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Abstract

The data storage capacities of modern process automation systems have grown rapidly. Nowadays, the systems are able
to frequently carry out even hundreds of measurements in parallel and store them in databases. However, these data are
still rarely used in the analysis of processes. In this article, preparation of the raw data for further analysis is considered
using feature extraction from signals by piecewise linear modeling. Prior to modeling, a preprocessing phase that
removes some artifacts from the data is suggested. Because optimal models are computationally infeasible, fast
heuristic algorithms must be utilized. Outlines for the optimal and some fast heuristic algorithms with modifications
required by the preprocessing are given. In order to illustrate utilization of the features, a process diagnostics frame-
work is presented. Among a large number of signals, the procedure finds the ones that best explain the observed
short-term fluctuations in one signal. In the experiments, the piecewise linear modeling algorithms are compared using
a massive data set from an operational paper machine. The use of piecewise linear representations in the analysis of
changes in one real process measurement signal is demonstrated.

Keywords: Piecewise Linear Modeling; Preprocessing; Process Analysis; Process Data; Time Series

1. INTRODUCTION

Analysis, supervision, and control of the tasks of a large-
scale industrial process are often complicated either by par-
tially unknown dependencies within the process or by
incomplete understanding of the process behavior due to
many factors that affect it. On the other hand, the processes
of today are equipped with many sensors that frequently
carry out measurements from the process with high sample
rates and store them in databases of the automation sys-
tems. The data histories may even be years long, and they
are typically rarely utilized~Wang, 1999!.1 The research
reported in this article aims at making use of such data in
the supervision and analysis of processes. Exploitation of
the databases requires proper preprocessing, feature extrac-
tion, and analysis methods. In this paper we mainly focus

on preprocessing and feature extraction, but we also de-
scribe an analysis procedure for process diagnostics that
can utilize the features.

As many process signals contain little essential informa-
tion, they can be analyzed more efficiently by describing
them in a more compact form. Several possible ways to
obtain simplified representations for process data have been
reported in the literature. Filtering methods~Love & Si-
maan, 1988! and multilayer perceptron networks~Ren-
gaswamy & Venkasubramanian, 1995! have been used to
decompose process signals into primitives for syntactic pat-
tern recognition. Other alternatives include triangular epi-
sodes~Cheung & Stephanopoulos, 1990! and multiscale
representation using wavelet transform~Bakshi & Stepha-
nopoulos, 1994!. Wavelets have been found to be especially
useful in many tasks such as process diagnosis~Vedam &
Venkatasubramanian, 1997; Chen et al., 1999!, analysis and
display of data~McLeod et al., 1998!, and data compres-
sion~Nesic et al., 1996!. The wavelet transform produces a
multiscale representation of data that has good localization
in both time and frequency. Thus, it is well suited for mod-
eling process data that typically contain events on multiple
scales.
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1However, one has to be careful in the analysis of process data: if the
process has been modified, the dependencies may also have changed and
data recorded before the changes have became useless.
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Another characteristic feature of process data is that they
usually contain many measured variables, that is, the di-
mensionality of the data is high. On the other hand, the
variables are usually highly dependent and dimension re-
duction without significant loss of information can be car-
ried out. The variables resulting from dimension reduction,
so-called latent variables, are traditionally obtained using
principal component analysis~PCA! or partial least squares
~PLS!. Both methods use second-order statistics of the data
in the dimension reduction and produce orthogonal latent
variables that are linear combinations of the original ones.
PCA treats all the variables equally and performs dimen-
sion reduction that minimizes loss of total data variance.
PLS is closely related to PCA, but it seeks to maximize
covariance between input and output variables instead. For
a survey of PCA and PLS techniques for process data, see,
for example, Kourti and MacGregor~1995!. PCA can also
be used to monitor a single measurement signal in multiple
scales using the wavelet transform~Bakshi, 1999; Zhang
et al., 1999!. A new and emerging technique for computa-
tion of latent variables is independent component analysis
~ICA!, which finds latent variables that are, according to
the name of the method, independent of each other. For a
survey on ICA, see Hyvärinen~1999! and for an illustration
of using ICA for process data, see Li and Wang~2002!.
After dimension reduction of data using PCA, PLS, or ICA,
any available method can be used to compute a simplified
representation of the latent variables. In that case, the amount
of data is reduced in two different ways: first the dimension
is reduced, and then simplified representations are com-
puted for the latent variables.

The simplification method considered in this paper is
piecewise linear modeling of signals. In the modeling, the
time axis is divided into segments of varying size and each
signal segment is modeled using a linear model of its own.
Polynomials of any degree can naturally be used, but the
first-order polynomial is sufficient to depict the phenomena
of process data that are typically of interest: impulses, ramps,
and steps. The piecewise linear modeling approach is sim-
ple and computationally efficient, and it also makes it pos-
sible to easily ignore periods that contain faulty data. The
last property is a necessity in real-world applications; for
many other methods mentioned above, dealing with such
data is not straightforward. Further, piecewise linear mod-
eling can also be used to obtain signal representation in
many resolutions by using different numbers of linear mod-
els~segments! in the signal representation. However, in this
case the concept of resolution is different from scale in the
wavelet transform. The piecewise linear modeling finds the
underlying trend in data by optimizing a global error func-
tion in the time domain whereas in the wavelet transform
time and frequency axes are both divided in multiple levels
to obtain the simplified representation.

The two most commonly used error norms in piecewise
linear modeling areL2 and L`. In the former case, the
optimal algorithm is given in Bellman~1961! and in the

latter case in Imai and Iri~1986!. Due to the fact that in our
application we are mainly dealing with noisy signals, theL2

norm is used. Because the computation time of the optimal
solution in theL2 norm case is quadratic with respect to the
number of samples in the time series, the algorithm is com-
putationally too heavy for a very long series. During the
past decades, several fast heuristic methods have been pro-
posed to overcome the problem~Cantoni, 1971; Pavlidis,
1973, 1974; Wu, 1984; Keogh & Smith, 1997; Guralnik &
Srivastava, 1999; Himberg et al., 2001!.

Piecewise linear modeling is closely related to the change
detection problem~Basseville & Nikiforov, 1993! that is
typically encountered in on-line applications. A change in a
signal is, for example, a symptom of a fault in a machine.
Another related application is signal compression, which is
widely used, for instance, in medical applications~Konstan-
tinides & Natarajan, 1994; Nygaard et al., 2001!. Feature
extraction by piecewise linear modeling can be seen as sig-
nal compression in which noise and irrelevant minor vari-
ations are discarded but all the essential signal change points
are retained as faithfully as possible. To assure this, the
signals are “oversegmented” by using more segments than
necessary to depict the main characteristics of the signal.
Selection of the number of segments is usually based ona
priori information on the nature of the signal.

In this article, fast heuristic methods for piecewise linear
modeling of signals are considered. Typically, process mea-
surement signals contain values that are either not available
or known to be invalid based on some external information.
Still, little attention has been paid to modeling such data.
For instance, this aspect has not been extensively consid-
ered in any of the works mentioned above.

An important contribution of this paper is a detailed de-
scription of all the operations that are required to build a
piecewise linear model for a signal, which may contain
missing and erroneous measurements. The paper starts with
a novel preprocessing scheme in which the artifacts men-
tioned above can be dealt with in an effective manner. Then,
a number of existing segmentation algorithms are reviewed
and outlined. For each of these, modifications due to deal-
ing with imperfect data are pointed out. Also, fast compu-
tation of the line fit and error for an arbitrary segment in
constant time is described in detail. In order to shed some
light on the analysis methods, use of the piecewise linear
models in process diagnostics using subsequence matching
is considered. A novel framework for the discovery of de-
pendencies in process data is presented.

In the experiments, a large data set from an operational
paper machine with about 600 time series~100,000 points
each! is used. The objective is to find out which piecewise
linear modeling algorithm is best suited for the data and
how close in accuracy to the optimal solution the heuristic
algorithms can get. An example of process diagnostics using
piecewise linear models is also presented.

The rest of the paper is organized as follows. Section 2
includes a detailed description of the preprocessing scheme.
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Piecewise linear modeling of preprocessed data is consid-
ered in Section 3. Section 4 presents the proposed process
diagnostics procedure. In Section 5, experiments using the
real-world data set are reported. Section 6 summarizes the
paper and contains conclusions based on the results.

2. PREPROCESSING OF MEASUREMENT
SIGNALS

A time series~signal! is denoted here byx~1!, x~2!, . . . ,x~N!.
Typically, a measurement signal obtained from a real indus-
trial process contains two kinds of defects: erroneous and
missing values. In order to find a proper piecewise linear
model for the signal, it is sensible to ignore these anomalies
by removing them from the signal before modeling. How-
ever, the time indices of the removed regions need to be
stored, because they are needed when the model is used
later. The phases of preprocessing that carry out data cleans-
ing are presented in Figure 1.

In phases 1 and 2, erroneous segments are determined
and removed from the data. In practice, it is usual that part
of the values are missing or some existing values are known
to be invalid based on available external information. In
process data, the former may be due to a fault in the data-
base system that stores the data. A simple example on the
latter is “jamming” of a sensor reading to a constant value,
which may be a consequence of breakdown of a measure-
ment sensor.

In phase 3, the regions removed in phase 2 are reconsid-
ered. If there is a reason to believe that the signal properties
have changed during a removed region, a discontinuity point,
or fixed break point~T fix !, is set in the time series at the last
valid point before the removed region. A fixed break point,
which may not be moved later in the piecewise modeling
phase, permanently divides the time series intofixed seg-
ments. For example, during shutdown of a process, mea-
surement sensors are often cleaned, repaired, or calibrated,
which changes the characteristics of the device. Therefore,
it may be justified to start a new segment after the shut-
down. Another possible criterion for setting a fixed break
point is a simple heuristic: if the length of the removed
segment exceeds some predefined threshold, a break point
is set.

In phase 4, fixed segments that consist of less than 4
points are removed, because they cannot be further divided
into two linear segments. Also, the fixed segments that can
be perfectly modeled using a single line are removed in
phase 5.

Finally, in phase 6, the time indices are adjusted. At this
point we change the notation so that the number ofremain-
ing samples in the time series is from now on denoted byN.
Also, the time indices of thenew, preprocessed time series
are denoted byt, t 51, . . . ,N and theold, original values by
t '~1!, . . . , t '~N!. The number of fixed break points~which is
equal to the number of fixed segments! is denoted byk' and
the fixed break points byT1

fix , . . . ,Tk '
fix .

Figure 2 shows a toy example of the preprocessing pro-
cedure. In phases 1 and 2, the missing values at time in-
stances 6–7 and 11 and “jammed” values at time instances
15–17 are detected and deleted. In phase 3, removal of two
successive points is considered to produce a fixed break
point; two break points are set at time instances 5 and 14. In
phase 4, the short segment at the time instances 18–20 is
removed. In phase 5, nothing is done, because no linear
segments exist. In phase 6, the time indices are adjusted:
the original time labelst '~t ! of the remaining samples are
shown above the preprocessed signal in Figure 2. Below
the figure, the new time labelst are shown. The remaining
signal consists of two fixed segments, intervals 1–5 and
8–14 of the original signal.

3. PIECEWISE LINEAR MODELING OF
PREPROCESSED SIGNALS

In piecewise linear modeling, the objective is to divide the
time series intok separate segmentsn 5 1, . . . , k, and ap-
proximate each of these by a linear model

[xn~t ! 5 an t 1 bn. ~1!

Thus, the model consists of time indices of the last samples
of the segmentsTn ~i.e., break points! and slope~an! and
constant terms~bn! for each segment. It is assumed that the

Fig. 1. Phases 1–6 of the preprocessing from original~raw! data to pre-
processed data.

Fig. 2. The original signal~top! and the preprocessed signal~bottom!
with corresponding old time labels on top and new time labels at the
bottom. The two thick lines denote the fixed break points.
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time series is corrupted by i.i.d. additive Gaussian noise
with zero mean. Thus, given the break points, minimization
of the total error~in this notationT0 5 0!,

Etot
k 5 (

n51

k S (
t5Tn2111

Tn

@x~t ! 2 ~an t 1 bn!# 2D, ~2!

gives the maximum likelihood estimates for the line pa-
rameters~Bishop, 1995!. Fast computation of the error
and line parameters for an arbitrary segment in constant
time after one pass through the time series is described in
Appendix A. However, now we concentrate on the segmen-
tation algorithms, which determine the positions of the
break points.

3.1. Segmentation algorithms

Below, the time series segmentation algorithms are pre-
sented and outlined. In each case, first the baseline algo-
rithm is introduced and then the required modifications due
to fixed segments produced by the preprocessing phase are
described.

3.1.1. Optimal algorithm

The optimal piecewise linear model can be computed
using the well-known dynamic programming principle~Bell-
man, 1961!. Later, the same approach was used in, for ex-
ample, segmentation of speech~Xiong et al., 1994; Prandoni
et al., 1997! and mobile phone data~Himberg et al., 2001!.
The computational complexity of the algorithm is of order
O~kN2!, wherek is the number of segments andN is the
number of samples in the time series. The algorithm is in-
cremental: before a time series is divided intok segments,
all divisions to 1, . . . ,k 2 1 segments have to be computed.

Baseline algorithm

1. Setl 5 1.

2. Compute optimall 1 1 segmentations for all seg-
ments 4# t , N:

Eopt
l11~1, t ! 5 min

2#T#t22
$Eopt

l ~1,T ! 1 E~T 1 1, t !%.

For eacht, store the break pointT, error Eopt
l11~1, t !

and line fit parameters.

3. Setl 5 l 1 1. If l . k, quit; otherwise, go to 2.

Modifications due to fixed segments.The dynamic pro-
gramming principle needs to be applied twice. On one hand,
it is used to optimally divide each fixed segment into sub-
segments; on the other hand, it is used to find optimal seg-
mentation for a group of adjacent fixed segments.

Let us assume that a time series has been divided intok'

fixed segments in the preprocessing and the time series is to
be divided optimally intok . k' segments.

1. Divide the first fixed segment optimally intoi 51, . . . ,
k 2 k ' 1 1 segments using the dynamic pro-
gramming algorithm. Store the corresponding costs
Eopt

i ~1, T1
fix !, line fit parameters, and break points.

2. Setl 5 2.

3. Divide thelth fixed segment optimally intoi 5 1, . . . ,
k 2 k'1 1 segments using the dynamic programming
algorithm. Store the corresponding costsEopt

i ~1, T1
fix !,

line fit parameters, and break points.

4. Compute the optimal segmentations for thel first fixed
segmentss~1, Tl

fix ! into j 5 l, . . . ,k2 k'1 l segments:

Eopt
j ~1, Tl

fix !

5 min
l#m#j

$Eopt
m21~1,Tl2i

fix ! 1 Eopt
m2l11~Tl2i

fix 1 1,Tl
fix !%.

Store the corresponding costsEopt
j ~1, Tl

fix !, line fit pa-
rameters, and break points.

5. Setl 5 l 1 1. If l . k 2 k', quit; otherwise go to 3.

When there are fixed break points, finding the optimal so-
lution is actually speeded up, because the search space is
smaller. It is not difficult to conclude that the speed-up is
proportional to the number and length of the fixed seg-
ments and it is at most the number of fixed segments. As far
as we know, the algorithm above has not been suggested
elsewhere.

3.1.2. Fast heuristic algorithms

The computation time of the optimal solution is intoler-
able when the number of points in the time series is large.
In the following, four fast heuristic algorithms that typi-
cally end up in a local minimum of the error function@Eq.~2!#
are outlined. All the algorithms are deterministic and have
computational costs that are linear with respect to the length
of the time series.

Uniformly spaced break points.The simplest way is to
select the break points uniformly in time. This choice is
naturally very fast but typically produces poor results, be-
cause it completely ignores the structure of the time series.

Baseline algorithm.Formally, computation of break points
can be written2 as

Tn 5 n {


N

k 
, n 5 1, . . . ,k 2 1; Tk 5 N.

The model is complete after each segment is computed
from a linear model.

Modifications due to fixed segments.In the presence of
fixed segments, one can think of several strategies to set
the break points. We suggest that the break points should

2Here{x} denotes the greatest integer that is#x.
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be uniformly set in the sequence 2, . . . ,T1
fix 2 2, T1

fix 1
2, . . . ,T2

fix 2 2, . . . ,Tk '21
fix 1 2, . . . ,N 2 2, which guarantees

that no segment with less than two points can result and
no break point can overlap with a fixed break point.

Top-down.The top-down approach used in this article
was suggested in Guralnik and Srivastava~1999!. The al-
gorithm starts by splitting the whole time series optimally
in two segments. Then, the segment optimal split of which
most reduces the total error is split untilk, the desired num-
ber of segments, are obtained.

Baseline algorithm

1. Setl 5 1.

2. Split the segmenti optimal split of which~at pointT !
most decreases the error:

i 5 arg max
1#i#l

$Ei 2 @E~Ti21 1 1, T ! 1 E~T 1 1, Ti !#%.

Discard the old errorEi and line fit parameters. Store
the new ones with the new break pointT.

3. Setl 5 l 1 1. If l , k, go to 2; otherwise, quit.

Modifications due to fixed segments.At the first step of
the algorithm,l is set tok' ; the segmentation begins with
fixed segments as initial segments.

Bottom-up. In the bottom-up approach, the time series is
first divided into segments of length 2.~If the number of
points in the time series is odd, the length of the last seg-
ment is 3.! At each step of the algorithm, two of the existing
segments are merged untilk, the desired number of seg-
ments, has been reached. A model similar to the one de-
scribed here was used in Keogh and Smyth~1997!.

Baseline algorithm

1. Set number of segmentsl 5 {N02} .

2. Initialize the break points in such a way that each
segment contains two samples:Tn52 { n, n51, . . . ,l 2
1; Tl 5 N. SetEn 5 0, n 5 1, . . . , l.

3. Merge the two segmentsi andi 11 that least increase
the total error:

i 5 arg min
1#i#l21

$E~Ti21 1 1,Ti11! 2 ~Ei 1 Ei11!%.

Discard thei th break pointTi , old errors~Ei andEi11!,
and line fit parameters ofi th and~i 1 1!th segments
and store the new ones.

4. Setl 5 l 2 1. If l . k, go to 3; otherwise, quit.

Modifications due to fixed segments.Initially, each fixed
segment is divided into segments of length two. Thus, all
the segments that have an odd number of samples will thus
have three points in the last initial segment. Also, it has to
be checked that two segments on both sides of a fixed break
point are never merged.

Iterative0Split-and-Merge Approach.Some quite simi-
lar iterative and split-and-merge approaches have been sug-
gested in the literature~Pavlidis, 1974; Hawkins, 1976;
Himberg, 2001!. We adopted the basic idea of the global
iterative replacement~GIR! algorithm proposed in~Him-
berg, 2001!. The main difference is that, in the original
GIR, the break points to be removed were selected in ran-
dom or sequential order. We always remove the one that
gives the best reduction in model error. At each iteration of
the algorithm, the break point that is least necessary in the
sense of modeling error is moved to a place where the ben-
efit is greatest.

Baseline algorithm

1. Initialize thek break points.

2. Select the break pointTi , the removal of which pro-
duces the least increase in the total error:

DEremove5 min
i

$~Ei 1 Ei11! 2 E~Ti21 1 1, Ti11!%.

3. Select the segmentj, the optimal split of which most
decreases the total error:

DEsplit 5 min
j

$Ej 2 @E~Tj21 1 1, T ! 1 E~T 1 1, Tj !#%.

4. If DEremove1 DEsplit # 0, quit. Otherwise, remove the
break pointTi selected at step 2 and split the segment
j that was selected at step 3. Update the errors and line
fit parameters and go back to 2.

Modifications due to fixed segments.It is necessary to
check that the GIR does not remove a fixed break point.

4. UTILIZATION OF THE MODEL

The piecewise linear models have three advantages in analy-
sis of process data.

1. Data compression.Each segmentn requires three pa-
rameters: break~or end! point ~Tn!, slope term~an!,
and constant term~bn!. Thus, memory requirement of
a model for one signal is 3k, wherek is the number of
segments. For example, in our application this aspect
is remarkable, because after piecewise linear model-
ing it is possible to keep all the models in the main
memory of a standard PC at the same time.

2. Removal of noise and irrelevant minor variations in
the signals.

3. Faster computation.If the number of segments is small
with respect to the number of data points, many sim-
ple operations like computation of the average of a
segment can be speeded up.

In the following section, a procedure for process diag-
nostics is roughly described. It can be used either to find
signals that best explain variations in one signal of interest
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or to indicate which signals react to a change in the signal
of interest. Even though in all formulas and notations the
values of original time series are used, it is a very straight-
forward process to use the approximations given by the
piecewise linear models instead.

The whole procedure is based on matching of sub-
sequences and is aimed at the discovery of novel linear
relationships in the data. Thus, in the matching, there is a
transformation where shifting and linear scaling of signals
is allowed~Chu & Wong, 1999!. However, the concept can
easily be used as well with other kinds of transforms that
are suggested in the literature, for example, the discrete
Fourier transform~Faloutsos et al., 1994!.

4.1. Process diagnostics procedure

The starting point of the analysis is a short-term fluctua-
tion, for example, a change of level, in a process signal of
interest, which is denoted here byx0~t !, t 5 1, . . . ,N. The
six phases of the diagnostics procedure are shown in Fig-
ure 3. Three of them require interaction with the user. More
detailed descriptions of the steps of the analysis are given
below.

The query sequenceq0 5 @x0~t0!, . . . ,x0~t0 1 L 2 1!# T

that contains the interesting pattern is extracted manually
from the whole signal in phase 1.3 The offset ofq0 is shifted
to zero. The corresponding zero-mean sequence is denoted
by Iq0.

In phase 2, sequences of lengthL that are similar toq0 in
the sense of Euclidean distance are looked for inx0~t !. The
search strategy is such that first the best matching sequence
in the whole signal is located and labeled as used. After
this, no other query sequence may overlap with this se-
quence. Then, the best matching sequence in the remaining
signal is located and so on, until a continuous sequence of
lengthL that consists of unoccupied points can no longer be

extracted. Formally, the starting point of themth query se-
quence is computed by

tm 5 arg min
t

$7 Iq0 2 w0,m { Iq72%, ~3!

where Iq is the vector@x0~t !, . . . ,x0~t 1 L 21!# T with offset
shifted to zero and7{72 denotes the Euclidean norm. The
vector Iq that gives the minimum of Eq.~3! is denoted by
Iqm. If one is interested in changes with the same scale as
Iq0, the scaling factorw0,m is set to 1. Settingw0,m to

Iq0
T Iqn

Iq0
T Iq0

finds similar changes on different scales and inverse se-
quences, becausew0,m may be negative. After all possible
M query sequences have been found, they are all concat-
enated into aquery vectorQ 5 @ Iq0

T Iq1
T {{{ IqM

T # T.
In phase 3, theQ is pruned. In practice all theM query

sequences ofQ are not appropriate matches. Often, only
the best ones are worth considering. Also, a small distance
between two sequences does not necessarily agree with the
human intuition of similar sequences. Therefore, feedback
from the user is used to select only some of the query se-
quences for further inspection. The indices of the selected
sequences are denoted byc~1!, . . . ,c~M ' !. The new, pruned
query vector is thusQ' 5 @ Iq0

T Iqc~1!
T {{{ Iqc~M ' !

T # T.
In phase 4, similarities between the query vector and the

corresponding parts of all the other signals are computed.
The phase starts with selection of minimum~dmin! and max-
imum delay0advance~dmax! values. If the goal is to find a
reason for a change in a signal, one should look back in
time and setdmax to 0 anddmin to some suitable negative
value that is the longest possible delay from occurrence of
any event to the detected change. Correspondingly, if one is
interested in finding signals where changes inx0~t ! are re-
flected,dmin should be set to 0 anddmax to some suitable
positive value. Naturally, selection ofdmin and dmax de-
pends on the application.

Next, all the other signalsxi ~t ! ~where i 5 1, . . . ,P de-
notes the number of the signal! are considered one at a
time. Thematch vectorsof the i th signal are defined by

Sd
i 5 @ Is0,d

T w0,c~1! { Isc~1!,d
T {{{ w0,c~M ' ! { Isc~M ' !,d

T # T,

dmin # d # dmax.

The match vector consists of concatenatedmatch sequences

sn,d
i 5 @xi ~tn 1 d! {{{ xi ~tn 1 d 1 L 2 1!# T;

the notation Isn,d
i denotes the sequencesn,d

i with offset
moved to zero.

Now the similarity, that is, the distance between the query
vector and the match vector can be computed. It is given by

dist~Q',Si ! 5 min
dmin#d#dmax

$7Q' 2 wQ ',Sd
i { Sd

i 72%, ~4!
3In order to keep the notation simple, vector notation is used in this

section for sequences.

Fig. 3. The six phases of the process diagnostics procedure. Phases 1, 3,
and 5 require user interaction and are emphasized using a thick line.
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where

wQ ',Sd
i 5

Q'TSd
i

Q'TQ'

is a scaling factor that minimizes the distance betweenQ'

and Sd
i . The value ofd that minimizes the distance is an

estimate of the delay or advance between events inQ' and
Si .

In phase 5, the results are shown to the analyst. The
matches with the smallest distance between the match and
query are shown first. At this stage it may become apparent
that, for instance, based on some external information, some
query sequences should be deleted and0or added. This is
illustrated in Figure 3 by an arrow that returns to the selec-
tion of query sequences; the diagnostics procedure is thus
iterative. Finally, in phase 6, conclusions are made. It is
possible that the obtained results give rise to consideration
of some other signal and a return to the beginning of the
whole diagnosis procedure.

5. EXPERIMENTS

The experimental part is organized in the following way.
The data set used in the experiments is described in Sec-
tion 5.1. The evaluation of the performance of the piece-
wise linear modeling algorithms is reported in Section 5.2.
The section is further divided into two parts: comparison of
the heuristic algorithms with each other and comparison of
the heuristic algorithms with the optimal solution by dy-
namic programming. The objective of the former test was
to find out which method or methods are best suited for the
data set used. The latter test was carried out to find out how
close to the optimal solution the heuristic algorithms could
get; unfortunately, for computational reasons only a frac-
tion of the whole data set could be used in that test. In the
end of the experimental part, in Section 5.3, an example of
process diagnostics procedure~described in Section 4.1! in
which the piecewise linear approximations were utilized is
presented.

5.1. Data set

In the experiments, a massive real-world data set that con-
sisted of 629 signals with 107,029 points each was used.
Each signal was acquired from a database of a paper ma-
chine using 10-min resolution. Hence, the data described
the behavior of the machine during about 743 days, which
is .2 years. In order to get an impression of the signals,
parts of 10 different signals that are typical of the process
are shown in Figure 4.

Before the experiments could be carried out, the data had
to be preprocessed. Initially, empty signals and signal du-
plicates were removed. Then, the signals were prepro-
cessed as presented in Section 3: all segments that had six
or more successive constant values or three or more succes-

sive missing values were removed from the signals. Also,
signals with less than 10,000 valid points were left out of
the experiments. Finally, there were 489 signals left.

5.2. Evaluation of the piecewise linear modeling
algorithms

Two things that were of interest for each algorithm were
accuracy and computation time, which are both important
when implementation of the algorithms is considered. The
accuracy was measured by means of modeling error, that
is, the sum of squared errors@Eq. ~2!# and the computation
time as CPU seconds. All the tests were carried out in
Matlab 5.3~The MathWorks, Inc., 1999! using a Compaq
AlphaServer GS160. Because the implementations were
not aggressively optimized, all the CPU times presented
below should be considered merely indicative rather than
as absolute truth.

In all experiments, the average number of segments per
100 signal points~which is referred to below asresolution
of a model! was varied from 1 to 10. Even though algo-
rithms whose error functions also contain a penalty term for
model complexity~Djurić, 1994; Oliver et al., 1998! exist,
we did not try to determine the “correct” number of seg-
ments. Our goal was only to reduce the number of data
points fromN to k to make it possible to use computation-
ally demanding analysis methods after feature extraction.

5.2.1. Comparison of the heuristic algorithms

The heuristic algorithms were compared with each other
using the whole data set. First, the resolution was set to 1.
Then, the signals were modeled using uniform, bottom-up,

Fig. 4. Ten examples of the signals used in the experiments. Each plot
contains 1000 points from one signal.
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and top-down algorithms. The obtained models were also
fine-tuned using the GIR algorithm. Thus, six models for
all signals were computed. For each signal, the minimum
error ~Emin! was determined among the six errors obtained
by different algorithms. Then, the six errors were scaled in
the following way~in order to make all the errors between
different signals comparable!:

Erelative5
E 2 Emin

Emin

. ~5!

The same procedure was repeated using the next resolution
until all resolutions were used. Histograms of the relative
errors of all signals for all methods and resolutions are shown
in Figure 5.

For instance, let us consider resolution 3, which is the
third row from the top. The histogram in the sixth column

of that row shows relative errors of all signals for the
bottom-up algorithm fine-tuned by GIR. The horizontal axis
of the plot denotes the 10 bins of the histogram, and the
vertical axis is the number of signals in the bins. Thus, the
more to the left the histogram is concentrated, the better is
the result. In this case the relative error was less than 0.1 for
almost all signals. The upper quantity in the plot shows that
the minimum error for 56% of all signals was achieved
using the bottom-up method fine-tuned by GIR. The lower
quantity ~0.00! is the median of all relative errors for all
signals in this histogram. Both numbers are highlighted,
because, of the two measures, the bottom-up algorithm fine-
tuned by GIR was the best.

The bottom-up algorithm fine-tuned by GIR consistently
produced the best results for most signals in all resolutions.
Also, the GIR remarkably improved the results for all three
algorithms in all resolutions. As the resolution increased
~i.e., the number of segments was increased!, the top-down
and bottom-up algorithms clearly outperformed the uni-
form approach.

In Figure 6, the total computation times for each method
and resolution for the whole data set are shown. The
bottom-up algorithm is clearly slower than the top-down,
because the tested resolutions were such that the computa-
tional effort required by the bottom-up algorithm was about
10 times that required by the top-down algorithm~without
fine-tuning by GIR!. The uniform approach is naturally fast.
However, because of poor initial placement of the break
points, the GIR has to be run for many iterations, which is
computationally expensive.

5.2.2. Comparison of the heuristic algorithms with the
optimal solution

In the second experiment, heuristic algorithms were tested
against the optimal solution. Even though for computa-
tional reasons, only the first 1000 samples of each signal

Fig. 5. A comparison of the fast heuristic algorithms. Each plot is a his-
togram of relative errors that fall within the range@0, 1# for all signals
using a fixed method at a fixed resolution. Note that in some cases a large
part of the mass of the histogram is outside the plotted range@0, 1# ,
because for some signals the relative error is.1. The numbers inside the
graphs indicate the performance of the method at that resolution: the upper
is the percentage of all signals for which the method was best, and the
lower is the median of all relative errors in the histogram. At each resolu-
tion, the quantities of the best method are highlighted.

Fig. 6. The total computational costs for each method and resolution for
the whole data set~CPU hours!.
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could be used, the test was run in order to attain some
evidence of the reliability of the heuristic algorithms. In
this experiment the number of signals was 467, less than in
the previous experiment. We had to drop out 22 more sig-
nals because they had so many fixed segments in their first
1000 points that it was not possible to run the test using all
the different resolutions for the uniform algorithm.

Figure 7 shows the medians of the relative errors over all
signals for all methods and resolutions. For each signal,
they were computed with Eq.~5! using the optimal result
obtained by dynamical programming as the minimum.

Even though the best method in the previous experiment,
the bottom-up algorithm~fine-tuned using GIR!, was not
the best one in any case, it performed steadily: it was al-
ways close to the best method at every resolution.

Another remarkable thing is that the absolute value of
the median of the relative error between the optimal solu-
tion and the best heuristic algorithm is not large: depending
on the resolution, it varies from about 0.01 to 0.1, which is
1–10%. In light of these results, the performance of the
heuristic algorithms seems to be quite satisfactory.

Finally, in Figure 8, the total computational costs for
each method and resolution are shown. It is easy to see why
the test was limited to 1000 first points of each signal only:
the computation time for the optimal solution was about
300 min. Even for as few as 10,000 points, the time would
have been approximately 200 days!

5.3. An example of process diagnostics

In this section, a brief example of an analysis described
earlier~Section 4.1! is presented using all the same signals
that were used in the tests above. The signals were prepro-
cessed in a manner similar to that used in the previous
experiment and modeled using a bottom-up algorithm fine-
tuned using GIR, which was found to be the best among the
different methods in the comparison using the full data set.
The resolution was selected so that it corresponds to a 4-h
run of the paper machine: the average number of samples in
one segment was 24. The size of the original data set~which
included all signals! was about 500 MB, which was dropped
to about 65 MB in the modeling.

In phase 1, a query sequence~q0! of 80 points represent-
ing a level change in a signal of interest was extracted man-
ually. This first query signal is shown in Figure 9.

Next, in phase 2, similar changes were located in the
same signal. Only changes on the same scale were the ob-
ject of a search. Thus, the weights~w0,m! in Eq.~3! were all
set to 1. After the search, the match vector~Q! consisted of
M 5 1057 sequences.

In phase 3, the query vector was pruned. An illustration
of the pruning is shown in Figure 10. The first query se-
quence Iq0 with 24 best matchesIq1, . . . , Iq24 are shown to the
user. Of these, the three sequencesIq1, Iq10, and Iq22 were
considered as appropriate matches and selected for further
inspection. Thus, the pruned query vector wasQ'5 @ Iq0

T Iq1
T

Iq10
T Iq22

T # T.

Fig. 7. The medians of the relative errors over all signals for different
methods and resolutions. The results obtained by the uniform algorithm
are significantly larger than all the others and are not shown.

Fig. 8. The total computational costs for each method and resolution~CPU
minutes!. Note that the scale of the vertical axis is logarithmic. Fig. 9. A query sequence that contains a~level! change of interest.
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In phase 4, we searched for the signals that were poten-
tially responsible for the change. The value ofdmin was set
to 212 ~i.e., 2 h! and dmax was set to 0. The distances
between the query vectorQ' and match vectors of all the
other 488 signalsSi, i 5 1, . . . , 488were computed using
Eq. ~4!.

An illustration of the query sequences and corresponding
match sequences of a good match are shown in Figure 11.
The delay that gave the best similarity was22. That is, the
change of interest occurs in the signal of interest two time
instances after a change in the match signal.

6. SUMMARY AND CONCLUSIONS

This paper presents a detailed description of all the oper-
ations that are required in practice to build a piecewise
linear model for a real signal. A novel preprocessing scheme
that can be used to remove artifacts from process signals
was suggested first. Then, a set of existing segmentation
algorithms was reviewed and outlined; modifications re-
quired by the preprocessing to each algorithm were pointed
out. In order to give an example of analysis methods where
the piecewise linear models could be of benefit, a proce-
dure for process diagnostics using subsequence matching
was suggested.

A large experiment using real process data was carried
out to find out which one of the heuristic piecewise linear
modeling methods is best suited for the data at hand. Based
on the results, it seems evident that if one should choose
only one of the algorithms, it would be the bottom-up algo-
rithm fine-tuned with GIR. However, if enough computa-
tional resources are available, running “a committee of
segmentation algorithms” and choosing the best result is

justified: no algorithm was totally superior to the others in
all cases.

In the experiments, we also gave a simple example of
process diagnostics procedure using real data in practice. It
was demonstrated that the procedure is capable of detecting
local dependencies in process measurement signals.
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APPENDIX A: FAST COMPUTATION OF
MODEL ERROR AND LINE FIT

Error of an arbitrary segments~t0, tf ! is given by

E~t0, tf ! 5 (
t5t0

tf

@x~t ! 2 [x~t !# 2 5 ( @x~t ! 2 ~at 1 b!# 2

5 ( x2~t ! 2 2Sa( tx~t ! 1 b( x~t !D
1 a2 ( t 2 1 ab( t 1 b2~tf 2 t0 1 1!. ~A1!

Minimization ofE is straightforward: its partial derivatives
with respect to unknown line fit parametersa and b are
computed and set to zero and the equations are solved fora

Fig. 10. The pruning of the query vector. The first query sequence~“Query”!
is shown in the top left corner. Among the 24 best matches, the analyst
selects three sequences~marked with boxes! for further inspection.

Fig. 11. An illustration of a good match to the query. The top row consists
of the four query sequences, and the second row from the top shows the
corresponding four match sequences. The bottom-left scatter plot shows
the dependency revealed between the query and the match sequences. In
the plot, all the points of the query vector are plotted against the points
of the match vector. There is a clear linear dependency between the two.
The bottom-right corner shows the same type of plot of the whole signal of
interest versus all the points of the match signal. In the plot, the white box
illustrates the region where the points of the query and the match vectors
are located. The plot indicates that the local dependency revealed cannot
be observed from all of the data.

112 E. Alhoniemi

https://doi.org/10.1017/S0890060403172010 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060403172010


and b. After some calculus, the well-known least squares
estimates are obtained:

a 5

~tf 2 t0 1 1! (
t5t0

tf

tx~t ! 2 (
t5t0

tf

t (
t5t0

tf

x~t !

~tf 2 t0 1 1! (
t5t0

tf

t 2 2S(
t5t0

tf

tD2
, ~A2!

b 5
1

tf 2 t0 1 1 (
t5t0

tf

x~t ! 2 a (
t5t0

tf

t. ~A3!

Fast computation of the model parameters@Eqs. ~A2!
and ~A3!# and error@Eq. ~A1!# is crucial. All these equa-
tions can be written in terms of partial sums oft, t 2, x~t !,
tx~t !, andx2~t ! plus some operations that are independent
of data. The partial sums can be computed for an arbitrary
segment in constant time using the following cumulative
sums:

cx~t ! 5 (
i51

t

x~i ! ] (
t5t0

tf

x~t ! 5 cx~tf ! 2 cx~t0 2 1!,

cx2~t ! 5 (
i51

t

x2~i ! ] (
t5t0

tf

x2~t ! 5 cx2~tf ! 2 cx2~t0 2 1!,

ctx~t ! 5 (
i51

t

t '~i !x~i ! ] (
t5t0

tf

tx~t ! 5 ctx~tf ! 2 ctx~t0 2 1!,

ct ~t ! 5 (
i51

t

t '~i ! ] (
t5t0

tf

t 5 ct ~tf ! 2 ct ~t0 2 1!,

ct 2~t ! 5 (
i51

t

t '2~i ! ] (
t5t0

tf

t 2 5 ct 2~tf ! 2 ct 2~t0 2 1!.

In the formulas above,t 5 1, . . . ,N and cx~0! 5 cx2~0! 5
ctx~0! 5 ct~0! 5 ct 2~0! 5 0. Computation of each sum is a
one-pass operation: it is linear in time and only needs to be
done once. The memory requirement of each sum isN. For
example, the error of each segment@Eq. ~A1!# can be re-
written using the cumulative sums in the following way:

E~t0, tf ! 5 ~cx2~tf ! 2 cx2~t0 2 1!!

2 2$a@ctx~tf ! 2 ctx~t0 2 1!# 1 b@cx~tf ! 2 cx~t0 2 1!#%

1 a2 @ct 2~tf ! 2 ct 2~t0 2 1!# 1 ab@ct ~tf ! 2 ct ~t0 2 1!#

1 b2~tf 2 t0 1 1!. ~A4!

Also, the sums in Eqs.~A2! and~A3! can be rewritten in a
similar manner. The operation is very straightforward and
is therefore omitted here.
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