]∩ C(P) such that (ν, ϕ) ∈�. Note that ν ∈ {μ}[�P ], it follows that
μ�P ν is a valid sequent. By condition (C1), we have (μ, ϕ) ∈�. This implies that ϕ ∈�[{μ}], so
{μ}[�P ]∩ C(P)⊆�[{μ}].

If (μ,ψ) ∈�, thenψ is not logically equivalent to F. This shows thatψ ≈ φ for some φ ∈N (Q).
Thus (μ, φ) ∈� by condition (C2), and hence φ ∈�[{μ}]. Conversely, if φ ∈�[{μ}] and ψ ≈ φ,
then clearly (μ,ψ) ∈� by Equation (10) and condition (C2).

A correspondence between consequence relations from P toQ and Scott-continuous functions
from |P| to |Q| is shown by the following theorem.

Theorem 4.1. Suppose P andQ are consistent disjunctive sequent calculi.

(1) If� : P→Q is a consequence relation, then the function f� : |P| → |Q| defined by
f�(S)=�[S] (11)

is Scott-continuous.
(2) If f : |P| → |Q| is a Scott-continuous function, then the relation �f ⊆ C(P)×L(Q)

defined by

(μ,ψ) ∈�f ⇔ψ ≈ ϕ for some ϕ ∈ f ({μ}[�P ])) (12)

is a consequence relation from P toQ.
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(3) Moreover,�f� =� and f�f = f .

Proof. (1) The function f� is well defined by part (1) of Proposition 4.2, and the function f� is
clearly monotonic by Equation (10).

Let {Si | i ∈ I} be a directed subset of |P|. Then ⋃
i∈I Si ∈ |P| by part (3) of Proposition 3.2. It

is clear that
⋃

i∈I f�(Si)⊆ f�(
⋃

i∈I Si), since the function f� is monotonic. To prove the function
f� is Scott-continuous, it suffices to show that f�(

⋃
i∈I Si)⊆

⋃
i∈I f�(Si). If ϕ ∈ f�(

⋃
i∈I Si)=

�[
⋃

i∈I Si], then there exists some μ ∈ ⋃
i∈I Si ∩ C(P) such that (μ, ϕ) ∈�. From μ ∈ ⋃

i∈I Si, it
follows that μ ∈ Si0 for some i0 ∈ I. Thus ϕ ∈ f�(Si0 ), and therefore, f�(

⋃
i∈I Si)⊆

⋃
i∈I f�(Si).

(2) We need to show that the relation�f satisfies conditions (C1–C4).
For condition (C1), if ν ∈ C(P), (ν,ψ) ∈�f and the sequent μ�P ν is valid, then ψ ≈ ϕ for

some ϕ ∈ f ({ν}[�P ]). Since μ�P ν is a valid sequent, it follows that {ν}[�P ]⊆ {μ}[�P ]. Note
that f is monotone, we have ϕ ∈ f ({μ}[�P ]). This implies that (μ,ψ) ∈�f .

For condition (C2), if (μ, ϕ1), (μ, ϕ2) ∈�f and ϕ1 ∧ ϕ2 �Q ψ is a valid sequent, then ϕ1 ≈ψ1
and ϕ2 ≈ψ2 for some ψ1,ψ2 ∈ f ({μ}[�P ]). Since f ({μ}[�P ]) is a logical state, there is some
φ ∈ f ({μ}[�P ]) such that ψ1 ∧ψ2 �Q φ is valid and φ ≈ψ . Therefore, (μ,ψ) ∈�f .

For condition (C3), if (μ,ψ) ∈�f and ϕ ∈ 	(P), then it is easy to see that ψ ∈ f ({μ}[�P ]). Put
ϕ = ∨̇

i∈Iμi, where μi ∈ C(Q) for every i ∈ I. Thus μi �Q ψ is a valid sequent for every i ∈ I. Note
that f ({μ}[�P ]) is a logical state, it follows that μi0 ∈ f ({μ}[�P ]) for some i0 ∈ I. Let μi0 = ν.
Then we get some ν ∈ C(Q) such that (μ, ν) ∈� and ν �Q ψ is valid.

For condition (C4), if μ ∈ C(P), then f ({μ}[�P ]) is a logical state of Q. Thus we have
f ({μ}[�P ])⊆N (P). This means that F is not an element of f ({μ}[�P ]), and so (μ, F) /∈�f .

(3) If μ ∈ C(P) and ϕ ∈L(Q), then
(μ, ϕ) ∈�f� ⇔ ϕ ≈ψ for some ψ ∈ f�({μ}[�P ])

⇔ ϕ ≈ψ for some ψ ∈�[{μ}[�P ]]
⇔ (μ, ϕ) ∈� and μ�P ν ∈ T(P)) for some ν ∈ C(Q)
⇔ (μ, ϕ) ∈�.

This implies that�f� =�.
If S ∈ |P|, then we have

f�f (S)=�f [S]
= {ϕ ∈N (Q) | (∃μ ∈ S∩ C(P))(μ, ϕ) ∈�f }
= {ϕ ∈N (Q) | (∃μ ∈ S∩ C(P))ϕ ∈ f ({μ}[�P ])}
=

⋃
{f ({μ}[�P ]) |μ ∈ S∩ C(P)}

= f (
⋃

{{μ}[�P ] |μ ∈ S∩ C(P)}
= f (S).

This shows that f�f = f .

Theorem 4.2. CDC and SD are categorically equivalent.

Proof. Let G :CDC→ SD be the functor which maps every consistent disjunctive sequent cal-
culi P to (|P|,⊆ ) and every consequence relation � : P→Q to f�, where f� is defined by
Equation (11).

That each Scott domain is isomorphic to the Scott domain of logical states of some consistent
disjunctive sequent calculus is shown by Theorem 3.2. It remains to verify that the functor G is
full and faithful.
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If P andQ are two consistent disjunctive sequent calculi and f : |P| → |Q| is a Scott-continuous
function, then the relation�f defined by Equation (12) is a consequence relation from P toQ. By
the definition of the functor G and Theorem 4.1, we have G(�f )= f�f = f . So the functor G is full.

Let �1 : P→Q and �2 : P→Q be two consequence relations. If G(�1)= G(�1) then f�1 =
f�2 , where f�1 and f�2 are defined in Theorem 4.1. For every μ ∈ C(P), we have

(μ, ϕ) ∈�1 ⇔ φ ≈ ϕ for some φ ∈�1[{μ}]
⇔ φ ≈ ϕ for some φ ∈�1[{μ}[�P ]]
⇔ φ ≈ ϕ for some φ ∈ f�1{μ}[�P ]
⇔ φ ≈ ϕ for some φ ∈ f�2{μ}[�P ]
⇔ φ ≈ ϕ for some φ ∈�2[{μ}[�P ]
⇔ (μ, ϕ) ∈�2

This implies that�1 =�2, and thus the functor G is faithful.

As previously described, we have known what a consistent finitary disjunctive sequent calculus
is and how it represents the Scott domain of its logical states. From a categorical point of view, the
category SD is essentially the same as the category CDC.

In Wang and Li (2020b), another subclass of disjunctive propositional logics was introduced
and studied, which are called finitary disjunctive sequent calculi. The only difference between
disjunctive sequent calculi and finitary disjunctive sequent calculi is that all the rules of gener-
ating formulae and valid sequents are specific for the binary connective ∨̇ rather than arbitrary
disjunctive connective

∨̇
.

Definition 4.2. (Wang and Li, 2020b) A finitary disjunctive sequent calculus is a disjunctive
propositional logic in which the rules (Disj), (L∨̇) and (R∨̇) are replaced, respectively, by the
following rules:

(
Disj∗

) φ1, φ2 ∈L(P) φ1, φ2 � F
φ1∨̇φ2 ∈L(P)(

L∨̇∗) �, φ1 � θ �, φ2 � θ φ1, φ2 � F
�, φ1∨̇φ2 � θ(

R∨̇∗) � � φ1 φ1, φ2 � F
� � φ1∨̇φ2 .

The notions of flat formulae, irreducible simple conjunctions, and flat formulae in a finitary dis-
junctive sequent calculus are almost identical to those in a disjunctive sequent calculus, the only
change being the substitution of binary disjunctive connectives for arbitrary disjunctive connec-
tives. Then we can define a consistent finitary disjunctive sequent calculus as same as a consistent
disjunctive sequent calculus.

Definition 4.3. A finitary disjunctive sequent calculus (L(P),� ) is said to be consistent if, every
simple conjunction in it is irreducible.

It is not difficult to see that the collection of consistent finitary disjunctive sequent calculi with
consequence relations forms a category CFDC, which is a full subcategory of the category CDC.
Similar to the process of representing the category of SD by the category CDC, we can show the
following theorem.

Theorem 4.3. The categories CFDC and SD are categorically equivalent.
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So far, we have provided two logical representations for Scott domains in the framework of
disjunctive propositional logic, and before that, we concentrated more on the case of consistent
disjunctive sequent calculi. The case of consistent finitary disjunctive sequent calculi is slightly
more simpler than that of disjunctive sequent calculi, because it only needs to deal with less for-
mulae. For convenience in application, we turn our attention to consistent finitary disjunctive
sequent calculi in the sequel.

5. Constructing Domains
In this section, we study how to construct the consistent finitary disjunctive sequent calculi that
we need for modeling the semantics of programming languages, and then we examine how to
solve some recursive domain equations.

5.1 A directed complete order
We now use the symbol CFDC to denote the collection of all consistent finitary disjunctive
sequent calculi. We first consider a partial order on CFDC, which captures an intuition, that of
one consistent finitary disjunctive sequent calculus being a subsystem of another.

Definition 5.1. Let P= (L(P),�P ) andQ= (L(Q),�Q ) be consistent finitary disjunctive sequent
calculi. We say that P is a subsystem ofQ, symbols by P�Q, provided

(u1) if p ∈ P is an atomic formula in P, then p is also an atomic formula inQ;
(u2) if� �P ϕ is an atomic disjointness assumption inP, then� �Q ϕ is also an atomic disjointness

assumption inQ;
(u3) if � �Q ϕ is a valid sequent in Q, where � �L(P) and ϕ ∈L(P), then � �P ϕ is a valid

sequent in P.

If P�Q, then it is easy to see that L(P)⊆L(Q) and T(P)⊆ T(Q) by Definition 2.3. Thus the
relation � on the collection CFDC is a partial order, and there is a least consistent finitary dis-
junctive sequent calculus O, the unique one with the empty set ∅ as atomic formulae. Moreover,
condition (u3) tells us that the relationship between P’s formulae inQ is the same as in P.

By the following theorem, we will see that the collection CFDC is directed complete with
respect to �. This is enough for our theory since in that case the standard theory of fixed points
of continuous function is to be available.

Theorem 5.1. All of consistent finitary disjunctive sequent calculi CFDC under the relation � is
directed complete.

Proof. Let ℘ = {Pi | Pi = (L(Pi),�Pi ), i ∈ I} be a directed subset of consistent finitary disjunctive
sequent calculi with respect to the partial order�. Set

(1) P = ⋃
i Pi,

(2) AP = ⋃
i APi ,

(3) L(P)= ⋃
i L(Pi),

(4) T(P)= ⋃
i T(Pi).

The set T(P) determines a relation � by Equation (1). We first prove that P= (L(P),� ) is a
finitary disjunctive sequent calculus with a disjunctive basis (P,AP). It is easy to verify the rules
for a finitary disjunctive sequent calculus: consider the rule (Disj∗) for illustration.

If φ1, φ2 ∈L(P) such that φ1, φ2 � F is a valid sequent, then φ1 ∈L(P1), φ2 ∈L(P2) and the
sequent φ1, φ2 �P3 F is valid for some P1, P2, P3 ∈℘. Since ℘ is directed, there is a P4 ∈℘ such
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that P1, P2 and P3 are all subsystems of P4. Thus φ1 ∈L(P4), φ2 ∈L(P4) and φ1, φ2 �P4 F is a valid
sequent in P4. Using the rule (Disj∗) in the consistent finitary disjunctive sequent calculus P4, we
have φ1∨̇φ2 ∈L(P4), and thus φ1∨̇φ2 ∈L(P), as we required.

Next, we show that the finitary disjunctive sequent calculus P is consistent. Assume that μ is a
simple conjunction and μ� φ1∨̇φ2 is a valid sequent in P. Note that ℘ is directed, it follows that
μ�Pi φ1∨̇φ2 is a valid sequent in Pi for some i ∈ I. Since Pi is consistent, either μ� φ1 or μ� φ2
is a valid sequent in Pi. Thus one of the sequents μ� φ1 and μ� φ2 is valid in P.

So the pair (L(P),� ) is a well-defined consistent finitary disjunctive sequent calculus. The
remainder is to show that it is the least upper bound of ℘.

For a given i ∈ I, we claim that Pi = (L(Pi),�Pi ) is a subsystem of P= (L(P),� ).
In fact, it is trivial that Pi ⊆ P and APi ⊆AP since P = ⋃

i Pi, and AP = ⋃
i APi . That is, con-

ditions (u1) and (u2) are satisfied. It only remains to show condition (u3). Let � � ϕ be a valid
sequent in (L(P),� ), where � �L(Pi) and ϕ ∈L(Pi). Since T(P)= ⋃

i T(Pi), there is some j ∈ I
such that the sequent � �Pj ϕ is valid in Pj. The directness of ℘ implies that Pi � Pk and Pj � Pk
for some k ∈ I. Using condition (u2) for Pj � Pk, it follows that the sequent � �Pk ϕ is valid in Pk.
Thus the sequent � �Pi ϕ in valid in Pi using condition (u3) for Pi � Pk.

This complete the proof that Pi � P for every i ∈ I, which means that P is an upper bound for
℘. IfQ= (L(Q),�Q ) is another then⋃

i
Pi = P ⊆Q,

⋃
i
L(Pi)=L(P)⊆L(Q), and

⋃
i
T(Pi)= T(P)⊆ T(Q).

Suppose that � �Q ϕ is a valid sequent in Q, where � �L(P) and ϕ ∈L(P). Since ℘ is directed,
there is some j ∈ I such that � �L(Pj) and ϕ ∈L(Pj). From Pj �Q and � �Q ϕ is a valid sequent
inQ, it follows that � �Pj ϕ is a valid sequent in Pj, and hence � �P ϕ is a valid sequent in Pj. This
establishes that P�Q, which means that P is the least upper bound of ℘. Thus the partial order
of consistent finitary disjunctive sequent calculi is directed complete.

The subsystem relation � can be extended to (n+ 1)-tuples of consistent finitary disjunc-
tive sequent calculi. Let n be a natural number. We denote by CFDCn+1 all the (n+ 1)-tuples
(P0, P1, · · · , Pn) of consistent finitary disjunctive sequent calculi. For (P0, P1, · · · , Pn) and
(Q0,Q1, · · · ,Qn) in CFDCn+1, we define

(P0, P1, · · · , Pn)� (Q0,Q1, · · · ,Qn)

if and only if Pi �Qi for all 0≤ i≤ n. Then the relation � is a partial order on CFDCn with a
least element (O,O, · · · ,O).

We write
−→
P for a (n+ 1)-tuple (P0, P1, · · · , Pn). The proof of the following proposition is

analogous to that of Theorem 5.1 and will be omitted.

Proposition 5.1. The collection CFDCn+1 under the relation � is also directed complete, where
the least upper bound of a directed set of some (n+ 1)-tuples consistent finitary disjunctive sequent
calculi is the (n+ 1)-tuples of consistent finitary disjunctive sequent calculi consisting of the least
upper bounds on every component.

We now define the notion of continuous operations on consistent finitary disjunctive sequent
calculi as same as that on usual posets.

Definition 5.2. Let F : CFDCn+1 → CFDCm+1 be an operation on consistent finitary disjunctive
sequent calculi.

(1) The operation F is said to be monotonic if F(
−→
P )� F(

−→
Q ) for all

−→
P �−→

Q ∈ CFDCn+1.
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(2) The operation F is said to be continuous if it is monotonic and for all directed subclass {−→Pi |
i ∈ I} of CFDCn+1, ⊔

i∈IF(
−→
Pi )= F(

⊔
i∈I

−→
Pi ).

Lemma 5.1. Let F and G be respectively (n+ 1) to (m+ 1) and (m+ 1) to (k+ 1) operations on
consistent finitary disjunctive sequent calculi.

(1) If F andG are both continuous, then so is their compositionG ◦ F.
(2) F(P0, P2, · · · , Pn) is continuous if and only if it is continuous in each component of its

argument separately.
(3) F(

−→
P )= (F0(

−→
P ), F1(

−→
P ), · · · , Fn(

−→
P )) is continuous if and only if each of its component

operators Fi is.

Proof. The proof is essentially the same as those for Scott-continuous functions on posets.

We will see that all the domain constructions we defined later are continuous. Thus we know
that all compositions of them are continuous.

5.2 Constructions
In this subsection, we study how some basic domain constructors on consistent finitary disjunctive
sequent calculi are defined, whose effects on the underlying Scott domains of logical states are
what we want.

One of basic but useful examples of domain constructors is lifting.

Definition 5.3. Let P= (L(P),�P ) be a consistent finitary disjunctive sequent calculus and  /∈
L(P). Set P = P ∪ {} and

AP = {p1, p2, · · · , pn �P F | p1, p2, · · · , pn � F ∈AP} ∪ {p�P  | p ∈ P}.
Then the finitary disjunctive sequent calculus P = (L(P),�P ) with (P,AP) as disjunctive basis
is said to be a lifting of P if the atomic formula  is irreducible.

Lemma 5.2. Suppose P is the lifting of a consistent finitary disjunctive sequent calculus P. Then p
is logically equivalent to p∧  for every p ∈ P.

Proof. Let p ∈ P. Since the sequent p�P  is valid, by the rules (Id) and (R∧ ), the sequent p�P
p∧  is valid. By the rules (Id), (Lwk) and (L∧ ), the sequent p∧ �P p is also valid. So, p is
logically equivalent to p∧ .
Theorem 5.2. If a finitary disjunctive sequent calculus P is consistent then so is its lifting P, and
furthermore,

|P| = {{}[�P ]} ∪ {S[�P ] | S ∈ |P|}. (13)

Proof. To show the finitary disjunctive sequent calculus P is consistent, we have to check that μ
is irreducible for every simple conjunctions μ in P.

If μ is a simple conjunction built up only by , then μ≈ , and Thus μ is irreducible. For the
case that μ is a simple conjunction with some p ∈ P as a component, let μ�P

∨̇
i∈Iμi be a valid

sequent in P, where
∨̇

i∈Iμi is a flat formula in P. To verify μ is irreducible, we look for some
i0 ∈ I such that μ�P μi0 is valid by considering the following two cases.

(1) If
∨̇

i∈Iμi is built up only by , then it is of the form ∧ ∧ · · · ∧  since ∨̇ is not a
well-defined formula in P. That is, the index set I is a singleton {i}. Thus μ�P μi is valid.
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(2) If there is some p ∈ P occurred in
∨̇

i∈Iμi, then by Lemma 5.2, all occurrences of  can
be dropped from

∨̇
i∈Iμi and the resulting formula, denoted by

∨̇
i∈Iμi, is logically equivalent to∨̇

i∈Iμi. Similarly,μ is logically equivalent toμ. This implies that the sequentμ�P
∨̇

i∈Iμi is valid
in P. Note that μ is an irreducible simple conjunction in P, there is some i0 ∈ I such that μ�P μi0
is valid. Thus μ�P μi0 is valid in P, because μ≈μ and

∨̇
i∈Iμi ≈ ∨̇

i∈Iμi.
For the second part, we first show that {{p}[�P ]} ∪ {S[� ] | S ∈ |P|} ⊆ |P|. By part (2) of

Proposition 3.2, we have {}[�P ] ∈ |P|. So it suffices to show that S[�P ] ∈ |P| for every S ∈ |P|.
Assume that ϕ ∈ (S[�P ])[�P ]. By Equation (2), there is some � � S[�P ] such that � �P

ϕ is a valid sequent in P. Then by the remark below Equation (2), we have some �� S such
that ��P

∧
� is a valid sequent in P. Thus the sequent ��P

∧
� is valid in P. By part (1) of

Proposition 2.1 and the rule (Cut), the sequent ��P ϕ is valid in P, and hence (S[�P ])[�P
]⊆ S[�P ]. So S[�P ] satisfies condition (S1).

For condition (S2), we have the following implications:∨̇
i∈Iμi ∈ S[�P ]∩ 	(P)

⇒ � �P
∨̇

i∈Iμi ∈ T(P) for some � � S∩ 	(P)

⇒
∨̇

j∈Jμj �P
∨̇

i∈Iμi ∈ T(P) for some
∨̇

j∈Jμj ∈ S∩ 	(P)

⇒
∨̇

j∈Jμj �P
∨̇

i∈Iμi ∈ T(P) and μj0 ∈ S∩ C(P) for some j0 ∈ J

⇒μj0 �P
∨̇

i∈Iμi ∈ T(P) and μj0 ∈ S∩ C(P)
⇒μj0 �P μi0 ∈ T(P) for some i0 ∈ I
⇒μi0 ∈ S[�P ].

To check condition (S3), let μ, ν ∈ S[�P ]∩ C(P). Then there is some � � S such that � �P
μ∧ ν is a valid sequent. By part (4) of Proposition 3.2, we have some ϕ ∈ S such that ϕ ≈ ∧

�.
Then ϕ �P μ∧ ν is a valid sequent. Since ϕ is not logically equivalent to the constant F, the
formula μ∧ ν is a flat formula, and thus μ∧ ν ∈ S[� ]⊆ S.

Next we show |P| ⊆ {{}[�P ]} ∪ {S[�P ] | S ∈ |P|}. Assume that W �= {}[�P ] is a logical
state of P. Set

SW =
{∨̇

i∈Iμi ∈ 	(P) |
∨̇

i∈Iμi ∈W
}

∪ {T}.

Since
∨̇

i∈Iμi is logically equivalent to
∨̇

i∈Iμi, we have W =W[�P ]= SW[�P ]. So we need
only to show SW ∈ |P|.

To prove SW satisfies condition (S1), let ϕ ∈ SW[�P ]. If ϕ = T, then clearly ϕ ∈ SW .
If ϕ �= T, then ϕ ∈ SW[�P ]∩ 	(P). Setting ϕ = ∨̇

i∈Iμi, by Equation (2), there are some∨̇
i∈Iμ1i ,

∨̇
i∈Iμ2i , · · · ,

∨̇
i∈Iμni ∈ SW such that

∨̇
i∈Iμ1i ,

∨̇
i∈Iμ2i , · · · ,

∨̇
i∈Iμni �P

∨̇
i∈Iμi is a

valid sequent in P. Because
∨̇

i∈Iμji ≈
∨̇

i∈Iμji in P for all j= 1, 2, · · · , n, the sequent∨̇
i∈Iμ1i ,

∨̇
i∈Iμ2i , · · · ,

∨̇
i∈Iμni �P

∨̇
i∈Iμi is valid in P. This implies

∨̇
i∈Iμi ∈W, sinceW[�P

]⊆W and {∨̇i∈Iμ1i ,
∨̇

i∈Iμ2i , · · · ,
∨̇

i∈Iμni} �W. Note that
∨̇

i∈Iμi coincides with
∨̇

i∈Iμi, it
follows that

∨̇
i∈Iμi ∈ SW . Thus SW[�P ]⊆ SW .

Let
∨̇

j∈Jμj ∈ SW ∩ 	(P). Then ∨̇
j∈Jμj ∈W. This implies that there is some j0 ∈ J such that

μj0 ∈W, and hence μj0 ∈ SW . Condition (S2) follows.
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Figure 1. The relationship between |P| and |P|.

For condition (S3), let μ, ν ∈ SW ∩ C(P), where μ, ν ∈W. Since W is a logical state, we have
μ∧ ν ∈W, which means that μ∧ ν ∈ SW .

It is easy to see that P is a subsystem of its lifting P. From Equation (13), we can see that
the elements of |P| are correspondence with those of |P| plus an extra element. The following
proposition says that they have more close relationship.

Proposition 5.2. Let P be the lifting of a consistent finitary disjunctive sequent calculus P.

(1) For every S ∈ |P|, if S �= {T} then {}[�P ] is a proper subset of S[�P ].
(2) If S1 ⊆ S2 ∈ |P| then S1[�P ]⊆ S2[�P ]. Moreover, S1[�P ]= S2[�P ] if and only if S1 =

S2.

Proof. (1) Assume that S �= {T} is a logical state of P. Then there is a flat formula
∨̇

i∈Iμi belongs to
S, where μi are simple conjunctions in P for all i ∈ I. By condition (S2), there is some i0 ∈ I such
that μi0 ∈ S. Since p�P  is a valid sequent for every p ∈ P, we can easy to see that the sequent
μi0 �P  is valid. Thus  ∈ S[�P ], which implies that {}[�P ]⊆ S[�P ].

For the above simple conjunction μi0 , it is built up only by some atomic formulae in P. Note
that �P p is not a valid sequent in P for every p ∈ P, it follows that the sequent �P μi0 is not
valid. So μi0 /∈ {}[�P ], which implies that {}[�P ] �= S[�P ].

(2) Let S1, S2 ∈ |P|. By Equation (2), it is clear that S1[�P ]⊆ S2[�P ] whenever S1 ⊆ S2.
Thus for the case of S1 = S2, we have S1[�P ]= S2[�P ]. For the converse implication, assume
that S1[�P ]= S2[�P ]. We now show that S1 = S2. Suppose not, without lose of generality, we
assume that there is some flat formula ϕ ∈ S1 but ϕ /∈ S2. Then ϕ ∈ S1 ⊆ S1[�P ]= S2[�P ], and
hence there is some � � S2 such that � �P ϕ is a valid sequent in P. This implies that the sequent
� �P ϕ is valid in P. Thus ϕ ∈ S2[�P ]⊆ S2, which is a contradiction.

The lifting construction we defined can induce the usual lifting construction on Scott domains.
Combining Equation (13) with Proposition 5.2, we know that |P| has essentially the same
structures as |P| except that |P| has been added a now element, see Figure 1.

There are two classical symmetrical approaches to summing two pointed posets A and B
so that the result poset is pointed. The first way is to identity the two bottoms of A and B
and keeps all other elements as they are. This is often called a coalesced sum and denoted
as A⊕ B.

Now we construct the coalesced sum of two consistent finitary disjunctive sequent calculi.
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Definition 5.4. Let P= (L(P),�P ) andQ= (L(Q),�Q ) be consistent finitary disjunctive sequent
calculi, where L(P)∩L(Q)= {T, F}. Set P ⊕Q= P ∪Q and

AP⊕Q ={p1, p2, · · · , pn �⊕ F | p1, p2, · · · , pn �P F ∈AP}
∪ {q1, q2, · · · , qm �⊕ F | q1, q2, · · · , qm �Q F ∈AQ}
∪ {p, q�⊕ F | p ∈ P, q ∈Q}.

(14)

Then the finitary disjunctive sequent calculus P⊕Q= (L(P ⊕Q),�⊕ ) with (P ⊕Q,AP⊕Q) as dis-
junctive basis is said to be the coalesced sum of P and Q if μ is irreducible in P⊕Q for every
μ ∈ C(P)∪ C(Q).
Lemma 5.3. Let P⊕Q be the coalesced sum of P andQ.

(1) μ ∈ C(P ⊕Q) if and only if μ ∈ C(P) or μ ∈ C(Q).
(2) If � �P ϕ is a valid sequent in P, then � �⊕ ϕ is a valid sequent in P⊕Q.

Proof. (1) Clearly, μ ∈ C(P)∪ C(Q) implies μ ∈ C(P ⊕Q). Conversely, assume that μ ∈ C(P ⊕Q).
If μ /∈ C(P)∪ C(Q), then there are some p ∈ P and q ∈Q occurred in μ. Since p, q�⊕ F is a valid
sequent in P⊕Q, it follows that μ�⊕ F is also a valid sequent in P⊕Q by the rule (Lwk). This
contradicts to the fact that μ is a satisfiable formula.

(2) The sequent � �⊕ ϕ is clearly valid in P⊕Q, since it can derived by exactly the same
manner as the valid sequent � �P ϕ derived in P.

The next result justifies the construction ⊕ on consistent finitary disjunctive sequent calculi.

Theorem 5.3. If P and Q are consistent finitary disjunctive sequent calculi then so is P⊕Q, and
furthermore:

|P⊕Q| = {S[�⊕ ] | S ∈ |P| ∪ |Q|}. (15)

Proof. Let P⊕Q be the coalesced sum of P and Q. By Lemma 5.4, we know that each of simple
conjunction in P⊕Q in irreducible. Therefore, P⊕Q is consistent.

To verify Equation (15), we first verify {S[�⊕ ] | S ∈ |P| ∪ |Q|} ⊆ |P⊕Q| by checking S[�⊕ ]
satisfies all the conditions for a logical state, where S ∈ |P| ∪ |Q|. Without lose of generality, we
assume that S ∈ |P|.

For condition (S1), let ϕ ∈ (S[�⊕ ])[�⊕ ]. Then it is easy to see that ϕ ∈ S[�⊕ ] by Equation (2)
and the rule (Cut). That is, (S[�⊕ ])[�⊕ ]⊆ S[�⊕ ].

For condition (S2), assume that
∨̇

i∈Iμi ∈ S[�⊕ ]∩ 	(P ⊕Q). By Equation (2) and part (4)
of Proposition 3.2, there is some

∨̇
j∈Iνj ∈ S∩ 	(P) such that

∨̇
j∈Iνj �⊕

∨̇
i∈Iμi is valid. Using

condition (S2) for
∨̇

j∈Iνj ∈ S∩ 	(P), there is some j0 ∈ J such that νj0 ∈ S. Thus νj0 �⊕
∨̇

i∈Iμi is a
valid sequent by part (3) of Proposition 2.1. Since the simple conjunction νj0 is irreducible, there
is some i0 ∈ I such that νj0 �⊕ μi0 is a valid sequent. This implies that μi0 ∈ S[�⊕ ].

For condition (S3), assume that μ, ν ∈ S[�⊕ ]∩ C(P ⊕Q). Then there is some � � S such that
� �⊕ μ∧ ν is a valid sequent. Since S is a logical state of P, it follows that

∧
� is not logically

equivalent to F in P, so it is not in P⊕Q. This implies that μ∧ ν is a simple conjunction in
P⊕Q, and thus μ∧ ν ∈ S[�⊕ ]∩ C(P ⊕Q).

Next, we show |P⊕Q| ⊆ {S[�⊕ ] | S ∈ |P| ∪ |Q|}. Let W ∈ |P⊕Q|. If W = {T}, then W ∈
{S[�⊕ ] | S ∈ |P| ∪ |Q|}. Now we assume thatW �= {T} and set

W0 = {μ ∈ C(P ⊕Q) |μ ∈W}.
Since W �= {T}, by condition (S2), the set W0 �= ∅. We claim that W0 ⊆ C(P) or W0 ⊆ C(Q). In
fact, suppose not, that is, there are someμ1 ∈ C(P)∩W0 andμ2 ∈ C(Q)∩W0. Note that p, q�⊕ F
is a valid sequent for every p ∈ P and q ∈Q, it follows that the sequent μ1,μ2 �⊕ F is valid by the
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rule (Lwk). This implies that F ∈W by condition (S1), which is a contradiction. Without lose of
generality, we assume thatW0 ⊆ C(P). Set

SW =W0[�P ].

The remainder is to show that SW is a logical state of P andW = SW[�⊕ ].
By Equation (2) and the rule (Cut), it is not difficult to see that

SW[�P ]= (W0[�P ])[�P ]⊆W0[�P ]= SW .

That is, SW satisfies condition (S1). For condition (S2), assume that
∨̇

i∈Iμi ∈ SW ∩ 	(P). Then
there are some ν1, ν2, · · · , νn ∈W0 such that ν1, ν2, · · · , νn �P

∨̇
i∈Iμi is a valid sequent in P.

Thus ν1 ∧ ν2 ∧ · · · ∧ νn ∈W0 and the sequent ν1 ∧ ν2 ∧ · · · ∧ νn �P
∨̇

i∈Iμi is valid in P. This
implies that there is some i0 ∈ I such that ν1 ∧ ν2 ∧ · · · ∧ νn �P μi0 is a valid sequent in P since
ν1 ∧ ν2 ∧ · · · ∧ νn is irreducible. Therefore, μi0 ∈ SW . To prove condition (S3), let μ, ν ∈ SW .
Then there is some � ⊆W0 such that

∧
� �P μ∧ ν is a valid sequent. Note that � �W ∩ C(P ⊕

Q), it follows that
∧
� ∈W ∩ C(P ⊕Q)⊆ C(P), and hence μ∧ ν is not logically equivalent to F.

This shows that μ∧ ν ∈W0[�P ]= SW .
Let ϕ ∈W. If ϕ = T, then clearly ϕ ∈ SW[�⊕ ]. If ϕ = ∨̇

i∈Iμi ∈W ∩ 	(P ⊕Q). Then there is
some i0 ∈ I such that μi0 ∈W0. Thus the sequent μi0 �P

∨̇
i∈Iμi is valid in P. This implies that the

sequent μi0 �⊕
∨̇

i∈Iμi is valid in P⊕Q. So ϕ = ∨̇
i∈Iμi ∈ SW[�⊕ ], and hence W ⊆ SW[�⊕ ].

Conversely, let ψ ∈ SW[�⊕ ]. If ψ = T, then ψ ∈W. If ψ = ∨̇
j∈Jμj ∈ SW[�⊕ ]∩ 	(P ⊕Q), then

there is some μ ∈W0 such that μ�⊕
∨̇

j∈Jμj is valid in P⊕Q. Note that μ ∈W, it follows that∨̇
j∈Jμj ∈W[�⊕ ]⊆W. So SW[�⊕ ]⊆W.

Proposition 5.3. Let P⊕Q be the coalesced sum of P andQ.

(1) If S1 ∈ |P| and S2 ∈ |Q|, then S1[�⊕ ]∩ S2[�⊕ ]= {T}.
(2) If S1, S2 ∈ |P| (or S1, S2 ∈ |Q|) with S1 ⊆ S2, then S1[�⊕ ]⊆ S2[�⊕ ]. Moreover, S1[�⊕ ]=

S2[�⊕ ] if and only if S1 = S2.

Proof. (1) Assume that S1 ∈ |P| and S2 ∈ |Q|. By Equation (2), we have T ∈ S1[�⊕ ]∩ S2[�⊕ ].
If there is a flat formula ϕ ∈ S1[�⊕ ]∩ S2[�⊕ ], then there are flat formulae

∨̇
i∈Iμi ∈ S1

and
∨̇

j∈Jνj ∈ S2 such that both
∨̇

i∈Iμi �⊕ ϕ and
∨̇

j∈Jνj �⊕ ϕ are valid. With part (3) of
Proposition 2.1 and condition (S2), there are two simple conjunctions μi0 ∈ S1 and νj0 ∈ S2 such
that μi0 �⊕ ϕ and νj0 �⊕ ϕ are valid, which means that μi0 ∧ νj0 �⊕ ϕ. Because of the fact that
p, q�⊕ F is valid for all p ∈ P and q ∈Q, we know μi0 ∧ νj0 �⊕ F is valid, a contradiction. So
S1[�⊕ ]∩ S2[�⊕ ]= {T}.

(2) Similar to the proof of part (2) of Proposition 5.2.

By Equation (15) and Proposition 5.3, clearly the map f : |P| ⊕ |Q| → |P⊕Q| defined by

f (S)= S[�⊕ ]

is an order isomorphism, where |P| ⊕ |Q| is the coalesced sum of two poset. Then we can easy
obtain the structure |P⊕Q| based on the structures |P| and |Q|, see Figure 2:

The other way of summing two pointed posets A and B is to add a new bottom such that the
summands are lifted above it separately. This is often called a separated sum and denoted asA� B.

The separated sum on consistent finitary disjunctive sequent calculi can be defined in terms of
lifting and coalesced sum.

Definition 5.5. The separated sum P�Q of two consistent finitary disjunctive sequent calculi is
P1 ⊕Q2 .
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Figure 2. Coalesced sum.

Figure 3. Separated sum.

As a directly consequence of Theorems 5.2 and 5.3, we have the following theorem, which
justifies the separated sum.

Theorem 5.4. If P and Q are consistent finitary disjunctive sequent calculi then so is P�Q, and
furthermore:

|P�Q| ={({1}[�P1 ])[�⊕ ]} ∪ {(S[�P1 ])[�⊕ ] | S ∈ |P|}
∪ {({2}[�P2 ])[�⊕ ]} ∪ {(S[�P2 ])[�⊕ ] | S ∈ |Q|}. (16)

If P and Q are two consistent finitary disjunctive sequent calculi, then we get a Scott domain
|P�Q| associated with the separated sum of them. Analogous to the case of coalesced sum, we
can see that the Scott domain |P�Q| is order isomorphic to the separated sum |P| � |Q| of two
posets. The structure of |P�Q| can be seen in Figure 3:

5.3 Solving recursive domain equations
A recursive domain equation like P= P states every solution to this domain equation has a natu-
ral domain structural interpretation: it is actually equal to its lifted version. In this subsection, we
will show that this equation, as well as other similar recursive domain equations, has a solution.

The following theorem is a very powerful and important observation, which allows us to solve
recursive domain equations.

Theorem 5.5. If F is a continuous unary domain construction, then the consistent finitary
disjunctive sequent calculus

⊔
n≥0 F

n(O) is the least fixed point of F.

Proof. The proof of this result is identical to those for Scott-continuous functions over pointed
dcpos, for example, see Davey and Priestley (2002, 8.15 CPO fixpoint Theorem I).
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There is still one important step we should to take before solving recursive domain equations,
namely to justify the domain constructions we defined are all continuous.

Lemma 5.4. The operation  : P �→ P is monotonic on consistent finitary disjunctive sequent
calculi ordered by�.

Proof. Let P�Q. We verify that P �Q by checking the conditions of Definition 5.1
Since P ⊆Q, we have P = P ∪ {} ⊆ ∪{} =Q. Condition (u1) follows.
For condition (u2), let � �P ϕ be a disjointness assumption on AP . If the sequent � �P ϕ is

of the form p1, p2, · · · , pn �P F ∈AP , then we have the following implications:
p1, p2, · · · , pn �P F ∈AP ⇒ p1, p2, · · · , pn �P F ∈AP

⇒ p1, p2, · · · , pn �Q F ∈AQ

⇒ p1, p2, · · · , pn �Q F ∈AQ .

If � �P ϕ is of the form p�P  then clearly p�Q  ∈AQ , since p ∈ P ⊆Q⊆Q.
For condition (u3), let � �Q ϕ be a valid sequent inQ, where � �L(P) and ϕ ∈L(P). Then

we have to show that � �P ϕ is valid in P. By part (1) of Proposition 2.1, it suffices to check∧
� �P ϕ is valid in P. We consider the following situations:
Case 1:

∧
� ≈ F in P. It is clear that

∧
� �P ϕ is valid in P by the rule (LF).

Case 2:
∧
� ≈ T in P. Then

∧
� ≈ T in Q. Since � �Q ϕ is valid in Q, the formula ϕ must

be logically equivalent to T in Q, and then ϕ is logically equivalent to T in P. So
∧
� �P ϕ is

valid in P.
Case 3:

∧
� ≈ ∨̇

i∈Iμi in P, where
∨̇

i∈Iμi is a flat formula in which there is some p ∈ P
occurred. In this case, ϕ is not logically equivalent to F.

If ϕ is logically equivalent to T or , then it is easy to see
∨̇

i∈Iμi �P ϕ is valid in P, where∨̇
i∈Iμi is defined as that in the proof for Theorem 5.2. Note that

∨̇
i∈Iμi ≈ ∨̇

i∈Iμi in P, it follows
that

∧
� �P ϕ is valid in P.

If ϕ is logically equivalent to a flat formula
∨̇

j∈Jνj in P and there is some p ∈ P occurred in∨̇
j∈Jνj, then we have the following implications:

� �Q ϕ is valid inQ ⇒
∧

� �Q ϕ is valid inQ

⇒
∨̇

i∈Iμi �Q
∨̇

j∈Jνj is valid inQ

⇒
∨̇

i∈Iμi �Q
∨̇

j∈Jνj is valid inQ

⇒
∨̇

i∈Iμi �P
∨̇

j∈Jνj is valid in P

⇒
∨̇

i∈Iμi �P
∨̇

j∈Jνj is valid in P

⇒
∧

� �P ϕ is valid in P.

Case 4:
∧
� ≈ ∨̇

i∈Iμi in P, where
∨̇

i∈Iμi is a flat formula built up only by . Clearly, the
formula ϕ is not logically equivalent to F. Furthermore, we claim that ϕ is not logically equivalent
to a flat formula

∨̇
j∈Jνj in which some p ∈ P is occurred. Otherwise, we would see that the sequent

�Q p is valid inQ, a contradiction. So we have ϕ ≈ T or ϕ ≈ , and then the sequent
∧
� �P ϕ

is valid in P.
In conclusion, the operation  : P �→ P is monotonic.
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Theorem 5.6. The operation  : P �→ P is continuous on consistent finitary disjunctive sequent
calculi.

Proof. Let {Pi | i ∈ I} be a directed subset of CFDC. Then {Pi | i ∈ I} is also a directed subset of
CFDC. By Theorem 5.1,

⊔
i∈I Pi and

⊔
i∈I P


i are members of CFDC. Since the operation  :

P �→ P is monotonic, it is clear that
⊔

i∈I P

i � (

⊔
i∈I Pi). To show the operation  : P �→ P is

continuous, we need only to check

(
⊔
i∈I

Pi) �
⊔
i∈I

P

i .

For this, let (L(R),�R )= (
⊔

i∈I Pi) and (L(S),�S )= ⊔
i∈I P


i . We divide our proof into three

steps.
First, since R= ⋃

i∈I Pi ∪ {} is the set of atomic formulae of (L(R),�R ) and S= ⋃
i∈I (Pi ∪ {})

is the set of atomic formulae of (L(S),�S ), we have R= S.
Second, assume that � �R ϕ is an atomic disjointness assumption in (L(R),�R ), then there are

two issues to consider.
Case 1: � �R ϕ is of the form p1, p2, · · · , pn �R F. By the following implications:

p1, p2, · · · , pn �R F ∈AR ⇒ p1, p2, · · · , pn �Pi F ∈APi for some i ∈ I
⇒ p1, p2, · · · , pn �Pi

F ∈APi

⇒ p1, p2, · · · , pn �S F ∈AS,
we know that � �S ϕ is an atomic disjointness assumption in (L(S),�S ).

Case 2: � �R ϕ is of the form r �R  for some r ∈ R− {}. Since R= S, we have r ∈ S− {}, and
hence there is some j ∈ I such that r ∈ Pj. This implies that the sequent r �Pj  is valid in P


i , and

hence r �S  is valid in (L(S),�S ).
Finally, let � �S ϕ be a valid sequent in (L(S),�S )= ⊔

i∈I P

i , where � �L(R) and ϕ ∈L(R).

Since T(S)= ⋃
i∈I T(P


i ), it follows that � �Pi0

ϕ is valid in P

i0 for some i0 ∈ I. Note that Pi0 �⊔

i∈I Pi and the operation  is monotonic, we have P

i0 � (

⊔
i∈I Pi). So the sequent � �R ϕ is

valid in (L(R),�R )= (
⊔

i∈I Pi)

Lemma 5.5. The operation ⊕ : (P,Q) �→ P⊕Q is monotonic.

Proof. Let (P1,Q1)� (P2,Q2). Then P1 � P2 andQ1 �Q2, which implies that P1 ⊆ P2 and Q1 ⊆
Q2. For convenience, we set P1 ⊕Q1 = (L(R),�R ) and P2 ⊕Q2 = (L(S),�S ). Since R= P1 ∪Q1
and S= P2 ∪Q2, we have R⊆ S. This implies that each atomic formula in P1 ⊕Q1 is an atomic
formula in P2 ⊕Q2.

Assume that p1, p2, · · · , pn �R F is an atomic disjointness assumption in P1 ⊕Q1. Then we
have p1, p2, · · · , pn �P1 F ∈AP1 or p1, p2, · · · , pn �Q1 F ∈AQ1 or p1, p2, · · · , pn �S F is of the
form p, q�R F for some p ∈ P1 and q ∈Q1, by Equation (14). For the first two cases, since
AP1 ⊆AP2 and AQ1 ⊆AQ2 , we know that p1, p2, · · · , pn �R F is an atomic disjointness assump-
tion in P2 ⊕Q2. For the third case, note that P1 ⊆ P2 and Q1 ⊆Q2, it follows that p ∈ P2 and
q ∈Q2, and hence p, q�S F is an atomic disjointness assumption in P2 ⊕Q2.

Assume that � �S ϕ is a valid sequent in (L(S),�S ), where � �L(R) and ϕ ∈L(S). We show
that the sequent � �S ϕ is valid in (L(R),�R ) by induction.

For the base step, assume that the sequent � �S ϕ is an atomic disjointness assump-
tion p1, p2, · · · , pn �S F ∈AS, where p1, p2, · · · , pn ∈ S. If p1, p2, · · · , pn �P2 F ∈AP2 or
p1, p2, · · · , pn �Q2 F ∈AQ2 , using condition (u3) for P1 � P2 or P1 � P2 respectively, we
have p1, p2, · · · , pn �P2 F is valid in �2 or p1, p2, · · · , pn �Q2 F in Q2. In this two case, the sequent
� �R ϕ is valid in P1 ⊕Q1. If � �S ϕ is of the form p, q�S F, where p ∈ P1 and q ∈Q1, then
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p, q�R F is an atomic disjointness assumption in P1 ⊕Q1. In this case, we also know that the
sequent � �R ϕ is valid.

For the inductive step, we only check the case that the valid sequent � �S ϕ is derived from two
valid sequent � �S φ and φ �S ϕ by the rule (Cut). By inductive hypothesis, we know the sequent
� �R φ and φ �R ϕ are valid in (L(R),�R ). So by the rule (Cut), the sequent � �R ϕ is valid in
(L(R),�R ).

The proofs for the results in the next lemma are similar to that of Lemma 5.5.

Lemma 5.6. Let P,Q and R be consistent finitary disjunctive sequent calculi.

(1) P� P⊕Q.
(2) If P�R andQ�R, then P⊕Q�R.
(3) If P�R andQ� S, then P⊕Q�R⊕ S.

Theorem 5.7. The operation ⊕ : (P,Q) �→ P⊕Q is continuous on consistent finitary disjunctive
sequent calculi.

Proof. Let {(Pi,Qi) ∈ CFDC2 | i ∈ I} be a directed set and Pi ⊕Qi is the coalesced sum of Pi and
Qi for every i ∈ I. Then by Lemma 5.5, the set {Pi ⊕Qi | i ∈ I} is directed. We must to show that⊔

i∈IPi ⊕
⊔

i∈IQi =
⊔

i∈I(Pi ⊕Qi).

But this follows easily from Lemmas 5.5 and 5.6.

Theorem 5.8. The operations � is continuous.

Proof. Since the separated sum� is defined by composing the two continuous operations of lifting
and coalesced sum, by Lemma 5.1, � is continuous.

Example 5.1. For the least consistent finitary disjunctive sequent calculus O whose atomic for-
mulae set is the empty set, when we liftO, we get a consistent finitary disjunctive sequent calculus
O1 whose atomic formulae set is the singleton {1} and whose atomic disjointness assumptions set
is the empty set.

And when we liftO1, we get another consistent finitary disjunctive sequent calculusO2 whose
atomic formulae set is the set {1, 2} and whose atomic disjointness assumptions set has only one
valid sequent 1 �2 2. Now we repeat this lifting n times to obtain On, the resulting consistent
finitary disjunctive sequent calculus has the n atomic formulae {1, 2, · · · , n} and has the set
{i �j j | 0≤ i< j≤ n} as its atomic disjointness assumptions.

By Theorem 5.5, the consistent finitary disjunctive sequent calculi On are exactly the iterates
used in solving the following recursive domain equation:

P= P.
That is, the limitOω = ⊔

n≥0 On is the least solution, whereO0 =O.

Example 5.2. Let P be a fixed consistent finitary disjunctive sequent calculus. Then the least
solution to the recursive domain equation

Q= P⊕Q

is given by
⊔

n≥1 Qn, whereQ0 =O andQn+1 = P⊕Qn.

6. Conclusion
We have provided a logical syntactic representation of Scott domains by developing the theory
of disjunctive propositional logic. Because the categories CDC and SD are equivalent, a rather
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abstract category is represented by a concrete logical syntactic category. We have also worked
to produce some constructions on consistent finitary disjunctive sequent calculi. This induced the
corresponding usual constructions on Scott domains. As an application, we have built up solutions
to recursive domain equations by constructing a fixed point on a directed complete partial order.

The results that we presented fully reveal that the category CDC is a right kind of logic for SD,
which is what we intend to achieve in this paper. However, it is natural to ask if the category CDC
possesses much more interesting properties. For example, if such a category always has limits? So
the category CDC indeed deserves much deeper study in the future.
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