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The Earth’s rotation and laminar pipe flow
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J.M. Burgers Centre, Delft University of Technology, Rotterdamseweg 145,

2628 AL Delft, The Netherlands

(Received 19 May 1997 and in revised form 4 October 1997)

A pipe flow facility with a length of 32 m and a diameter of 40 mm has been designed
in which a laminar flow of water can be maintained for Reynolds numbers up to
60 000. Velocity measurements taken in this facility show an asymmetric velocity
profile both in the vertical as well as horizontal direction with velocities that deviate
strongly from the parabolic Hagen–Poiseuille profile. The cause of this asymmetry is
traced back to the influence of the Earth’s rotation. This is confirmed by means of
a comparison of the experimental data with the results from a perturbation solution
and from a numerical computation of the full nonlinear Navier–Stokes equations. The
physical background of this unforeseen result lies in the fact that a Hagen–Poiseuille
flow is governed by a force equilibrium and inertia forces are everywhere negligible.
This implies that the Coriolis force can be balanced only by a viscous force. So even
the small Coriolis force due to the Earth’s rotation causes a large velocity distortion
for a case such as ours where the kinematic viscosity is small.

1. Introduction
Every student of fluid mechanics is familiar with the parabolic Hagen–Poiseuille

profile for the laminar flow in a cylindrical, straight tube as one of the few exact
solutions of the Navier–Stokes equations. The simplicity of this flow geometry would
perhaps lead one to expect that it is straightforward to reproduce this flow in the
laboratory. As with most experimental verifications of theoretical results this is not
always the case, especially if the experimental facility used differs from the facilities
that have been employed in previous experiments.

The setting of the present study is the flow in a 32 m long cylindrical pipe with
a diameter of 0.04 m that has been designed to study the transition to turbulence.
The fluid is water. It is well known that a pipe flow can be kept laminar far beyond
the lowest critical Reynolds number, i.e. Recrit ' 2000, if flow disturbances are kept
small. In our facility we managed to keep the flow laminar to a maximum Reynolds
number of Remax ∼ 60 000 where the Reynolds number is based on the pipe diameter
and mean velocity. This value could be obtained as a result of careful construction
and design in which all possible causes of flow disturbances such as pipe entrance
conditions, temperature differences between the fluid and the outside conditions, wall
roughness, etc. were eliminated as much as possible. Despite these precautions, the
observed velocities deviated strongly from the theoretical parabolic profile. The cause
turned out to be the Earth’s rotation. The objective of this paper is to draw attention
to this perhaps unexpected phenomenon and to present the experimental observations

† Present address: Océ Research, Venlo, The Netherlands.
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Figure 1. Schematic overview of the facility used for the observations of laminar pipe flow. The
inner diameter of the pipe is 40 mm; the disturbance mechanism is used for transition experiments
and has not been employed for the experiments discussed here. Further details of this experimental
facility are explained in the text.

that we have obtained in our pipe facility, in comparison with some theory to explain
the cause of this result.

The organization of the paper is as follows. In the next section the experimental
facility is discussed in some detail. The following section is devoted to the governing
equations and their solution and to a discussion of the non-dimensional parameters
that play a role in our problem. Next we discuss the experimental data and their
comparison with some theoretical and numerical results. In the final section we
present some conclusions.

2. Experimental facility
The pipe-flow facility that was used for the experiments was designed especially for

the purpose of studying transitional flow. This objective required that laminar flow,
preferably fully developed, was to be maintained to as high a Reynolds number as
possible. In this section we give a brief description of this flow facility and for further
details we refer to Draad (1996).

A schematic overview of the pipe-flow facility is given in figure 1. The main part
of the facility consists of a smooth-walled pipe constructed out of Plexiglas with an
inner diameter of 40 mm, and a total length of 32 m. Christianson & Lemmon (1965)
give the following expression for the length after which the centreline velocity deviates
by less than 1% from the parabolic form:

L99%

D
= 0.056 Re.

Based on this expression we estimate that a fully developed, parabolic pipe flow
can be attained in our facility only for Reynolds numbers less than 14 300. Our
experiments showed that a (partly developed) laminar flow could be maintained up
to Re = 60 000. Such a high value could be obtained by minimizing all sources of flow
disturbances. For this, much attention was given to the construction of the pipe which
was made out of sections with a length of 2 m connected to each other by specially
designed couplings. The pipe sections were centred based on their inner diameter and
design of the couplings limited any misalignment of sections to less than 0.02 mm. To
eliminate flow disturbances entering the pipe, a settling chamber was constructed in
which swirl was suppressed with the help of honeycombs and other flow disturbances
with a series of screens. A smooth contraction of area ratio 9 was used to damp the
disturbances further. Finally, by careful insulation of the pipe and settling chamber
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and also by thermostatically matching the water temperature to that of the ambient
flow within 0.2 ◦C, any influence of convection currents was minimized.

Along the pipe at any location the velocity profile can be observed by means of
laser Doppler velocimetry (LDV). This is done by replacing a pipe section with a
specially designed measuring section. The measuring section consists of a rectangular
box positioned around the pipe and filled with water under the same pressure as
in the pipe. In this box the pipe wall is replaced with a 0.19 mm thin fluorocarbon
film (Teflon FEP 750A by Du Pont) with an index of refraction of 1.35, which is
close to that of water (1.33). In this way refraction effects due to the curved pipe
wall could be eliminated. The two-dimensional LDV equipment consists of a Dantec
probe connected by optical fibres to an argon-ion laser. The probe is operated in the
backscatter mode. The Doppler bursts are analysed by two Dantec Burst Spectrum
Analyzers (BSA) and transformed into a two-dimensional velocity signal. We have
not applied any correction to these data because we felt this not to be necessary
in this particular case where only mean velocities are observed in laminar flow. To
obtain an adequate data rate the flow has been seeded with latex particles which have
a diameter of approximately 1 µm.

At the downstream end of the pipe, a magnetic inductive flow meter (Krohne-
Altometer) is used to monitor the flow rate. The pipe ends in a discharge chamber
from which the water returns into a reservoir. By means of a pump the water is then
circulated back into the pipe.

In view of all the precautions that were taken in the design of this pipe facility,
nothing prepared us for the observational results, given in figure 2, which show a clear
deviation from the well-known parabolic profile found in Hagen–Poiseuille flow. The
explanation and background of these deviations will be discussed in the following
sections.

3. Governing equations and their solution
3.1. Equations of motion and non-dimensional parameters

The Navier–Stokes equations for the incompressible velocity field ui in a fluid with
density ρ and kinematic viscosity ν in a rotating frame of reference (see e.g. Batchelor
1967, pp. 140, 555) read

Dui
Dt

= fi −
1

ρ

∂p

∂xi
+ ν

∂2ui

∂x2
j

in which the first term on the right-hand side denotes the Coriolis force per unit
mass fi and in which the centrifugal force has been absorbed in the pressure p.
The z-coordinate is chosen along the pipe axis, the x-direction perpendicular to the
pipe and the Earth’s surface and the y-direction perpendicular both to the x- and
z-directions as illustrated in figure 3.

For the case of a uni-directional flow vector [0, 0,W (r)] the components of the
Coriolis forces become fx

fy
fz

 = −2Ω

 sin αL
cos αL sin αN
cos αL cos αN

×
 0

0
W (r)

 = −2ΩW (r)

 cos αL sin αN
− sin αL

0

 ,

(3.1)

where Ω is the angular velocity of the Earth’s rotation, the angle αL is the latitude
and αN the angle of the pipe axis with the direction of true north. From this equation
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Figure 2. Observation (denoted by the symbols) of the velocity profile (normalized with the
maximum value) in a laminar pipe flow at various Reynolds number in (a) a horizontal and
(b) a vertical direction; the lines denote the results from computations with the full nonlinear
Navier–Stokes equation discussed in § 4.

it follows that the Coriolis force can be avoided only when the pipe is aligned with
the rotation axis of the Earth which in our case with a pipe of 32 m length and at a
latitude of αL = 52◦ north is clearly not practical. In our case αN = 22◦. The magnitude
of the Coriolis force per unit mass is usually written as |fi| = −2ΩW (r) sin α where α
is the angle between the pipe axis and the rotation axis of the Earth. For our pipe
the angle α follows from angles αL and αN which gives α = 55◦.

With Ω = 2π/(24 × 3600) = 7.272 × 10−5 s−1 we find for the Coriolis forces:
fx/W (r) = −3.3× 10−5 s−1, fy/W (r) = 1.1× 10−4 s−1 and fz = 0 m s−2. We thus find
that the Coriolis force has a positive component in the y-direction, i.e. to the right
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Figure 3. Cartesian coordinate system with the orientation of the rotation vector of the Earth.

looking downstream. Furthermore, we find a negative component in the x-direction
with a magnitude of 29% of the y-component.

To get a first-order estimate of the effect of the Coriolis force the standard procedure
is to compare this term with the other terms in the equations in terms of a non-
dimensional number. Let us introduce the notation W for the mean velocity over the
pipe cross-section. The ratio of the inertia to the Coriolis force then becomes

Ro =
W

2Ω sin αD
(3.2)

which is known as the Rossby number. For our pipe with W = 0.25 m s−1 and
D = 40 mm the Rossby number is Ro ' 52 000 and one would expect that rotation
effects are negligible for this flow.

However, the Rossby number is not the correct parameter to estimate the influence
of rotation because in a fully developed unidirectional pipe flow inertia does not
play a role because the flow everywhere satisfies a force equilibrium, i.e. the pressure
gradient is balanced by the viscous force. Therefore, the appropriate parameter to
estimate the influence of rotation is the ratio of the viscous to the Coriolis force. This
leads to the following dimensionless parameter:

Ek =
ν

2ΩD2 sin α
(3.3)

which is known as the Ekman number. For our case it follows that Ek ' 5.2 which
suggests that the presence of the Coriolis force, which in magnitude is almost 20%
of the viscous force, may significantly affect the parabolic profile.

3.2. Perturbation analysis

Given the discussion of the previous section the next step is to perform some analysis
by assuming that the deviation from the parabolic profile due to the Coriolis force
is small. Let us at the same time consider a cylindrical coordinate system with
the axial direction z along the pipe axis and the tangential coordinate θ measured
from the x-axis. In this coordinate system the velocity components are given by
[ur(r, θ), uθ(r, θ),W (r) + w(r, θ)] where we have assumed that the flow is stationary
and fully developed, i.e. independent of time and the axial coordinate. In this notation
upper-case letters stand for the zero-order parabolic Hagen–Poiseuille flow and lower-
case letters for the perturbations, with ur/W , uθ/W and w/W � 1. Substituting these
velocity components in the full equations, i.e. the continuity and Navier–Stokes
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equations, and truncating after the linear term, we find the following set of equations
for the perturbation velocities:

1

r

∂rur

∂r
+

1

r

∂uθ

∂θ
= 0, (3.4a)

0 = fr −
1

ρ

∂p

∂r
+ ν

[
1

r

∂

∂r

(
r
∂ur

∂r

)
+

1

r2

∂2ur

∂θ2
− ur

r2
− 2

r2

∂uθ

∂θ

]
, (3.4b)

0 = fθ −
1

ρ

1

r

∂p

∂θ
+ ν

[
1

r

∂

∂r

(
r
∂uθ

∂r

)
+

1

r2

∂2uθ

∂θ2
+

2

r2

∂ur

∂θ
− uθ

r2

]
, (3.4c)

ur
dW (r)

dr
= ν

[
1

r

∂

∂r

(
r
∂w

∂r

)
+

1

r2

∂2w

∂θ2

]
, (3.4d)

where

fr = −2ΩW (r) (cos αL sin αN cos θ − sin αL sin θ) ,

fθ = −2ΩW (r) (− cos αL sin αN sin θ − sin αL cos θ) .

These equations show clearly that the effect of the Coriolis force in the r- and θ-
direction must be balanced by a viscous force. The resulting secondary flow in the
radial direction then will influence the axial velocity through a balance between the
inertial and the viscous force.

The set of equations (3.4c) has been analysed by Benton (1956) who shows that the
maximum value of the velocity in the (r, θ)-plane is given by the expression(

ur
2 + uθ

2
)1/2

max
=

W

192Ek
(3.5)

which for our case, where Ek = 5.23, is equal to 0.000 996 W . The secondary velocity
is found to be very weak indeed.

Although this secondary flow seems very weak, it can nevertheless lead to apprecia-
ble modification of the axial profile. The solution for the axial perturbation velocity
given by Benton, with d ≡ 2r/D, reads

w

W
=

Re

2932Ek
d
(

1− d2
)(

3− 3d
2

+ d
4
)

sin θ. (3.6)

Since Ek is constant, w/W increases linearly with Re and this implies that the

disturbance of the axial velocity profile due to the Coriolis force scales as w ∼W 2
. It

is precisely this quadratic increase of the axial disturbance velocity which is the source
of the large deformation of the axial velocity profile at high Reynolds numbers.

To give an example we find, using the value of Ek valid for our facility, that
for a Reynolds number of only Re = 2 000 the axial disturbance velocity maximum
is 7% of the bulk velocity and at Re = 5 000 it is already 18%. In other words,
for Re = 5 000 the linear analysis is no longer valid. For Re = 15 000 the axial
disturbance velocity is 54% of the bulk velocity. Moreover, the velocity profile is
nowhere near parabolic. Based on these results we may conclude that the presence
of Coriolis force due to the Earth’s rotation is the explanation for the observed large
distortions of the parabolic velocity profile.

The question arises why in previous experiments on laminar pipe flow this effect
has not been widely recognized. The majority of previous experiments on laminar
pipe flow at high Reynolds numbers have been carried out with air as fluid rather
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Figure 4. Calculated axial disturbance velocity profiles according to Berman & Mockros (1984) in
(a) the horizontal and (b) the vertical direction for various Reynolds numbers.

than water. It follows directly from (3.3) that for the same rotation velocity and pipe
diameter, the Ekman number in air is larger by a factor of ∼ 15 than water. As
the disturbance is inversely proportional to the Ekman number, the influence of the
Coriolis forces becomes negligible for most such pipe flows. In other experiments,
where water has been used, the pipe diameters are usually smaller. As Ek scales
according to ν/D2, the effect of the Coriolis force is much smaller for small pipe
diameters. Also, the length of the pipe was in general much too short to allow fully
developed flow to occur. Then the Rossby number becomes more important and we
have shown above that this number is always very large.

We have seen above that for Reynolds numbers beyond Re ' 5000 the perturbation
becomes larger than 10% and consequently linear analysis is no longer valid. Berman
& Mockros (1984) have extended the solution to a third-order perturbation analysis.
In figure 4 we show the calculated axial velocity profiles in both the horizontal
and vertical directions using Berman & Mockros’ solution. In comparison with the
observations given in figure 2 we find that curves for Re 6 9 600 are very similar
to the measurements. However, the curves for Re = 14 100 show a dip close to the
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centreline that is not observed in the measurements. So, at these Reynolds numbers,
even a third-order perturbation analysis is insufficient to correctly predict the axial
velocity profiles of our pipe flow.

4. Numerical computation
We have seen in the previous section that at high Reynolds numbers the disturbance

velocities become so large that linear theory and even third-order analysis can no
longer be used to compute the perturbations. Therefore, for a reliable comparison
with the measured velocity profiles, numerical computations of the full equations of
motion are necessary. For these we have made use of a numerical code in which
the full Navier–Stokes equation is solved. The code is based on a second-order finite
volume discretization of the equations formulated in cylindrical coordinates and has
been developed for numerical simulation of turbulent pipe flow. Further details are
described by Eggels et al. (1994). In this case where a fully developed laminar flow is
considered, only a minimum number of grid points, in our case three, is needed in the
axial direction. To resolve the small secondary flow a fine grid size is needed and in
our computations we have used 60 grid points in the radial direction and 120 points
in the tangential direction. The grid size in the radial direction was non-uniform
with the largest size near the centreline. The solution was found by integration in
time from a given initial profile until a fully developed steady state is reached. A
calculation takes typically 80–160 CPU hours on a Convex–3840.

Before performing calculations at high Reynolds numbers, where the parabolic flow
becomes strongly distorted, the numerical code was first checked against the linear
solution according to Benton (1956). For Re = 1 500 and Ek = 15.4 the maximum
axial perturbation velocity according to the linear analysis is 2% of the bulk velocity.
The differences between the calculations using the full equation and the linear solution
are approximately 2.5%. Thus, the inaccuracy of the numerical computation is 0.05%
of the bulk velocity, which seems acceptable for our purpose. Now that we have
established the suitability of the numerical code, we can compare our measurements
of the axial velocity profiles with those predicted by the numerical computations.

In figure 2 the results obtained from the computations are shown as dotted and
dashed lines. Although quantitative agreement between observation and experiments
is far from perfect, the qualitative agreement is excellent. It is also clear that both for
the observations and for the computations the asymmetry increases with the Reynolds
number as predicted by the theory of the previous section. For both the horizontal
and vertical profiles the shapes of the measured profiles are in good agreement with
those obtained from the calculations. This is perhaps more convincingly shown in
figure 5 where the difference between the measured and calculated results and the
parabolic profile is illustrated. Experiment and computations seem even to agree on
a subtle detail shown in this figure, where at positive values of the vertical position
the perturbation is found to be negative for small Reynolds numbers but positive
for large Reynolds numbers. We note that such change from a negative to a positive
perturbation value is not predicted by the linear theory. The higher-order perturbation
analysis of Berman & Mockros (1984) does predict such behaviour but the deviation
from the parabolic profile is much too large for higher Reynolds numbers as can be
seen from the ‘double-maxima’ curve for Re = 14 100 in figure 4 when compared to
the measured velocity profiles.

A possible source of the deviations between the calculations and the measurements
may have been the fact that the air temperature exceeded the water temperature
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Figure 5. The difference between the computed or observed velocity profiles and the parabolic
profile in the vertical direction for various Reynolds numbers as a function of the radial coordinate;
computations are denoted by lines and observations by symbols. All results are normalized with
the centreline velocity.

by 0.2 ◦C. Even very weak convection cells as analysed by Morton (1959) or swirl
could displace or rotate the secondary flow induced by the Coriolis force. Keeping
this sensitivity in mind, we feel that the comparison between the measured and the
calculated axial velocity profiles presents strong proof that the asymmetry in the
velocity profiles is for the largest part due to the rotation of the Earth.

As some additional information we show in figure 6(a) the streamfunction of the
secondary circulation for Re = 26 500. It can be seen that the cells are not symmetrical
as predicted by linear perturbation theory, but somewhat shifted to the right, i.e. in
the direction of the Coriolis force. The corresponding axial velocity contours are
shown in figure 6(b). The axial velocity profile is clearly strongly asymmetric and
the isolines are not circular in shape. Again we note that the linear perturbation
solution of Benton (1956) and even the higher-order perturbation analysis of Berman
& Mockros (1984) are not able to predict the axial velocity contours shown in
figure 6(b) since the perturbation terms are of the same order of magnitude as
the base flow, in other words the perturbation analyses are not valid under these
flow conditions. The higher-order perturbation solution even predicts negative axial
velocities.

The effect of the Coriolis force is not limited to a distortion of the axial velocity
profile but it also influences the frictional drag. The (Moody-) friction factor fM is
defined as

fM =
D∆p

1
2
ρW

2
L
, (4.1)

where ∆p is the measured pressure drop over a pipe length L. In our experiments
pressure measurements were taken at a distance of 28 m and 30.5 m from the pipe
entrance from which fM could be computed with the help of (4.1). For the Hagen–
Poiseuille flow the relationship between fM and Re is fM = 64/Re. We should note
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Figure 6. (a) Streamfunction of the secondary circulation and
(b) axial velocity contours at Re = 26 500.

here that this equation is valid only for fully developed pipe flow. When the entrance
length before the pressure measurements is not long enough, a higher value of fM
must be expected.

The observations for fM are plotted in figure 7 together with the results of our
numerical computations and the result for Hagen–Poiseuille flow. It is seen that at high
Reynolds numbers, say Re > 10 000, both the observations and computations deviate
from the line fM = 64/Re. At still larger Reynolds numbers, i.e. at Re > 14 300, the
flow in the pipe facility can no longer be considered as fully developed and beyond
this value the observations are indeed seen to deviate from the computations.
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Figure 7. Moody-diagram, friction factor fM vs. Reynolds number Re: results are given for the
experimental setup indicated as measurement and for the numerical results including the Coriolis
force indicated as Coriolis force. The lines indicated by Hagen–Poiseuille and Blasius are the
friction factors for fully developed axisymmetric pipe flow for the case of laminar and turbulent
flow respectively.

5. Conclusions
We have shown that the Coriolis force due to the rotation of the Earth can

strongly distort the laminar velocity profile in a long pipe-flow facility which uses
water as fluid. The effect is particularly pronounced at high Reynolds numbers, say
above Re = 5000. The axial velocity profile becomes strongly asymmetric and the
asymmetry increases with Re.

A linear perturbation analysis first explored by Benton (1956) and a third-order
perturbation analysis by Berman & Mockros (1984) are able to predict the distortion
of the velocity profile for low Reynolds numbers. However, at high Reynolds numbers,
say Re > 10 000, the results of these perturbation theories are no longer adequate
and a numerical computation of the full nonlinear Navier–Stokes equation is needed
to obtain good agreement with the experiments. Apart from a distortion of the axial
velocity profile, the Coriolis force also influences the friction factor. Also here excellent
agreement is found between the measurements and the numerical computations up
to a value of the Reynolds number Re ' 14 300. Beyond this value the flow in our
facility can no longer be considered as fully developed.

The main point of this paper is that when studying laminar pipe flows at high
Reynolds numbers, in particular when water is used as a working fluid, one should
be aware of a possible effect of the Coriolis force due to the Earth’s rotation. This
perhaps surprising result, that a small influence such as the Earth’s rotation can have
such a large effect, is due to the fact that the flow in a long pipe is governed by a
force equilibrium and inertia does not play a role. As kinematic viscosity is in general
small it is clear that even to balance such a small force as the Coriolis force a large
deviation of the velocity profile is needed. Put in other words the effect of the Coriolis
force in a fully developed pipe flow scales with the Ekman number which depends
on the kinematic viscosity. A consequence of this explanation is that the distortion is
larger, at given Re, when the kinematic viscosity is smaller. For instance the effect is
larger for water than for air.
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It is perhaps superfluous to mention that, in practice, pipe flows at high Reynolds
numbers, i.e. Re>2 000, are in general turbulent. In case of a fully developed turbulent
pipe flow, the ν in (3.3) should be replaced by the effective (eddy) viscosity which
is by definition much larger than the kinematic viscosity of the fluid. Therefore the
effect reported in this study will not appear. Another way of looking at this result
is by realizing that in a turbulent flow the eddy viscosity K can be estimated as
K ' u` where u and ` are a characteristic velocity and length scale, respectively.
If we substitute this estimate for K into (3.3) we obtain (3.2) in terms of u and `.
This means that in a turbulent flow the Rossby number is the proper parameter
rather than the Ekman number and this is consistent with the fact that turbulence,
in particular with respect to the large scales of motion, is dominated by inertia. In all
turbulent engineering flows the Rossby number based on the Earth’s rotation is very
large so that the effect of the Earth’s rotation is negligible.

Dr ir. A. A. Draad received financial support from Shell Research. Both authors
thank Professor P. Bradshaw for the careful reading of the first manuscript.
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