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Abstract

We provide a new proof of the existence of Gibbs point processes with infinite range
interactions, based on the compactness of entropy levels. Our main existence theorem
holds under two assumptions. The first one is the standard stability assumption, which
means that the energy of any finite configuration is superlinear with respect to the num-
ber of points. The second assumption is the so-called intensity regularity, which controls
the long range of the interaction via the intensity of the process. This assumption is new
and introduced here since it is well adapted to the entropy approach. As a corollary of
our main result we improve the existence results by Ruelle (1970) for pairwise interac-
tions by relaxing the superstabilty assumption. Note that our setting is not reduced to
pairwise interaction and can contain infinite-range multi-body counterparts.
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1. Introduction

The starting point of the theory is an energy function H defined on the space of locally
finite configurations in R

d. In the following, ω denotes such a point configuration and H(ω)
its energy. Then the finite-volume Gibbs measure on a bounded set �⊂R

d is simply the
probability measure

P� = 1

Z�
e−Hπ�,

where π� is the Poisson point process in � with intensity one and Z� the normalization con-
stant. The existence of P� is guaranteed by the stability condition recalled below. The existence
of an infinite volume measure, corresponding to the case ‘�=R

d’, is not obvious and cannot
be achieved by the definition above. In fact, the general strategy is first to obtain a suitable
thermodynamic limit for (P�) when � tends to R

d and then derive a good description of the
limiting point by the Dobrushin–Lanford–Ruelle (DLR) equations. The first general result in
this direction is due to Ruelle in the 1970s [14, 15]. The setting was the pairwise interaction

H(ω) =
∑

x �=y∈ω
φ(|x − y|),
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where the potential φ is assumed regular, which means roughly that φ is summable at infinity
(i.e.

∫ +∞
R rd−1|φ(r)| dr<+∞ for R> 0 large enough) and superstable: there exist two con-

stants A> 0 and B ≥ 0 such that, for any bounded set �⊂R
d and for any finite configuration

ω in �,

H(ω) ≥ −B|ω| + A

λd(�)
|ω|2,

where |ω| denotes the number of points in ω and λd the Lebesgue measure on R
d. Under

these two assumptions, Ruelle proved the existence of at least one infinite Gibbs point process.
Similar results have been proved more recently in [10, 11] using functional analysis tools.
In all cases the superstability assumption is required. As a corollary of our main result we
improve these existence results in substituting the superstability assumption with the stability
assumption: there exists a constant B ≥ 0 such that, for any finite configuration ω,

H(ω) ≥ −B|ω|.
Note that the difference between stable and superstable potential is in fact weak since any

stable potential becomes superstable if a pairwise continuous non-negative and non-null-at-
origin potential is added. However, there exist several pairwise stable potentials which are
not superstable. For instance, any continuous, non-negative pairwise potential null at the
origin is stable without being superstable. Note also that several examples of stable (and non-
superstable) energy functions have been introduced recently in stochastic geometry and spatial
statistics [1, 5, 13].

A multi-body interaction occurs when the energy function H is decomposed using potentials
on pairs, triplets, quadruplets, k-plets of points (but not only on pairs). Our results do not use
and do not depend on such decompositions. Therefore, our existence result covers several
multi-body interactions, including infinite-range cases (examples are given in Section 3). We
note that finite-range multi-body interactions were treated in [2] using Dobrushin’s criterion.

Our main tool is the compactness of entropy level sets for the local convergence topology.
This tool is particularly efficient for proving the tightness of the sequence of finite-volume
Gibbs point processes. It was used for the first time in [8], and then a collection of papers
followed [3, 5, 6]. Before the present paper, the entropy strategy has been used only in the
setting of finite-range or random finite-range interactions. As far as we know, this is the first
time that it has been applied in the setting of pure infinite-range interactions. Therefore, our
main contribution here was to develop a way to control the decay of the interaction adequately
with the entropy approach. This is the reason for introducing the intensity regular assumption
(see Definition 4). It is called ‘intensity regular’ because the decay of the interaction is con-
trolled via the intensity of the process. This choice is directly related to the entropy bounds,
which gives uniform control of intensities for finite-volume Gibbs processes within the ther-
modynamic limit. In the setting of pairwise interactions, our definition is similar to the regular
assumption by Ruelle.

As mentioned before, in the setting of pairwise interactions, the entropy strategy improves
the existence results in relaxing the superstability assumption. However, we lose Ruelle’s
estimates which ensure the existence of moments of any order and some exponential and
super-exponential moments. The entropy approach only provides moments of order one. Better
estimates have to be obtained with different tools.

In Section 2 we introduce the definitions and notations for Gibbs point processes. Our main
existence theorem is also given. Examples of energy functions are presented in Section 3.
Finally, Section 4 is devoted to the proof of the theorem.
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2. Notations and results

The real d-dimensional space Rd is equipped with the usual Euclidean distance ‖ · ‖ and its
associated Borel σ -algebra. Any set �⊂R

d is assumed measurable.

2.1. Finite volume measure

The space of configurations is the set of locally finite subsets of Rd,

�= {ω⊂R
d : |ω ∩	|<∞, for all 	⊂R

d, bounded},
where | · | is the cardinal. We denote ω ∩	 by ω	, the union ω ∪ω′ of two configurations by
ωω′, the space of finite configurations by�f and the space of configurations in�⊂R

d by��.
Our space is equipped with the sigma field F generated by the counting functions N	 :ω �→

|ω	| for all	⊂R
d bounded. In our setting, a point process is simply a probability measure on

(�,F). Note that with this definition we identify a point process with its distribution. We say
that the process has a finite intensity if, for all bounded subsets 	, the expectation EP[|ω	|] is
finite. If we denote this expectation by μ(	) then μ is a sigma-finite measure on R

d called the
intensity measure. When μ= i(P)λd, where λd is the Lebesgue measure on R

d and i(P) ≥ 0,
we simply say that the point process has intensity i(P). We also introduce

ξ (P) = sup
�⊂R

d

0<λd(�)<+∞

E
P[|ω�|]
λd(�)

,

and we say that a probability measure P has a bounded intensity if ξ (P)<+∞. Obviously, if
P has a finite intensity i(P) then ξ (P) = i(P).

A point process P is stationary if, for all u ∈R
d, P = P ◦ τ−1

u , where τu is the translation
of vector u. If a stationary point process has a finite intensity then its intensity measure is
proportional to the Lebesgue measure and has the form μ= i(P)λd.

The most popular point processes are the Poisson point processes. We consider here only
the homogeneous (or stationary) case where the intensity has the form μ= zλd. The process
is denoted π z, or simply π if z = 1. Recall briefly that π z is the only point process in R

d with
intensity μ= i(P)λd such that any two disjoint regions of space are independent under π z. See
the recent book [12] on the subject.

Let us now define the interaction between the points. We need to introduce an energy
function.

Definition 1. An energy function is a measurable function H on the space of finite configura-
tions �f with values in R∪ {+∞} such that:

• H is non-degenerate: H(∅)<+∞;

• H is hereditary: for all ω ∈�f and x ∈ω,

H(ω)<+∞ ⇒ H(ω \ {x})<+∞;

• H is stationary: for all ω ∈�f and u ∈R
d,

H(τu(ω)) = H(ω).

A crucial assumption is the stability of the energy function.
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Definition 2. An energy function is said to be stable if there exists a constant B ≥ 0 such that,
for all ω ∈�f,

H(ω) ≥ −B|ω|.
The above assumption (denoted [Stable]) is standard and has been treated deeply in the
literature (see, for instance, [14, Section 3.2]).

Now we can define the Gibbs point processes in finite volume.

Definition 3. Let � be a bounded subset in R
d. The Gibbs point process on � for the stable

energy function H is the probability measure on �� defined by

P�(dω) = 1

Z�
e−H(ω)π�(dω),

with the normalization constant Z� = ∫
e−H(ω)π�(dω) called the partition function.

We can check with the properties of H that P� is well defined (i.e. 0< Z� <+∞). In
comparison with the standard formalism of Gibbs measures in statistical physics (see [14], for
instance), the activity and inverse temperature parameters are included in the function H here.

2.2. Infinite volume measure

Let us turn now to the definition of Gibbs point processes in the infinite volume regime. For
the following, we choose the convention ∞ − ∞ = 0. We need to introduce the local energy,
which is given by H	(ω) = H(ω) − H(ω	c ) for a finite configuration ω ∈�f. It represents the
contribution of energy coming from ω	 in ω (the difference of energies within and without
ω	). We need to extend this definition to an infinite configuration. If (	l)l≥0 is an increasing
sequence of subsets in R

d with 	l ↑R
d, we expect that the limit lim

l→+∞ Hl
	(ω) exists, where

Hl
	(ω) = H

(
ω	l

)− H
(
ω	l\	

) ∈R∪ {+∞}.
In particular, the difference Hl+1

	 (ω) − Hl
	(ω) should go to zero as l goes to infinity. Our main

assumption is a control of the expectation of this difference for point processes with bounded
intensities.

Definition 4. An energy function is said to be intensity regular if, for all bounded subsets 	
of Rd, we can find an increasing sequence of subsets (	l)l≥0 with 	l ↑R

d and 	⊂	0 such
that, for all configurations ω,∣∣∣Hl+1

	 (ω) − Hl
	(ω)

∣∣∣≤ |ω	|Gl
	(ω	c ),

where Gl
	 is a non-negative measurable function on�	c such that, for any probability measure

P with bounded intensity, we have

EP

[
Gl
	(ω	c )

]
≤ αl a(ξ (P)),

with a : R+ →R+ an increasing function and (αl)l≥0 a positive summable sequence (i.e.∑
l≥0 αl <+∞). Let P be a probability measure with bounded intensity. From the above

assumption (denoted [Intensity Regular]), we have

+∞∑
l=0

∣∣∣Hl+1
	 (ω) − Hl

	(ω)
∣∣∣≤ |ω	|

+∞∑
l=0

Gl
	(ω	c ),
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and we can control the expectation of the second part of the right-hand side:

EP

[+∞∑
l=0

Gl
	(ω	c )

]
≤ a(ξ (P))

+∞∑
l=0

αl <+∞.

Then, the local energy is correctly defined for P-almost every configuration ω by

H	(ω) = H0
	(ω) +

+∞∑
l=0

[
Hl+1
	 (ω) − Hl

	(ω)
]

.

In addition, if we introduce the function Cl
	 defined on �	c by

Cl
	(ω	c ) =

+∞∑
j=l

Gj
	(ω	c ),

then for all configurations ω ∈� we have the following approximation result:∣∣∣H	(ω) − Hl
	(ω)

∣∣∣≤ |ω	|Cl
	(ω	c ), (1)

with EP[Cl
	(ω	c )] ≤ a(ξ (P))

∞∑
j=l

αj.

Remark 1. Assuming that a is an increasing function in Definition 4 allows us to control
the approximation (1) for a sequence (Pn)n≥1 of probability measures. Indeed, if (Pn) has a
uniformly bounded intensity (i.e. ξ (Pn) ≤ ξ for all n ≥ 1), then the expectation EPn [Cl

	(ω	c )]
is uniformly bounded from above.

We are now able to give the definition of infinite-volume Gibbs point processes.

Definition 5. A probability measure P on � with bounded intensity is a Gibbs point process
for an energy function H, satisfying assumptions [Stable] and [Intensity Regular], if, for all
bounded subsets 	 and all bounded measurable functions f , we have∫

f (ω)P(dω) =
∫ ∫

f (ω′
	ω	c )

1

Z	(ω	c )
e−H	(ω′

	ω	c )π	(dω′
	)P(dω), (2)

with the normalization constant Z	(ω	c ) = ∫
e−H	(ω′

	ω	c )π	(dω′
	).

The equations (2) for all 	 and f are the DLR equations. To be correctly defined we need
to check that 0< Z	(ω	c )<+∞ for P-almost all configurations ω. A lower bound can easily
be obtained with

Z	(ω	c ) ≥ e−H	(ω	c )π	(∅) = e−λd(	) > 0.

For an upper bound, we use assumptions [Stable] and [Intensity Regular]. From inequality (1),
and assuming that H(ω	0\	)<+∞, we have

H	(ω) ≥ H0
	(ω) − |ω	|C0

	(ω	c )

= H(ω	0 ) − H(ω	0\	) − |ω	|C0
	(ω	c )

≥ −(B + C0
	(ω	c ))|ω	| − B|ω	0\	| − H(ω	0\	).
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Then, we obtain

Z	(ω	c ) ≤ exp
(
B|ω	0\	| + H(ω	0\	)

) ∫
e
(

C0
	(ω	c )+B

)
|ω′
	|
π	(dω′

	)

= exp
(
B|ω	0\	| + H(ω	0\	)

) +∞∑
n=0

(
λd(	)e

(
C0
	(ω	c )+B

))n
n! e−λd(	)

= exp

(
B|ω	0\	| + H(ω	0\	) + λd(	)

(
e
(

C0
	(ω	c )+B

)
− 1

))
<+∞.

If H(ω	0\	) = +∞ then, by the hereditary property, for all l ≥ 0 we have H(ω	l\	) =
+∞ and Hl

	(ω) = 0 (according to our convention ∞ − ∞ = 0 given above), which gives
H	(ω) = 0 and Z	(ω	c )<+∞.

Our main result is the following theorem, which is proved in Section 4.

Theorem 1. For any energy function H satisfying assumptions [Stable] and [Intensity
Regular], there exists at least one stationary Gibbs point process P with finite intensity and
locally finite energy (i.e. P(H(ω	)<∞, for all 	⊂R

d, bounded) = 1).

Remark 2. (Temperedness) Our formalism of Gibbs point processes does not really need the
introduction of tempered configurations as it is usually done [11, 15]. But, the definition of
the DLR equations requires a space of good configurations. In our case, this space is the space
of configurations produced by any point processes with bounded intensity. It is not always
obvious how to compare this with the different definitions of temperedness mentioned above.

3. Examples

Let us give some examples of energy functions satisfying assumptions [Stable] and
[Intensity Regular] of Theorem 1. Since the assumption [Stable] is studied deeply in the liter-
ature, we focus mainly on interesting examples satisfying assumption [Intensity Regular]. In
the following, B(z, ρ) is the ball of center z and radius ρ, ⊕ is the Minkowski sum of two sets,
and cd = λd(B(0, 1)).

3.1. Finite-range interaction

An energy function H has a finite range if there exists R> 0 such that, for all finite con-
figurations ω ∈�f and bounded subset 	, H	(ω) = H	

(
ω	⊕B(0,R)

)
. It is easy to see that

a finite-range energy function verifies assumption [Intensity Regular], with any increasing
sequence of subsets (	l)l≥0 such that 	0 =	⊕ B(0, R). Therefore, in this setting of finite-
range interaction, only the assumption [Stable] is required to ensure the existence of Gibbs
point processes.

Corollary 1. For a finite-range and stable energy there exists at least one stationary Gibbs
point process with finite intensity and locally finite energy.

This result was proved previously in [5] (see also [4] for a simpler and pedagogical proof).

3.2. Pairwise interaction

An energy function H is pairwise if there exists a symmetric function φ : Rd �→R∪ {+∞},
called a potential, such that

H(ω) =
∑

{x,y}⊂ω
φ(x − y).
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We do not assume the finite-range property and so the support of φ can be unbounded.
However, we still need an assumption on the long-range behavior of φ. The potential φ is
regular if there exists a decreasing function ψ : R+ →R+ such that

∫ +∞
A ψ(r)rd−1 dr<+∞

for some A> 0 and |φ(x)| ≤ψ(‖x‖) for all x ∈R
d. Let us show that this energy function

satisfies the assumption [Intensity Regular].
Let 	 be a bounded subset of Rd. We choose z ∈R

d and ρ > 0 such that 	⊂ B(z, ρ), and
we introduce 	l = B(z, ρ + A + l). We have

Hl
	(ω) =

∑
{x,y}⊂ω∩	l{x,y}∩	�=∅

φ(x − y),

which gives
Hl+1
	 (ω) − Hl

	(ω) =
∑
x∈	

∑
y∈	l+1\	l

φ(x − y).

By definition, if x ∈	 and y ∈	l+1 \	l then ‖x − y‖ ≥ A + l and |φ(x − y)| ≤ψ(A + l).
Introducing the function Gl

	(ω	c ) = |ω	l+1\	l |ψ(A + l), we have |Hl+1
	 (ω) − Hl

	(ω)| ≤
|ω	|Gl

	(ω	c ) and, for all P with bounded intensity,

EP

[
Gl
	(ω	c )

]
≤ ξ (P)λd(	l+1 \	l)ψ(A + l)

≤ ξ (P)cd

(
(ρ + A + l + 1)d − (ρ + A + l)d

)
ψ(A + l)

≤ ξ (P)cdd(ρ + A + l + 1)d−1ψ(A + l).

Since
∫ +∞

A ψ(r)rd−1 dr<+∞ and ψ is decreasing, we have that∑
l≥0

(ρ + A + l + 1)d−1ψ(A + l)<+∞.

Hence, the energy H satisfies the assumption [Intensity Regular] with a = id and αl = cdd(ρ +
A + l + 1)d−1ψ(A + l).

Corollary 2. For a stable pairwise energy associated with a regular potential, there exists at
least one stationary Gibbs point process with finite intensity and locally finite energy.

The stability assumption for a pairwise potential is delicate and was investigated a long
time ago. We refer to [14] for several results. We mention that a non-negative potential which
is equal to zero in the neighborhood of zero and positive outside this neighborhood is a simple
example of a stable but not a superstable potential.

Note that the sum of two energy functions satisfying assumption [Intensity Regular] also
satisfies the assumption [Intensity Regular]. The following corollary follows.

Corollary 3. For a stable energy function that is the sum of a finite-range energy function
and a pairwise energy function associated with a regular potential, there exists at least one
stationary Gibbs point process with finite intensity and locally finite energy.

3.3. Cloud interaction

In this last example, we provide an energy function which is infinite range and not reducible,
at any scale, to a pairwise interaction. It is a multibody interaction between a germ–grain inter-
action (see, for instance, the Quermass model [3] or the Widom–Rowlinson interaction [16])
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and a pairwise interaction. We call it a cloud interaction because each point of the configura-
tion is diluted in a cloud around itself and the pairwise interaction is integrated on this cloud.
Precisely, for any finite configuration ω,

H(ω) =
∑
x∈ω

∫
LR(ω)

φ(x − y) dy,

where LR(ω) =⋃
x∈ω B(x, R) is the cloud produced by the configuration ω (R> 0 is a fixed

parameter) and φ : Rd �→R∪ {∞} is a symmetric function. This energy function can be viewed
as an approximation of the pairwise interaction introduced above. Indeed, H(ω)/Rd tends to
the pairwise interaction function (times a multiplicative constant) when R goes to zero.

We assume that there exists a decreasing function ψ : R+ →R+ such that, for all x ∈R
d,

|φ(x)| ≤ψ(‖x‖) and
∫
ψ(r)rd−1 dr<+∞. This ensures that the energy function is well

defined and satisfies the assumption [Stable] since

|H(ω)| ≤ |ω|
∫

|ψ(r)|rd−1 dr.

Note that H is not superstable. Indeed, this would require that for all ω ∈��, H(ω) ≥ −B|ω| +
A|ω|2/λd(�) with B ≥ 0 and A> 0, which is impossible with the previous upper bound of H.

Concerning assumption [Intensity Regular], for	 a bounded subset of Rd, the local energy
is given by

Hl
	(ω) = H(ω	l ) − H(ω	l\	)

=
∑

x∈ω	l

∫
LR(ω	l )

φ(‖x − y‖) dy −
∑

x∈ω	l\	

∫
LR(ω	l\	)

φ(‖x − y‖) dy

=
∑

x∈ω	l\	

∫
LR(ω	l )\LR(ω	l\	)

φ(‖x − y‖) dy +
∑

x∈ω	

∫
LR(ω	l )

φ(‖x − y‖) dy.

We can find z ∈R
d and ρ > 0 such that 	⊂ B(z, ρ), and, for the following, we choose 	0 =

B(z, ρ + 2R), which implies that

LR(ω	l ) \ LR(ω	l\	) = LR(ω	0 ) \ LR(ω	0\	)
def= LR

	(ω).

Using this notation we have

Hl
	(ω) =

∑
x∈ω	l\	

∫
LR
	(ω)

φ(‖x − y‖) dy +
∑

x∈ω	

∫
LR(ω	l )

φ(‖x − y‖) dy.

The first term corresponds to the interaction of the points outside of 	 with the cloud created
by the points in 	, and the second corresponds to the interaction of the points in 	 with the
full cloud. We can compute the cost of adding a shell:

Hl+1
	 (ω) − Hl

	(ω) =
∑

x∈ω	l+1\	l

∫
LR
	(ω)

φ(‖x − y‖) dy

+
∑

x∈ω	

∫
LR(ω	l+1 )\LR(ω	l )

φ(‖x − y‖) dy.
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If we choose 	l = B(z, ρ + 2R + l), for x ∈ω	l+1\	l and y ∈ LR
	(ω) or for x ∈ω	 and

y ∈ LR(ω	l+1 ) \ LR(ω	l ), then we have ‖x − y‖> A + l. Then, we have

|Hl+1
	 (ω) − Hl

	(ω)| ≤
(
|ω	l+1\	l |λd(LR

	(ω)
)+ |ω	|λd(LR(ω	l+1\	l )

))
ψ(A + l).

With the union bound we have

λd(LR
	(ω)

)≤ |ω	|cdRd and λd(LR(ω	l+1\	l )
)≤ |ω	l+1\	l |cdRd.

If we introduce the function Gl
	(ω	c ) = 2|ω	l+1\	l |cdRdψ(A + l), we obtain |Hl+1

	 (ω) −
Hl
	(ω)| ≤ |ω	|Gl

	(ω	c ) and, for all P with bounded intensity,

EP

[
Gl
	(ω	c )

]
≤ ξ (P)λd(	l+1 \	l)ψ(A + l)

≤ ξ (P)dcd(ρ + A + l + 1)d−1ψ(A + l).

Since
∫ +∞

A ψ(r)rd−1 dr<+∞ and ψ is decreasing, this implies that∑
l≥0

(ρ + A + l + 1)d−1ψ(A + l)<+∞.

Hence, the energy H satisfies assumption [Intensity Regular].

Corollary 4. For the cloud interaction, there exists at least one stationary Gibbs point process
with finite intensity and locally finite energy.

4. Proof of the theorem

4.1. Construction of an infinite volume measure

The first step of the proof is to build an accumulation point of a sequence of finite-volume
Gibbs measures. Using entropy bounds and the stability of the energy, we prove the existence
of such an accumulation point for the local convergence topology. This strategy and its tools
have been used several times in the literature [3, 4, 5, 6], and we recall here only the main
ideas.

For n a positive integer, we denote by �n the set ] − n, n]d. We consider the sequence of
Gibbs measures in finite volume given by

Pn(dω) = P�n (dω) = 1

Zn
e−H(ω)π�n (dω),

with the normalization constant Zn = ∫
e−H(ω)π�n (dω). Since our tension tool will be defined

for stationary measures, we need to modify (Pn)n≥1. We defined the periodized version Pper
n by

the probability measure
⊗

u∈Zd

Pn ◦ τ−1
2nu, and the stationarized version by

Psta
n = 1

λd(�n)

∫
�n

Pper
n ◦ τ−1

u du.

Definition 6. A function f is said to be local if there exists a bounded set 	 such that f is F	
measurable (i.e. for all configurations ω in�, we have f (ω) = f (ω	)). A sequence of measures
(μn) converges to μ for the local convergence topology if, for all bounded local functions f ,∫

f dμn →
n→+∞

∫
f dμ.
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Given two probabilities measures μ and ν on �, we recall that the relative entropy of μ
with respect to ν on � is defined as

I�(μ | ν) =
{∫

log f dμ� if μ� � ν� and f = dμ�
dν�

,

+∞ otherwise.

Definition 7. Let μ be a stationary probability measure with finite intensity on �. For z> 0
the specific entropy of μ with respect to π z is defined by

Iz(μ | π z) = lim
n→+∞

I�n(μ | π z)

λd(�n)
= sup

�⊂R
d

0<λd(�)<+∞

I�(μ | π z)

λd(�)
. (3)

For details we refer to [7, Chapter 15]. The next result, stated in [9], is our tension tool.

Proposition 1. For any z> 0 and c> 0, the set of probability measures

{μ stationary with finite intensity, Iz(μ) ≤ c}
is compact and sequentially compact for the local convergence topology.

In order to apply this proposition in our case, we need to compute the specific entropy of the
probability measure Psta

n . Using the affine property of the specific entropy, it is well known that

Iz(P
sta
n ) = 1

λd(�n)
I�n(Pn | π z).

What remains is to compute the relative entropy of the Gibbs measure Pn with respect to
the Poisson point process π z on �n:

I�n(Pn | π z) =
∫

log

(
dPn

dπ z

)
dPn

=
∫ [

log

(
dPn

dπ

)
+ log

(
dπ

dπ z

)]
dPn

=
∫ [

− log (Zn) − H(ω) + log

(
e(z−1)λd(�n)

(
1

z

)|ω|)]
Pn(dω)

= (z − 1)λd(�n) − log (Zn) +
∫ [−H(ω) − log (z)|ω|] Pn(dω).

The normalization constant can easily be bounded from below:

Zn =
∫

e−H dπ ≥ e−H(∅)e−λd(�n).

Then, using the stability of H, we have

I�n(Pn | π z) ≤ zλd(�n) + H(∅) +
∫

(B − log (z))|ω|Pn(dω).

If we choose z> 0 such that B − log (z) ≤ 0, we have Iz(Psta
n ) ≤ z + H(∅) for all n ≥ 1.

According to Proposition 1 we can exhibit a subsequence of (Psta
n )n≥1 which converges to a
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stationary measure P with finite intensity. To simplify the notation we can suppose that we
have changed the indexation of the sequence (�n)n≥1 such that (Psta

n )n≥1 converges locally
to P.

We can prove that P is also an accumulation point of the sequence

P̄n = 1

λd(�n)

∫
�n

Pn ◦ τ−1
u du.

See [3, Lemma 3.5] for details.
We need to verify that P has locally finite energy. If 	 is a bounded subset of Rd, the event

{H(ω	)<+∞} is a local event and

P(H(ω	)<+∞) = lim
n→+∞ P̄n(H(ω	)<+∞) = 1,

because by heredity we have P̄n(H(ω	) = +∞) = 0. We deduce, again using heredity, that

P
(

H(ω	)<+∞, for all 	⊂R
d, bounded

)
= P

(
H(ω�n))<+∞, for all n ≥ 1

)= 1.

We finish this section by giving the crucial property of uniform control of intensities for the
sequence (P̄n).

Lemma 1. We can find ξ ≥ i(P) such that, for all integers n ≥ 1, ξ (P̄n) ≤ ξ .

Proof. We use the entropic inequality
∫

g dμ≤ I(μ | ν) + log
(∫

eg dν
)

to obtain

EPsta
n

[|ω�n |] ≤ I�n(Psta
n | π z) + log

(
Eπ z

[
e|ω�n |]) .

Using the expression of the specific entropy as a supremum (3), we have

I�n

(
Psta

n | π z)≤ Iz
(
Psta

n

)
λd(�n) ≤ (z + H(∅))λd(�n).

Under π z, the random variable |ω�n | follows a Poisson law of parameter zλd(�n), so

Eπ z
[
e|ω�n |]= e−zλd(�n)

∞∑
p=0

(
zλd(�n)

)p
p! ep = exp (zλd(�n)(e − 1)).

Then, we obtain
i
(
Psta

n

)
λd(�n) =EPsta

n
[|ω�n |] ≤ (ze + H(∅))λd(�n),

and since ξ (P̄n) ≤ i(Psta
n ), we deduce the lemma.

4.2. Some remarks on the local energy

Lemma 2. If P is a point process with bounded intensity, then for P-almost all ω the following
equivalence holds for all l ≥ 0:

H	(ω) = +∞ ⇐⇒ Hl
	(ω) = +∞.

Proof. Let ω be a configuration. With our convention ∞ − ∞ = 0 and the intensity regular
assumption, for l ≥ 1, having Hl

	(ω) = +∞ implies that Hl−1
	 (ω) = +∞ and Hl+1

	 (ω) = +∞.
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Then, by induction we deduce that, for all l ≥ 1, we have Hl
	(ω) = +∞ if and only if

H0
	(ω) = +∞.
The local energy is defined by

H	(ω) = H0
	(ω) +

+∞∑
l=0

[
Hl+1
	 (ω) − Hl

	(ω)
]
,

and since for a point process P with bounded intensity the second part of the right-hand side is
finite, we deduce that, for P-almost all ω, H	(ω) = +∞ if and only if H0

	(ω) = +∞.
Lemma 2 ensures that the event {H	(ω) = +∞} is local. In particular, the hard-core part of

the energy has to be finite range.
For a finite configuration ω ∈�f, the sum in the definition of the local energy H	(ω) is a

finite sum, and then Lemma 2 also holds. Hence, we can write

H	(ω) = Hl
	(ω) = H(ω	l ) − H(ω	c

l
) = H(ω) − H(ω	c )

for some l ≥ 0 (depending on ω). Moreover, thanks to the heredity of the energy and our
convention ∞ − ∞ = 0, we have, for all ω ∈�f,

H(ω) = H	(ω) + H(ω	c ).

This equality is useful for proving the DLR equations for finite-volume Gibbs measures.

4.3. The DLR equation

We prove in this section that the accumulation point P satisfies the DLR equations stated
in Definition 5. By a standard monotone class argument we can replace the class of bounded
measurable functions by the class of bounded local functions. Let f be a bounded local function
and 	 be a bounded measurable subset of Rd; we have to show that

∫
f dP = ∫

f	 dP with

f	(ω) =
∫

f (ω′
	ω	c )

1

Z	(ω	c )
e−H	(ω′

	ω	c )π	(dω′
	).

We fix ε > 0.
Step 1 There exists K′ > 0 such that, for all k ≥ K′, we have P(|ω	|> k) ≤ ε; this implies

that, for all k ≥ K′, ∣∣∣∣
∫

f	(ω)P(dω) −
∫

f	(ω)1|ω	|≤kP(dω)

∣∣∣∣≤ ‖f ‖∞ε. (4)

The introduction of this indicator function will be useful in Step 4.
Step 2 We approximate f	 by f l

	,k, which corresponds to the approximation of the local

energy H	 by Hl
	 and a restriction to configurations having less than k points in 	, which

means

f l
	,k(ω) = 1

Zl
	,k(ω	c )

∫
f (ω′

	ω	c )e−Hl
	(ω′

	ω	c )1|ω′
	|≤kπ	(dω′

	),

with the normalization constant Zl
	,k(ω	c ) = ∫

e−Hl
	(ω′

	ω	c )1|ω′
	|≤kπ	(dω′

	). We prove that

we can find K ≥ K′ and l (depending on K) such that∣∣∣∣
∫

f	(ω)1|ω	|≤KP(dω) −
∫

f l
	,K(ω)1|ω	|≤KP(dω)

∣∣∣∣≤ 6‖f ‖∞ε. (5)
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We introduce an event Aε such that P(Aε) ≤ ε. Its precise definition is given later. We have

∣∣∣∣
∫

f	(ω)1|ω	|≤kP(dω) −
∫

f l
	,k(ω)1|ω	|≤KP(dω)

∣∣∣∣ (6)

≤
∫
Ac
ε

|f	(ω) − f l
	,k(ω)|1|ω	|≤kP(dω) + 2‖f ‖∞ε.

We must estimate the approximation error

f	(ω) − f l
	,k(ω)

= 1

Z	(ω	c )

∫
f (ω′

	ω	c )
(

e−H	(ω′
	ω	c ) − e−Hl

	(ω′
	ω	c )1|ω′

	|≤k

)
π	(dω′

	)

+
(

1

Z	(ω	c )
− 1

Zl
	,k(ω	c )

) ∫
f (ω′

	ω	c )e−Hl
	(ω′

	ω	c )1|ω′
	|≤kπ	(dω′

	).

Since the difference between the normalization constants is

Zl
	,k(ω	c ) − Z	(ω	c ) =

∫ (
e−Hl

	(ω′
	ω	c ) − 1|ω′

	|≤ke−H	(ω′
	ω	c )

)
π	(dω′

	),

we obtain the upper bound

|f	(ω) − f l
	,k(ω)| ≤ 2‖f ‖∞

Z	(ω	c )

∫ ∣∣∣e−H	(ω′
	ω	c ) − e−Hl

	(ω′
	ω	c )1|ω′

	|≤k

∣∣∣ π	(dω′
	)

= 2‖f ‖∞
Z	(ω	c )

∫ ∣∣∣e−H	(ω′
	ω	c ) − e−Hl

	(ω′
	ω	c )

∣∣∣ 1|ω′
	|≤kπ	(dω′

	)

+ 2‖f ‖∞
Z	(ω	c )

∫
e−H	(ω′

	ω	c )1|ω′
	|>kπ	(dω′

	). (7)

Using Lemma 2, the inequality |eb − ea| ≤ |b − a|e|b−a|+a and the approximation (1), we
obtain the upper bound∣∣∣e−Hl

	(ω′
	ω	c ) − e−H	(ω′

	ω	c )
∣∣∣ 1|ω′

	|≤K ≤ KCl
	(ω	c )eKCl

	(ω	c )−H	(ω′
	ω	c ). (8)

By combining (7) and (8), we have

|f	(ω) − f l
	,k(ω)| ≤ 2‖f ‖∞KCl

	(ω	c )eKCl
	(ω	c ) (9)

+ 2‖f ‖∞
Z	(ω	c )

∫
e−H	(ω′

	ω	c )1|ω′
	|>kπ	(dω′

	).

Now we need to control the two terms of the right-hand side of (9). For the second one, by the
dominated convergence theorem, we can find K ≥ K′ such that∫

1

Z	(ω	c )

∫
e−H	(ω′

	ω	c )1|ω′
	|>Kπ	(dω′

	)P(dω) ≤ ε.
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Once K is chosen, we can control the first term. If W : R+ →R+ is the inverse function of
x �→ xex (W is the so-called Lambert function), using Markov’s inequality we have

P
(

KCl
	(ω	c )eKCl

	(ω	c ) > ε
)

= P(KCl
	(ω	c )>W(ε)) ≤ KEP

[
Cl
	(ω	c )

]
W(ε)

.

As EP[Cl
	(ω	c )] goes to zero when l goes to infinity, we can choose l (depending on K) such

that
P
(

KCl
	(ω	c )eKCl

	(ω	c ) > ε
)

≤ ε.

Introducing the event Aε = {KCl
	(ω	c )eKCl

	(ω	c ) > ε} in (6), and with our choice of K and l,
we finally have the approximation (5).

According to Lemma 1, the point processes (P̄n)n≥1 have uniformly bounded intensities and,
as mentionned in Remark 1, the expectation EP̄n

[Cl
	(ω	c )] is bounded from above uniformly

in n ≥ 1. Hence, l could be chosen such that, for all n ≥ 1,

P̄n

(
KCl

	(ω	c )eKCl
	(ω	c ) > ε

)
≤ ε. (10)

This will be useful later, in Step 4.

Step 3 For n large enough (depending on K and l), we have∣∣∣∣
∫

f l
	,K(ω)1|ω	|≤KP(dω) −

∫
f l
	,K(ω)1|ω	|≤KP̄n(dω)

∣∣∣∣≤ ‖f ‖∞ε. (11)

This is simply a consequence of the local convergence of the sequence (P̄n)n≥1 to P.

Step 4 For all n ≥ 1 we show the approximation∣∣∣∣
∫

f l
	,K(ω)1|ω	|≤KP̄n(dω) −

∫
f	,K(ω)1|ω	|≤KP̄n(dω)

∣∣∣∣≤ 4‖f ‖∞ε, (12)

where

f	,K(ω) = 1

Z	,K(ω	c )

∫
f (ω′

	ω	c )e−H	(ω′
	ω	c )1|ω′

	|≤Kπ	(dω′
	),

with the normalization constant Z	,K(ω	c ) = ∫
e−H	(ω′

	ω	c )1|ω′
	|≤Kπ	(dω′

	).

Similarly to the upper bounds (7) and (8), we obtain

|f l
	,K(ω) − f	,K(ω)| ≤ 2‖f ‖∞

Z	,K(ω	c )

∫ ∣∣e−H	(ω′
	ω	c ) − e−Hl

	(ω′
	ω	c )

∣∣1|ω′
	|≤Kπ	(dω′

	)

≤ 2‖f ‖∞eKCl
	(ω	c )KCl

	(ω	c ).

From our previous choice of K and l in estimate (10), and using a restriction to a specific event
as in (6), we obtain the approximation (12).

Step 5 We use the DLR equations for finite-volume Gibbs processes to prove that∣∣∣∣
∫

f	,K(ω)1|ω	|≤KP̄n(dω) −
∫

f (ω)1|ω	|≤KP̄n(dω)

∣∣∣∣≤ 2‖f ‖∞ε. (13)
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Let us introduce�∗
n = {u ∈�n : τ−1

u (	) ⊂�n}. Note that if	⊂�k and n ≥ k then�n−k ⊂�∗
n

and (n − k)d/nd ≤ λd(�∗
n)/λd(�n) ≤ 1. We choose n large enough such that λd(�∗

n)/λd(�n) ≥
1 − ε, and if we denote

P̄∗
n = 1

λd(�n)

∫
�∗

n

Pn ◦ τ−1
u ,

we have the approximation∣∣∣∣
∫

f	,K(ω)1|ω	|≤KP̄n(dω) −
∫

f	,K(ω)1|ω	|≤KP̄∗
n(dω)

∣∣∣∣≤ ‖f ‖∞ε.

Let us detail the term∫
f	,K(ω)1|ω	|≤KP̄∗

n(dω)

= 1

λd(�n)

∫
�∗

n

∫
f	,K(τu(ω))1|τu(ω)	|≤KPn(dω) du

= 1

λd(�n)

∫
�∗

n

∫∫
f (ω′

	τu(ω)	c )
1

Z	,K(τu(ω)	c )
e−H	(ω′

	τu(ω)	c )1|ω′
	|≤Kπ	(dω′

	)

1|τu(ω)	|≤KPn(dω) du.

For u ∈�∗
n, using the fact that τu(ω)	c = τu

(
ω
τ−1

u (	)c

)
, that π	 has the same law as π

τ−1
u (	) ◦

τ−1
u , and that H	(τu(ω)) = H

τ−1
u (	)(ω), we have

Z	,K(τu(ω)	c ) =
∫

e
−H	

(
ω′
	τu

(
ω
τ
−1
u (	)c

))
1|ω′

	|≤Kπ	(dω′
	)

=
∫

e
−H	

(
τu

(
ω

′
τ
−1
u (	)

ω
τ
−1
u (	)c

))
1∣∣ω′

τ
−1
u (	)

∣∣≤K
π
τ−1

u (	)

(
dω′

τ−1
u (	)

)

=
∫

e
−H

τ
−1
u (	)

(
ω

′
τ
−1
u (	)

ω
τ
−1
u (	)c

)
1∣∣ω′

τ
−1
u (	)

∣∣≤K
π
τ−1

u (	)

(
dω′

τ−1
u (	)

)
= Z

τ−1
u (	),K

(
ω
τ−1

u (	)c

)
.

Then, by a similar calculation, we find∫
f	,K(τu(ω))1|τu(ω)	|≤KPn(dω)

=
∫∫

f
(
τu
(
ω′
τ−1

u (	)ωτ−1
u (	)c

)) 1

Z
τ−1

u (	),K

(
ω
τ−1

u (	)c

)e
−H

τ
−1
u (	)

(
ω

′
τ
−1
u (	)

ω
τ
−1
u (	)c

)

1|ω′
τ
−1
u (	)

|≤K
π
τ−1

u (	)(dω
′
τ−1

u (	))1|ω
τ
−1
u (	)

|≤KPn(dω).

But we can write the measure in finite volume as

Pn(dω) = 1

Zn
e
−H

τ
−1
u (	)

(
ω
τ
−1
u (	)

ω
τ
−1
u (	)c

)
e
−H
(
ω
τ
−1
u (	)c

)

π z
�n\τ−1

u (	)

(
dω

τ−1
u (	)c

)
π
τ−1

u (	)

(
dω

τ−1
u (	)

)
,
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and integration with respect to the measure π
τ−1

u (	) will give the normalization constant (thanks
to the indicator function introduced in Step 1). After simplification we have for the translated
Pn ◦ τ−1

u with u ∈�∗
n a finite-volume DLR equation:∫

f	,K(τu(ω))1|τu(ω)	|≤KPn(dω)

= 1

Zn

∫∫
f
(
τu
(
ω′
τ−1

u (	)ωτ−1
u (	)c

))
e
−H
(
ω

′
τ
−1
u (	)

ω
τ
−1
u (	)c

)
1|τu(ω)	|≤K

π z
�n\τ−1

u (	)

(
dω

τ−1
u (	)c

)
π
τ−1

u (	)

(
dω′

τ−1
u (	)

)
=
∫

f (τu(ω))1|τu(ω)	|≤KPn(dω).

This DLR-type equation is then verified for the mixture P̄∗
n:∫

f	,K(ω)1|ω	|≤KP̄∗
n(dω) =

∫
f (ω)1|ω	|≤KP̄∗

n(dω).

Since we have the approximation∣∣∣∣
∫

f (ω)1|ω	|≤KP̄∗
n(dω) −

∫
f (ω)1|ω	|≤KP̄n(dω)

∣∣∣∣≤ ‖f ‖∞ε,

we finally obtain (13).

Step 6 We show the last approximation,∣∣∣∣
∫

f (ω)1|ω	|≤KP̄n(dω) −
∫

f (ω)P(dω)

∣∣∣∣≤ 2‖f ‖∞ε. (14)

Using the local convergence of (Pn)n≥1 to P again, we have, for n large enough,∣∣∣∣
∫

f (ω)1|ω	|≤KP̄n(dω) −
∫

f (ω)1|ω	|≤KP(dω)

∣∣∣∣≤ ‖f ‖∞ε.

With our choice of K we have P(|ω	|>K) ≤ ε and we obtain (14).

Conclusion

Gathering the approximations (4), (5), (11), (12), (13) and (14), we finally have∣∣∣∣
∫

f	 dP −
∫

f dP

∣∣∣∣≤ 16‖f ‖∞ε.

The inequality is true for every ε > 0, which ends the proof of Theorem 1.
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