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In the field of gas-turbine engineering, entropy waves and fluctuations in fuel–air mixing
are of significant importance. The impact of either mechanism on thermoacoustic stability
of the engine and combustion noise considerably depends on how they are convected in the
combustion chamber. In this work, a novel method is employed to analyse their convection.
Both effects are modelled using a transport equation of a passive scalar linearized around
the mean field. The linearized transport equation is discretized using finite elements. It
is shown that turbulent passive scalar transport can be described by an eddy diffusivity
in the linear framework. The method is furthermore validated against direct numerical
simulation (DNS) of passive scalar transport in a turbulent channel flow. Taking the
mean flow from the DNS as input, the method reproduces transport of periodic passive
scalar fluctuations with high accuracy at negligible numerical expense. Previous studies
investigated destructive interference of the passive scalar due to a non-uniform mean
flow profile, a process termed mean flow shear dispersion. The method introduced in this
study, however, allows us to additionally quantify the impact of molecular and turbulent
diffusion. For the channel flow under investigation, mean flow shear dispersion is the
dominant mechanism at low frequencies while, at higher frequencies, turbulent diffusion
needs to be accounted for to reproduce the DNS results. Molecular diffusion, however,
only has a minor effect on the overall convection in the turbulent channel flow.

Key words: turbulent mixing, turbulence modelling, turbulent reacting flows

1. Introduction

Combustion instabilities (CIs) and combustion noise continue to pose a significant
problem during the development and operation of gas turbines and flight engines operated
in the lean, premixed combustion regime (Poinsot 2017). One mechanism that can lead to
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CIs are inhomogeneities in fuel–air mixing, which originate at the fuel injector (Lieuwen
& Zinn 1998). These inhomogeneities are subsequently convected, e.g. in a mixing
duct, towards the flame front. There, they interact with the flame, causing heat release
fluctuations (Lieuwen, Neumeier & Zinn 1998). These in turn create acoustic energy,
which may feed back into a thermoacoustic feedback cycle or add to combustion noise. The
evolution mechanisms and impact of this effect on the flame dynamics were extensively
analysed using experiments (e.g. Shih, Lee & Santavicca 1996; Lieuwen et al. 1998;
Venkataraman et al. 1999; Bluemner, Paschereit & Oberleithner 2019) as well as numerical
high-fidelity simulations (e.g. Huber & Polifke 2009a,b; Hermeth et al. 2013).

When interacting with the flame front, fuel ratio inhomogeneities are furthermore the
main cause of the evolution of entropy waves (Dowling & Stow 2003; Chen, Bomberg
& Polifke 2016), i.e. pockets of higher or lower temperature in the burnt gases. These
pockets are then transported by the flow towards the turbine stages. This process constitutes
another unwanted effect, since entropy waves increase nitrous oxide emissions (Martin &
Brown 1990; Shih et al. 1996) and furthermore cause acoustic perturbations as they are
accelerated at the first stator stage of the turbine (Bohn 1976; Marble & Candel 1977).
These acoustic perturbations may either feed back in a thermoacoustic cycle (Polifke,
Paschereit & Döbbeling 2001; Goh & Morgans 2013; Motheau, Nicoud & Poinsot 2014;
Morgans & Duran 2016) or emanate from the combustion chamber as indirect combustion
noise and contribute to the overall noise emission of the engine (Cumpsty, Marble
& Hawthorne 1977; Strahle 1978), a problem of increasing significance, especially in
aeroengines (Dowling & Mahmoudi 2015). Like the effect of fuel ratio inhomogeneities,
the evolution process of entropy waves and their impact on the thermoacoustic stability
of the engine have been investigated by various experimental (Ćosić et al. 2015; Wassmer
et al. 2017) and numerical studies (Morgans, Goh & Dahan 2013; Xia et al. 2018).

While experimental and high-fidelity computational fluid dynamics (CFD) enable us
to observe the evolution and effect of entropy waves, they remain very elaborate and
conclusions on how to control the effect remains a matter of trial and error. Analytical
models, on the other hand, allow us to investigate the effect of changing key parameters in
the combustion system. For example, models were developed to describe and understand
the origin, convection and effect of entropy waves (e.g. Marble & Candel 1977; Moase,
Brear & Manzie 2007). As pointed out by Sattelmayer (2002), these prior studies model
the convection of entropy waves by a constant velocity. This is equivalent to considering
a block velocity profile in the combustor, an assumption which is not sustainable in a real
engine, where a non-homogeneous mean flow profile causes destructive interference of
entropy fluctuations at the measuring point, a process termed mean flow shear dispersion
by Sattelmayer (2002). The same author found this effect to be especially strong in flows
exhibiting a large variety in convective time delays. To model this effect in network models,
the author furthermore suggested a transfer function (TF) to measure convection of entropy
waves. The TF is based on a fit of a rectangular impulse response (IR) to empirical data.
By fitting a Gaussian curve instead of a rectangular IR to the empirical data, Morgans
et al. (2013) developed this low-order model further and compared its results to direct
numerical simulation (DNS), in which they included a transport equation of a passive
scalar to account for the transport of entropy waves. In a related study, Giusti et al. (2017)
found that, for low frequencies, a model accounting for shear layer dispersion correctly
describes the decrease of the passive scalar TF with increasing frequency. For higher
frequencies, however, their model overestimates the empirical TF. They concluded that
turbulent diffusion, which is not taken into account in their model, must account for the
difference. Moreover, recent studies show that the frequency range in which turbulent
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Linearized convection of passive scalar fluctuations

transport plays a significant role in the convection of entropy waves Xia et al. (2018) and
fuel ratio fluctuations Bluemner et al. (2019) overlaps with the typical frequency range of
thermoacoustic instabilities. Hence, to improve the capability of thermoacoustic stability
prediction, turbulent transport should be taken into consideration in reduced-order models.

In order to take molecular and turbulent diffusion into account and re-evaluate their
impact on the overall convection process, this study aims at applying linearization of the
governing equations of the flow. Linearization is a well-established approach in the context
of linear stability analysis (LSA) and resolvent analysis (RA). (The readers interested in
details on the concept of RA are kindly referred to the respective literature, e.g. McKeon
& Sharma (2010), Beneddine et al. (2016) and Kaiser, Lesshafft & Oberleithner (2019a).)
In the past, these methods provided significant insight into phenomena in various fields
of fluid dynamics. At the same time, the necessary numerical expenses related to LSA
and RA are, for most configurations, closer to the ones of analytical models than to the
aforementioned high-fidelity CFD methods. Nevertheless, the treatment of turbulent mass
diffusion in the transport of a passive scalar in the linear framework remains unaddressed
up to this point. Recent studies show that, in LSA (e.g. Crouch, Garbaruk & Magidov 2007;
Oberleithner, Paschereit & Wygnanski 2014; Viola et al. 2014; Tammisola & Juniper 2016;
Kaiser et al. 2019b) and RA (e.g. Illingworth, Monty & Marusic 2018; Pickering et al.
2019; Kaiser et al. 2019a; Martini et al. 2020), the effect of turbulent momentum diffusion
can be taken into account via a turbulent contribution to viscosity. Recently, Morra et al.
(2019) showed that the use of an eddy viscosity significantly improves the capability of the
RA in predicting the turbulent power spectral density in the near wall region.

The advancements of linearized methods in modelling turbulent momentum transport
are the motivation for the present investigation, which aims at addressing the applicability
of a similar approach for the turbulent mass transport of the passive scalar. The presently
derived method requires the temporal mean flow as input. It is obtained from the DNS
conducted by Morgans et al. (2013), which will also serve as a validation basis for the
results of the linear approach.

While aiming to address physical phenomena in real combustion systems, the previous
analytical studies were restricted to fully developed flows in tubes or channels and
assumed that turbulent mixing can be neglected. Flows in real gas turbines, however, are
significantly more complicated. Multiple shear layers due to vortex breakdown, enhanced
turbulence due to swirl and high Reynolds numbers hinder a rigorous application of the
state-of-the-art analytic models. The method proposed here is not restricted to simple
configurations, as it builds on less strong assumptions. Therefore, if validated successfully
against the existing analytical models, the proposed method constitutes a step forward from
canonical flow cases to real world applications.

In this study, a passive scalar is used to model the convective transport of entropy
fluctuations in the combustion chamber, which implies the assumption of constant
density and thermophysical properties. Although the typical length scales (and therefore
frequencies) differ from those from entropy waves, the very same approach can be used to
model the convection of fuel ratio inhomogeneities in the mixing duct towards the flame
(e.g. Bluemner et al. 2019). For the sake of generality and simplicity, from here on this
paper will therefore use the term passive scalar to refer to both quantities, i.e. fuel mixture
and entropy.

This paper is organized as follows: § 2 reviews the DNS of the turbulent channel flow
performed by Morgans et al. (2013) and selected low-order models. In § 3 the linearized
equation of the passive scalar is derived, the turbulence closure is addressed and the
numerical implementation is outlined. In § 4 the linearized methodology is validated
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against the DNS and the impact of molecular and turbulent diffusion and mean flow shear
dispersion on the convection is quantified. Finally, § 5 concludes the results.

2. Current transport models exemplified for a turbulent channel flow

The linearized study in this paper is based on the DNS calculations of a fully developed
channel flow at a Reynolds number of Re = 3400, conducted by Moser, Kim & Mansour
(1999) (accessible online at Moser, Kim & Mansour 1998), which was repeated by
Morgans et al. (2013) to include the transport of a passive scalar, c. The DNS domain
is schematically illustrated in figure 1. The wall-to-wall distance in the channel is 2h, and
the channel length and width are 2πh and πh, respectively. The passive scalar field in the
DNS was pulsed at the inlet. Subsequently, Morgans et al. (2013) quantified the convection
of the passive scalar fluctuation via a linear-time-invariant (LTI) system, which relates the
cross-streamwise integrals of the passive scalar fluctuation at two different streamwise
locations, x1 and x2. If not mentioned otherwise, x1 and x2 are located at the inlet and
outlet, respectively. The TF of the LTI system is defined as

TF (St) =

∫∫
ĉ (x1) dy dz∫∫
ĉ (x2) dy dz

, (2.1)

where the caret superscript stands for a Fourier transform in time. The Strouhal number in
(2.1) is a non-dimensionalized frequency, defined as

St = fL
U

, (2.2)

where f is the frequency, L the length of the channel and U the bulk flow velocity. The IR
and the TF of a LTI system in general are connected by the z-transform. For convenience,
in this paper signals are treated as time discrete. Therefore, the term z-transform is used
instead of Laplace transform.

The solid black lines in the two diagrams shown in figure 1 represent the results of
the DNS conducted by Morgans et al. (2013). The response in time domain shown on
the right is the response measured at the outlet to a Gaussian pulsation at the inlet and
is, therefore, not the IR of the system, but only an approximation. Morgans et al. (2013)
fit two models to this IR. The first is the one suggested by Sattelmayer (2002), which
models the response as a rectangular signal (red dotted line in figure 1). The second fit is
suggested by Morgans et al. (2013) and assumes a Gaussian profile for the response (blue
dash-dotted line in figure 1). The quality of the fits can be evaluated by comparing the
TFs of the respective models, which are obtained by a z-transform of the IRs, to the TF
directly extracted from the DNS. The comparison shows that both models reproduce the
overall shape of the gain of the TF based on the DNS, which starts at 1 and decreases
with frequency. However, both models overestimate the gain for low frequencies and for
high frequencies, the Sattelmayer model, due to the abrupt jumps in the IR, shows ripples,
which are not seen in the DNS. Furthermore, for high frequencies, the model suggested
by Morgans et al. (2013) significantly underestimates the DNS results. While the previous
models are purely based on empirical data, Giusti et al. (2017) suggested an analytical
model, which takes the advection of the passive scalar due to the temporal mean flow
into account. In doing so, it accounts for mean flow shear dispersion, while molecular and
turbulent mass transport are neglected. Furthermore, the method of Giusti et al. (2017)
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ĉ (x1) dy dz

Impulse response

0 2 4 6 8

0.2

0.4

0.6

0.8

t

IR

Inverse

 z-transform

z-transform

0.5 1.0 1.5
−0.5

0.5 ux

U

y
h

DNS

Sattelmayer (2002)

Morgans et al. (2013)

Giusti et al. (2017)

πh
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Figure 1. Sketch of the DNS domain of Morgans et al. (2013) and the strategy to measure the convection of
passive scalar fluctuations via TF and IR.

is applicable only to fully developed flows. The respective curve is illustrated in figure 1
(solid grey line). This model will be more thoroughly discussed in § 4. While for low
frequencies, pure mean flow shear dispersion appears to capture the decrease in the TF gain
seen in the DNS, the model clearly overestimates the TF gain at high frequencies. Giusti
et al. (2017) attribute this overestimation to turbulent diffusion, which is not captured
in their model. As a consequence, the following section will investigate how diffusive
processes can be modelled in a linearized framework.

3. Linearization of the transport equations around the temporal mean

Following the approach of previous authors (e.g. Morgans et al. 2013), the entropy and
equivalence ratio are modelled by a passive scalar, c. Taking the effect of molecular
diffusion into account, its transport equation reads

∂c
∂t

+ ∇ · (uc) = ∇ · Dm∇c, (3.1)

where t is time, u the velocity vector and Dm stands for molecular diffusivity.
The triple decomposition suggested by Hussain & Reynolds (1970) allows us to address

the dynamics of coherent fluctuations in the presence of turbulence. It decomposes the
flow variables into a temporal average, a periodically fluctuating part and a stochastically
fluctuating part, indicated by the superscripts bar, tilde and prime, respectively, reading

u = ū + ũ + u′, c = c̄ + c̃ + c′. (3.2a,b)

The periodic fluctuation is defined such that, for a quantity Φ, the relation

〈Φ〉 = Φ̄ + Φ̃ (3.3)

holds, where the angle brackets denote a phase average.
Inserting (3.2a,b) into (3.1), neglecting second-order terms of periodic fluctuation

quantities and subtracting the temporal average of the resulting equation (indicated by
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an overline superscript) from its phase average yields the equation governing the linear
dynamics of the passive scalar

∂ c̃
∂t

+ ∇ · (ūc̃) + ∇ · (ũc̄) + ∇ · 〈u′c′〉 − ∇ · u′c′ = ∇ · Dm∇c̃. (3.4)

The term on the right-hand side describes molecular diffusion. The first term on the
left-hand side accounts for the oscillation of the periodic passive scalar fluctuation in
time. The second term governs the convection of the periodic fluctuation in the passive
scalar due to the temporal mean flow. The third term on the left-hand side describes
the production of c̃ due to the interaction of the periodic velocity fluctuation with the
temporally averaged passive scalar field. For the sake of comparability with previous
analyses, in this work no periodic fluctuations in velocity are considered and, therefore, the
third term vanishes. The fourth and fifth terms are product terms of stochastic fluctuations,
which originate from the advective term in (3.1) and do not vanish after phase or temporal
averaging. Using (3.3), the difference of both terms as it arises in (3.4) can be rewritten as

∇ · 〈u′c′〉 − ∇ · u′c′ = ∇ · ũ′c′, (3.5)

which shows that it can be understood as the periodic fluctuation of ∇ · (u′c′). The same
assessment has been made for the fluctuation of Reynolds stresses arising in the linearized
momentum conservation equations by Reynolds & Hussain (1972).

To close (3.4), the fourth and fifth terms on the left-hand side remain to be modelled.
Using the gradient diffusion hypothesis (Pope 2000), we relate these terms to the gradient
of the averaged passive scalar via a turbulent diffusion Dt, which reads

u′c′ = −Dm
t ∇c̄, (3.6a)

〈u′c′〉 = −Dp
t ∇〈c〉, (3.6b)

for the temporal and phase averages, respectively.
To analyse the relation between turbulent diffusivity related to the temporal mean, Dm

t ,
and the turbulent diffusivity for the phase average, Dp

t , we follow the approach of Viola
et al. (2014). They performed an equivalent analysis for the turbulent viscosity in the
conservation equations of momentum, by linearizing the turbulent viscosity, ν

p
t .

In order to linearize Dp
t with respect to c̃ and ũ, Dp

t is expanded as a Taylor series around
the temporal average and all terms of second and higher order are neglected

Dp
t (ū + ũ, c̄ + c̃) ≈ Dp

t (ū, c̄) + ∂Dp
t (ū, c̄)
∂u

· ũ + ∂Dp
t (ū, c̄)
∂c

c̃. (3.7)

Inserting (3.7) in (3.6b) and averaging the resulting equation in time yields

u′c′ = −Dp
t (ū, c̄) · ∇c̄ − Dp

t (ū, c̄) · ∇c̃ −
(

∂Dp
t (ū, c̄)
∂u

· ũ
)

· ∇c̄

−
(

∂Dp
t (ū, c̄)
∂u

· ũ
)

· ∇c̃ −
(

∂Dp
t (ū, c̄)
∂c

c̃
)

· ∇c̄ −
(

∂Dp
t (ū, c̄)
∂c

c̃
)

· ∇c̃. (3.8)

On the right-hand side of (3.8), the second, third and fifth terms are zero due to the
temporal average, while the fourth and sixth terms are nonlinear in quantities of periodic
fluctuation and are therefore neglected. As a consequence, on the right-hand side only the

915 A111-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

15
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.151


Linearized convection of passive scalar fluctuations

first term remains. Comparing this result to (3.6a) yields that Dm
t and Dp

t are identical in
the linear limit and the superscripts m and p can be dropped in the following. With the
relation 〈c〉 − c̄ = c̃, inserting (3.6) into (3.4) finally yields

∂ c̃
∂t

+ ∇ · (ūc̃) + ∇ · (ũc̄) = ∇ · (Dm + Dt)∇c̃. (3.9)

The molecular and turbulent diffusion are related to the respective viscosities, νm and νt,
via a constant molecular and turbulent Prandtl number

Prm = νm

Dm
= 0.75, Prt = νt

Dt
= 0.9. (3.10a,b)

The value for the molecular Prandtl number corresponds to that of the DNS of the channel
flow conducted by Morgans et al. (2013), while the turbulent Prandtl number is a typical
value determined in experiments (Kays 1994) and used in CFD codes (Pope 2000).

To finally close (3.9), a model for the turbulent viscosity needs to be applied. This study
considers two different turbulence models. The first is a model specifically describing the
turbulence in a channel flow (Cess 1958; Reynolds & Tiederman 1967). It reads

νt,C

νm
= 1

2

(
1 + κ2Re2

τ

9

(
1 − y2

w

)2 (
1 + 2y2

w

)2
(

1 − exp
(

(|yw| − 1)
Reτ

A

)))1/2

− 1
2
,

(3.11)
with the Kármán constant, κ = 0.426 and the model parameter A = 24.4. As recently
pointed out by Morra et al. (2021), these parameters were tuned for a channel flow
of friction Reynolds number Reτ = 2003 (Hoyas & Jiménez 2006), and were later
successfully applied to channel flows with friction Reynolds numbers between 179 and
20 000 (Hwang & Cossu 2010; Morra et al. 2019, 2021). The friction Reynolds number of
the present channel flow is Reτ = 180, which lies within this range.

The second eddy viscosity model is based on the Boussinesq approximation and can be
employed if both the temporal mean flow and the Reynolds stresses are a priori known
(Hussain & Reynolds 1970). In the case of a fully developed channel flow, where all
gradients of the mean flow are zero except ∂ ūx/∂y, the eddy viscosity can be expressed
by

νt,B = −u′
xu′

y

∂ ūx

∂y

. (3.12)

While the Cess model (3.11) is based on a simple expression, it is only applicable
to turbulent channel flows. The eddy viscosity model based on the Boussinesq
approximation, however, is more general and can be applied to a variety of applications,
as long as the Reynolds stresses are known.

Equation (3.9) is solved in the frequency domain, which is more convenient than a
time-stepping approach. Therefore, the modal ansatz

[ũ, c̃] = [û, ĉ] exp (−iωt) (3.13)

is applied and the resulting equation in the absence of periodic velocity fluctuations reads

− iωĉ + ∇ · (ūĉ
) = ∇ ·

(
νm

Prm
+ νt

Prt

)
∇ĉ. (3.14)

For a fully developed channel flow, as investigated in this study, the flow profile is a
function of the y-coordinate only. Furthermore, the periodic passive scalar fluctuation is
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homogeneous in the z-direction and symmetric to the x–z-plane. Therefore, the periodic
passive scalar fluctuation in the three-dimensional DNS domain can be described by a
two-dimensional domain modelling the upper half of the x–y-plane (indicated by the
highlighted surface in figure 1). Equation (3.14) can be arranged as a linear system

(A − iω) ĉ = 0. (3.15)

The spatial discretization of (3.15) is performed via the linearized flow solver FELiCS.
The solver takes advantage of the finite element package fenics (Alnæs et al.
2015). Second-order continuous Galerkin triangular elements are employed for spatial
discretization. The number of elements in the grid differs from case to case. For the
computations including diffusive effects, a global element size of �x = h/35 with a
refinement towards the wall with �x = h/70 is used, resulting in approximately 2.6e4
elements for mesh independent results. For the computations without diffusion, a much
higher refinement especially in the boundary layer is necessary to reach mesh convergence.
There, the global mesh size is set to �x = h/60 and the finest element in the intersection
of the no-slip wall and the outlet is of size �x = h/700, resulting in approximately 1.4e6
elements. At the symmetry plane, at the channel wall and at the outlet, homogeneous
Neumann boundary conditions (BCs) are applied. To pulse the ĉ-field from the inlet, the
Dirichlet BC is applied in the weak formulation of (3.15). Finally, the linear system is
solved using the method of lower–upper decomposition.

Treating the effects of fuel inhomogeneities and entropy waves as a passive scalar
assumes constant density and therefore constitutes a simplification, which may not be
justified in all practical situations. Furthermore, the absence of velocity perturbations is
considered. The approach is, however, by no means restricted to these simplifications.
In order to take these effects into account, the linearized equations of momentum
conservation and mass conservation, must be added to (3.14). In this study, however, the
focus is on the comparison with the DNS of a generic turbulent channel flow where the
density was assumed to be constant and the velocity field is not periodically perturbed.

4. Results

We apply the numerical method lined out in § 3 to the DNS configuration discussed in § 2.
First, only mean flow shear dispersion will be accounted for in § 4.1, where the results of
the FELiCS code are compared to the model of Giusti et al. (2017). Sections 4.2 and 4.3
then focus on the impact of molecular and turbulent diffusion, before § 4.4 quantifies their
contribution to the overall convection.

4.1. Pure mean flow shear dispersion
If diffusive processes are neglected, the convection of the periodic passive scalar
fluctuation can be described analytically. It is then governed by mean flow shear dispersion
alone and described by the relation (Giusti et al. 2017)

ĉ (x, y) = ĉ0 exp
(

−iω
x

ū (y)

)
. (4.1)

Here, ĉ0 = ĉ(x = 0) is the imposed fluctuation in passive scalar at the inlet. In this study ĉ0
is uniform in the cross-streamwise direction to ease the comparison with previous studies
(Sattelmayer 2002; Morgans et al. 2013; Giusti et al. 2017). However, neither the analytic
model (4.1) nor the presently proposed linearized framework is limited to this assumption.
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Figure 2. Field of periodic passive scalar fluctuation for St = 0.5π and St = 3π; The results in the first row are
obtained analytically, using (4.1). The results in the second to fourth rows are obtained using FELiCS and are
based on artificial diffusion, Da = 0.001Dm, molecular diffusion, Dm, and the sum of molecular and turbulent
diffusion, Dm + Dt, respectively.
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Figure 3. TF (see (2.1)) based on DNS, the analytical model (4.1) and the linearized approach for various
diffusion models; the grey area shows the range of results, if turbulent Prandtl numbers between Prt = 0.6 and
Prt = 1.2 are applied.

The resulting field of passive scalar fluctuation is illustrated in the top row of figure 2,
exemplary for the Strouhal numbers of St = 0.5π and St = 3π, while the respective
gain of the TF is shown in figure 3 by the thin grey solid line. Note that, due to
the non-dimensionalization with L = x2 − x1, changing the frequency is equivalent with
adapting the measurement position x2. This only holds as long as the transport of
fluctuations in the passive scalar is unidirectional in the x-direction.

The pattern seen in the respective plots of figure 2 resembles the plots based on large
eddy simulation of a similar configuration conducted by Giusti et al. (2017) (see figure
10 in Giusti et al. 2017). Furthermore, it explains the decrease observed in the gain of
the TF: since the fluctuation in the passive scalar at the inlet is independent of y, the
integral of the scalar fluctuation in the y-direction is always equal to 2hĉ0. At the outlet,
however, the shear dispersion leads to regions which contribute positively and negatively
to the integral. For very low frequencies, this effect is negligible. As frequency increases,
however, it causes a decrease in gain of the TF, as illustrated in figure 3.

Despite its simplicity, the model of Giusti et al. (2017) captures the attenuation of the
TF gain at low frequencies very well. However, for higher frequencies, the drop in gain
based on (4.1) is underestimated in comparison to the DNS results. For these frequencies,
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mean flow shear dispersion therefore appears to account for a part of the gain reduction
only, which is in line with the conclusions of Giusti et al. (2017).

The analytical results based on (4.1) allow for a validation of the linearized strategy for
pure mean flow shear dispersion. While for these calculations the molecular and turbulent
viscosities are set to zero, an artificial diffusion of Da = 0.001 Dm is applied. This is
necessary to stabilize the numerical approach since pure mean flow shear dispersion leads
to infinitely large gradients in the outer boundary layer towards the no-slip wall (see (4.1)
and the respective plots in figure 2). The resulting field of passive scalar fluctuations
is illustrated in figure 2 for St = 0.5π and St = 2π. Although the artificial diffusion
was chosen to be very small, it appears that, especially for high frequencies, the strong
gradients in the outer boundary layer cause an annihilation of the c-fluctuation close to the
wall. Nevertheless, this deviation from the analytical results does not impact the quality of
the results in terms of the TF. This can be seen in figure 3, where the gains of the TF based
on the linear approach using the artificial viscosity (red dashed line) and the analytical
results (thin grey solid line) coincide.

4.2. Mean flow shear dispersion and molecular diffusion
In the next step, molecular diffusion is incorporated into the model, while turbulent mass
transport is still neglected. Figure 3 shows the resulting gain of the TF (blue dash-dotted
line). Accordingly, the impact of molecular diffusion is very small for low and intermediate
frequencies. Only at high Strouhal numbers does the molecular diffusion appear to have a
significant effect on the TF. The respective fields of periodic passive scalar fluctuations are
shown for two different frequencies in the third row of figure 2. It explains the reduction
in gain caused by molecular diffusion: since for small frequencies the characteristic
wavelengths of the scalar fluctuation field are large, diffusion plays a minor role. For
high frequencies, however, the characteristic length scale decreases and diffusion becomes
more significant. This effect appears to be most pronounced in the boundary layer, where
mean flow shear dispersion causes additional gradients in the y-direction. A more thorough
discussion on the effect of molecular diffusion on the overall convection is provided in
§ 4.4.

4.3. Mean flow shear dispersion, molecular and turbulent diffusion
In the final step, the effect of turbulent diffusion is no longer neglected and accounted for
in the model using the eddy viscosity approach. The cross-streamwise distribution of eddy
viscosity resulting from the two employed models (3.12) and (3.11) is shown in figure 4.
Accordingly, both models result in very similar eddy viscosity profiles, which a posteriori
justifies the application of the Cess model using the parameters given in § 3 in flows of
significantly lower friction Reynolds numbers, as for example in Morra et al. (2021). In
fact, all results of the linearized framework shown in this work only differ marginally
between the two models. Since the Cess model only applies for the channel flow, while
the model based on (3.12) can be applied to various configurations, only the results of the
latter are shown in the following. Figure 4 furthermore shows the corresponding turbulent
diffusivity as obtained from (3.10a,b).

Figure 2 compares the resulting c̃ fields, i.e. with the contribution of Dt in the fourth
row, to the respective fields without turbulent contribution in the third row. In doing so,
it allows for an intuitive explanation how turbulent diffusion contributes to the overall
convection of the passive scalar fluctuation: while low frequencies are barely affected, the
turbulent diffusion has a significant impact on the convection at high frequencies. This
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Figure 4. Eddy viscosity based on the Boussinesq approximation, νt,B, given by (3.12) and the resulting
turbulent diffusivity, Dt,B, based on a turbulent Prandtl number of Prt = 0.9. Furthermore, the eddy viscosity
based on the Cess model, νt,B, obtained by (3.11) is shown.

impact can be quantified by comparing the respective TFs to the DNS results, as seen in
figure 3. The curves based on the DNS (black thick solid line) and the FELiCS results using
a turbulent Prandtl number of Prt = 0.9 (green dashed line) show very good alignment,
with minor deviations only for very low frequencies. These results demonstrate that the
turbulence model is sufficiently accurate, and that turbulent diffusion makes a significant
contribution to the overall convection of c̃.

The choice of the turbulent Prandtl number as Prt = 0.9 is arbitrary and based on
empirical experience only. Therefore, a parametric study was conducted by varying the
turbulent Prandtl number between 0.6 and 1.2. The range of the resulting TF gains are
illustrated by the grey shaded area in figure 3. For low frequencies, the gain of the TFs
of all turbulent Prandtl numbers coincide, as turbulent diffusion plays a subordinate role
in this frequency range. For high frequencies, there is a noticeable but minor effect on
the prediction when changing the Prandtl number. It therefore appears that the results of
the linearized approach are robust with respect to the turbulent Prandtl number within the
boundaries of the parametric study.

Displaying results in the time domain instead of the frequency domain often allows
for a more intuitive, yet quantitative evaluation: figure 5 compares the IR of the previously
investigated cases with the DNS data. While in the case of pure mean flow shear dispersion
a distinct spike at a value of 5.7 clearly overestimates the DNS response, taking into
account molecular and turbulent diffusion significantly improves the prediction of the
DNS data. The IR including all relevant mechanisms still shows a slight deviation from
the DNS response. This deviation can be explained by the difference in excitation signals
applied in the DNS and the linearized approach. In the time-domain DNS, presumably for
reasons of numerical stability, Morgans et al. (2013) applied a Gaussian profile in time
instead of a sharp Dirac pulse. Therefore, the DNS response can only be an approximation
to the true IR of the system. However, to obtain the response of the system to the Gaussian
pulse, the IR based on FELiCS (green dashed line in figure 5) can be convolved with
the Gaussian pulse in time domain. The result is illustrated in figure 6 for five streamwise
positions. The plots show that the FELiCS results are congruent with the DNS results with
minor deviations only for the response at x2 = 1.5h, which underlines the accuracy of the
present approach.

4.4. Quantification of the contribution of molecular and turbulent diffusive fluxes
In the analytical model based on (4.1) passive scalar transport was unidirectional in the
x-direction. Diffusion, however, as considered in §§ 4.2 and 4.3, causes transport of passive
scalar fluctuations also in the y-direction. As a result, the channel half-height, h, constitutes
a second characteristic length scale, which determines the significance of diffusive fluxes
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Figure 5. Comparison of IRs of various models to DNS data evaluated for x2 = 6.0h.
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Figure 7. Diffusion term of (3.14) split into molecular and turbulent contributions in the x- and y-directions.

in the y-direction. Unlike in the model of Giusti et al. (2017), changing the frequency
therefore is not anymore equivalent to changing the measurement location, x2. In contrast,
the impact of diffusion on the transport depends on the frequency in a non-trivial way,
which will be investigated in the following.

The linearized framework allows us to quantify the impact of molecular and turbulent
diffusion in the configuration analysed via DNS by Morgans et al. in detail. The diffusion
term in (3.14) is split into contributions from gradients in the x- and y-direction as
well as molecular and turbulent contributions, which are illustrated in figure 7 for four
different frequencies. While the molecular flux in the x-direction is negligible, molecular
diffusion in the y-direction is the predominant mechanism in the boundary layer. In
the interior of the domain, however, turbulent diffusive fluxes are dominant. For low
frequencies, it appears that turbulent fluxes in the y-direction (which only exist because
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of mean flow shear dispersion) are the dominant diffusive mechanism. With increasing
frequency, however, the characteristic length scales of the diffusion in the x-direction and
the respective time scales decrease. However, the time scales of diffusion in the y-direction
are governed by the mean flow shear dispersion, which is a function of the mean flow
profile and therefore constant. As a consequence, with increasing frequency, turbulent
diffusion fluxes in the x-direction become more significant and finally are predominant
for St � 2.0π. In other words, for high frequencies, diffusive fluxes in the x-direction
annihilate the periodic passive scalar fluctuations before mean flow shear dispersion allows
for significant turbulent diffusion in the y-direction.

5. Conclusion

The advection and diffusion of fuel ratio inhomogeneities and entropy waves in turbulent
flows are investigated by means of a linearized mean field analysis. The governing
equations are derived from a triple decomposition which separates the periodic passive
scalar fluctuations from the mean and the stochastic turbulent field. The resulting transport
equation for the periodic part is linearized and closed using an eddy viscosity model
to account for the turbulent diffusion. The eddy viscosity field is determined from the
Reynolds stresses and mean field gradients and constitutes, together with the temporal
mean flow, the input to the linearized method. The validity of the closure model is
motivated by the recent success in mean field stability analysis based on the momentum
equations and is the core novelty of the current study.

The accuracy of the methodology is tested for a turbulent channel flow. The transport
equation for the passive scalar is solved in frequency space in a two-dimensional domain
using triangular finite elements. The mean velocity fields and Reynolds stresses are taken
from DNS conducted in previous studies, which also provide the validation basis for our
approach.

First, the solutions are sought for the case of zero diffusivity and compared to an analytic
model. The observation of the resulting perturbation field reveals the mechanism that leads
to the mean shear layer dispersion and corroborates previous analytic studies.

Next, the linearized methodology is applied to analyse the impact of the different
mechanisms on the overall convection of the passive scalar. While for very low frequencies
mean flow shear dispersion is the dominant mechanism, at higher frequencies diffusive
processes need to be accounted for to reproduce the DNS results. Finally, an investigation
of the diffusion term shows that, for the turbulent diffusion at medium frequencies,
gradients in the cross-streamwise direction cause the strongest contribution. Whereas, for
high frequencies, passive scalar gradients in the streamwise directions are the driving force
for turbulent diffusion. Molecular diffusion, however, only has a minor effect on the overall
convection of the passive scalar in the turbulent channel flow. Turbulence intensities in
real world applications are significantly higher than in the canonical configurations that
were so far investigated with analytical models or the method proposed in this study. As a
consequence, the degree to which turbulence impacts the transport of entropy waves and
fuel ratio inhomogeneities in a real engine can be expected to be more significant than in
the turbulent channel flow under examination in this study.

Unlike the previously suggested low-order models, the framework presented in this study
does not rely on any fitting of the IR to empirical data, but takes as input the statistics
of the underlying flow. At the same time, the results are significantly more accurate, as
demonstrated by the comparison with the DNS data.
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The method comes with additional advantages. By including the linearized mass and
momentum conservation equations, it can be extended in order to account for velocity
fluctuations and variations in density. Furthermore, although the previous analytical
models constitute valuable tools in the development process of gas turbines due to their low
numerical cost, they cannot account for the non-parallelism of the flow and complicated
geometries. In some cases, this can be a non-negligible source of error. The strategy of
using unstructured finite elements in contrast, as is done in the proposed method, can be
applied to these kinds of configurations.
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