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Objective. To elucidate the mechanisms of how snack foods may induce non-homeostatic food intake, we used resting state
functional magnetic resonance imaging (fMRI), as resting state networks can individually adapt to experience after short time
exposures. In addition, we used graph theoretical analysis together withmachine learning techniques (support vector machine)
to identifying biomarkers that can categorize between high-caloric (potato chips) vs. low-caloric (zucchini) food stimulation.

Methods. Seventeen healthy human subjects with body mass index (BMI) 19 to 27 underwent 2 different fMRI sessions
where an initial resting state scan was acquired, followed by visual presentation of different images of potato chips and
zucchini. There was then a 5-minute pause to ingest food (day 1=potato chips, day 3= zucchini), followed by a second
resting state scan. fMRI data were further analyzed using graph theory analysis and support vector machine techniques.

Results.Potato chips vs. zucchini stimulation led to significant connectivity changes. The support vector machinewas able to
accurately categorize the 2 types of food stimuli with 100% accuracy. Visual, auditory, and somatosensory structures, as well
as thalamus, insula, and basal ganglia were found to be important for food classification. After potato chips consumption, the
BMI was associated with the path length and degree in nucleus accumbens, middle temporal gyrus, and thalamus.

Conclusion. The results suggest that high vs. low caloric food stimulation in healthy individuals can induce significant
changes in resting state networks. These changes can be detected using graph theory measures in conjunction with
support vector machine. Additionally, we found that the BMI affects the response of the nucleus accumbens when high
caloric food is consumed.
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Introduction

Pursey et al.1 found that the prevalence of food addiction is
around 20% in the Western world population. It is well
known that food components and diets can modulate brain

functionality and brain activity,2,3 while the brain’s activity
patterns influence the quality and the quantity of nutri-
tional intake4,5. However, the nature of this relationship is
unclear. Our early studies done on rats showed that
specifically the mixture of 35% fat and 50% carbohydrate
rather than the pure energy content in food leads to
hedonic hyperphagia.6,7 Hedonic hyperphagia is described
as caloric hyperalimentation beyond satiety.8 Humans also
show preference to refined foods with high fat, sugar, or
salt content, in quantities that show abuse and addictive-
like behaviors.9 These high caloric foods, such as potato
chips, are often consumed for reward and pleasure and not
for homeostatic purposes. Furthermore, Schulte et al.10

assessed among 518 participants a list of 35 foods and
their likelihood to be addictive. From their results, the
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snack food potato chips turned out to be the third most
likely addictive food.

Functional magnetic resonance imaging (fMRI)
studies, being the gold-standard for non-invasively investi-
gating human brain functions, have highlighted the
existence of brain anomalies and vulnerability factors
related to obesity and eating disorders such as binge eating
or anorexia nervosa.11–15 fMRI is expanding our knowl-
edge on the neurobehavioral dimensions of food choices
and motivation processes. For example, one study
reported that in humans, pleasantness of a food is highly
correlated with whether it will be eaten and howmuch will
be eaten.16 A different study identified the primary
gustatory cortex in the anterior insula of human subjects
with the quality and intensity of taste. The orbitofrontal
cortex and anterior cingulate cortex were also found to
represent the reward value of taste; activations in this area
correlate with the subjective pleasantness of taste.17,18

Another neuroimaging study suggested that the ventrome-
dial prefrontal cortex (vmPFC) is in charge of short-term
value of stimuli (eg, taste), whereas the dorsolateral
prefrontal cortex (DLPFC) is in charge of long-term
considerations (eg, health). The researchers concluded that
failed self-control in obesity can be dependent on the extent
to which the DLPFC can modulate the vmPFC.19 These
neuroimaging findings pave the way to prevention studies
that could help early diagnostics and better treatment
options for eating disorders. However, the exact neuronal
mechanisms underlying these disorders remain unclear.

Recently, neuroimaging interest has been directed
toward spontaneous brain activity in the absence of a task
or stimulus, the so-called resting state fMRI (RS-fMRI).20

The results are different spatial patterns of functionally
connected brain structures that are referred to as resting
state networks (RSNs). A variety of these networks have
been identified as behavior driving.21 It has been proven
that RSNs can individually adapt to experience after
short-time exposures to a stimulus, and these RSNs are a
good indicator for addictive behaviors.22,23 Furthermore
RS-fMRI has proven to work as an early indicator of
neurological and psychiatric disorders due to patho-
logical changes in the brain.24,25

Graph theoretical analyses consider the whole brain
dynamics and have been proven effective in detecting
abnormalities of RSNs.26–28 Graph theory (GT) describes
the whole brain as an interrelated network and quantifies
this network organization, like the information flow,
using different measures.29 Additionally, support vector
machines (SVM) are one of the most robust tools used in
machine learning because of their ability to discriminate
a set of features between (2) categories in high dimen-
sional spaces, and an excellent reproducibility of the
classification results.30,31 Used in conjunction with GT,
SVM provides new insights in understanding brain
dynamics.27,32–34

The current study aimed to determine whether
visualization followed by ingestion of different food types
(high-caloric: potato chips, and low-caloric: zucchini)
is able to generate different changes in the resting
state networks of healthy individuals. In addition, we
propose a method using graph theoretical analysis in
conjunction with SVM for identifying biomarkers that
can differentiate the 2 types of food stimulation.

Methods

Participants

A total of 19 (10 female, 9 male) healthy right-handed
participants with body mass index (BMI) in the range
19–27 and aged 26–47 were recruited from the research
staff of the Friedrich-Alexander-Universität Erlangen-
Nürnberg (FAU). Participants did not receive financial
compensation. Exclusion criteria included absence of
any current or past form neurological/psychiatric
diseases, having a BMI outside the range of 19–27, or
having any contradictions to fMRI scanning. Ethical
approval (220_15B) was provided by the local ethics
committee of FAU, and informed consent was obtained
from all participants. The study adhered to the tenets of
the Declaration of Helsinki.

Study design

The experimental procedures are summarized in Figure 1.
Every subject underwent 2 different fMRI sessions of
∼40 minutes in total. The interval between the 2 sessions
was 3 days. Participants arrived to the university clinic
previously knowing what food they would be presented
each day. The intention behind this was to increase the
expectation of food reward, which is known to enhance
neural cue reactivity.35 The subjects were asked not to eat
food for at least 2 hours before the experiment. At arrival,
participants filled out a questionnaire and subsequently
entered the MRI scanner. In each session, resting state
was measured twice by instructing the participants to rest
with their eyes open and lay still in an ambient light
environment. Each fMRI session started by acquiring the
individual anatomical imaging, followed by the first
resting state (RS) scan (Pre RS-fMRI) and BOLD visual
stimulation [presentation of different images of potato
chips and zucchini: image presentation: total 196 vol.
(time points)=28×7, 1 block of images contained 7
images, 1 image=1 vol.=3 sec)]. There was then a pause
of 5 minutes, where the participants were moved out of
the scanner but remained on the motor table and had to
consume (day 1= salted potato chips: 528kcal/100g,
33% fats, 49% carbohydrates; day 3= sliced zucchini:
17 kcal/100g, 3% fats, 3.5% carbohydrates) ad libitum for
2 minutes. They were then introduced once again in the
scanner for a second RS scan (Post RS-fMRI). [Note: The
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results of the BOLD stimulation and questionnaire results
are beyond the scope of the current publication.]

The MRI data were collected by a 3T scanner
(Magnetom trio; Siemens) using a standard 8-channel,
phased-array head coil. For anatomic datasets, a T1-
weighted, magnetization-prepared, rapid gradient-echo
(standard Siemens MP-RAGE) sequence with 1mm
isotropic resolution was used; functional data were
acquired using a standard single-shot, echo-planar imaging
(EPI) sequence [repetition time/echo time (TR/TE)=
3000/30ms] using a 128×128 matrix and a spatial
resolution of 1.5mm in plane, 3mm slice thickness, and
0.75mm gap between slices.

Data processing and analysis

The RS-fMRI data were analyzed initially for each subject,
session, and measurement by means of BrainVoyager QX
(v. 2.8, Brain Innovation B.V. Maastricht, The
Netherlands). Our brain atlas of choice was the Harvard-
Oxford brain atlas (http://www.fmrib.ox.ac.uk/fsl/),
which is a set of probabilistic atlases covering 48 cortical
and 21 subcortical structural areas. This atlas was used to
define the different regions of interest (ROIs) necessary
for the multi-seed region analysis, which preceded GT.

The next step was to preprocess the RS-fMRI data in
BrainVoyager. Preprocessing of the anatomical data
included inhomogeneity correction, brain extraction,
spatial transformations, and selection of ROIs for white
matter and ventricles. Inhomogeneity correction esti-
mates the bias field of the B1 field of the receiver coil by
analyzing the variability of white matter intensities over
space.36 The brain was then segmented from the skull
and other head tissues using automatic “brain peeling.”
This tool analyzes the local intensity histogram in small
volumes (20 ×20 × 20 voxels) to define different thresh-
olds for an adaptive region-growing technique.37 The
outcome was visually inspected and manually refined.
Data were then transformed into anterior commissure -
posterior commissure line and Talairach standard space
(1mm3 isotropic). Finally ROIs were manually selected

for both white matter and ventricles and stored for later
processing.

The preprocessing of functional data in BrainVoyager
included slice scan time and head motion correction and
a frequency space high pass filter on 0.009 Hz. Slice scan
time correction was performed using sinc interpolation
based on information about the TR (3000 msec) and the
order of the slice scanning. 3D motion correction
(trilinear and sinc interpolation) was carried out to
detect and correct small head movements by spatially
aligning all volumes of a subject to the first volume
through rigid body transformations.37 No spatial smooth-
ing was performed at this stage. Due to software
limitations of BrainVoyager QX 2.8, MagnAn (BioCom
GbR, Uttenreuth, Germany) was used to perform the
low-pass filter at 0.08Hz, completing then the band-pass
filter. The bandpass-filtered data were transferred back
to BrainVoyager. Finally, a general linear model (GLM)
was performed with the time courses from the previously
selected ROIs (ie, white matter and ventricles) together
with the motion correction predictors as cofounders.
This was done to regress out these nonbrain function–
related global fluctuations.

Connectivity analysis

Data were analyzed using BrainVoyager QX 2.8, Amira
(FEI Company, OR, USA), and MagnAn. For the
automatic multiseed corregistration method,38 48
cortical and 13 subcortical brain structures for each
hemisphere were defined by registering (affine transfor-
mation with 9 degrees of freedom) the Harvard-Oxford
4D probability atlas to each dataset using BrainVoyager.
This was done for all the individuals in all the different
condition groups (pre RS-fMRI, post RS-fMRI for potato
chips and zucchini sessions). Next, the seed regions were
determined automatically through the center of mass of
each of the identified atlas brain structures. The
correlation was then calculated for all the voxels in the
brain with the average time course of each seed region.
Based on resulting 3D correlation volume map for

FIGURE 1. Schematic of the study protocol.
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each seed region, the mean correlation value per brain
structure was obtained by averaging over all significant
correlating voxels of the given brain structure. By doing
so, an asymmetric correlation matrix was generated with
seed regions in rows and the correlating brain structures
in columns.

Graph networks

In the next step, the resulting individual correlation
matrices were transformed into network graphs consist-
ing of vertices (or nodes) and edges. Vertices represent
the brain’s regions, whereas edges between pairs of brain
regions indicate functional connectivity. The topology of
network graphs is strongly dependent on the numbers of
represented connections. The connections configuring a
graph with a given sparsity were defined by thresholding
(binarizing) the associated correlation matrix with the
top 1230 number of connections [123 structures with an
average number of edges (k) of 10]. The resulting
network leads to different threshold values per matrix
but of equal sparsity and therefore important to com-
parable graph topology.

Graph measures

The organization of complex networks can be character-
ized by various graph measures. These quantify the
network’s properties of integration and segregation and,
therefore, are suitable to describe the efficiency of
information flow within a network. Watts and Strogatz39

were the first to characterize “small world network”
topology. This was represented by the small world index
(σ), which represents the effectiveness of the information
flow, and is calculated as the quotient of the normalized
clustering coefficient and the normalized average path
length. To generate characteristic network features
(network statistics per brain region), diverse graph

measures were calculated on the binarized matrices from
the 2 post RS measurements for each brain structure per
individual using MagnAn: path length, clustering coeffi-
cient (functional integration and functional segrega-
tion), and degree. The path length measures the average
functional distance between 2 nodes, whereas the
clustering coefficient is the tendency of network nodes
to cluster.29 A network with short path lengths and high
clustering coefficient can be considered functionally
integrated. On the other hand, long path lengths and low
clustering coefficient is a sign of functional segregation.

Degree is a factor of local significance of nodes in
network topology. In addition, hub and authority (local
nodal measures) features were computed on the averaged
individual correlation matrices for each post RS mea-
surement to see the effect of the stimulation. Local nodal
measures describe the properties of individual network
elements and determine connectivity characteristics
associated with these elements.40 For hub identification
we used the hyperlink-induced topic search (HITS).41

This algorithm assigns 2 scores for each node: its
authority, which estimates the amount of valuable
information a node holds, and its hub score, which
measures how many highly informative or authoritative
nodes are being pointed to by a node.42

Significant differences network-based statistics

In order to be able to compare differences in network
topologies across 2 experimental conditions, here potato
chips vs. zucchini, we decided to study the changes in
connectivity between each pair of nodes (Figure 2). To
identify pairwise RS associations that are significantly
different in relation to the ingested food, we implemen-
ted a modified version of the network-based statistics
(NBS), first introduced by Zalesky et al.43 NBS relies on
the assumption that the group differences in single

FIGURE 2. Flowchart of the applied paired Network Based Statistics approach.
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connections are more likely to be false positive than the
differences in larger connected components. To each
connected component of group differences, a p-value,
which controls for the family-wise error, was attributed
using permutation testing.43 However, experimental
designs with paired subjects between groups cannot be
permutated, as the subjects’ affiliation to a group cannot
be randomly changed. To overcome this limitation, we
implemented an additional control experiment with
identical experimental parameters. The pre-RS measure-
ments for both food conditions were considered as the
control experiment, as repeated RS measurements have
been shown to be robust and stable.21,44–46 Our paired
NBS approach used the Fisher’s z-transformed correla-
tion matrices of all 4 RS scans per individual (2 of the
experimental and 2 of the control measurements). For
each individual, the differences of correlation values per
connection between the 2 RS correlation matrices of
each session (control and experimental) were calculated.
These difference matrices are used to calculate the
pairwise t-statistics and later on the permutation testing.
We then determined the 99% quantile of the p-values of
the paired t-statistics of the control group and identified
a set of supra-threshold links corresponding to 1%
hypothetical false positive connections. This threshold
was applied to the paired t-statistics p-values of the
experimental group, and all connected components
above this threshold that are equal or smaller than the
largest component of the control group were eliminated.
The remaining connected components of modulated
connections were exclusively based on the connections
that were part of RS graphs with defined sparsity (1230
strongest directed connections, see above).

Fisher score and SVM

For each brain structure, the 5 statistical parameters
mentioned above (path length, clustering coefficient,
degree, hub, and authority) were computed per RS
measurement. Consequently, using all the brain struc-
tures (123 in total), we obtained a feature vector of 738
dimensions for each measurement.

Once the features were created, the high dimension-
ality became a problem. This is because when dimension-
ality increases, the volume of the space augments so fast
that the data results become sparse. Sparsity is
problematic for any method that requires statistical
significance. In order to obtain a statistically reliable
result, the amount of data needed to support the result
often needs to grow exponentially with the dimension-
ality.47 As a result, we employed a specific feature
selection for dimensionality reduction. For this task we
chose the Fisher score, which immediately allows the
comparison of the discriminating power of the selected
features, one by one, granting the possibility to choose

the features that would best classify the data while
keeping their number to a minimum.27,31,48

Support vector machines (SVMs) belong to the field of
machine learning for 2-group classification problems.
The selected features were mapped in a high m-
dimensional space (m being the number of selected
features). In this space a linear hyperplane classifier was
constructed to robustly separate the groups.30,31,49 SVM
analyses were conducted in Python (Python Software
Foundation, https://www.python.org/) using the scikit-
learn library (http://scikit-learn.org/stable/). To test the
accuracy performance of the classification model, we
employed leave-one-out cross-validation (LOOCV).
LOOCV is a form of K-fold cross-validation, where K is
equal toN (being in our caseN=32, 2 measurements per
subject).50 The most discriminative features based on the
Fisher scores were used to train the classifier. Using the
LOOCV method, we aimed at evaluating the classifier’s
accuracy, specificity, and sensitivity. The number of
selected features increased for each fold until all were
considered, obtaining different accuracies for each
run.27,51 We chose specificity as a measure to reflect the
capacity of SVM to correctly classify potato chips
stimulation and sensitivity to reflect the capacity to
correctly classify zucchini stimulation. Moreover, we
thereby identified the most discriminative brain regions
related to specific graph measures, according to different
cutoff scores.

In addition, Pearson correlation coefficients were
calculated among potato chips post RS-fMRI graph
measures and BMI, to check for the specific effect of
high-caloric food stimulation. Linear regression models
were used to determine significant associations (p<0.05).
Only degree and path length showed significant correla-
tions with BMI. Therefore, we focused on these measures
to investigate both local and global dynamics.

Results

The STROBE52 flowchart for recruitment is shown in
Figure 3. One female participant was excluded from the
analysis, as her fMRI data were corrupted. The final sample
used for the complete analysis resulted in 16 (9 female and
7 male) healthy participants with BMI in the range
19–27kg/m2 (mean=23kg/m2, SD=2.6kg/m2), aged
26–47 years (mean=33 years, SD=6.8 years).

In order to study how potato chips consumption after
visual stimulation induces dynamic modulations in
resting state connectivity as opposed to zucchini
consumption, we performed 4 different kinds of analysis.
First we checked for the global measure the small world
index σ, as introduced in the Methods section as a
measure of information flow (Figure 4). Results show
that σ was preserved, as there were no significant
differences between the different measures. For this
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reason we conducted a more sophisticated analysis to
understand the RSN differences. NBS and SVM
are methods for characterizing networks with the
advantage of not compressing all information into one
single value.

Connectivity differences

Following, paired NBS was used to determine any
significant changes between pairwise connectivity. For
the statistical analysis, the difference matrices were used
to calculate the uncorrected paired t-statistics. Com-
pared to the control condition, the visual presentation

followed by the consumption of different food led to
significant connectivity changes in the post resting state
(both at α= 0.0186) with widespread significant differ-
ences between potato chips and zucchini (as illustrated in
Figure 5). After thresholding the paired t-statistics
p-values, a p-value controlling the family-wise-error was
ascribed using permutation testing to each remaining
connected component of group differences (p=0.093).
These changes took place mainly between cortical
structures, with the exception of the basal ganglia.
Overall, the left hemisphere showed more connectivity
changes, mainly decreased, than the right one. Three
frontal nodes stood out among the rest: the inferior
frontal gyrus, frontal orbital cortex, and planum polare,
the pairwise connectivities of which mainly decreased for
potato chips compared to zucchini. In contrast, the
pairwise connectivity mostly increased for potato chips
compared to zucchini between temporal structures, such
as the planum temporale, inferior temporal gyrus, and
temporal pole. The occipital area also showed changes in
connectivity in both directions, increased and decreased.

Classifier accuracy

The SVM was calculated to detect the most discrimina-
tive structures and measures between potato chips and
zucchini. Table 1 shows the classification, sensitivity, and
specificity scores using LOOCV when comparing potato
chips to zucchini consumption, when preceded by a
visual presentation of both food items. The number of
features that resulted in the best classifier performance
depended on the desired cutoff score. As shown, 67FIGURE 3. STROBE flowchart for recruitment.

FIGURE 4. Graph representing the small world index for the different RS-fMRI measures against k (average number of connections per node). No significant
differences were detected between the groups.
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features were needed to obtain the best classification
performance with 100% of LOOCV classification
accuracy.

Most selective features

For the identification of the most discriminative brain
structures according to the graph theoretical measures,
we selected the regions with 100% accuracy. Figure 6
and Table 2 illustrate the most discriminate features
(cutoff of 0.15). Visual, auditory, and somatosensory
structures were predominant. Various subcortical struc-
tures (thalamus, insula, and basal ganglia) were also
found to play a role in discriminating between which food
item had been consumed. Interestingly, results of our
experimental design revealed changes mainly in left-
sided brain regions.

BMI

Finally, we examined the relationship between BMI,
degree, and path length after eating potato chips when
preceded by the visual presentation of both food items
through Pearson’s correlation coefficients. BMI was found
to correlate significantly with degree and path length of
several brain structures (see Table 3 and Figure 7). BMI
was positively associated with the path length of the right
middle temporal gyrus and bilateral nucleus accumbens,
and negatively associated with the right premotor thala-
mus. Similar findings were obtained for BMI and degree.
However, in this case, the right premotor thalamus was
found to be positively associated, and the right temporal
thalamus and bilateral nucleus accumbens was found to be
negatively associated, meaning the higher the BMI, the
fewer number of connections in the latter areas.

Discussion

This study shows that the combination of visualization
and ingestion of different food types (potato chips and
zucchini) leads to specific changes in resting state
networks of healthy individuals. Interestingly, graph
theoretical analysis in conjunction with SVM was able
to discriminate with 100% accuracy between the effect of
the 2 types of food consumption after subjects were
primed with the visual presentation. Moreover, graph-

FIGURE 5. Pairwise connectivity differences between food stimuli from two different planes. (a) Sagittal view (b) Coronal plane. Node Red edges represent
increased connectivity for chips compared to zucchini. Blue edges represent decreased connectivity for chips compared to zucchini. Colors correspond to the
anatomical groups in the Harvard-Oxford brain atlas (c) Color label of the anatomical brain regions. Node size represents the total degree (total amount of
connections with the rest of the network).

TABLE 1. Accuracy, sensitivity and specificity scores using LOOCV
when comparing chips to zucchini stimulation

Cut-off Number of features Accuracy Specificity Sensitivity

0 67 100% 100% 100%
0.05 63 97% 100% 94%
0.1 38 91% 94% 88%
0.15 14 84% 81% 88%
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theoretical analyses illustrate differences at the connec-
tivity and intra-node level of activation between the 2
types of food stimuli. Additionally, BMI should be
considered when investigating the connectivity effects
of high caloric foods.

The global assessment of the RSNs in terms of the
small world index σ was proven insufficient for our study.
Previous RS-fMRI studies using clinical populations
found σ as an index for effectiveness of information flow
in a network, which is valuable for differential diagnosis,

ie, Alzheimers, mild cognitive impairment.53,54 How-
ever, in normal functioning brain networks, as investi-
gated here, a more detailed analysis is needed that does
not compress the complexity of the information flow into
a single value.

Using RS-fMRI derived measures and paired NBS, we
created the brain’s functional network connectivity. We
found global connectivity differences between potato
chips and zucchini compared to the pre-RS-fMRI condi-
tion. Connectivity of diverse frontal structures, espe-
cially the left frontal orbital cortex, mainly decreased for
potato chips compared to zucchini. The frontal orbital
cortex responds to visual presentations of food stimuli
and plays a role in visual, olfactory, and taste representa-
tion, as well as in the evaluation of food reward.55 One
previous study found increased frontal orbital cortex
activation when viewing low-caloric foods in comparison

FIGURE 6. SVM of most discriminative features (cutoff 0.15) showing the fisher z-score for the individual brain structures. Bar colors correspond to labelling
scheme given in Figure 4c.

TABLE 2. SVM’s highest discriminative brain regions (cutoff 0.15)
according to the Harvard-Oxford atlas

Abbreviation Name in Harvard-Oxford Atlas

Th_mot_L Primary motor thalamus
Cx_LOcs_L Lateral occipital cortex, superior division
Ins_L Insula
Cx_IC_L Intracalcarine cortex
Cx_STGa_L Superior temporal gyrus, anterior division
Cx_Au_R Heschl’s gyrus (includes H1 and H2)
Cx_pCg_L Paracingulate gyrus
Th_premot_L Pre-motor thalamus
Acc_L Nucleus accumbens
Cx_SMGp_L Supramarginal gyrus, posterior division
Cx_IC_R Intracalcarine cortex
GP_L Pallidum
Cx_LOci Lateral occipital cortex, inferior division
Cx_SMGp_L Supramarginal gyrus, posterior division

Note: L, left; R, right.

TABLE 3. ■

Path length Degree

Anatomical label r p-value r p-value

Premotor thalamus right –0.585 0.041* 0.675 0.016*
Temporal thalamus right 0.442 0.128 –0.612 0.031*
Middle temporal gyrus Right 0.571 0.046* 0.149 0.614
Nucleus accumbens right 0.648 0.022* –0.689 0.014*
Nucleus accumbens left 0.678 0.016* –0.626 0.027*

Note: r= Pearson correlation coefficient; *p< 0.05.
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to high caloric foods.56 The authors speculated about the
possibility that association with reward of low strength
(in our case zucchini) may require more extensive
integrative processing in the frontal orbital areas. Food
with lower reward value may have encouraged less
effective responses throughout a lifetime.57 Conversely,
the frontal orbital cortex is also involved in representing
negative reinforcements, such as aversive taste.58 Our
healthy participants may have found zucchini unplea-
sant, experiencing an aversive response to zucchini
resulting in stronger frontal orbital connectivity. We
specifically found decreased connectivity between the
inferior frontal gyrus (frontal cortex) and the middle
temporal gyrus (temporal cortex) for potato chips in
comparison to the zucchini condition. The first region is
related to associative and item recognition. Moreover,
the connections with the middle temporal gyrus have
been already described. The middle temporal gyrus
supports the use of pre-experimental acquired associa-
tions during the retrieval efforts of the inferior frontal
gyrus.59 Zucchini might be a weaker stimulus than potato
chips, and stronger retrieval efforts might be needed for
its identification as a food item. Equally important is the
increase of connectivity between temporal structures as
well as the decrease of pairwise connectivity in frontal
areas for chips in comparison to zucchini. These
areas have not been previously associated with food
processing; however, they comprise part of Wernicke’s
area, which is involved in semantic processing. The
potato chips fMRI was the first session to take

place; therefore it is possible to speculate that the effects
on the semantic processing of the visual categories were
stronger during this session due to a novelty
response.60,61 Furthermore, we found planum temporale
activation which could be explained by the scanner’s
noise and its novelty effect during the first session.62,63

Once food type differences after visual presentation
were established though paired NBS, we used graph
theoretical measures as discriminative features for
automatically classifying individuals depending on the
food received that day. SVM’s best classification accuracy
was achieved with 67 features. Consequently, the current
study demonstrates an analysis method capable of
distinguishing between the type of food received with
an accuracy of 100%. It was shown that the lateral
occipital cortex, insula, striatum (basal ganglia), and
nucleus accumbens have a high sensitivity for food
stimulus discrimination. These highly discriminative
regions have been previously described in food-related
research. The lateral occipital cortex has been proven to
be related to the perception of emotionally salient stimuli
like food, which can lead to increased attention.64,65

Consequently, potato chips might be more salient stimuli
than zucchini or vice versa, proving the lateral occipital
cortex as a critical brain region. The insula, being in our
study partly responsible for the modulation of connec-
tivity by different food, is involved in memory retrieval of
previous experiences, including imagining the taste of
food, craving for food, and the mouth feel of water and
fat, and has been described in the context of eating

FIGURE 7. Brain structures that significantly correlate between BMI with (a) path length and (b) degree, after chips consumption (p< 0.05). Regions with
positive correlations are highlighted in red, while negatively correlated regions are blue.
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disorders and obesity.64,66–68 Among many functions,
the ventral striatum has been related with the attribution
of a superior metabolic reward value to high energy foods
as compared to low energy foods.69 Furthermore, one
study related satiation with attenuated BOLD activity in
the nucleus accumbens (ventral striatum).70 In our study,
the intake of zucchini might have resulted in lower food
craving than potato chips intake due to its low reward
value, being the striatum, and more concretely the
nucleus accumbens a critical brain region for reward
processing. Additionally, most discriminative brain
structures were located in the left hemisphere. This
effect was also seen for the pairwise connectivity, where
most changes were also lateralized to the left. Our
research evidenced that after attending food pictures and
consuming food, a large network of left-sided brain
regions is strongly activated. The involvement of these
left brain areas in the explicit processing of food cues is
in accordance with previous findings.56,66 Furthermore,
all of our participants were right-handed. Different
studies associated performance of a visual working
memory task in right-handed participants with laterali-
zation of brain activity in the left hemisphere.59,71

Another key finding of this study is that when
stimulated with the same food pictures followed by
potato chips consumption, the degree and path length
in certain areas were associated with BMI; particularly
interesting is again the nucleus accumbens. A previous
study related nucleus accumbens activation to the
amount of fat consumed at a buffet.72 Furthermore, the
nucleus accumbens contains opioid pathways that
stimulate intake of highly palatable and energy-rich
foods.73 The structures of these pathways seem to
increase their path length, being less globally efficient
with increasing BMI. Moreover, part of our participants
had a BMI higher than 25 kg/m2, which can be
considered slightly overweight. Scientists found that
increased reward responsivity to food cues in the nucleus
accumbens is associated with subsequent weight gain
during the 6 following months,74 and that overweight
women have functional alterations within the nucleus
accumbens.75 On the other hand, the number of
connections of the accumbens after potato chips
consumption decreased with increasing BMI, again
indicating less global interconnectivity. One study
showed similar results, where dopamine release was
reduced in the accumbens after calorie intake in obese
subjects in contrast to healthy individuals.76

Several limitations should be considered when inter-
preting the present findings. Unfortunately in this study
there was no RS-fMRI measurement between the visual
stimulation and the food consumption. Therefore indivi-
dual effects of both components on the resting state
networks could not be differentiated. Furthermore, an
important covariate such as gender was not considered in

this study due to limited number of participants. Different
studies stress the importance of sex differences in the
response to satiation, suggesting that the regulation of
food intake by the brain may vary depending on
gender.71,77,78 A higher number of participants is recom-
mended for future studies to avoid limited statistical
power.79 Furthermore, different studies identified the
hypothalamus as the structure responsible for modulating
food reward.80–82 Our atlas of choice, the Harvard-Oxford
atlas, did not include the hypothalamus; therefore, this
area was not considered during our analysis. The external
validity of our results should also be taken into account, as
our results are limited to the 2 food items of our choice.
Furthermore, Western diets are different from diets of
other regions, and therefore our food choice might not be
translatable to other populations.10

Conclusions

Overall, this study determined that there are different
changes in RSNs after visualizing and ingesting potato
chips (high caloric) vs. zucchini (low caloric) food in
healthy individuals. We proposed our method based on
graph theoretical analysis in conjunction with SVM to
distinguish between different types of food stimuli. Our
results aim to understand how nutritional components
and diets can specifically modulate brain functionality
and brain activity. We found that BMI positively
correlated with activity in the nucleus accumbens when
consuming snack foods. Unraveling human eating
behavior and its neuronal mechanisms is of high
importance to understand food-related disorders and
ultimately to develop targeted obesity prevention.
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