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We apply a recently developed filtering approach, i.e. filter-space technique (FST),
to study the scale-to-scale transport of kinetic energy, thermal energy, and enstrophy
in two-dimensional (2D) Rayleigh–Taylor (RT) turbulence. Although the scaling laws
of the energy cascades in 2D RT systems follow the Bolgiano–Obukhov (BO59)
scenario due to buoyancy forces, the kinetic energy is still found to be, on average,
dynamically transferred to large scales by an inverse cascade, while both the mean
thermal energy and the mean enstrophy move towards small scales by forward
cascades. In particular, there is a reasonably extended range over which the transfer
rate of thermal energy is scale-independent and equals the corresponding thermal
dissipation rate at different times. This range functions similarly to the inertial range
for the kinetic energy in the homogeneous and isotropic turbulence. Our results further
show that at small scales the fluctuations of the three instantaneous local fluxes are
highly asymmetrically distributed and there is a strong correlation between any two
fluxes. These small-scale features are signatures of the mixing and dissipation of
fluids with steep temperature gradients at the fluid interfaces.

Key words: buoyancy-driven instability, turbulent convection, turbulent mixing

1. Introduction

Rayleigh–Taylor (RT) instability can occur when a layer of heavier fluid is placed
on top of a layer of lighter fluid in a gravitational field. The evolution of RT instability
would result in the so-called RT turbulence, in which the kinetic energy of the mixed
fluid layer increases at the expense of the potential energy and the spectra of velocity
fluctuations cover a broad range of scales. The process is relevant in a wide variety
of fields in nature and engineering, such as filamentary structures in the heating of
the solar corona (Isobe et al. 2005), buoyancy-driven mixing in the atmosphere and
oceans and in cloud formation, thermonuclear flames in type Ia supernovae (Zingale
et al. 2005; Cabot & Cook 2006), and fuel–pusher mixing in inertial confinement
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fusion (Taleyarkhan et al. 2002). In addition, this system provides a fascinating fluid-
mechanical framework for the study of non-stationary turbulent flows.

Despite the great importance and the long history of RT turbulence, there are still
some open issues (Dimonte et al. 2004; Abarzhi 2010b). One important issue in the
field is to determine the dynamics that drive the cascades of turbulent fluctuations at
small scales inside the mixing layer. This has been extensively studied in the past in
both two-dimensional (2D) and three-dimensional (3D) RT systems (Dalziel, Linden &
Youngs 1999; Zhou 2001; Wilson & Andrews 2002; Chertkov 2003; Celani, Mazzino
& Vozella 2006; Matsumoto 2009; Boffetta et al. 2009, 2010, 2012; Vladimirova &
Chertkov 2009; Abarzhi 2010a; Biferale et al. 2010; Chung & Pullin 2010; Soulard
2012; Soulard & Griffond 2012; Zhou 2013; Qiu, Liu & Zhou 2014).

Specifically, in two dimensions, Chertkov (2003) argued that the traditional inverse
kinetic energy and direct enstrophy cascades, long proposed for 2D Navier–Stokes
turbulence (Clercx & van Heijst 2009; Boffetta & Ecke 2012), are both not realizable
in 2D RT turbulence. Instead, Chertkov (2003) adopted the Bolgiano–Obukhov (BO59)
scenario to resolve the small-scale spatial temporal correlations of the velocity and
temperature fields. In the BO59 scenario, the buoyancy force is assumed to balance
the inertial force at all scales smaller than the energy-containing scale. Taking this
together with the thermal balance between the thermal transfer and dissipation rates,
one obtains the BO59 scaling, i.e.

Sp(r, t)≡ 〈ur(t)p〉 ∼ r3p/5t−p/5 and Rp(r, t)≡ 〈θr(t)p〉 ∼ rp/5t−2p/5, (1.1a,b)

for pth-order velocity and temperature structure functions, Sp(r, t) and Rp(r, t). Here,
ur and θr are, respectively, the velocity and temperature increments over a separation
r and 〈·〉 indicates a volume average inside the mixing layer. This spatiotemporal
scaling (1.1) was numerically verified first by Celani et al. (2006) and then by a
scale-by-scale study of Biferale et al. (2010). Later, Zhou (2013) tested quantitatively
the force balance relation and revealed that the buoyancy force balances the inertial
force at all scales below the integral length scale. The numerical work of Zhou (2013)
thus validates the basic force balance assumption of the BO59 scenario in 2D RT
turbulence.

Besides the scaling behaviour (1.1), the scale-to-scale transport is of fundamental
importance in turbulence phenomenology, especially for 2D turbulence (Boffetta &
Ecke 2012). Celani et al. (2006) first pointed out that within the so-called inertial
range of 2D RT turbulence, the kinetic energy is driven by a backward transfer
due to buoyancy forces while the temperature variance obeys a classical forward
cascade. This was later retrieved from the Monin–Yaglom relation by the theoretical
work of Soulard (2012). The direction of the kinetic energy cascade was numerically
investigated by Boffetta et al. (2012). In a 3D RT system of high aspect ratio, in
which one transverse side is much smaller than the others, Boffetta et al. (2012)
observed a transition from 3D to 2D turbulent behaviour with the increasing scale,
when the height of the mixing layer becomes larger than the scale of confinement.
In particular, they revealed that for scales sufficiently large the third-order velocity
structure function becomes positive, signalling an upscale kinetic energy transfer at
these scales.

In this paper, we want to deepen the previous understanding by focusing on
the scale-to-scale energy and enstrophy transport in 2D RT turbulence. As stated
above, temperature becomes a fully active scalar in 2D RT turbulence, leading to the
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emergence of a BO59 scaling. This is dramatically different from the 3D situation,
where temperature behaves as a passive scalar and hence the Kolmogorov-like
(K41) phenomenology was predicted (Chertkov 2003; Soulard 2012) and observed
(Matsumoto 2009; Boffetta et al. 2010; Boffetta & Musacchio 2010). It is thus of
great interest to investigate the spectral transfer process in such a non-K41 system,
and this is why we focus on the 2D geometry in the present work.

Three considerations prompted us to perform the present investigation. First,
although the direct cascade of temperature variance is theoretically expected for
incompressible velocities, independently of the active/passive character of the
temperature field, it has not been examined in 2D RT turbulence, to the best of
our knowledge. In addition, the thermal balance plays an important role in BO59
phenomenology (Chertkov 2003) and thus needs to be directly validated. Second,
the enstrophy cascade has not been studied in the framework of RT turbulence,
and clarifying its direction is of fundamental interest and importance. Finally, how
to connect the spatiotemporal details of the spectral transfer process with coherent
structures is an important yet unknown question, which cannot be approached using
the traditional structure function method, as they are spatially averaged quantities.

Here, we apply the filter-space technique (FST) (Germano 1992; Liu, Meneveau &
Katz 1994; Eyink 1995; Borue & Orszag 1998; Rivera et al. 2003) to our numerical
data set of 2D RT turbulence. Recently, FST has received much attention in revealing
the spectral transfer properties of the double cascade in 2D turbulence (Rivera et al.
2003; Chen et al. 2003, 2006; Boffetta 2007; Xiao et al. 2009; Boffetta & Musacchio
2010; Wan et al. 2010; Kelley & Ouellette 2011; Liao & Ouellette 2013, 2014) and it
has been further proved to be a very efficient technique even for the poorly resolved
velocity field (Ni, Voth & Ouellette 2014). The basic idea of FST is not difficult to
understand: when small-scale components are removed from nonlinear equations by a
low-pass spatial filter, some new terms arise to describe the coupling and interaction
between the filtered small scales and the retained large scales. Therefore, these new
terms can be used to characterize the transfer of a given quantity between scales in
turbulence.

Using FST, we will show that even though a new type of phenomenology, i.e. the
BO59 scenario, was theoretically predicted and indeed numerically confirmed in 2D
RT turbulence, the kinetic energy is still transferred to large scales by an inverse
cascade, as already reported by Boffetta et al. (2012), while both the thermal energy
and enstrophy are driven by forward cascades. Moreover, we will reveal the local
features of the three instantaneous fluxes, including their asymmetrical distributions
and strong correlations at small scales. These local small-scale features correspond to
the mixing and dissipation near the interfaces between hot and cold plumes.

The remainder of this paper is organized as follows. In § 2, we give a brief
description of our numerical methods and filtering techniques. The results are
presented and analysed in § 3, and we summarize our findings and conclude
in § 4.

2. Methods
2.1. Governing equations and numerical model

We consider the spatial temporal evolution of a single component fluid in two
dimensions. At the beginning (t = 0), the colder uniform fluid is placed above the
hotter uniform fluid with an initial temperature jump Θ0, and the velocity is zero
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everywhere. The system is then governed by the Oberbeck–Boussinesq equations

∂uj

∂t
+ ui

∂uj

∂xi
=− ∂p

∂xj
+ ν ∂

2uj

∂x2
i
+ βgδj2θ, (2.1)

∂θ

∂t
+ ui

∂θ

∂xi
= κ ∂

2θ

∂x2
i
, (2.2)

∂ui

∂xi
= 0, (2.3)

for the velocity field u(x, t), the kinematic pressure field p(x, t), and the temperature
field θ(x, t). Here, summation is implied over double indices, δij is the Kronecker
symbol, g is the acceleration of gravity, and β, ν and κ are, respectively, the thermal
expansion coefficient, kinematic viscosity and thermal diffusivity of the working fluid.
In the horizontal direction, periodic boundary conditions are used for both the velocity
and temperature fields. No-slip velocity and no-flux temperature boundary conditions
are adopted for the top and bottom walls.

To reveal the properties of scale-to-scale energy and enstrophy transport, the time
evolution of the velocity u, temperature θ , and vorticity ω (= ∇ × u) fields is
investigated by means of direct numerical simulations. The numerical method has
been described in detail in Zhou (2013) and Huang & Zhou (2013), hence we give
only its main features here. The Oberbeck–Boussinesq equations (2.1)–(2.3) are
solved in their vorticity–stream function formulation on a 2D domain of height Lz
with uniform grid spacing using a finite-difference scheme (Liu, Wang & Johnston
2003). An essentially compact fourth-order scheme (Weinan & Liu 1996) is employed
to discretize the momentum equation, with the gravity term treated explicitly. The
temperature transport equation (2.2) is solved using fourth-order long-stencil difference
operators. The classical third-order Runge–Kutta method is applied to integrate both
the momentum and temperature equations in time, and the time step is chosen to
fulfil the Courant–Friedrichs–Lewy conditions.

In the present study, a spatial resolution of 4096 × 8193 grid points is used
to adequately resolve the small-scale properties. To assess the repeatability of the
statistical quantities, a total of 32 independent realizations have been produced by
adding different perturbations to the initial temperature interface. All statistical
quantities studied in this paper are thus obtained by first calculating for each
individual realization and then averaging over all these simulations. In all the runs,
Ag= 0.25, Lz= 1, Θ0= 1, ν = κ = 2.89× 10−6 and Pr= 1, where A= (βΘ0)/2 is the
Atwood number and Pr= ν/κ is the Prandtl number.

During the RT evolution, a layer of mixed fluid develops and grows in time.
Figure 1(a) depicts a typical snapshot of the instantaneous temperature field in a
40962 subregion inside the mixing layer obtained in a late stage of RT evolution
(at t/τ = 4, where τ = √Lz/Ag is the characteristic time of the system). The
corresponding velocity and vorticity fields are shown in figure 1(b). The growth of
the mixing layer can be characterized by its height, h(t), defined as a vertical layer
where −0.4Θ0 6 〈θ(x, t)〉x 6 0.4Θ0, with 〈θ(x, t)〉x being the horizontally averaged
temperature profiles. The temporal evolution of h(t) has been studied in our previous
work (see figure 1 of Qiu et al. 2014). It is found that there is a self-similarity
turbulent range 1.6 . t/τ . 4 within which h(t) follows the accelerated law h(t)∼ t2

and the spectra of both velocity and temperature fluctuations cover a broad range of
scales. Various time-averaged global quantities and small-scale statistical properties
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FIGURE 1. (a) Snapshot of the instantaneous temperature field in a 40962 subregion at
t/τ = 4. Blue regions indicate the cold fluid, while red regions correspond to the hot fluid.
(b) The corresponding velocity (arrows) and vorticity (colour) fields. Blue colours identify
the negative values, while red colours mark the positive values.

within this self-similarity range have been reported previously (Zhou 2013; Qiu et al.
2014). Here, we apply a new analysis to the data and study the scale-to-scale energy
and enstrophy transport using FST.

2.2. Filter-space techniques
For 2D RT turbulence, we consider the convolution,

f (r)(x)=
∫

G(r)(x− x′)f (x′) dx′, (2.4)

as a low-pass filtered field, where f = ui, θ and ω for velocity, temperature and
vorticity, respectively, G(r) is chosen to be a round Gaussian filter, and the superscript
(r) indicates a quantity containing the information from contributions only at length
scales larger than r. With these filtered quantities, one can define the filtered kinetic
energy to be E(r) = (u(r)i u(r)i )/2, the thermal energy to be Θ (r) = (θ (r)θ (r))/2, and the
enstrophy to be Ω (r) = (ω(r)ω(r))/2, and the evolution equations for E(r), Θ (r) and
Ω (r) are, respectively, given by

∂E(r)

∂t
=−∂J(r)i

∂xi
− ν ∂u(r)i

∂xi

∂u(r)i

∂xi
+ βgδi2u(r)i θ

(r) −Π (r), (2.5)

∂Θ (r)

∂t
=−∂K(r)

i

∂xi
− κ ∂θ

(r)

∂xi

∂θ (r)

∂xi
−N(r) (2.6)

and
∂Ω (r)

∂t
=−∂L(r)i

∂xi
− ν ∂ω

(r)

∂xi

∂ω(r)

∂xi
+ βgδi1ω

(r) ∂θ
(r)

∂xi
− Z(r). (2.7)

Here, J(r)i , K(r)
i and L(r)i are spatial currents of E(r), Θ (r) and Ω (r), respectively, and

the terms containing J(r)i , K(r)
i and L(r)i do not change the net budget, but spatially

redistribute energy and enstrophy in the resolved scales, i.e the scales larger than r.
The terms proportional to ν and κ are sink terms that denote direct dissipation of
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filtered energy and enstrophy due to the effects of viscosity and thermal diffusivity.
The terms proportional to βg are source terms that represent the kinetic energy and
enstrophy injections due to the buoyancy effects. The final terms on the right-hand
sides, given by

Π (r) =−[(uiuj)
(r) − u(r)i u(r)j ]

∂u(r)i

∂xj
, (2.8)

N(r) =−[(uiθ)
(r) − u(r)i θ

(r)]∂θ
(r)

∂xi
(2.9)

and

Z(r) =−[(uiω)
(r) − u(r)i ω

(r)]∂ω
(r)

∂xi
, (2.10)

are the scale-to-scale fluxes, respectively, of E(r), Θ (r) and Ω (r) across the filter scale r.
These terms originate from the filtering of the nonlinear terms in the equations and
express the coupling and interaction between the removed scales and the retained
scales. With the above definitions, negative values for Π (r), N(r) and Z(r) denote the
transfer of energy and enstrophy from scales <r to scales >r, while positive values
imply the opposite transfer process.

3. Results and discussion

Figure 2(a–f ) shows examples of instantaneous scale-to-scale flux fields of Π (r),
N(r) and Z(r) across two different filter scales, i.e. r= 1.9η around the viscous scale η
and r= 60.5η within the inertial range. These fields are computed using the filtering
procedure as described in § 2.2 from the same velocity, temperature and vorticity
fields as in figure 1, and normalized by their respective standard deviations Π (r)

sd , N(r)
sd

and Z(r)sd . In the figures, red regions represent positive flux, while blue regions mark
negative flux. One sees that the spatial distributions of these instantaneous fluxes are
strongly inhomogeneous. When a relatively small filter scale r is chosen, as shown
in figure 2(a–c), linelike regions of intense (positive or negative) flux appear. These
linelike structures seem to originate from the interfaces between hot and cold fluids,
and we will return to this issue at the end of this section. The intense-flux regions
become larger and smoother with increasing r (see, e.g. figure 2d–f ), as more of the
small-scale components are removed for a larger filter scale. In addition, regions of
both inverse and forward cascades are observed for Π (r), N(r) and Z(r), i.e. locally all
these quantities can be transferred either to smaller scales or to larger scales.

To quantify the details of local fluxes, the probability density functions (PDFs) of
kinetic energy Π (r), thermal energy N(r) and enstrophy Z(r) fluxes, for three different
filter scales r= 1.9η, 14.2η and 60.5η, are calculated and plotted in figure 2(g–i). It is
seen that fluctuations of the kinetic energy flux Π (r) are asymmetric, with the negative
fluctuations being larger than the positive ones, and the level of this asymmetry
becomes higher for smaller scales. The net gain of the negative fluctuations thus
implies a mean inverse cascade of kinetic energy from small to large scales. The
similar features can be revealed for the PDFs of N(r) and Z(r), except that the
positive fluctuations of the two fluxes are both larger than their negative counterparts,
suggesting a mean direct cascade of both thermal energy and enstrophy from large
to small scales.

The asymmetry of the local fluxes distribution can be quantitatively measured by
their skewness. Figure 3(a–c) plots the flux skewness Π (r)

skewness, N(r)
skewness and Z(r)skewness as
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FIGURE 2. (a–f ) Instantaneous spatial distributions of scale-to-scale (a,d) kinetic energy
flux Π (r), (b,e) thermal energy flux N(r) and (c,f ) enstrophy flux Z(r) across the scales (a–c)
r = 1.9η and (d–f ) r = 60.5η obtained from the same velocity, temperature and vorticity
fields as in figure 1, with each normalized by its standard deviation. Red colours mean
the transfer of energy and enstrophy to smaller length scales, while blue colours denote
the transfer to larger scales. (g–i) PDFs of (g) kinetic energy Π (r), (h) thermal energy N(f )

and (i) enstrophy Z(r) fluxes, normalized respectively by their standard deviations Π (r)
sd , N(r)

sd

and Z(r)sd , through different filter scales r.

a function of the filter scale at three different evolution times t/τ = 2, 3 and 4. Three
features are worthy of note: (i) all skewness of Π (r) are negative, while N(r)

skewness and
Z(r)skewness are positive for most of scales; (ii) their magnitudes decrease continuously to
zero with increasing filter scale r, suggesting symmetric fluctuations of these fluxes at
large scales; (iii) the maximum skewness magnitude occurs at small scales and this
maximum increases with increasing evolution time t. Note that the present observed
PDFs, especially for small scales, seem to be more asymmetric than those measured
in other 2D turbulence systems (Rivera et al. 2003; Chen et al. 2006; Boffetta 2007).
This may be attributed to the buoyancy effects in 2D RT turbulence. For example,
from flow visualizations (Qiu et al. 2014) we found that small thermal structures are
more likely to merge and group together to form large-scale structures, and during this
process the kinetic energy, supplied by buoyancy forces at small scales, goes primarily
to large scales.
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FIGURE 3. (Colour online) Skewness of (a) kinetic energy flux Π (r), (b) thermal energy
flux N(r) and (c) enstrophy flux Z(r) as a function of the normalized filter scale r/η at
times t/τ = 2, 3 and 4.

We now turn to the mean energy and enstrophy transport. Figure 4(a) shows
in a log–log plot the negative value of the spatially averaged kinetic energy flux,
−〈Π (r)〉, as a function of the filter scale at times t/τ = 2, 3 and 4. A negative flux
of kinetic energy is observed for all times and over all scales studied, indicating
that the kinetic energy is transferred, on average, to large scales, as first pointed
out by Celani et al. (2006) and theoretically expected by Soulard (2012). This
result agrees well with the conclusion of an upscale kinetic energy transfer, for
scales sufficiently large in a quasi-2D RT system, revealed from the third-order
velocity structure function by Boffetta et al. (2012). Taking this result together
with those obtained in previous works (Celani et al. 2006; Biferale et al. 2010;
Boffetta et al. 2012; Zhou 2013), we can now try to sketch the cascade picture of
kinetic energy in 2D RT turbulence. As shown in figure 4(b), the kinetic energy,
injected by buoyancy term βgθrur on scale r, cascades upwards to larger scales.
The BO59 scenario would require the balance βgθrur ∼ Π (r) ∼ u3

r/r, which has
been verified to be valid for all scales below the integral length scale (Zhou
2013). As indicated by Lohse & Xia (2010) in their review paper, this balance
implies that on scale r the kinetic energy obtained from smaller scales (such
as from scale r/2) would be required to be negligible when compared with the
energy transferred to larger scales (such as to scale 2r), i.e. |〈Π (r)〉| � |〈Π (r/2)〉|.
In the inset of figure 4, we plot the ratio between |〈Π (r)〉| and |〈Π (r/2)〉|. It is seen
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FIGURE 4. (Colour online) (a) The negative value of the mean kinetic energy flux,
−〈Π (r)〉, as a function of the normalized filter scale r/η at times t/τ = 2, 3 and 4.
Inset: the ratio |〈Π (r)〉|/|〈Π (r/2)〉|. (b) Sketch of the BO59 cascade of kinetic energy in
2D RT turbulence. The sketch is adapted from figure 4(b) of Lohse & Xia (2010) for
the three-dimensional Rayleigh–Bénard convection where the cascade is downscale. In the
present case, kinetic energy, supplied by the buoyancy term βgθrur on scale r, is driven
by a backward transfer.

1 10 100 1000

1 10 100 1000

1 10 100 1000

(a) (b)

FIGURE 5. (Colour online) The mean (a) thermal energy 〈N(r)〉 and (b) enstrophy 〈Z(r)〉
fluxes as a function of the normalized filter scale r/η at times t/τ = 2, 3 and 4. Inset of
(a): 〈N(r)〉 compensated by the spatially averaged thermal dissipation rate 〈εθ (t)〉.

that |〈Π (r)〉| > 〈Π (r/2)〉| over all scales studied and |〈Π (r)〉| is further larger than
4|〈Π (r/2)〉| for r . 20η.

Although the kinetic energy follows an inverse cascade due to the buoyancy effects,
the temperature fluctuations, governed by the temperature advection equation (2.2), are
expected to cascade continuously from large to small scales (Chertkov 2003; Lohse
& Xia 2010; Soulard 2012). Figure 5(a) shows the spatially averaged thermal energy
flux 〈N(r)〉 as a function of filter scale at three evolution times. Positive values are
definitely observed for 〈N(r)〉 over all scales. Furthermore, the thermal energy flux
seems to asymptote to a plateau value for scales r & 30η, indicative of an inertial
downscale transfer of thermal energy. Indeed, the thermal balance derived from (2.2)
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requires that in the inertial range the thermal transfer rate is independent of the scale
and is equal to the thermal dissipation rate, i.e.

〈N(r)〉 ∼ 〈εθ 〉, (3.1)

where
εθ(x, t)≡ κ[∂θ(x, t)/∂xi]2 (3.2)

is the thermal dissipation rate. To test this balance, we plot in the inset of figure 5(a)
the compensated thermal energy flux 〈N(r)〉/〈εθ 〉. After compensation, the three data
sets gained at different times of RT evolution collapse almost perfectly on top of each
other. And there is a reasonably extended range (over roughly one decade) through
which the compensated thermal energy flux has an approximately constant value of
unity. The presented results thus validate the thermal balance in 2D RT turbulence.

The spatial average of the enstrophy flux is plotted as a function of filter scale
in figure 5(b). Again, positive values are seen for 〈Z(r)〉 for all times and scales,
indicating a direct cascade of enstrophy to small scales. This is qualitatively consistent
with previous observations in other 2D flow systems (Rivera et al. 2003; Boffetta
2007; Liao & Ouellette 2014). Notice that the maximum of the enstrophy flux
occurs at the scale r' 10η, around which both the kinetic and thermal energy fluxes
experience a transition, as shown in figures 4(a) and 5(a), respectively. The scale
r ' 10η is the approximate cross-scale between the inertial range and the viscous
range (Zhou 2013). Therefore, the observed different behaviours of Π (r), N(r) and Z(r)
above and below this scale are attributed to different statistical properties of these
fluxes within different (i.e. inertial and viscous) ranges. Note also that, unlike other
2D turbulence systems, the energy and enstrophy cascades in 2D RT turbulence seem
to operate in the same range of scales. This is because in 2D RT system the kinetic
energy and enstrophy are simultaneously injected by buoyancy forces at all scales
smaller than the energy-containing scale.

Next, we study the correlations among the three local fluxes. To explore this
question, we calculated the cross-correlation coefficients CΠN(r) between Π (r) and
N(r), CΠZ(r) between Π (r) and Z(r), and CNZ(r) between N(r) and Z(r), respectively,
according to

CΠN(r)= 〈(Π
(r) − 〈Π (r)〉)(N(r) − 〈N(r)〉)〉

Π
(r)
sd N(r)

sd

, (3.3)

CΠZ(r)= 〈(Π
(r) − 〈Π (r)〉)(Z(r) − 〈Z(r)〉)〉

Π
(r)
sd Z(r)sd

(3.4)

and

CNZ(r)= 〈(N
(r) − 〈N(r)〉)(Z(r) − 〈Z(r)〉)〉

N(r)
sd Z(r)sd

. (3.5)

The dependence of the coefficients CΠN(r), CΠZ(r) and CNZ(r) on the filter scale at
three evolution times is reported in figure 6(a–c). One sees that the coefficients are
negative for CΠN(r) and CΠZ(r), but positive for CNZ(r). In general, the correlation
is higher for smaller r than that for larger r. At small scales, the three fluxes are
strongly correlated or anticorrelated. This can also be revealed by figure 2(a–c), from
which it is easy to see that the scale-to-scale flux fields of Π (r), N(r) and Z(r) across
the filter scale r = 1.9η share similar linelike patterns, i.e. the intense energy and
enstrophy fluxes appear nearly in the same physical regions. At large scales, however,
the strength of the correlation becomes weaker.
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FIGURE 6. (Colour online) Cross-correlation coefficients (a) CΠN(r), (b) CΠZ(r) and
(c) CNZ(r) as a function of the normalized filter scale r/η at times t/τ = 2, 3 and 4.

The interpretation of the strong correlations among the three fluxes at small scales
relies on the understanding of those linelike structures, as shown in figure 1(a–c).
Unlike the spotty structures in other 2D turbulence systems, these structures are
quite unique in 2D RT turbulence, suggesting that they may be related to some
flow structures in our system. In two dimensions, a line can be used to separate
an area into two distinct regions. In figure 1(a), the two regions can be physically
interpreted as hot and cold plumes, and those lines seem to mark their interfaces.
Figure 7(a) shows the instantaneous field of εθ(x, t) calculated from the temperature
field in figure 1(a). For comparison, we replot the figure 2(b) as figure 7(b). The
red lines in figure 7(a) indicating large temperature gradients are very similar to
those of the intense fluxes in figure 7(b). More quantitatively, the cross-correlation
coefficient between the two reaches 0.8. This is a very large correlation considering
that εθ is a positively defined quantity and the other one is not. Together with the
large correlations among the three fluxes, it suggests that, at small scales, the intense
fluxes are all located near the interfaces of cold and hot plumes.

In RT turbulence, the kinetic energy is siphoned from the potential energy by means
of the invasion of cold and hot plumes into each other. The interface between the two
will therefore evolve from a single horizontal straight line at the beginning to complex
topological structures with large tortuosity. In the interfacial regions, the magnitudes
of the various quantities, such as the temperature gradient as well as the shear between
the two plumes moving in the opposite directions, should be large. Since it happens
in a thin layer near the interface, these structures dominate the small-scale energy and
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0

FIGURE 7. (a) Snapshot of the instantaneous field of thermal dissipation rate εθ (x, t),
corresponding to the temperature field in figure 1(a). Red colours indicate positions of
large temperature gradients, and thus can be used to detect the interfaces between hot
and cold fluids. (b) Replot of figure 2(b) for comparison.

0.6 1.0 6.0 0.6 1.0 6.0

(a) (b)

FIGURE 8. (a) Temporal evolution of the mean kinetic energy dissipation rate 〈εu〉 and
its conditional value 〈εu | θ = 0〉 calculated at the interfaces. The two vertical dashed lines
mark the self-similarity turbulent range 1.6 . t/τ . 4 and the solid straight lines are the
temporal scalings t−0.2 and t−0.5 for reference. (b) Temporal evolution of the mean thermal
dissipation rate 〈εθ 〉 and its conditional value 〈εθ | θ = 0〉 calculated at the interfaces. The
solid straight lines are the temporal scalings t−0.66 and t−1 for reference.

enstrophy fluxes, and thus correspond to the strong correlations among the three fluxes.
Based on this, the linelike structures may be used as a new indication of the time
evolution of the mixing in RT turbulence.

As a preliminary try, we consider here the time behaviours of 〈εu(x, t) | θ = 0〉 and
〈εθ(x, t) | θ = 0〉, the conditional average of the kinetic energy and thermal dissipation
rates at the interfaces (i.e. the contour of θ = 0), where

εu(x, t)≡ ν[∂uj(x, t)/∂xi]2 (3.6)

is the kinetic energy dissipation rate. Figures 8(a,b) show, respectively, the temporal
evolution of 〈εu | θ = 0〉 and 〈εθ | θ = 0〉. In the figures, we also plot the mean kinetic
energy and thermal dissipation rates, 〈εu〉 and 〈εθ 〉, for comparison. As expected,
one sees that both 〈εu | θ = 0〉 and 〈εθ | θ = 0〉 are much larger than 〈εu〉 and 〈εθ 〉,
respectively, indicating intense velocity and temperature gradients at the interfaces. In
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the BO59 framework, Chertkov (2003) predicted 〈εu〉 ∼ t−0.5 and 〈εθ 〉 ∼ t−1. It is seen
that in the self-similarity turbulent regime, as indicated by the two vertical dashed
lines in figure 8, both 〈εu〉 and 〈εθ 〉 follow the theoretical predications well; this is
also consistent with our previous results (Zhou 2013). On the other hand, 〈εu | θ = 0〉
and 〈εθ | θ = 0〉 obtained at the interfaces both exhibit a less steep temporal scaling.
The best fits to the data in the self-similarity range yield 〈εu | θ = 0〉 ∼ t−0.2 and
〈εθ | θ = 0〉 ∼ t−0.66. As 〈εu | θ = 0〉 and 〈εθ | θ = 0〉 are obtained from the most intense
dissipation events, these new scaling laws may be attributed to the intermittent effects,
as identified and discussed previously by Celani et al. (2006), Biferale et al. (2010),
and Zhou (2013).

4. Conclusion

To conclude, we have analysed the energy and enstrophy transfer in 2D RT
turbulence, by means of direct numerical simulations. Using FST, the fluxes of kinetic
energy, thermal energy, and enstrophy across any given filter scale r are determined.
With this information and the results obtained in previous works (Celani et al. 2006;
Biferale et al. 2010; Boffetta et al. 2012; Zhou 2013), the cascade picture, in an
averaged sense, of 2D RT turbulence can now be sketched as follows: on one hand,
buoyancy forces provide kinetic energy on scale r, and then the kinetic energy is
driven by an inverse cascade (figure 4a and Boffetta et al. 2012), due to the merging
and grouping of buoyant structures. On the other hand, the temperature/density
fluctuations follow a forward cascade from large to small scales (figure 5a). In the
so-called inertial range, the above cascade processes are governed by two balances:
one is the kinetic balance that the transport rate of the kinetic energy equals the
buoyancy term (Zhou 2013), and the other is the scalar balance that the transfer rate
of the temperature/density variance is scale-independent and is equal to its dissipation
rate (inset of figure 5a). With these two balances, the BO59 scaling (1.1a,b) is
yielded.

The statistical properties of the instantaneous local fluxes are also studied. It is
found that locally there are regions of both inverse and direct cascades for all the
three fluxes with asymmetric distributions. The fluctuations of Π (r), N(r) and Z(r) are
more asymmetrically distributed at small scales than those at large scales. The analysis
of the cross-correlation coefficients among the three local fluxes reveals that at small
scales there is a strong correlation or anticorrelation between any two fluxes and the
strength of this correlation or anticorrelation becomes weaker with increasing filter
scale. These small-scale features are attributed to the mixing and dissipation near the
interfaces between hot and cold plumes.
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