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Abstract

The data storage capacities of modern process automation systems have grown rapidly. Nowadays, the systems are able
to frequently carry out even hundreds of measurements in parallel and store them in databases. However, these data are
still rarely used in the analysis of processes. In this article, preparation of the raw data for further analysis is considered
using feature extraction from signals by piecewise linear modeling. Prior to modeling, a preprocessing phase that
removes some artifacts from the data is suggested. Because optimal models are computationally infeasible, fast
heuristic algorithms must be utilized. Outlines for the optimal and some fast heuristic algorithms with modifications
required by the preprocessing are given. In order to illustrate utilization of the features, a process diagnostics frame-
work is presented. Among a large number of signals, the procedure finds the ones that best explain the observed
short-term fluctuations in one signal. In the experiments, the piecewise linear modeling algorithms are compared using

a massive data set from an operational paper machine. The use of piecewise linear representations in the analysis of
changes in one real process measurement signal is demonstrated.
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1. INTRODUCTION on preprocessing and feature extraction, but we also de-
scribe an analysis procedure for process diagnostics that

Analysis, supervision, and control of the tasks of a largecan utilize the features.

scale industrial process are often complicated either by par- As many process signals contain little essential informa-

tially unknown dependencies within the process or bytion, they can be analyzed more efficiently by describing

incomplete understanding of the process behavior due tthem in a more compact form. Several possible ways to

many factors that affect it. On the other hand, the processasbtain simplified representations for process data have been

of today are equipped with many sensors that frequentlyeported in the literature. Filtering methodisove & Si-

carry out measurements from the process with high samplgmaan, 1988 and multilayer perceptron networkKfken-

rates and store them in databases of the automation sygaswamy & Venkasubramanian, 199%ave been used to

tems. The data histories may even be years long, and thejecompose process signals into primitives for syntactic pat-

are typically rarely utilizedWang, 1999 The research tern recognition. Other alternatives include triangular epi-

reported in this article aims at making use of such data irsodes(Cheung & Stephanopoulos, 1998nd multiscale

the supervision and analysis of processes. Exploitation ofepresentation using wavelet transfofBakshi & Stepha-

the databases requires proper preprocessing, feature extrampoulos, 1994 Wavelets have been found to be especially

tion, and analysis methods. In this paper we mainly focusiseful in many tasks such as process diagnOgslam &
Venkatasubramanian, 1997; Chen et al., 1988alysis and
display of data(McLeod et al., 1998 and data compres-

Reprint requests to: Esa Alhoniemi, University of Turku, DepartmentSion(l\leSiC etal., 1996 The wavelet transform prOduces a
of Information Technology, Lemminkaisenkatu 14 A, FIN-20520 Turku, multiscale representation of data that has good localization

Finland. E-mail: esa.alhoniemi@it.utu fi _ __in both time and frequency. Thus, it is well suited for mod-
However, one has to be careful in the analysis of process data: if the

process has been modified, the dependencies may also have changed £JH19 process data that typlcally contain events on multlple
data recorded before the changes have became useless. scales.
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Another characteristic feature of process data is that thelatter case in Imai and 1{iL986). Due to the fact that in our
usually contain many measured variables, that is, the diapplication we are mainly dealing with noisy signals, the
mensionality of the data is high. On the other hand, thenorm is used. Because the computation time of the optimal
variables are usually highly dependent and dimension resolution in thel, norm case is quadratic with respect to the
duction without significant loss of information can be car- number of samples in the time series, the algorithm is com-
ried out. The variables resulting from dimension reduction putationally too heavy for a very long series. During the
so-called latent variables, are traditionally obtained usingrast decades, several fast heuristic methods have been pro-
principal component analys(®CA) or partial least squares posed to overcome the problef@antoni, 1971; Pavlidis,
(PLS). Both methods use second-order statistics of the datd973, 1974; Wu, 1984; Keogh & Smith, 1997; Guralnik &
in the dimension reduction and produce orthogonal latenSrivastava, 1999; Himberg et al., 2001
variables that are linear combinations of the original ones. Piecewise linear modeling is closely related to the change
PCA treats all the variables equally and performs dimen-detection problen{Basseville & Nikiforov, 1993 that is
sion reduction that minimizes loss of total data variancetypically encountered in on-line applications. A change in a
PLS is closely related to PCA, but it seeks to maximizesignal is, for example, a symptom of a fault in a machine.
covariance between input and output variables instead. Fgknother related application is signal compression, which is
a survey of PCA and PLS techniques for process data, sewjdely used, for instance, in medical applicati¢gk®nstan-
for example, Kourti and MacGreggi995. PCA can also tinides & Natarajan, 1994; Nygaard et al., 200Eeature
be used to monitor a single measurement signal in multiplextraction by piecewise linear modeling can be seen as sig-
scales using the wavelet transfoBakshi, 1999; Zhang nal compression in which noise and irrelevant minor vari-
et al., 1999. A new and emerging technique for computa- ations are discarded but all the essential signal change points
tion of latent variables is independent component analysiare retained as faithfully as possible. To assure this, the
(ICA), which finds latent variables that are, according tosignals are “oversegmented” by using more segments than
the name of the method, independent of each other. For mecessary to depict the main characteristics of the signal.
survey on ICA, see Hyvaringi1999 and for aniillustration ~ Selection of the number of segments is usually based on
of using ICA for process data, see Li and Waf&p02). priori information on the nature of the signal.

After dimension reduction of data using PCA, PLS, or ICA, In this article, fast heuristic methods for piecewise linear
any available method can be used to compute a simplifiednodeling of signals are considered. Typically, process mea-
representation of the latent variables. In that case, the amoustirement signals contain values that are either not available
of data is reduced in two different ways: first the dimensionor known to be invalid based on some external information.
is reduced, and then simplified representations are confstill, little attention has been paid to modeling such data.
puted for the latent variables. For instance, this aspect has not been extensively consid-

The simplification method considered in this paper isered in any of the works mentioned above.
piecewise linear modeling of signals. In the modeling, the An important contribution of this paper is a detailed de-
time axis is divided into segments of varying size and eaclscription of all the operations that are required to build a
signal segment is modeled using a linear model of its ownpiecewise linear model for a signal, which may contain
Polynomials of any degree can naturally be used, but thenissing and erroneous measurements. The paper starts with
first-order polynomial is sufficient to depict the phenomenaa novel preprocessing scheme in which the artifacts men-
of process data that are typically of interest: impulses, rampgijoned above can be dealt with in an effective manner. Then,
and steps. The piecewise linear modeling approach is sime number of existing segmentation algorithms are reviewed
ple and computationally efficient, and it also makes it pos-and outlined. For each of these, modifications due to deal-
sible to easily ignore periods that contain faulty data. Theng with imperfect data are pointed out. Also, fast compu-
last property is a necessity in real-world applications; fortation of the line fit and error for an arbitrary segment in
many other methods mentioned above, dealing with suclkonstant time is described in detail. In order to shed some
data is not straightforward. Further, piecewise linear modlight on the analysis methods, use of the piecewise linear
eling can also be used to obtain signal representation imodels in process diagnostics using subsequence matching
many resolutions by using different numbers of linear mod-is considered. A novel framework for the discovery of de-
els(segmentgin the signal representation. However, in this pendencies in process data is presented.
case the concept of resolution is different from scale in the In the experiments, a large data set from an operational
wavelet transform. The piecewise linear modeling finds thegpaper machine with about 600 time ser{@90,000 points
underlying trend in data by optimizing a global error func- each) is used. The objective is to find out which piecewise
tion in the time domain whereas in the wavelet transformlinear modeling algorithm is best suited for the data and
time and frequency axes are both divided in multiple levelshow close in accuracy to the optimal solution the heuristic
to obtain the simplified representation. algorithms can get. An example of process diagnostics using

The two most commonly used error norms in piecewisepiecewise linear models is also presented.
linear modeling ard_, andL_,. In the former case, the The rest of the paper is organized as follows. Section 2
optimal algorithm is given in Bellmai1961) and in the includes a detailed description of the preprocessing scheme.
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Piecewise linear modeling of preprocessed data is consid- t=12 3 4 3 6 7 8 9 10111213 14 15 16 17 18 19 20
ered in Section 3. Section 4 presents the proposed processg,
diagnostics procedure. In Section 5, experiments using the;§a—
real-world data set are reported. Section 6 summarizes the®
paper and contains conclusions based on the results.

t=t 2 3 4 8 9 10 12 13 14
é !

2. PREPROCESSING OF MEASUREMENT § F

SIGNALS 5]
LLt=1 2 3 4 5 6 7 8 9 10 11

Atime seriegsigna) is denoted here by(1), x(2), ...,Xx(N).
Typically, a measurement signal obtained from a real indusFig. 2. The original signal(top) and the preprocessed sign@ottom)
trial process contains two kinds of defects: erroneous andith corresponding old time labels on top and new time labels at the
missing values. In order to find a proper piecewise lineaPottom. The two thick lines denote the fixed break points.
model for the signal, it is sensible to ignore these anomalies
by removing them from the signal before modeling. How-
ever, the time indices of the removed regions need to be
stored, because they are needed when the model is ussg
later. The phases of preprocessing that carry out data clean
ing are presented in Figure 1.

In phases 1 and 2, erroneous segments are determin

and removed from the data. In practice, it is usual that par Finally, in phase 6, the time indices are adjusted. At this
of the values are missing or some existing values are knOWBoint we ,change the ’notation so that the numbeenfain-

to be invalid based on available external information. Ining samples in the time series is from now on denotediby

process data, the former may be due to a fault in the dataAIso, the time indices of theaew, preprocessed time series

base system that stores the data. A simple example on tr}ﬁe denoted by t = 1,...,N and theold, original values by

latter is “jamming” of a sensor reading to a constant valuet,(l), ...,t'(N). The number of fixed break pointahich is

which may be a consequence of breakdown of a measur%-qual to the number of fixed segmerissdenoted b’ and

ment sensor. the fixed break points by ... T,

In phase 3’. the regions rem(_)ved n phase_2 are reconsi Figure 2 shows a toy example of the preprocessing pro-
ered. If there is a reason to believe that the signal properties, y re. In phases 1 and 2, the missing values at time in-

have changed during a removed region, a discontinuity pointstances 6—7 and 11 and “jammed” values at time instances
or fixed break pointT ™), is set in the time series at the last 15-17 are detected and deleted. In phase 3, removal of two
val!d point before the removed rggion. A_fixed_break pOi!’]t’successive points is considered to producé a fixed break
W:'Ch may not betlm(c)jy(e_g Iat;ehr |r;_the ple_cewr:iie(;nodelmgpoint; two break points are set at time instances 5 and 14. In
phase, permanently divides the ime series imed seg- phase 4, the short segment at the time instances 18-20 is

ments For example, during shutdown of a process, Meayamoved. In phase 5, nothing is done, because no linear

surement sensors are often cleaned, repaired, or calibrate gments exist. In phase 6, the time indices are adjusted:
which changes the characteristics of the device. Thereforqhe original time labels’(t) of the remaining samples are

it may be justified to start a new segment aftgr the Shut'shown above the preprocessed signal in Figure 2. Below
doyvn._Another possmlt_—z (T‘n-tefrlon for setting a fixed breaky, o figure, the new time labetsare shown. The remaining
point is a simple heuristic: if the length of the removed signal consists of two fixed segments, intervals 1-5 and
segment exceeds some predefined threshold, a break poi 14 of the original signal '

In phase 4, fixed segments that consist of less than 4

ints are removed, because they cannot be further divided

ifito two linear segments. Also, the fixed segments that can

bﬁ perfectly modeled using a single line are removed in
ase 5.

is set.
3. PIECEWISE LINEAR MODELING OF
1 5 ; PREPROCESSED SIGNALS
S Detect Remove Set fixed In piecewise linear modeling, the objective is to divide the
Original signal Segments | | ‘scgments | | Ef,ieﬁlks time series intck separate segments= 1,...,k, and ap-
] proximate each of these by a linear model
Preprocessed | | Adjusttime || (o o ed [« short fixed 2,(t) = a,t + by, (1)
signal indices segments segments
6 5 4 Thus, the model consists of time indices of the last samples
Fig. 1. Phases 1-6 of the preprocessing from originaw) data to pre- ~ Of the segmentd,, (i.e., break point$ and slope&(a,,) and
processed data. constant termgb,,) for each segment. It is assumed that the
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time series is corrupted by i.i.d. additive Gaussian noise 1. Divide the first fixed segment optimally inte=1, ... .,
with zero mean. Thus, given the break points, minimization k — k" + 1 segments using the dynamic pro-

of the total error(in this notationT, = 0), gramming algorithm. Store the corresponding costs
Eopi(1, T/™), line fit parameters, and break points.
& 2. Setl =2
Efi= > > [x(t) = (@t +by)]* ), 2 T ' _ _ o
n=1\t=T, ;+1 3. Divide thelth fixed segment optimally into=1,...,
. . o _ _ k —k’ + 1 segments using the dynamic programming
g|VeS the maximum ||ke||h00d estimates fOI’ the I|ne pa- a|gorithm. Store the Corresponding CCE&%t(l,T]_ﬁx),
rameters(Bishop, 199%. Fast computation of the error line fit parameters, and break points.

and line parameters for an arbitrary segment in constant
time after one pass through the time series is described in
Appendix A. However, now we concentrate on the segmen-
tation algorithms, which determine the positions of the
break points.

4. Compute the optimal segmentations forltfiest fixed
segments(1, T,™) intoj =1,...,k— Kk’ + | segments:

Elot(1, Ti™)

= Irgnrjlgj{Ec%f(l,'ﬂfixi) + Egpe T + 1,10
3.1. Segmentation algorithms

_ _ _ _ Store the corresponding co, (1, T,™), line fit pa-
Below, the time series segmentation algorithms are pre-  yameters, and break points.

sented and outlined. In each case, first the baseline algo-
rithm is introduced and then the required modifications due
to fixed segments produced by the preprocessing phase
described.

5. Setl =1+ 1. If | > k— k', quit; otherwise go to 3.

Afihen there are fixed break points, finding the optimal so-
lution is actually speeded up, because the search space is
. . smaller. It is not difficult to conclude that the speed-up is
3.1.1. Optimal algorithm : )
) _ o roportional to the number and length of the fixed seg-
The optimal piecewise linear model can be Comp“te‘{;ents and it is at most the number of fixed segments. As far

using the well-known dynamic programming principiell- 55 e know, the algorithm above has not been suggested
man, 1961 Later, the same approach was used in, for exx|sewhere.

ample, segmentation of spegefiong et al., 1994; Prandoni

etal., 1997 and mobile phone datdlimberg etal., 2000 3.1.2. Fast heuristic algorithms

The computational complexity of the algorithm is of order ¢ ¢omputation time of the optimal solution is intoler-

O(kN?), wherek is the number of segments ahdlis the 0 \vhen the number of points in the time series is large.

number of samples in the t'”_'e SEres. The' algorithm is inq, 4, following, four fast heuristic algorithms that typi-

crenje_n_tal: before a time series is divided ikteegments, cally end up in a local minimum of the error functifieq. (2)]

alldivisions to 1...,k — 1 segments have to be computed. 56 ’otiined. All the algorithms are deterministic and have
Baseline algorithm computational costs that are linear with respect to the length

of the time series.

1. Setl =1. Uniformly spaced break pointsThe simplest way is to
2. Compute optimal + 1 segmentations for all seg- select the break points uniformly in time. This choice is
ments 4=t < N: naturally very fast but typically produces poor results, be-
cause it completely ignores the structure of the time series.
Ebpt(1,t) = 2Srpirttz{E(',pt(l,T) +E(T+1,1)}. Baseline algorithmiormally, computation of break points

can be writteR as

For eacht, store the break poinf, error Ej;t(1,1)
and line fit parameters.

) . Tn=n-|ﬂ‘, n=1,....k—1; T,=N.
3. Setl =1 + 1. If | > k, quit; otherwise, go to 2. K0

Modifications due to fixed segmenf&he dynamic pro- The model is complete after each segment is computed
gramming principle needs to be applied twice. On one handrom a linear model.
it is used to optimally divide each fixed segment into sub-
segments; on the other hand, it is used to find optimal se
mentation for a group of adjacent fixed segments.

Let us assume that a time series has been dividedkinto
fixed segments in the preprocessing and the time series is to
be divided optimally intdk > k" segments. 2Here| x| denotes the greatest integer thatsis.

Modifications due to fixed segmenta.the presence of
Yixed segments, one can think of several strategies to set
the break points. We suggest that the break points should
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be uniformly set in the sequence.2., T* — 2, Tf* + Iterative/Split-and-Merge ApproachSome quite simi-

2, T =2, ... T, +2,...,N— 2, which guarantees lar iterative and split-and-merge approaches have been sug-
that no segment with less than two points can result andested in the literaturéPavlidis, 1974; Hawkins, 1976;

no break point can overlap with a fixed break point. Himberg, 200). We adopted the basic idea of the global
iterative replacementGIR) algorithm proposed irfHim-

; . X berg, 2001 The main difference is that, in the original
was suggested in Guralnik and Srivast&t899. The al GIR, the break points to be removed were selected in ran-

gorithm starts by splitting the whole time series optimally :

; . . .2 dom or sequential order. We always remove the one that

in two segments. Then, the segment optimal split of which_. T : .
; . . . gives the best reduction in model error. At each iteration of

most reduces the total error is split urkitthe desired num-

. the algorithm, the break point that is least necessary in the
ber of segments, are obtained. . |
. , sense of modeling error is moved to a place where the ben-
Baseline algorithm "
efit is greatest.
1. Setl =1 Baseline algorithm

Top-down. The top-down approach used in this article

2. Split the segmeritoptimal split of which(at pointT) 1. Initialize thek break points.

most decreases the error: 2. Select the break poirf, the removal of which pro-

i = argmaxE — [E(T,_, +1,T) + E(T+1, T} duces the least increase in the total error:

1=i=I
. i i AEremove= mln{(El + Eiv1) — E(Ti—1 + 1, T}
Discard the old erroE; and line fit parameters. Store :

the new ones with the new break poiht 3. Select the segmeftthe optimal split of which most
3. Setl =1 + 1. If | <k, go to 2; otherwise, quit. decreases the total error:
Modifications due to fixed segments. the first step of AEgpi = min{E — [E(T_, + 1, T) + E(T+ 1, )]
the algorithm,| is set tok’; the segmentation begins with :
fixed segments as initial segments. 4. If AEemovet AEgpir= 0, quit. Otherwise, remove the

break pointT; selected at step 2 and split the segment
j that was selected at step 3. Update the errors and line
fit parameters and go back to 2.

Bottom-up. In the bottom-up approach, the time series is
first divided into segments of length 2If the number of
points in the time series is odd, the length of the last seg-

ment is 3) At each step of the algorithm, two of the existing Modifications due to fixed segments.is necessary to

segments are merged unk] the desired number of Seg- .oy that the GIR does not remove a fixed break point.
ments, has been reached. A model similar to the one de-

scribed here was used in Keogh and Smit®97).
Baseline algorithm 4. UTILIZATION OF THE MODEL

The piecewise linear models have three advantages in analy-

1. Set number of segmernits= | N/2|. sis of process data

2. Initialize the break points in such a way that each

segment contains two sampl@s=2 - n,n=1,...,1 - 1. Data compressiorEach segment requires three pa-
1T, =N.SetE,=0,n=1,....I. rameters: breakor end point (T,,), slope term(a,,),
3. Merge the two segmeniteindi + 1 that least increase and constant terrth,,). Thus, memory requirement of
the total error: a model for one signal isk3 wherek is the number of
segments. For example, in our application this aspect
i =argminfE(T,_, +1,Tis1) — (E + E, )} is remarkable, because after piecewise linear model-
== ing it is possible to keep all the models in the main
Discard theth break poinf;, old errorsE; andE; , ,), memory of a standard PC at the same time.
and line fit parameters ath and(i + 1)th segments 2. Removal of noise and irrelevant minor variations in
and store the new ones. the signals.
4. Setl =1 —1.If | >k, go to 3; otherwise, quit. 3. Faster computationf the number of segments is small
with respect to the number of data points, many sim-
Modifications due to fixed segmenisitially, each fixed ple operations like computation of the average of a
segment is divided into segments of length two. Thus, all segment can be speeded up.

the segments that have an odd number of samples will thus

have three points in the last initial segment. Also, it has to In the following section, a procedure for process diag-
be checked that two segments on both sides of a fixed breatkostics is roughly described. It can be used either to find
point are never merged. signals that best explain variations in one signal of interest
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1 2 3 extracted. Formally, the starting point of thi¢h query se-
Signal of Extract first Find similar | | Select query quence is computed by
interest Se((]{llljeergce sequences sequences
T tm = arg minf|go — Wo,m - Gl2}, @)
,,,,,, .
i . .
‘ whereq is the vectof xy(t), ..., Xo(t + L — 1)] T with offset
Conclusions || ~Display 1, | Compute ~{ Other shifted to zero and- |, denotes the Euclidean norm. The
results similarities signals - . .. .
vector ¢ that gives the minimum of Eq3) is denoted by
6 5 4 4., If one is interested in changes with the same scale as

Fig. 3. The six phases of the process diagnostics procedure. Phases 1,@0’ the scalmg faCtOWO,m is setto 1. Settmg"o,m to
and 5 require user interaction and are emphasized using a thick line.

el
o
el
E]

el
o—
el
o

or to indicate which signals react to a change in the signai'nds S|m|I§r changes on (;lfferent fscal'(:?t and”mverggl S€-
of interest. Even though in all formulas and notations theduences, becauss, ., may be negative. After all possible

values of original time series are used, it is a very straight-'vI q“fij sequences have tieeprPEnd, t~hTeyTare all concat-
forward process to use the approximations given by théanlatehlnto ;quﬁry vector a [ICIo di - q'\’ﬂ .
piecewise linear models instead. n phase 3, th& is pruned. In practice all thil query

The whole procedure is based on matching of supSequences o are not appropriate maiches. Often, only
tlhe best ones are worth considering. Also, a small distance

sequences and is aimed at the discovery of novel line . :
etween two sequences does not necessarily agree with the

relationships in the data. Thus, in the matching, there is ntuiti ¢ simil Theref feedback
transformation where shifting and linear scaling of signals uman inturtion ot similar sequences. Therefore, feedbac

is allowed(Chu & Wong, 1999. However, the concept can from the user is used to select only some of the query se-

easily be used as well with other kinds of transforms thafluences for further inspection. The indices of the selected
are suggested in the literature, for example, the discretg®duences are denotedd(l),...,¢(M’). The new, pruned

i r— 1T /T ~T T
Fourier transform(Faloutsos et al., 1994 query vector |sltth - (86 Gew -+ Gemn) ]
In phase 4, similarities between the query vector and the

corresponding parts of all the other signals are computed.
The phase starts with selection of minimgdy,;,,) and max-
imum delayadvanced,,,,) values. If the goal is to find a

The starting point of the analysis is a short-term fluctua-"€2s0n for a change in a signal, one should look back in

tion, for example, a change of level, in a process signal ofiMe and set,, to 0 andd,;, to some suitable negative
interest, which is denoted here ly(t), t = 1,...,N. The value that is the longest possible delay from occurrence of

six phases of the diagnostics procedure are shown in Fig@"Y éventto the detected change. Correspondingly, if one is
ure 3. Three of them require interaction with the user. Morgntérested in finding signals where changest) are re-
detailed descriptions of the steps of the analysis are givefl€cted, dmin should be set to 0 and..., to some suitable
below. positive value. Naturally, selection af;,, and d,,, de-

The query sequenceo = [Xo(ty), ..., Xo(to + L — 1)]T  Pends on the application. _
that contains the interesting pattern is extracted manually Next, all the other signalg(t) (wherei = 1,...,P de-
from the whole signal in phase*IThe offset ofg, is shifted ~ NOtes the number of the signadre considered one at a
to zero. The corresponding zero-mean sequence is denotdf€- Thematch vectorsf theith signal are defined by
by G-

In phase 2, sequences of lengitthat are similar t@ in
the sense of Euclidean distance are looked fog ). The
search strategy is such that first the best matching sequen(i_(?1
in the whole signal is located and labeled as used. After
this, no other query sequence may overlap with this se-
guence. Then, the best matching sequence in the remaining
signal is located and so on, until a continuous sequence Qfie notationd, ; denotes the sequena 4 with offset
lengthL that consists of unoccupied points can no longer benoved to zero.

Now the similarity, that is, the distance between the query
vector and the match vector can be computed. It is given by

4.1. Process diagnostics procedure

i _raT &T &T T
Sy = [80,a Wo,cm) * Swy,a =+ Wo,emr) * Semry,al s

Omin = d = dax
e match vector consists of concatenateich sequences

Sha = [X(th+d) -+ X (t, +d+L—1)]T;

3In order to keep the notation simple, vector notation is used in this

, dist(Q’,S') = min
section for sequences. d

min=d=d,,

{IQ" — wos, - Sull2}, (4)
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where Mu—'—""*"“ A b
oS, B T
Worss = Qg
is a scaling factor that minimizes the distance betw@én /L,,,.,—’—f—"ﬁ/
and Sy. The value ofd that minimizes the distance is an W‘vﬂmm—m—‘h__m—mw.
estimate of the delay or advance between even@'iand
S'. m M LU m””m”“m”‘m“n
In phase 5, the results are shown to the analyst. The
matches with the smallest distance between the match and L—\_l—
query are shown first. At this stage it may become apparent

that, for instance, based on some external information, some Ww

query sequences should be deleted/anchdded. This is

illustrated in Figure 3 by an arrow that returns to the selec- MW

tion of query sequences; the diagnostics procedure is thus

iterative. Finally, in phase 6, conclusions are made. It is r v | r ’f | 1 ” I | ‘ “

possible that the obtained results give rise to consideration

of some other signal and a return to the beginning of the ' ' | ' ;

whole diagnosis procedure.

Fig. 4. Ten examples of the signals used in the experiments. Each plot
contains 1000 points from one signal.

5. EXPERIMENTS

The experimental part is organized in the following way.
The data set used in the experiments is described in Segsive missing values were removed from the signals. Also,
tion 5.1. The evaluation of the performance of the piecesignals with less than 10,000 valid points were left out of
wise linear modeling algorithms is reported in Section 5.2the experiments. Finally, there were 489 signals left.
The section is further divided into two parts: comparison of
the heuristic algorithms with each other and comparison o
the heuristic algorithms with the optimal solution by dy-
namic programming. The objective of the former test was
to find out which method or methods are best suited for theTwo things that were of interest for each algorithm were
data set used. The latter test was carried out to find out howccuracy and computation time, which are both important
close to the optimal solution the heuristic algorithms couldwhen implementation of the algorithms is considered. The
get; unfortunately, for computational reasons only a frac-accuracy was measured by means of modeling error, that
tion of the whole data set could be used in that test. In thés, the sum of squared errdig. (2)] and the computation
end of the experimental part, in Section 5.3, an example ofime as CPU seconds. All the tests were carried out in
process diagnostics procedydescribed in Section 4)1n Matlab 5.3(The MathWorks, Inc., 1999using a Compagq
which the piecewise linear approximations were utilized isAlphaServer GS160. Because the implementations were
presented. not aggressively optimized, all the CPU times presented

below should be considered merely indicative rather than

as absolute truth.

In all experiments, the average number of segments per
In the experiments, a massive real-world data set that corttO0 signal pointgwhich is referred to below agsolution
sisted of 629 signals with 107,029 points each was usedf a mode] was varied from 1 to 10. Even though algo-
Each signal was acquired from a database of a paper maithms whose error functions also contain a penalty term for
chine using 10-min resolution. Hence, the data describechodel complexity(Djuri¢, 1994; Oliver et al., 1998exist,
the behavior of the machine during about 743 days, whichwe did not try to determine the “correct” number of seg-
is >2 years. In order to get an impression of the signalsments. Our goal was only to reduce the number of data
parts of 10 different signals that are typical of the procesgoints fromN to k to make it possible to use computation-
are shown in Figure 4. ally demanding analysis methods after feature extraction.
Before the experiments could be carried out, the data had

to be preprocessed. Initially, empty signals and signal dud.2.1. Comparison of the heuristic algorithms
plicates were removed. Then, the signals were prepro- The heuristic algorithms were compared with each other
cessed as presented in Section 3: all segments that had siging the whole data set. First, the resolution was set to 1.
or more successive constant values or three or more succeBhen, the signals were modeled using uniform, bottom-up,

IS.Z. Evaluation of the piecewise linear modeling
algorithms

5.1. Data set
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and top-down algorithms. The obtained models were also
fine-tuned using the GIR algorithm. Thus, six models for 2
all signals were computed. For each signal, the minimum

error (E, ;) was determined among the six errors obtained !
by different algorithms. Then, the six errors were scaled in

m
=)
o
the following way(in order to make all the errors between ¢ & gzggm R
. X £ |-m .
different signals comparable QEJS R Topboun
= —A- Top-Down+GIR
2 -o- Bottom-Up
E — Enin Oy -@- Bottom-Up+GIR
Eclative= ———. 5 s
relative E. ( ) 8

5

The same procedure was repeated using the next resolution
until all resolutions were used. Histograms of the relative
errors of all signals for all methods and resolutions are shown f
in Figure 5. Resolution

For instance, let us consider resolution 3, which is therig. 6. The total computational costs for each method and resolution for
third row from the top. The histogram in the sixth column the whole data se¢lCPU hours.

[STi:
»E
~H

£ £ £ £
3 5 6 8

[<eliz)

METHOD of that row shows relative errors of all signals for the
Uniform  +GIR Top-Down +GIR Bottom-Up +GIR bottom-up algorithm fine-tune_d by GIR. The horizontal axis
0% 0% 0% 18% o | [53% of the plot. dgnotes the 10 b|n§ of thg hlstogram, and the
— 1 711 001 | |,o.09 | |00z | |10 |o.00 vertical axis is the number of signals in the bins. Thus, the
* ) more to the left the histogram is concentrated, the better is
o | 0% 31% 0% 18% \n 0% 51% the result. In this case the relative error was less than 0.1 for
10.54 | 002 | |0.12 | ]0.03 | |j9-12 | |0.00 almost all signals. The upper quantity in the plot shows that
% e 0 19% 0 56% the minimum error for 56% of all signals was achieved
“ 1436 | 0.08 Lo.ﬁt | 0.04 \Ilo'é 0.00 using the bottom-up method fine-tuned by GIR. The lower
! : ! ! guantity (0.00 is the median of all relative errors for all
§ < | 0% 23% 0% 20% 0% 57% signals in this histogram. Both numbers are highlighted,
S 15.85] || 0.14 | ||,0.17 |.0.06 0.13 | 0.00 because, of the two measures, the bottom-up algorithm fine-
| - p— - v - 62% tuned by GIR was the best.
4 o () o o o () _ . . _ .
8 1908 1023 | 1,019 | Py \|‘0.13 0.00 The bottom-up algorithm fine tungd by GIR conssteptly
5 = : : : produced the best results for most signals in all resolutions.
o) o | 0% 10% 0% 28% 0% 61% Also, the GIR remarkably improved the results for all three
é 23.75| |.0.34 | |,021 | |oos | jo.12 | |0.00 algorithms in all resolutions. As the resolution increased
! pvey (i.e., the number of segments was increastt top-down
0% 8% 0% 28% 0% o } i P
g ™~ | og.45 1050 | 1023 |o.08 \|‘0.12 0.00 and bottom-up algorithms clearly outperformed the uni
6 . fas . . form approach.
= 0% 5% 0% 279, 0% 68% In Figure 6, the total computation times for each method
® 127.80 063 | ,0.23 | | o.10 0.12 | ]0.00 and resolution for the whole data set are shown. The
bottom-up algorithm is clearly slower than the top-down,
0% 5% 0% 26% 0% | |69% i -
® | 3047 077 026 | [0.14 \llo-” 0.00 b_ecause the test_ed resolutions were such t_hat the computa
. u . . tional effort required by the bottom-up algorithm was about
olo% | [3% | [o% | [27% | [[o% | [70%|"° 10 times that required by the top-down algorititwithout
T 8222 | 111 ] §0.30 | |0.18 0.12 | ]0.00 fine-tuning by GIR. The uniform approach is naturally fast.
0.1 10 However, because of poor initial placement of the break

Fig. 5. A comparison of the fast heuristic algorithms. Each plot is a his- points, the GIR has to be run for many iterations, which is

togram of relative errors that fall within the rang@, 1] for all signals CompUtatlona“y expensive.

using a fixed method at a fixed resolution. Note that in some cases a large

part of the mass of the histogram is outside the plotted rdfgei], 5.2.2. Comparison of the heuristic algorithms with the
because for some signals the relative errorks The numbers inside the optimal solution

graphs indicate the performance of the method at that resolution: the upper Inth d . th istic al ith tested
is the percentage of all signals for which the method was best, and the n the second experiment, heuristic algorithms were teste

lower is the median of all relative errors in the histogram. At each resolu-2g@inst the optimal solution. Even though for computa-
tion, the quantities of the best method are highlighted. tional reasons, only the first 1000 samples of each signal
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08 : : : Another remarkable thing is that the absolute value of
f Top-Down the median of the relative error between the optimal solu-
ool & éﬁﬁﬁiﬁgﬁm tion and the best heuristic algorithm is not large: depending
@ Bottom-Up+GIR on the resolution, it varies from about 0.01 to 0.1, which is

g 1-10%. In light of these results, the performance of the

%015 heuristic algorithms seems to be quite satisfactory.

'§ Finally, in Figure 8, the total computational costs for

= each method and resolution are shown. Itis easy to see why

5o the test was limited to 1000 first points of each signal only:

= the computation time for the optimal solution was about
0.054 300 min. Even for as few as 10,000 points, the time would

have been approximately 200 days!

1 2 3 4 5 6 7 8 9 10 . .
Resolution 5.3. An example of process diagnostics

Fig. 7. The medians of the relative errors over all signals for different . . . i .
methods and resolutions. The results obtained by the uniform algorithni th's section, a b_r'Gf example O_f an analysis deS_C”bEd
are significantly larger than all the others and are not shown. earlier(Section 4.1 is presented using all the same signals

that were used in the tests above. The signals were prepro-

cessed in a manner similar to that used in the previous

experiment and modeled using a bottom-up algorithm fine-
could be used, the test was run in order to attain someuned using GIR, which was found to be the best among the
evidence of the reliability of the heuristic algorithms. In different methods in the comparison using the full data set.
this experiment the number of signals was 467, less than imhe resolution was selected so that it corresponds to a 4-h
the previous experiment. We had to drop out 22 more sigrun of the paper machine: the average number of samples in
nals because they had so many fixed segments in their firgine segment was 24. The size of the original datégeich
1000 points that it was not possible to run the test using alincluded all signalswas about 500 MB, which was dropped
the different resolutions for the uniform algorithm. to about 65 MB in the modeling.

Figure 7 shows the medians of the relative errors over all In phase 1, a query sequeneg) of 80 points represent-
signals for all methods and resolutions. For each signaling a level change in a signal of interest was extracted man-
they were computed with E5) using the optimal result ually. This first query signal is shown in Figure 9.
obtained by dynamical programming as the minimum. Next, in phase 2, similar changes were located in the

Even though the best method in the previous experimensame signal. Only changes on the same scale were the ob-
the bottom-up algorithntfine-tuned using GIR was not ject of a search. Thus, the weiglitg, ,,) in Eq.(3) were all
the best one in any case, it performed steadily: it was alset to 1. After the search, the match vediQy consisted of
ways close to the best method at every resolution. M = 1057 sequences.

In phase 3, the query vector was pruned. An illustration
of the pruning is shown in Figure 10. The first query se-
guencd]y with 24 best matcheg,, .. .,d,, are shown to the

10 l l l l : user. Of these, the three sequendegsd,y, andd,, were
considered as appropriate matches and selected for further
inspection. Thus, the pruned query vector V@s= [§J 61

Q1o 62217

o N
O i E T T T
‘E : : ; ~& Uniform
: : —& Uniform+GIR

-
o
!

Total CPU time (in minutes)

4
10k ~£- Top-Down |
—A- Top-Down+GIR
-©- Bottom-Up
. : : : : - Bottpm—Up+GIR
10 i3 ; » » —*— Optimal 4
10'3 L L L L L L L L
1 2 3 4 5 6 7 8 9 10
Resolution L L L
) ) 1 20 40 60 80
Fig. 8. The total computational costs for each method and resol(@éw
minutes. Note that the scale of the vertical axis is logarithmic. Fig. 9. A query sequence that containglavel) change of interest.
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Query \ “ -
-| Query vector vs. match vector Whole query signal vs. match signal

Query

Match #14

Match #14
Match #14

° g0 o
et
L}

-
s

U

Query

s
i

Fig. 11. Anillustration of a good match to the query. The top row consists
of the four query sequences, and the second row from the top shows the
Fig. 10. The pruning of the query vector. The first query sequétQeery”) corresponding four match sequences. The bottom-left scatter plot shows
is shown in the top left corner. Among the 24 best matches, the analysihe dependency revealed between the query and the match sequences. In
selects three sequendesarked with boxesfor further inspection. the plot, all the points of the query vector are plotted against the points
of the match vector. There is a clear linear dependency between the two.
The bottom-right corner shows the same type of plot of the whole signal of
interest versus all the points of the match signal. In the plot, the white box
In phase 4, we searched for the signals that were poter\'\llustrates the region v_vhe_re the points of the query and the match vectors
tially responsible for the change. The valuedgf,, was set zree;ggZ:sgan:'Oempg ;?C:LC:?;;hat the local dependency revealed cannot
to —12 (i.e., 2 h andd,,,, was set to 0. The distances '
between the query vect®’ and match vectors of all the
other 488 signals§', i = 1,..., 488were computed using
Eqg. (4). justified: no algorithm was totally superior to the others in
Anillustration of the query sequences and corresponding| cases.
match sequences of a good match are shown in Figure 11. | the experiments, we also gave a simple example of
The delay that gave the best similarity wa&. Thatis, the  process diagnostics procedure using real data in practice. It
change of interest occurs in the signal of interest two timgyas demonstrated that the procedure is capable of detecting
instances after a change in the match signal. local dependencies in process measurement signals.
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linear model for a real signal. A novel preprocessing scheme

that can be used to remove artifacts from process signals

was suggested first. Then, a set of existing segmentatioAPPENDIX A: FAST COMPUTATION OF

algorithms was reviewed and outlined; modifications re-MODEL ERROR AND LINE FIT

quired by the preprocessing to each algorithm were pointed

out. In order to give an example of analysis methods wher&Tor of an arbitrary segmesstt,, t;) is given by

the piecewise linear models could be of benefit, a proce-

dure for process diagnostics using subsequence matching E(to.t)) = tE‘ [x(t) — 2(0]7 = S [x(t) — (at + )2
0y ') — - = -

was suggested. e
A large experiment using real process data was carried

out to find out which one of the heuristic piecewise linear =D x3(t) - Z(aEtx(t) +b> x(t)>

modeling methods is best suited for the data at hand. Based

on the results, it seems evident that if one should choose +a?yt?+abdt+ bt —to+1). (Al

only one of the algorithms, it would be the bottom-up algo-

rithm fine-tuned with GIR. However, if enough computa- Minimization of E is straightforward: its partial derivatives
tional resources are available, running “a committee ofwith respect to unknown line fit parametessand b are
segmentation algorithms” and choosing the best result isomputed and set to zero and the equations are solved for
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andb. After some calculus, the well-known least squaresREFERENCES

estimates are obtained:

% t
(t—to+1) X tx(t) — 2t 3 x(t)
_ t=t, t=t, t=tq
a= . e (A2)
(tr —to+1) D t2 - (Zt)
t=t, t=t,
t t
b=——"— > x(t)—a Dt (A3)
tr—to+1 tgo tglo
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