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This study is focused on the prediction of coherent structures, propagating within a
turbulent channel flow. We propose a derivation of the linearised problem based on
a stochastic formulation of the Navier–Stokes equations. It consists in considering the
transport of quantities by a resolved velocity (i.e. solution of the model) perturbed
by a Brownian motion which models the unresolved turbulent fluctuations over the
time-averaged field, here thought of as the underlying background turbulence. The
associated linearised model, considering the mean velocity profile as given, predicts linear
solutions evolving within a corrected mean velocity field and perturbed by modelled
background turbulence. Two ways to define the statistics of the Brownian motion are
proposed and compared: one based on full simulation data, and the second, data free, based
on preliminary predictions from resolvent analysis. The technique is applied on turbulent
channel flows at friction Reynolds numbers Reτ = 180 and Reτ = 550, and predictions are
compared with direct numerical simulation results. We show that the principal components
of an ensemble of solutions of this stochastic linearised system are able to represent
the leading spectral proper orthogonal decomposition modes with a similar accuracy
to optimal responses coming from resolvent analysis with an eddy-viscosity model at
scales where strong production occurs. For the other scales, receiving energy by nonlinear
redistribution, the present strategy improves the prediction. Moreover, the second mode is
systematically well predicted over all scales. This behaviour is understood by the ability
of the stochastic modelling to model positive and negative inter-scale energy transfers
through stochastic diffusion and random stochastic transport, while the eddy-viscosity
term in resolvent analysis is purely diffusive.
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1. Introduction

Waves evolving within turbulent flows, reminiscent of modes built from linear stability
theory, are of particular interest in fluid flow modelling. These structured patterns are
related to large coherent structures of velocity and pressure fluctuations, which can
induce drag, mixing or acoustic emission. In the case of laminar flows, eigensolutions
of the problem linearised over the steady state is an appropriate manner of dealing with
infinitesimal perturbations growing in time and/or in space (Pier 2002). In the case of
turbulent flows, even if the underlying hypotheses of infinitesimal disturbances are broken,
analysis of similar linearised problems has been shown to be predictive under specific
circumstances: linearising over the mean flow instead of the steady state (Barkley 2006),
and agreement is often obtained when there is a preferred amplification mechanism that
dominates the flow response (Beneddine et al. 2016). Parallel free shear flows such as jets
(Cavalieri et al. 2013) and mixing layers are subject to these properties, at least in the
upstream regions exhibiting a strong dominance of the Kelvin–Helmholtz mode.

In recent years, resolvent analysis (Schmid & Henningson 2001; Trefethen & Embree
2005) has become extremely popular due to its ability to model the response of the
linearised system at a given frequency to an unknown forcing (Jovanović & Bamieh 2005;
McKeon & Sharma 2010). When dealing with turbulent flows, such forcing represents
the otherwise omitted nonlinear term. This technique was successfully able to represent
coherent structures present in regions where linear stability fails. We can cite as examples
wall-bounded turbulence (Luhar, Sharma & McKeon 2014; Sharma et al. 2016) or
downstream regions of jets (Schmidt et al. 2018; Lesshafft et al. 2019). Beyond flow
analysis, it has been used in the context of reduced-order modelling, data assimilation
and control (Gómez et al. 2016a; Gómez, Sharma & Blackburn 2016b; Leclercq et al.
2019; Symon, Sipp & McKeon 2019; Martini et al. 2020a; Towne, Lozano-Durán &
Yang 2020). Resolvent analysis provides a basis for the forcing and a basis of associated
responses sorted by response gain. Unfortunately, it does not give information on the
nonlinearities present in the flow. Resolvent analysis leads to an exact agreement with
flow statistics if and only if the forcing is a Gaussian white noise (Towne, Schmidt &
Colonius 2018; Cavalieri, Jordan & Lesshafft 2019). In this case, response modes match
the eigenfunctions of the cross-spectral density (CSD) of the flow, referred to as spectral
proper orthogonal decomposition (SPOD) modes. In the temporal domain, covariance
matrices can be predicted from time-decorrelated stochastic forcing covariance matrices
by solving a Lyapunov equation (Farrell & Ioannou 1993). Links between temporal and
frequency domain formulations can be found in Farrell & Ioannou (1996) and in Dergham,
Sipp & Robinet (2013) for amplifier flows.

Obviously, in turbulent flows, especially in shear flows where strong inhomogeneities
occur, nonlinearities are not white noise. In recent studies, some attempts to introduce a
coloured forcing are performed. Strategies to colour an additive noise of temporal models
using techniques from fluid mechanics modelling and control theory are reviewed in Zare,
Georgiou & Jovanović (2019). In Zare, Jovanović & Georgiou (2017) the covariance
of the forcing in the temporal domain is found by an optimisation problem in order
to match the empirical covariance matrix under a Lyapunov equation constraint and
maximising an entropy criterion. In the frequency domain, Towne et al. (2020) proposed
to use the resolvent operator in order to link the CSD of the forcing with the CSD of
the response and, thus, reconstruct flow statistics from partially observed measurements.
Inverse problems can be defined in order to identify forcing projections in order to obtain
the right flow statistics, as in Moarref et al. (2014). In a different approach, intensive data
processing enables us to extract from direct numerical simulations the flow statistics of the
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nonlinear term, considered as an external forcing of the linearised Navier–Stokes equations
in order to predict flow statistics (Morra et al. 2021; Nogueira et al. 2021). The latter
approach leads to exact agreement with flow data, but due to the use of the full time-series
forcing information, it cannot be considered as a predictive technique, but rather a data
analysis tool. It would therefore be important to understand how to best model the unknown
forcing in a general setting, allowing a refinement of the predictions of resolvent analysis
with a better approximation of these underlying nonlinearities in the flow.

Another improvement of standard resolvent analysis has been to introduce an eddy
viscosity in the resolvent operator (Kaiser, Lesshafft & Oberleithner 2019; Morra et al.
2019). The choice of linearisation is arbitrary and, thus, an additional term can be added
to represent the turbulent diffusion. In this case the time-averaged flow becomes a fixed
point of the Reynolds-averaged Navier–Stokes (RANS) equations, which, although not
strictly required in the linearisation procedure, may be thought of as an advantage of
eddy-viscosity models. On the other hand, it should be mentioned that such eddy-viscosity
models are derived in order to model the Reynolds stresses in the mean-flow equation, and,
despite their good performance in some cases, there is no guarantee that eddy-viscosity
models designed in the RANS setting are appropriate to model generalized Reynolds
stresses at non-zero frequencies and wavenumbers, i.e. considering Fourier transforms
instead of time averaging. This caveat is supported by the analysis of Symon, Illingworth
& Marusic (2020), showing that the eddy-viscosity models well the nonlinear transfers
of exceeding energy at scales where strong production occurs, but is unable to take into
account these transfers for scales receiving energy from the others since eddy viscosity
is purely diffusive. This is consistent with the framework for which it has been defined
in Reynolds & Hussain (1972); eddy viscosity has been introduced in the context of a
triple decomposition, with the warning that the representation by an eddy viscosity of the
oscillation of the background Reynolds stress due to the passage of organised disturbances
is a priori valid only for low frequencies and weak oscillations of large scales.

In the present study we propose to adopt a different strategy. We start with a stochastic
version of the Navier–Stokes equations under location uncertainty, as proposed by Mémin
(2014). This model corresponds to the stochastic transport of mass and momentum by
a resolved time-differentiable velocity perturbed by a Brownian motion representing
an incoherent unresolved turbulent velocity field. Compared with the deterministic
Navier–Stokes equations, it exhibits three additional features: (i) a stochastic diffusion
term coming from the effect of the stochastic transport, (ii) the Brownian perturbation of
the transport velocity and (iii) a correction of the resolved transport velocity, called drift
correction, caused by the inhomogeneity of variance of the unresolved velocities. This
model has been successfully used for large eddy simulation (LES) and data assimilation
(Resseguier, Mémin & Chapron 2017a; Yang & Mémin 2017; Chandramouli et al. 2018).
In this context the coloured Brownian motion represents the unresolved velocity field, the
resolved velocity is the LES-filtered field and the stochastic diffusion can be interpreted
as a turbulent eddy-viscosity tensor. The drift velocity has been shown to be important
in wall-bounded flows to capture profiles in the transitional buffer region where strong
inhomogeneity occurs (Pinier et al. 2019).

In our context, we consider a triple decomposition where the unresolved velocity is
an incoherent contribution of the turbulent velocity fluctuation over the time-averaged
field, and the resolved velocity is split into the time-averaged field (it is abusively labelled
as ‘resolved’ as this component is of course specified by the user) and a low-amplitude
coherent structure, solution of a linearised model. In the model, we take into account the
transport of the linear solution (a linear wave) by the turbulent fluctuation, and we assume
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that the linear wave does not affect the stochastic baseflow since the latter is modelled
(and not computed). Hence, we do not consider transport of the turbulent fluctuation by
the linear solution. By expressing this model in the Fourier domain, linearising it over
the mean velocity, and considering normal modes, we provide a stochastic linear model.
We are thus able to obtain an ensemble of solutions, whose eigenvalue decomposition
leads to modes comparable to SPOD. By doing this, we do not explicitly take into account
the effect of nonlinearities. We instead consider a linear wave evolving within a turbulent
stochastic field with known (or assumed) properties. The obtained linearised model is thus
inhomogeneous, with coloured forcing provided by stochastic transport and the modelled
Brownian motion. The direct application is to model coherent structures in turbulent flows
by predicting SPOD modes of the direct numerical simulation (DNS), as will be pursued
here; however, the present model may also be applied to study the evolution of small
disturbances introduced to turbulent flows, as in Iyer et al. (2019). A clear advantage of the
method is that the user-specified stochastic field covariances are expressed in velocity and
not in forcing as it is the case in standard additive-noise techniques. Thus, this facilitates its
definition and eventual intensive data processing (Morra et al. 2021; Nogueira et al. 2021)
or related inverse problems (Zare et al. 2017). The proposed formalism ensures consistency
between energy brought by the stochastic noise and the induced stochastic diffusion in a
unified framework.

The remainder of the manuscript is organised as follows. In § 2 we present turbulent
channel flow configurations used to test the method. In § 3 we present SPOD and resolvent
analysis that are standard modelling procedures to respectively extract and predict waves
evolving within turbulent flows. In § 4.1 we present the formulation of the stochastic
modelling under location uncertainty and its application for incompressible flows. In § 4.2
a novel stochastic linear model under location uncertainty is proposed. The model involves
statistics of the assumed Brownian motion, and in § 4.3 we discuss modelling strategies
adopted here. Finally, in § 5 we apply this new model to channel flow configurations. The
manuscript is completed with conclusions in § 6.

2. Flow configuration

In this paper we consider an incompressible turbulent channel flow at Reτ = 180 and
Reτ = 550, with Reτ the friction Reynolds number based on the friction velocity uτ and
the channel half-height h. We have carried out DNS with periodic boundary conditions in
streamwise and spanwise directions, with box dimensions of (Lx = 4π, Ly = 2, Lz = 2π)

for Reτ = 180 (following Kim, Moin & Moser 1987) and (Lx = 2π, Ly = 2, Lz = π)

for Reτ = 550 (the minimal dimensions for accurate channel statistics, as identified by
Lozano-Durán & Jiménez 2014). Simulations were carried out using Channelflow 2.0
(Gibson et al. 2019). The time steps of the database are respectively Δt = 0.5 and
Δt = 0.1 in outer units (based on bulk velocity and channel half-height), with total
simulation duration given respectively by T = 1000 and T = 300. In wall units, the time
steps correspond respectively to Δt+ = 5 and Δt+ = 3. The same datasets were used
by Morra et al. (2021) for an analysis of nonlinear terms and their role in resolvent
analysis. Validation results are presented in the cited work, and will not be repeated here
for conciseness. The present simulations are able to accurately reproduce mean flow and
root-mean-square velocities of the simulations of Del Álamo & Jiménez (2003).

In the following, all variables are expressed in wall units, based on friction velocity and
kinematic viscosity. We consider Cartesian coordinates x = (x, y, z) denoting streamwise,
wall-normal and spanwise directions, respectively. The flow variables, i.e. the velocity
components (u, v, w) and the pressure p, are split into a time average and fluctuation
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q = q̄ + q′, with q = (u, v, w, p)T, q̄ = (U( y), 0, 0, p̄)T and q′ = (u′, v′, w′, p′)T. We
define as well the velocity vector u = ū + u′ = (u, v, w)T. Due to the invariance in the
streamwise (x) and spanwise (z) directions by translational invariance of the mean flow,
and also due to the periodic boundary conditions used in the x and z directions, we define
the Fourier decomposition with the convention

q′(x, y, z, t) = 1
2π

∑
α,β

∫ ∞

−∞
q̂α,β,ω( y) ei(αx+βz−ωt) dω, (2.1)

where α and β are respectively the streamwise and spanwise wavenumbers, ω is the
angular frequency and q̂α,β,ω( y) is the space–time Fourier coefficient.

3. Standard approaches for data analysis and linearised modelling

3.1. Spectral POD
The frequency domain form of the proper orthogonal decomposition (POD), referred to
as SPOD, is an orthonormal basis of modes that (i) oscillate at a given frequency, (ii) are
perfectly coherent and (iii) are decorrelated from each other. It constitutes a procedure to
extract coherent structures from data evolving at a given frequency. A complete description
is performed in Towne et al. (2018). Spectral POD modes are eigenfunctions of the CSD
tensor S, obtained as

S(α, y, y′, β, ω) = 1
LxLz

∫ ∞

−∞

∫ Lx

0

∫ Lz

0
C(x − x′, y, y′,

z − z′, τ ) ei(ωτ−α(x−x′)−β(z−z′)) dτ d(x − x′) d(z − z′), (3.1)

where C(x − x′, y, y′, z − z′, t − t′) is the two-point space–time correlation tensor.
Homogeneity in x, z and t allows us to express the dependence in each direction
using Fourier modes, as shown in (3.1). Thus, for each (α, β, ω) combination, the
eigendecomposition ∫ 1

−1
S( y, y′)φj( y′) dy = λjφj( y) (3.2)

leads to an orthonormal basis of SPOD modes (since S( y, y′) is Hermitian), with respect
to the inner product (a( y), b( y))y = ∫ 1

−1 a( y)b( y) dy. The real eigenvalues λj represent
the relative contribution of a given mode to the CSD.

In practice, SPOD modes are computed by splitting the signal into an ensemble of M
possibly overlapping time windows of size N, whose snapshots u(n)

i are spaced Δt apart,

U(n) = [u(n)
1 , . . . , u(n)

N ], (3.3)

where n is the index related to the data block. A discrete Fourier transform is performed
on each block,

Û(n) = [û(n)
ω1

, . . . , û(n)
ωN

], (3.4)

with

û(n)
ωk

=
N∑

j=1

wju
(n)
j ei2π(k−1)(j−1)/N Δt, (3.5)
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and wj are weights of a window function designed to reduce effects of non-periodicity
of the signal in the data block. The window is normalised such that

∑N
i=1 w2

i = 1 to be
consistent with the energy contained in the signal. Then, a POD is performed onto the
ensemble of Fourier components at a given frequency such that

S̃ωk WΦSPOD
j,ωk

= λj,ωkΦ
SPOD
j,ωk

, (3.6)

with the estimate of the CSD matrix

S̃ωk = 1
ΔtM

M∑
n=1

û(n)
ωk

(û(n)
ωk

)∗, (3.7)

and W a matrix of weights defining the spatial inner product (a, b)W = a∗W b, numerical
approximation of (a( y), b( y))y, with ·∗ denoting the transpose-conjugate operation.
Functions ΦSPOD

j,ωk
are the SPOD modes and λj,ωk are the associated eigenvalues.

In our numerical tests, we use N = 256 (respectively N = 512) at Reτ = 180
(respectively Reτ = 550) with an overlap of 3

4 N and wj = 2 sin2(π(j − 1)/N)).
We can see that SPOD modes are principal components of an ensemble of solutions

defined in the Fourier domain. This random variability between ensemble members
û(n)

ω of the same statistically stationary flow reflects the effect of turbulence on waves,
which cannot be properly represented by a single deterministic Fourier mode. Indeed, a
deterministic purely coherent wave not affected by the turbulence would result in identical
values of û(n)

ω and then in a single SPOD mode equal to the Fourier coefficient. We will
see that the stochastic linear problem presented in § 4.2 shares common structures with the
SPOD that makes them consistent and comparable.

3.2. Resolvent analysis
Resolvent analysis aims at exploring the response of a linearised system to external
forcing, interpreted as unknown nonlinearities when analysing turbulent flows (Hwang
& Cossu 2010; McKeon & Sharma 2010). We start with the incompressible Navier–Stokes
equations

∂u
∂t

+ (u · ∇)u = −∇p + 1
Re

Δu,

∇ · u = 0.

}
(3.8)

Expressing (3.8) in the Fourier domain and splitting the solution into the parallel mean
flow U( y) and fluctuations u′ leads to the system⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A(·) + D(·) ∂U
∂y

0 iα

0 A(·) + D(·) 0
∂·
∂y

0 0 A(·) + D(·) iβ

iα
∂·
∂y

iβ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎝ ûα,β,ω

v̂α,β,ω

ŵα,β,ω

p̂α,β,ω

⎞⎟⎠ =

⎛⎜⎜⎝
f̂x
f̂y
f̂z
0

⎞⎟⎟⎠, (3.9)
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with the advection operator A(·) = −iω + iαU, the diffusion operator D(·) =
−(1/Re)(−α2 + ∂2 · /∂y2 − β2), Re the Reynolds number and

f̂x = Fα,β,ω(u′ · ∇u′ − u′ · ∇u′),
f̂y = Fα,β,ω(u′ · ∇v′ − u′ · ∇v′),
f̂z = Fα,β,ω(u′ · ∇w′ − u′ · ∇w′),

⎫⎬⎭ (3.10)

where Fα,β,ω(·) denotes the space–time Fourier transform.
Equation (3.9) can be written more compactly as

(Aα,β,ω − iωE)q̂α,β,ω = Lα,β,ωq̂α,β,ω = Nα,β,ω(u′), (3.11)

where Aα,β,ω is the linearised Navier–Stokes operator under the considered assumptions
and E is a diagonal matrix with 1 and 0 values for velocity and pressure components,
respectively. Here L−1

α,β,ω = (Aα,β,ω − iωE)−1 is the resolvent of the operator Aα,β,ω.
Formally, the nonlinear term Nα,β,ω(u′) can be considered as a right-hand side of (3.11).
However, the Fourier transform of a product is a convolution, which results in an integral
over all frequency-wavenumbers (Cavalieri et al. 2019; McKeon & Sharma 2010), which is
incompatible with a prediction for an ‘isolated’ frequency-wavenumber combination; the
nonlinear term couples the various frequencies and wavenumbers in the Navier–Stokes
system in triadic interactions. The goal of resolvent analysis is to explore the response of
the linear operator Lα,β,ω to nonlinearities treated as an external forcing. In what follows
we will consider the discretised form of (3.11), which, with the addition of an external
forcing, becomes

Lα,β,ωq̂α,β,ω = Bf̂ α,β,ω. (3.12)

Since nonlinear terms act only on the momentum equations in (3.9), and since SPOD
modes can be calculated separately once the velocity is known, we define input and output
matrices respectively as

B =

⎛⎜⎝I 0 0
0 I 0
0 0 I

0 0 0

⎞⎟⎠ and H =
⎛⎝I 0 0 0

0 I 0 0
0 0 I 0

⎞⎠ . (3.13a,b)

The output matrix H thus extracts only the velocity components, which may be combined
in an inner product whose norm is the kinetic energy. The response to a harmonic forcing
f̂ α,β,ω is H q̂α,β,ω = HL−1

α,β,ωB f̂ α,β,ω. The frequency response operator is thus defined

from the resolvent operator, L−1
α,β,ω, as Rα,β,ω = HL−1

α,β,ωB. We then search for the forcing
that maximises

max
f̂ α,β,ω

‖H q̂α,β,ω‖2
W

‖f̂ α,β,ω‖2
W

= ‖Rα,β,ω f̂ α,β,ω‖2
W

‖f̂ α,β,ω‖2
W

. (3.14)

The maximisation of the Rayleigh quotient (3.14) can be achieved by means of the
following singular value decomposition:

W 1/2Rα,β,ωW −1/2 = UrΣ rV∗
r . (3.15)

Here W 1/2 is defined by the Cholesky decomposition W = W 1/2(W 1/2)∗ with W defined
in § 3.1, Ur = (U r,1, . . . , U r,N) and V r = (V r,1, . . . , V r,N) are orthonormal matrices and
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Σ r = diag(s1, . . . , sN) is a diagonal matrix. We define the optimal forcing modes as
Ψ resolvent

i = W−1/2V r,i and the associated optimal response modes (also referred to as
resolvent modes in the following) as Φresolvent

i = W−1/2U r,i. The singular values, si,
diagonal elements of Σ r sorted in descending order, indicate the gains associated with
forcing-response mode pairs.

As shown in Towne et al. (2018), resolvent modes and SPOD correspond if and only
if the forcing in the data correspond to a Gaussian white noise. However, if there is a
separation in gain between the optimal forcing-response pair and suboptimal ones, even
coloured forcing leads to a dominance of the optimal response in the flow CSD, unless
the forcing is strongly biased towards suboptimals (Beneddine et al. 2016; Cavalieri et al.
2019). A way to account for a part of this forcing is to consider a triple decomposition of
the velocity field in the line of the work of Reynolds & Tiederman (1967) and Reynolds &
Hussain (1972) where the Reynolds stresses induced by the incoherent part of the turbulent
velocity through ensemble averaging is modelled by an eddy viscosity in the linearised
operator, noted Lνt

α,β,ω. It corresponds to a modification of the system (3.8), where the
diffusion operator (1/Re)Δu is replaced by ∇ · ((1/Re + νt( y))(∇u + ∇uT)), leading to
the system⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A(·) + Dνt(·)
∂U
∂y

− iα
∂ν

∂y
0 iα

0 A(·) + Dνt(·) − ∂ν

∂y
∂·
∂y

0
∂·
∂y

0 −iβ
∂ν

∂y
A(·) + Dνt(·) iβ

iα
∂·
∂y

iβ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎝ ûα,β,ω

v̂α,β,ω

ŵα,β,ω

p̂α,β,ω

⎞⎟⎠ =

⎛⎜⎜⎝
f̂x
f̂y
f̂z
0

⎞⎟⎟⎠ ,

(3.16)
with

Dνt(·) = −
(

1
Re

+ νt

)(
−α2 + ∂2·

∂y2 − β2
)

− ∂νt

∂y
∂·
∂y

. (3.17)

In this work we choose to fix the turbulent viscosity parameter, νt, with the Cess’s model
(Cess 1958) as in Del Álamo & Jiménez (2006) and Pujals et al. (2009), i.e.

νt = 1
Re

(
1
2

(
1 + κ2Re2

τ

9
(1 − y2)2(1 + 2y2)2(1 − e− y+

A )2
)1/2

− 1
2

)
, (3.18)

where y+ = Reτ (1 − |y|), κ = 0.426 is the von Kármán constant and A = 25.5 is a
constant chosen consistently following Pujals et al. (2009). The corresponding resolvent
analysis will be referred to as eddy-viscosity resolvent analysis. For compactness and to
avoid confusions, standard resolvent analysis will be noted ν-resolvent and eddy-viscosity
resolvent will be noted νt-resolvent. Recent results have shown that the inclusion of an
eddy viscosity in the linearised operator improves the agreement between resolvent modes
and simulation data (Illingworth, Monty & Marusic 2018; Morra et al. 2019), as the
eddy-viscosity models part of the forcing statistics (Morra et al. 2021).

In any case, the resolvent modes constitute a basis where any forcing can be projected
onto the forcing modes and, thus, we can deduce the response to this forcing. Extracting
statistics of the nonlinear term is a hard task in itself, and examples are shown by Zare et al.
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Stochastic linear modes in a turbulent channel flow

(2017), Nogueira et al. (2021), Towne et al. (2020) and Morra et al. (2021), where DNS
data was used for that matter. To avoid the need of detailed data for predictions, some
modelling of the unknown forcing is necessary. We propose in this paper to extend such
an analysis to a framework introducing a statistical modelling of the fluctuating velocities
and a stochastic transport equation, with modelling of unresolved velocity as a Brownian
motion. This is described next.

4. A stochastic linearised model for coherent structures in turbulent flows

4.1. Stochastic Navier–Stokes equations under location uncertainty
The starting point of our modelling approach is the stochastic model proposed by Mémin
(2014). It relies on the decomposition of the Lagrangian transport of a particle by a resolved
velocity u perturbed by a function of a Brownian motion Bt, written as a stochastic Itô
process. The displacement X (x, t) of a particle from time t0 to t is thus written as

X (x, t) = X (x, t0) +
∫ t

t0
u(x, t) dt +

∫ t

t0
σ dBt, (4.1)

or in a more usual and compact differential form as

dX (x, t) = u(x, t) dt + σ dBt. (4.2)

The term σ dBt hides a spatial convolution in the domain Ω between the modelled
bounded deterministic correlation kernel σ (x, x′, t) and dBt the increment of the
Brownian motion Bt (i.e. dBt = Bt+dt − Bt) such that its ith component at the spatial
location x is given by the following kernel integral expression:

(σ dBt)
i
x =

∫
Ω

σ ij(x, x′, t) dB j
t (x

′) dx′. (4.3)

This formulation models the transport of physical quantities by a smooth resolved velocity
(i.e. differentiable in time), perturbed by a noise that is assumed to be correlated and
smooth in space (through the correlation kernel σ ) but decorrelated and non-differentiable
in time. This ground assumption in Itô calculus is as well classically performed in
standard stochastic forcing models, and is relaxed in Zare et al. (2017) for a time-domain
formulation. The strong hypothesis of time-decorrelated multiplicative noise is clearly a
limitation of the proposed formalism. However, introducing a time memory would require
considering high-order terms in the stochastic Taylor expansions in Itô calculus (Kloeden
& Platen 2013) and is beyond the scope of the present paper.

The statistical behaviour of the noise is an information that has to be specified. The
operator σ is built in order to respect the given covariance tensor of the unresolved part

E((σ dBt)
i
x(σ dBt′)

j
x′) =

∫
Ω

∫
Ω

σ ik(x, y, t)E(dBk
t (y) dBl

t′(y
′))σ lj(x′, y′, t′) dy dy′

=
∫

Ω

∫
Ω

σ ik(x, y, t)(δ(y − y′)δ(t − t′)δkl) dt σ lj(x′, y′, t′) dy dy′

=
∫

Ω

σ ik(x, y, t)σ kj(x′, y, t′) dy δ(t − t′) dt

!= Q(x, x′, t) δ(t − t′) dt, (4.4)
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with dBi
t the ith component of dBt and E the expectation operator. We define as well the

variance tensor
a(x, t) = Q(x, x, t). (4.5)

We can remark that the tensor a(x, t) has the dimension of a diffusion. It corresponds to
the so-called quadratic variation of the stochastic process.

The stochastic transport equation of a conserved quantity θ can be obtained through a
stochastic version of the Reynolds transport theorem and the Itô-Wentzell formula (Mémin
2014; Resseguier et al. 2017a), i.e.

dtθ + ∇ · (θud) dt + ∇ · (θσ dBt) = ∇ · (1
2 a∇θ) dt, (4.6)

with dtθ the temporal increment of θ and the drift velocity

ud = u − 1
2∇ · a + σ (∇ · σ ). (4.7)

The stochastic transport displacement described by (4.6) is u dt + (−1
2∇ · a + σ (∇ ·

σ )) dt + σ dBt. It contains a non-differentiable part σ dBt which is directly linked to
the hypothesis (4.2). Moreover, there is an additional time-differentiable term −1

2∇ ·
a dt, called corrective drift velocity, which is active when the random fluctuations are
inhomogeneous in space. This term corresponds to a turbophoresis correction introduced
in the literature to represent laden particles drift due to turbulence inhomogeneity;
see Resseguier et al. (2017d) and the references therein. The second corrective drift
velocity term σ (∇ · σ ) takes into account divergence of the noise, and vanishes in the
incompressible case since by mass conservation we obtain ∇ · σ = 0 as a constraint on the
Brownian terms. Additionally, the stochastic diffusion term ∇ · (1

2 a∇u), which is akin to
a subgrid diffusion tensor associated to a generalized (matrix form) Boussinesq turbulent
viscosity assumption, ensures energy conservation of the stochastic transport operator
(Resseguier et al. 2017a). It represents the spreading of the expectation of the solution due
to the randomness. The fundamental difference between standard eddy-viscosity models
and the stochastic diffusion is that eddy viscosity is designed in order to reproduce the
mean flow in RANS equations based on an analogy with the molecular diffusion (so-called
the Boussinesq assumption), while the stochastic diffusion is defined here consistently
with the decomposition operated with no supplementary assumption.

Considering density and momentum for θ , with a constant density, reduces to a
stochastic version of the Navier–Stokes equations for the resolved velocity u,

dtu + (ud · ∇)u dt + (σ dBt · ∇)u = −∇( pt dt + dpt)

+ 1
Re

∇ · (∇u) dt + ∇ ·
(

1
2

a∇u
)

dt + 1
Re

∇ · (∇σ dBt)

∇ · ud = 0; ∇ · σ = 0,

ud = u − 1
2
∇ · a.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(4.8)

This stochastic system has been successfully used in several different applicative contexts
such as reduced-order models (Resseguier et al. 2017d), geophysical flow modelling
and analysis (Resseguier et al. 2017a; Resseguier, Mémin & Chapron 2017b,c; Chapron
et al. 2018; Bauer et al. 2020a,b) or for data assimilation techniques of coarse scale
flow dynamics (Chandramouli et al. 2019; Chandramouli, Mémin & Heitz 2020) or
LES (Kadri Harouna & Mémin 2017). Details to derive this system are reported in
appendix A. Besides the fact that they are written in a differential form, equations (4.8)
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Stochastic linear modes in a turbulent channel flow

have noticeable differences compared with the deterministic Navier–Stokes equations.
First, the transport displacement is formulated through the stochastic transport described
previously, which incorporates a modified advection term driven by inhomogeneity of
the random fluctuations, a multiplicative random term advecting the resolved component
by the random fluctuations and a subgrid stochastic diffusion related to the fluctuation
variance tensor. Secondly, there is an additional pressure term dpt that is the random
part of the pressure term. This term is necessary in order to balance the martingale
part of the equations, and may be understood as a random normal stress induced by the
divergence-free condition. There is as well a contribution of the viscous forces induced
by the unresolved velocity. Finally, the continuity condition is modified because applying
mass conservation shows that the drift velocity ud is solenoidal, instead of u. We can
note that ∇ · u = 1

2∇ · ∇ · a and vanishes only for some specific definitions of the noise
(such as spatially homogeneous noise) and not in the general case. The corrective drift
term is caused by turbulence inhomogeneity and has no reason to be solenoidal. For a zero
noise, the deterministic solenoidal condition is recovered. The corrective drift term has
been shown to play a fundamental role in the buffer region of turbulent boundary flows
(Pinier et al. 2019), and it has been also demonstrated to allow the triggering of secondary
circulations in geophysical flows (Bauer et al. 2020a).

It is important to remark that even if σ dBt has a Gaussian probability distribution, it
is involved in a multiplicative relation with the gradient of the solution and, thus, this
Gaussian property is not inherited by u. This is a fundamental difference with a strategy
based on the colouration of an additive Gaussian noise.

4.2. Stochastic linearised model
The strategy proposed in this paper to model coherent structures propagating within a
turbulent flow is to express the stochastic model (4.8) in the Fourier domain with a
normal-mode Ansatz, to linearise it and to solve the obtained linear model subject to an
ensemble of realisations of the Brownian motion. Such coherent structures are naturally
modelled as waves by appealing to a Fourier decomposition of the field.

The normal-mode Ansatz assumes homogeneity in time (t) and in the streamwise (x)
and spanwise (z) directions, i.e. all statistical quantities are invariant in these directions.
Thus, we can write the mean flow as ū = (U( y) 0 0)T, the variance tensor as a( y) and the
noise diffusion operator as σ (x − x′, y, y′, z − z′, t − t′).

In order to express the stochastic equations in the Fourier domain, we introduce the
power spectral density of the stochastic process σ dBt, defined as the Fourier transform of
the (two-point two-time) covariance tensor over a small increment of time Δ,∫ t+Δ

t
E(Sσ

ω) ds =
∫ ∞

−∞
E

(∫ t+Δ

t
(σ dBs)

i
x

∫ t′+Δ

t′
(σ dBs)

j
x′

)
eiω(t−t′) d(t − t′)

=
∫ ∞

−∞

∫ t+Δ

t
Q(x, x′, s) dsδ(t − t′) eiω(t−t′) d(t − t′)

=
∫ t+Δ

t
Q(x, x′, s) ds, (4.9)

with Q(x, x′, t) defined in (4.4). We can remark that E(Sσ
ω) is independent of ω. In other

words, it is white noise with a flat spectral content in frequency. We define then the random
variables dξω representative of the time Fourier transform of σ dBt, which shares the same
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power spectral density,

dξω =
∫

Ω

σ (x, x′, t) dηω(x′) dx′, (4.10)

where dηω is the time Fourier component of dBt. Thus, dξω is homogeneous to the Fourier
component of a displacement with a covariance consistent with σ dBt since the following
relation holds:

E(dξ i
ω(x) dξ j

ω(x′)) = E((σ dBt)
i
x(σ dBt)

j
x′) = Qij(x, x′) dt. (4.11)

Then, we define dξα,β,ω, the space–time Fourier transform of σ dBt as

dξα,β,ω =
∫ 1

−1
σ̂α,β( y, y′)d̂ηα,β,ω( y′) dy′, (4.12)

with σ̂ α,β( y, y′) the space Fourier transform of σ (x − x′, y, y′, z − z′, t − t′) and d̂ηα,β,ω

the space–time Fourier transform of dBt. The corresponding highly oscillating velocity
will be written formally as ξ̇α,β,ω = ∫ 1

−1 σ̂ α,β( y, y′)η̇α,β,ω( y′) dy′, with η̇α,β,ω( y) =
d̂ηα,β,ω( y)/dt a standard centred Gaussian white noise profile.

System (4.8) is linearised around the parallel (finite-time-averaged) mean field ū =
(U( y) 0 0)T. We define as well ūd = (Ud( y) 0 0)T, with Ud( y) = U( y) − 1

2 (∂axy/∂y).
The drift contribution may be non-null. Indeed we have

∂axy

∂y
= ∂σxx

∂y
σyx + σxy

∂σyy

∂y
+ σxz

∂σyz

∂y
. (4.13)

The linearisation of the stochastic Navier–Stokes equations leads to

dtu′ + (ūd · ∇)u′ dt + (u′ · ∇)ū dt + (σ dBt · ∇)ū + (σ dBt · ∇)u′

= −∇( p′
t dt + dpt) + 1

Re
∇ · (∇u′) dt + ∇ ·

(
1
2

a∇u′
)

dt,

∇ · u′ = 0; ∇ · σ = 0.

⎫⎪⎬⎪⎭ (4.14)

In the linearisation, nonlinear terms in u′ are neglected assuming that the wave has a small
amplitude, even if it is carried by a turbulent flow. As usually stated in linear stability
analysis, the mean velocity is assumed to be solution of the steady stochastic equations.
For the steady solution, by vanishing the time variation, the ‘dt’ terms and ‘ dBt’ terms can
be separated in two equations. The former is similar to the deterministic case, while the
stochastic part states balance between advection by σ dBt and the random pressure term
ensuring stationarity of the solution. Finally, the random viscous term 1

Re∇ · (∇σ dBt)

represents the viscous stress induced by the Brownian motion. Here it is assumed to not act
on the linear wave, but only on the turbulent field, for which an implicit evolution equation
is replaced by the stochastic modelling. Thus, the random viscous term is neglected in
(4.14).

For further developments, we consider a spectral representation of the noise and expand
the differential of the Brownian motion onto a basis such that

σ dBt =
∑
α,β,j

ΦB,α,β,j( y) ei(αx+βz) dζj,t, (4.15)

where the profiles ΦB,α,β,j( y) are eigenfunctions of σ̂α,β and ζj,t are scalar Brownian
motions. This allows us to introduce a stochastic extension of the classical normal-mode

912 A51-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
68

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1168


Stochastic linear modes in a turbulent channel flow

Ansatz of the form

u′(x, y, z, t) = ûα,β,ω( y) ei(αx+βz−ωt−∑j ω
′
jζj,t),

σ dBt = dξα,β,ω( y) ei(αx+βz−ωt−∑j ω
′
jζj,t),

}
(4.16)

and we set θ = αx + βz − ωt −∑
j ω

′
jζj,t. In this stochastic Ansatz the wave phase is now

random. Upon applying this stochastic normal-mode Ansatz to (4.14) and considering the
Brownian terms resulting from time differentiation leads to a relationship on the Brownian
terms proportional to eiθ dζj,t (simplified in the following relation) such as∑

j

iω′
jûα,β,ω dζj,t = Fα,β,ω(σ dBt · ∇u′) + ∇qj dζj,t, (4.17)

with ∇ = (iα ∂ · /∂y iβ)T and qj resulting from the splitting of the random pressure
term dpt = ∑

j qj( y) eiθ dξj,t + dpr,t. Equation (4.17) states that the transport of the wave
by the random velocity induces phase randomness and random pressure perturbations.
The term Fα,β,ω(σ dBt · ∇u′), Fourier transform of the transport of the wave by σ dBt,
is a convolution over all frequency-wavenumbers. It is a consequence of the bilinear
structure of the equations with respect to (u′, σ dBt). In order to reconstruct the temporal
behaviour of the wave, this term should be explicitly computed by considering a
frequency-wavenumber discretisation; or modelled by a random variable. If we consider
only predictions of ûα,β,ω and of CSD tensors, and if we assume a time and scale
separation between Brownian motion and the coherent wave ûα,β,ω, the terms involved
in (4.17) thus become decoupled from all the others and it is not necessary to use (4.17).
In the remainder of the paper, we adopt these assumptions and we obtain the system

−iωûα,β,ω + iαUdûα,β,ω + v̂α,β,ω

∂U
∂y

+ iαp̂α,β,ω + D̃(ûα,β,ω) = −(ξ̇α,β,ω)y
∂U
∂y

,

−iωv̂α,β,ω + iαUdv̂α,β,ω + ∂ p̂α,β,ω

∂y
+ D̃(v̂α,β,ω) = 0,

−iωŵα,β,ω + iαUdŵα,β,ω + iβp̂α,β,ω + D̃(ŵα,β,ω) = 0,

iαûα,β,ω + ∂v̂α,β,ω

∂y
+ iβŵα,β,ω = 0,

∂σxy

∂y
= ∂σyy

∂y
= ∂σzy

∂y
= 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.18)

with the modified diffusion operator

D̃(·) = − 1
Re

(−α2 + ∂2·
∂y2 − β2) − 1

2

(
−α2axx + iαaxy

∂·
∂y

− αβaxz

+ iα
∂ayx·
∂y

+ ∂

∂y

(
ayy

∂·
∂y

)
+ iβ

∂ayz·
∂y

−αβazx + iβazy
∂·
∂y

− β2azz

)
. (4.19)

Rearranging in matrix form leads to⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ã(·) + D̃(·) ∂U
∂y

0 iα

0 Ã(·) + D̃(·) 0
∂·
∂y

0 0 Ã(·) + D̃(·) iβ

iα
∂·
∂y

iβ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎝ ûα,β,ω

v̂α,β,ω

ŵα,β,ω

p̂α,β,ω

⎞⎟⎠ =

⎛⎜⎝f̃x
0
0
0

⎞⎟⎠ , (4.20)
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with the modified advection operator Ã(·) = −iω + iαUd and f̃x = −(ξ̇α,β,ω)y(∂U/∂y).
The variable p̂α,β,ω is the space–time Fourier component of both random pressure dpr,t
and time-differentiable pressure p. There is no distinction between them in the Fourier
space and, thus, they may be combined into a single unknown function. In these equations,
ξ̇α,β,ω is a random variable, and as a consequence the solution is a random variable as
well. Equation (4.18) is a linear system to solve. For any triplet (ω, α, β), a probability
distribution of solutions can be found, which could be interpreted by the fact that due to
randomness, there is a probability for a linear wave to be sustained. This trait is absent
in a deterministic linear stability problem since a solution has to respect the dispersion
relationship.

Compared with the system (3.9), the forcing acts only on the streamwise component
due to the parallel mean flow (hypothesis explored in Nogueira et al. 2021), a stochastic
diffusion is added and transport velocities are modified by corrective drift and stochastic
contribution. Formally, all these modifications could be interpreted after rearrangement as
a stochastic right-hand side of system (3.9). However, this forcing provides intrinsically a
non-Gaussian forcing with space–time structure (through the stochastic transport) that we
believe to be physically more relevant than an additive ad hoc (often Gaussian) random
forcing term. The sparse nature of the forcing is due to the fact that only linear terms are
conserved (more precisely, the model is bilinear with respect to (u′, σ dBt)), thus limiting
the possible interactions.

Considering an ensemble of Nens realisations of Gaussian white noise η̇α,β,ω in (4.18)
leads to an ensemble of solutions, whose statistics, such as CSD, may be computed.
As a final step, SPOD is performed on such an ensemble of solutions ûα,β,ω, leading
to an orthonormal basis of stochastic linearised modes, with corresponding eigenvalues
indicating the variance of each mode in the statistics predicted by the model.

It is important to outline that compared with standard linear stability or resolvent
analysis, the present strategy does not require an eigenvalue decomposition or the inversion
of the resolvent operator. Instead, an ensemble of Nens linear system solutions are required,
which are individually computationally less expensive. The computational cost complexity
is thus proportional to Nens. This can be viewed as a clear advantage in terms of CPU
and memory costs for large-scale sparse systems. Moreover, since the left-hand side of
(4.20) is the same for all ensemble members, cost reduction can be obtained using,
for instance, block Krylov methods. Similarly as in resolvent analysis where efficient
numerical procedures are proposed (Monokrousos et al. 2010; Moarref et al. 2013;
Brynjell-Rahkola et al. 2017; Martini et al. 2020b; Ribeiro, Yeh & Taira 2020), it is
believed that clever optimisations could be considered in the future for stochastic linearised
models (SLMs).

The underlying modelling assumption here is that a single wave ûα,β,ω, with low
amplitude compared with the overall background turbulence, is assumed to be transported
by the mean flow U( y) (as in deterministic linearised models) but also by a background
turbulence, modelled here as Brownian motion. The influence of turbulence on the
coherent wave is manifest in the drift velocity, in the additional diffusion associated with
the derivatives of the tensor a( y) (akin to an eddy viscosity and in equilibrium with the
energy brought by the noise), and in the forcing term in the x-momentum equation, where
background turbulence forces the coherent response.

4.3. Choice of σ

In the stochastic model the statistics of the unresolved velocity have to be defined through
σ . It is through this tensor that information of the turbulent velocity field affecting the wave
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is incorporated in the modelling. We propose in this section two different ways of choosing
σ depending whether data are available or not. The first is a best-case situation where
SPOD modes of the velocity field are available. The second consists in approximating
them based on resolvent analysis in a model-based perspective.

4.3.1. Based on SPOD
The present method is a best-case scenario where SPOD is used to define σ . This is of
course cyclic since the predicted wave will be compared with SPOD as well. The nonlinear
problem is not solved by the stochastic linear problem, and, therefore, we test here if
provision of the right (at least as right as possible) statistics of the noise to the linear
stochastic system leads to a good representation of the waves associated to the original
nonlinear system.

Spectral POD is a data-driven method that extracts an orthonormal basis for the velocity
field at a given frequency whose modes are optimal in terms of energy content. It is
thus the optimal basis with respect to a kinetic energy criterion to represent the turbulent
fluctuations at a given frequency. Within this framework, the variance tensor a is chosen
to match the CSD of the turbulent velocity field. Thus, an expansion onto SPOD modes
scaled by the SPOD eigenvalues is performed,

a( y) =
NSPOD∑

j=1

ΦSPOD
j,αβω ( y)λSPOD

j,αβω (ΦSPOD
j,αβω ( y))∗τ, (4.21)

and the spectral representation of the noise in the form of (4.15) is given as

ξ̇α,β,ω =
NSPOD∑

j=1

ΦSPOD
j,αβω ( y)

√
λSPOD

j,αβω η̇j, (4.22)

where η̇j is a centred standard white noise variable (numerically generated by the
Matlab/Octave function randn()), while τ is a decorrelation time consistent with dt, the
characteristic decorrelation time constant of fluctuation components. Indeed, a has the
dimension of a diffusion ([L2/T]) and a stochastic diffusion time scale has to be set. Since
we are focusing on single frequency solutions, we can consider that below a given time,
the faster fluctuations are fast enough to be considered as decorrelated. We here arbitrarily
choose such time proportional to the half-wave period,

τ = K
π

ω
. (4.23)

The constant K = 100 allows us to obtain an order of magnitude of a consistent
with Cess’s eddy viscosity. This value, selected by inspection of figure 1(a), has been
determined in terms of order of magnitude and not based on a fine iterative tuning. A
very low order of magnitude for K leads to disappearance of the effects of stochastic
diffusion and drift velocity, and a very large order of magnitude leads to unphysical results
dominated by the noise.

The fact that SPOD modes are purely coherent modes decorrelated from each other
justifies the expansion (4.22) by randomising the expansion coefficients.

It should be remarked that this definition of the operator σ requires a complete
time-resolved dataset in order to be able to compute the SPOD, which is per se an intensive
post-processing procedure.
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Figure 1. Effect on the stochastic diffusion and the drift velocity at Re = 550: (a) diffusion and (b) drift
velocity.

4.3.2. Based on resolvent analysis
As a second approach, we use ν-resolvent analysis to build the background turbulence
statistics σ at the considered frequency-wavenumber combination. This amounts to
considering an imperfect prediction based on the resolvent, with the simplifying
assumption of nonlinear terms as spatial white noise, to build a first estimate of the
turbulence statistics, which are subsequently taken to define the coloured Brownian motion
statistics σ in our model. In that perspective, a distinction is made between the linear
response to generalized Reynolds stresses modelling the background turbulence σ dBt and
the linear wave sustained by this background turbulence q̂α,β,ω.

With this underlying idea, we define, similarly as for the SPOD noise,

aresolvent( y) =
⎛⎝Ar

Nresolvent∑
j=1

Φresolvent
j,αβω ( y)(sresolvent

j,αβω )2(Φresolvent
j,αβω ( y))∗ + AbI

⎞⎠ τ, (4.24)

and

(ξ̇α,β,ω)resolvent = A1/2
r

Nresolvent∑
j=1

Φresolvent
j,αβω ( y)sresolvent

j,αβω η̇j + A1/2
b η̇background. (4.25)

The constant Ar is a global amplitude that is a free parameter. For reasons of consistency
with the data-driven noise defined from SPOD, we choose A1/2

r =
√
λSPOD

1,αβω/sresolvent
1,αβω . This

sets the noise amplitude from data, but it could be considered as well as a single free
parameter in a fully model-based perspective. The resolvent predictions were obtained
without inclusion of an eddy viscosity to avoid a circular nature of the model; the resolvent
only provides an estimate of the stochastic field, which will subsequently be used to force
the waves and modify the linearised operator via the drift velocity and the stochastic
diffusion.

Moreover, it has been observed that an additional constant background noise is
necessary to represent fluctuations in the middle of the channel (structures exemplified
by wave 2 as defined in § 5), present with SPOD noise, but missing with resolvent noise.
The constant Ab = 1/τ is chosen in order to obtain comparable levels to Cess’s model
in the middle of the channel. The noise term η̇background denotes here a centred standard
white noise field. The modelling is designed to mimic the behaviour of SPOD noise, and
refinement of the definition of σ is an open research direction.
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5. Application to turbulent channel flows

5.1. Effect of the variance tensor
As a first analysis, we show here the effect of the tensor a, through the stochastic diffusion
and the drift velocity. In figure 1(a) we compare 1

2 (trace(a)/3) of wave 1 at Reτ = 550
with Cess’ eddy viscosity νt. Compared with Cess’ model that leads to an eddy viscosity
that increases monotonically with wall distance, so as to lead to the mean velocity profile
of the channel, SPOD and resolvent noise lead to large diffusion in the buffer layer around
y+ ≈ 10, where the SPOD modes peak. It was observed that the eddy viscosity/stochastic
diffusion in the channel centre plays a significant role in the stochastic linearised mode’s
shape. Indeed, SPOD noise leads to good results, but resolvent noise without adding the
background homogeneous noise showed a faster decay in the channel centre, which we
believe to be the reason of failure. This is the reason why we have added an additional
homogeneous noise in the resolvent noise (4.24) and (4.25), such that the level of induced
stochastic diffusion is comparable to νt. The effect of this noise can be shown for y+ > 100
in the resolvent noise, and that constitutes the main difference between both noises. Let
us note however that the stochastic model should not be interpreted as more diffusive than
Cess’ model. As a matter of fact, the noise which acts globally as a backscatering term is
counterbalanced by the (negative) stochastic diffusion energy.

In figure 1(b) we compare the mean flow profile U( y) with the mean drift velocity
profile Ud( y) at Reτ = 550 with the SPOD noise of wave 1. The main effect of the
corrective drift is around y+ = 10, which is consistent with the study of Pinier et al. (2019)
showing that the stochastic transport formalism has a large influence in the buffer layer.

5.2. Comparison with SPOD modes from the DNS databases
The linear stochastic modes are compared with results of resolvent analysis, described in
§ 3.2. These models are discretised with 128 (respectively 256) Chebyshev polynomials at
Reτ = 180 (respectively Reτ = 550), the same number of polynomials used in the DNS.
The accuracy of SLMs in modelling coherent structures in turbulent channel flows is
evaluated by comparing results to SPOD modes from the two channels. The two choices of
noise presented in § 4.3 are tested. For all the results, the two leading modes from SPOD,
resolvent analysis and the linearised stochastic model are considered. They are referred to
respectively as mode 1 and mode 2. Higher-order modes are not shown in order to avoid
any misinterpretation due to numerical convergence of the SPOD, which requires very
long time series for higher-order modes (Lesshafft et al. 2019). Stochastic linearised modes
are obtained using an ensemble of Nens = 10 000 members. In practice, 1000 members are
enough to obtain robust results, and we have increased this value to eliminate any doubt of
convergence.

Figures 2 and 3 show mode amplitudes for Reτ = 180 and Reτ = 550, respectively.
Recall that the wall-normal coordinate y is expressed in inner units. Two typical waves are
presented. The first one, denoted ‘wave 1’, is typical of a streaky structure (λ+x ≈ 10λ+z )
representative of the near-wall cycle (Jiménez 2013), for which the resolvent analysis
is predictive (Abreu et al. 2020a,b). The second one, denoted ‘wave 2’, has a similar
phase speed, but is of larger size with a lower aspect ratio λ+x ≈ 2λ+z . In the latter
case, the turbulent structures are larger and extend further from the wall. For this type
of wave, resolvent analysis shows significant discrepancies compared with the reference
SPOD modes. Exact values of wavelengths are given in the figure captions. We have
α = 2π/λ+x , β = 2π/λ+z and ω = 2π/λ+t , where λ+x and λ+z denote wavelengths in the
x and z directions, respectively, and λ+t is the time period, with all results expressed
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Figure 2. Profiles of the power spectral density of |û| at Reτ = 180 for two waves: (a) wave 1, mode 1, u;
(b) wave 2, mode 1, u; (c) wave 1, mode 2, u; (d) wave 2, mode 2, u. Wave 1: λ+x = 1124, λ+z = 102, λ+t =
100; wave 2: λ+x = 2249, λ+z = 1124, λ+t = 200. Spectral POD (black), ν-resolvent modes (red), νt-resolvent
(orange), SLM with a noise defined by SPOD (blue) and resolvent (purple).

in inner units. Only antisymmetric waves (in u) with respect to the channel centreline
are displayed. Such antisymmetric modes can be obtained by restricting the forcing in
resolvent and stochastic models to be antisymmetric, and by taking the antisymmetric part
of disturbances prior to computing SPOD. Similar analysis for symmetric waves shows
similar results and will not be shown here for conciseness. Results are shown here for the
u component, and corresponding results for v and w can be found in appendix B.

Considering wave 1 at Reτ = 180 in figures 2(a) and 2(c), ν-resolvent analysis is able to
reproduce SPOD with a good accuracy. For this kind of wave, the improvement margin is
quite low. In accordance with previous results in the literature, such as Morra et al. (2019),
incorporating the eddy viscosity in the resolvent analysis slightly improves further the
agreement with SPOD. Stochastic linearised models with a noise based either on SPOD
or resolvent modes have similar performances than νt-resolvent to recover the first SPOD
mode. In the appendix it is shown in figure 9 that for wave 1, the SLM is slightly better to
predict u than νt-resolvent, and leads to a slight worsening for v and w. We can note a very
good agreement of SLM with resolvent noise to predict u. The hierarchy of performances
is less clear for mode 2, except that SLM with a SPOD noise improves significantly the
prediction of u.

For wave 2 in figures 2(b) and 2(d), where ν-resolvent shows large discrepancies,
the eddy viscosity improves well the behaviour. In that situation, SLM improves the
agreement, especially for the noise based on resolvent analysis. In figure 10 in the
appendix, it can be shown that the improvement of v predictions is strong. This can
be explained by the fact that the forcing shape (4.20) comes for the term coupling
velocity components f̃x = −(σ̂ η̇α,β,ω)y(∂U/∂y). The improvement is more pronounced for
mode 2.
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Figure 3. Profiles of the power spectral density of |û| at Reτ = 550 for three waves: (a) wave 1, mode 1, u;
(b) wave 2, mode 1, u; (c) wave 1, mode 2, u; (d) wave 2, mode 2, u. Wave 1: λ+x = 1137, λ+z = 100,
λ+t = 100; wave 2: λ+x = 3412, λ+z = 1706, λ+t = 200. Spectral POD (black), ν-resolvent modes (red),
νt-resolvent (orange), SLM with a noise defined by SPOD (blue) and resolvent (purple).

Comparison of the results in figures 2 and 3 shows that the performance of SLM
at Reτ = 550 is quite similar to what is obtained for Reτ = 180. Exactly the same
analysis can be done on wave 1. This gives us some confidence on the robustness of
the modelling procedure. Wave 2, figure 3(b), is slightly different since it extends more
in the centre of the channel, from the lower Reτ results, as it represents larger structures
extending to higher wall-normal locations, more relevant for larger Reynolds numbers.
In this case, the disagreement between ν-resolvent analysis and SPOD is amplified. The
νt-resolvent finds a solution with a wider extend but located too close to the wall. A
SLM with SPOD seems to find a solution of the same nature than νt-resolvent, but SLM
with resolvent noise begins to have large values near the centre of the channel. This
supports the importance of modelling properly the noise statistics in the centre of the
channel.

5.3. Comparison of cross-spectral densities
For a more complete view, the CSD Sα,β,ω( y, y′) = E(ûα,β,ω( y)ûα,β,ω( y′)) can be
compared. This matrix is already computed to obtain SPOD (from the DNS data) and
stochastic model (by the construction of an ensemble of realisations). As for the resolvent
operator, assuming the system is excited by a Gaussian white noise, the CSD can be
predicted (Cavalieri et al. 2019) by

Sresolvent
α,β,ω = Rα,β,ωE( f̂ α,β,ω f̂ ∗

α,β,ω)R∗
α,β,ω = Rα,β,ωR∗

α,β,ω. (5.1)

Focusing on wave 1 at Reτ = 180, the CSD matrix is compared in figure 4. Only
the streamwise component Suu

α,β,ω( y, y′) = E(ûα,β,ω( y)ûα,β,ω( y′)) is shown for the sake
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Figure 4. Real part of Suu
α,β,ω( y, y′) for wave 1 λ+x = 1137, λ+z = 100, λ+t = 100 at Reτ = 180: (a) spectral

POD, (b) ν-resolvent, (c) νt-resolvent, (d) SLM (SPOD) and (e) SLM (Res.).

of conciseness. It can be shown that ν-resolvent analysis predicts a too short coherence
decay (seen by small values at off-diagonal terms in the CSD), with an elliptic pattern
in the CSD, while the SPOD have rather a guitar plectrum shape. The prediction with
νt-resolvent is more accurate, but the non-ellipticity is too pronounced. Both SLMs
improve significantly the prediction.

5.4. Collinearity metric
A comprehensive view of the modelling performances over all scales can be given by a
collinearity criteria

βmodel
j,α,β,ω =

|(Φmodel
j,α,β,ω, ΦSPOD

j,α,β,ω)|
‖Φmodel

j,α,β,ω‖‖ΦSPOD
j,α,β,ω‖ , (5.2)

defined similarly as in Cavalieri et al. (2013), Lesshafft et al. (2019) and Abreu et al.
(2020b). As a reference, figure 5 represents the collinearity between SPOD and eddy
resolvent analysis for all wavelengths at λ+t = 200 and λ+t = 1000 for Reτ = 180. It
shows that, in agreement with the analysis of turbulent pipe flow by Abreu et al. (2020b)
(performed for ν-resolvent), the first νt-resolvent mode predicts well the first SPOD modes
for a wide range of wavelengths, especially for elongated modes (λ+x > λ+z ), exemplified
previously by wave 1. There is very little room for improvement in those regimes. The
accuracy decreases for less elongated modes, of larger size and with a lower frequency
(large λ+z and λ+t , low λ+x ), exemplified by wave 2. In all cases, the second νt-resolvent
mode leads to poor predictions of the second SPOD mode. First SPOD eigenvalues in
figures 5(c) and 5(g) are shown to evaluate the presence of these structures in the flow
in terms of kinetic energy. A similar behaviour is shown in appendix C for Reτ = 550
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Figure 5. Value of β
νt -resolvent
j,α,β,ω at Reτ = 180 measuring the accordance between νt-resolvent analysis and

SPOD. (a) Value of β
νt -resolvent
j,α,β,ω , mode 1, λ+t = 200. (b) Value of β

νt -resolvent
j,α,β,ω , mode 2, λ+t = 200. (c) First

SPOD eigenvalue log10(λ1) for λ+t = 200. (d) Ratio s2
1/s2

2 of the νt-resolvent singular values for λ+t = 200.
(e) Value of β

νt -resolvent
j,α,β,ω , mode 1, λ+t = 1000. ( f ) Value of β

νt -resolvent
j,α,β,ω , mode 2, λ+t = 1000. (g) First SPOD

eigenvalue log10(λ1) for λ+t = 1000. (h) Ratio s2
1/s2

2 of the νt-resolvent singular values for λ+t = 1000.

(figure 13). The worse agreement between SPOD and νt-resolvent is directly associated
with the decay of the ratio of the two first νt-resolvent singular values (see figures 5d and
5h). Such cases require a finer description of the noise for accurate modelling.

Figure 6 compares β
νt-resolvent
j,α,β,ω , β

SLM (SPOD)
j,α,β,ω and β

SLM (Res.)
j,α,β,ω at Reτ = 180 and λ+t = 200.

We can see that for elongated waves, where νt-resolvent is highly performant, SLM has
slightly lower agreement metrics, but there is a clear improvement to match SPOD at
wavenumbers for which νt-resolvent is less efficient.

In order to quantify the improvement (in terms of SPOD predictability) brought by the
stochastic model compared with νt-resolvent, we define the log-ratio of collinearity criteria

γ SLM noise
j,α,β,ω = log

(
βSLM noise

j,α,β,ω

β
νt-resolvent
j,α,β,ω

)
. (5.3)
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Figure 6. Value of β
νt -resolvent
j,α,β,ω , β

SLM (SPOD)
j,α,β,ω and β

SLM (Res.)
j,α,β,ω at Reτ = 180 and λ+t = 200 measuring the

accordance between the respective models and SPOD. (a) Mode 1, νt-resolvent. (b) Mode 1, SLM (SPOD).
(c) Mode 1, SLM (Res.). (d) Mode 2, νt-resolvent. (e) Mode 2, SLM (SPOD). ( f ) Mode 2, SLM (Res.).
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Figure 7. Value of γ SLM noise
j,α,β,ω , Reτ = 180, λ+t = 200. (a) Mode 1, SLM (SPOD). (b) Mode 1, SLM (Res.).

(c) Mode 2, SLM (SPOD). (d) Mode 2, SLM (Res.).

The label ‘SLM noise’ refers to the noise definition of the stochastic linearised model. It
can be defined by SPOD (SLM SPOD) or resolvent (SLM Res.). Figures 7 and 8 show
γ SLM noise

j,α,β,ω respectively at Reτ = 180 and Reτ = 550, for λ+t = 200. Other frequencies are
displayed in appendix C (figures 14–17). In all these figures, red (blue) regions show
parameters where SLM leads to better (worse) predictions compared with νt-resolvent
predictions.

As a first remark, for all Reynolds numbers and frequencies and for both noise
definitions, the trend described previously is confirmed, i.e. an improvement (γ SLM noise

j,α,β,ω

> 0) at wavenumbers for which νt-resolvent has moderate performances, and a slight
performance loss for elongated waves. Moreover, the improvement is generally better
for mode 2. Let us remark that for these elongated waves, the agreement is still good,
and better than ν-resolvent analysis, as it has been shown by the profiles of wave 1.
Considering the choice of the noise, SLM (SPOD) is a reference case, where the noise
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is defined from DNS data. Resolvent noise SLM (Res.) is a model-based technique whose
goal is to approach the SPOD noise performance. In the latter case, the improvement
follows the same trend than the one with SPOD noise, with a slightly lower performance
(especially at Reτ = 550) than the one that can be expected since the modelling is now
purely model based. Resolvent modelling thus constitutes a robust and efficient way to
define the noise. It clearly improves the performances of the resolvent analysis while
remaining purely based on the model. Obviously, if SPOD modes are available, it is
preferable to use them.

5.5. Discussion
The reason for the improvement of the present stochastic model compared with resolvent
analysis is that SLM considers the effect of the turbulence on the waves by a stochastic
transport, thus preserving conservation of quantities. Such an effect is by essence
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non-Gaussian through the transport by the Wiener process. Moreover the stochastic
diffusion, which may be interpreted as a turbulent viscosity, is constructed to dissipate
the energy brought by the noise. This specific structure is a step to go beyond additive
Gaussian noise that is implicit in resolvent analysis applied to turbulent flows.

In Symon et al. (2019) an energy equation is written for individual resolvent modes,
and energy transfers are discussed. The results in the cited work show that for frequencies
and wavenumbers for which there is a large production, νt-resolvent analysis is successful.
Indeed, by its own nature the resolvent predicts well production, and the excess of energy
that is not dissipated by molecular viscosity but drained by nonlinear energy transfer
is accurately modelled by eddy dissipation. However, for waves that gain energy from
the others, the nonlinear energy transfer cannot structurally be well represented by a
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purely diffusive mechanism. In the SLM the stochastic diffusion plays the role of eddy
viscosity and is important to represent well waves for which high production occurs (in
our case the elongated structures). In addition, the stochastic transport is a mechanism
that can model energy transfers coming from other (unresolved) scales. Moreover, in
the temporal formulation, these terms are designed such that energy is conserved.
Obviously, this conservation is, by Parseval theorem, integrated over all frequencies. These
energy transfer considerations explain the fact that the SLM improves predictions for
scales poorly modelled by the νt-resolvent, thanks to the possibility of modelling gain of
energy from other scales. We interpret the slight loss of performance for elongated scales
as room for improvement in the definition of the noise, so as to improve the properties of
stochastic diffusion.

Noise definition in the SLM can be viewed as a closure problem. The main improvement
could be attributed to the fact that we have introduced data in the modelling of the
background turbulence through SPOD. The fact that the improvement is still visible with
the resolvent noise is a good indication that a true modelling improvement is obtained.

6. Conclusion

A stochastic procedure is proposed to model coherent structures, or waves, in turbulent
flows. This procedure, which has been tested here for turbulent channel flow at two friction
Reynolds numbers, is based on the resolution of an ensemble of linearised problems
derived from a stochastic version of the Navier–Stokes equations. Assuming implicitly a
triple decomposition, we consider a wave (low-amplitude solution of the model) evolving
over a mean flow and perturbed by turbulent velocity fluctuations sustaining a stochastic
transport. In the present framework, these fluctuations are modelled by a Wiener process,
where spatial correlations are prescribed.

In order to define such stochastic properties of the background turbulence, two different
noise definitions are proposed, based on SPOD and resolvent analysis: the former data
driven and the latter model based which provide a first approximation of the overall
background turbulence.

The background turbulence in the stochastic framework leads to a modified linearised
operator, with an enhanced diffusion akin to an eddy viscosity, and a drift velocity
that modifies the base flow. Moreover, the stochastic disturbances act as a forcing term.
Thus, the background turbulence acts as both the injecting and dissipating energy of
coherent waves. In the present study, the drift velocity has been found to be mainly active
in the buffer region. This is consistent with the study of Pinier et al. (2019). The stochastic
diffusion is also largest at the buffer layer, where flow fluctuations peak.

When compared with predictions based on νt-resolvent analysis, the present SLM, with
the two choices of noise modelling, shows improvement in the predictions of coherent
structures in turbulent channel flow, for frequencies and wavenumbers for which the
νt-resolvent fails, with a slight performance reduction for waves for which the νt-resolvent
is highly accurate. This is quantified here by comparison with SPOD modes taken from
direct numerical simulations. This behaviour is understood by the ability of the SLM
to directly model energy gains coming from other scales by nonlinear transfer. The
good performance shows the pertinence of the present linearised stochastic approach,
which provides a consistent manner to model interactions between coherent structures and
background turbulence. The linearisation implies that among all nonlinear interactions,
the present strategy models the transport of the perturbation by the turbulent fluctuation.

Resolvent analysis employed under the simplistic white noise forcing assumption leads
to inaccuracies (Morra et al. 2021; Nogueira et al. 2021). The present model shows a
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Figure 12. Profiles of the power spectral density at Reτ = 550 for wave 2: λ+x = 3412, λ+z = 1706, λ+t = 200.
Spectral POD (black), ν-resolvent modes (red), νt-resolvent (orange), SLM with a noise defined by SPOD
(blue), and resolvent (purple). (a) Mode 1, |û|. (b) Mode 1, |v̂|. (c) Mode 1, |ŵ|. (d) Mode 2, |û|. (e) Mode 2,
|v̂|. ( f ) Mode 2, |ŵ|.

way for including interactions with the background turbulence, avoiding use of an ad hoc
eddy viscosity, which, despite improved predictions in some cases (Morra et al. 2019),
lacks generality. Of course, it is replaced by the definition of the statistics of a background
turbulent field, with quantities possibly easier to educe or deduce than an eddy viscosity.
Compared with strategies based on the stochastic forcing colouration, our method is
based on velocity statistics, which are more direct to obtain and analyse than nonlinear
term statistics. We here provide a way to include interactions of coherent structures with
background turbulence that is coloured in space but white in time, similar to what was
previously used for estimation of turbulent channel flow (Chevalier et al. 2006). Such
inclusion of colour explains the more robust predictions of the present model compared
with resolvent analysis.

The noise definitions proposed in this paper are not the only possibilities, and a fine
design of the associated statistics is an open research direction. Spectral POD and resolvent
analysis are proposed here, but considerations based on turbulence modelling, or empirical
Reynolds stresses (profiles often easily available) are promising potentialities. Statistics of
the noise can be learned as well by formulating an inverse problem.
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Appendix A. The Stochastic Navier–Stokes equations

Mass conservation is obtained by applying the stochastic transport (4.6) to the density
with θ = ρ. With incompressibility assumption, i.e. ρ = 1 (working with dimensionless
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Figure 13. Value of β
νt -resolvent
j,α,β,ω at Reτ = 550 measuring the accordance between νt-resolvent analysis and

SPOD. (a) Value of β
νt -resolvent
j,α,β,ω , mode 1, λ+t = 200. (b) Value of β

νt -resolvent
j,α,β,ω , mode 2, λ+t = 200. (c) First

SPOD eigenvalue log10(λ1) for λ+t = 200. (d) Ratio s2
1/s2

2 of the νt-resolvent singular values for λ+t = 200.
(e) Value of β

νt -resolvent
j,α,β,ω , mode 1, λ+t = 1000. ( f ) Value of β

νt -resolvent
j,α,β,ω , mode 2, λ+t = 1000. (g) First SPOD

eigenvalue log10(λ1) for λ+t = 1000. (h) Ratio s2
1/s2

2 of the νt-resolvent singular values for λ+t = 1000.

variables), we obtain immediately

∇ · ud = 0; ∇ · σ = 0. (A1a,b)

Momentum conservation is obtained with θ = ρui with ui the ith component of u. This
leads to

dt(ρui) + ∇ · ((ρui)ud) dt + ∇ · ((ρui)σ dBt) = 1
2∇ · (a∇(ρui)) dt + dtFi(X t, t),

(A2)
where Fi(X t, t) is the ith component of the forces acting on the fluid particle. The term
dtFi(X t, t) is the associated force impulse. Let us remark that

dt(ρui) = ρdtui + uidtρ + d〈ρ, ui〉, (A3)
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Figure 14. Value of γ SLM noise
j,α,β,ω , Reτ = 180, λ+t = 500. (a) Mode 1, SLM (SPOD). (b) Mode 1, SLM (Res.).

(c) Mode 2, SLM (SPOD). (d) Mode 2, SLM (Res.).
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Figure 15. Value of γ SLM noise
j,α,β,ω , Reτ = 180, λ+t = 1000. (a) Mode 1, SLM (SPOD). (b) Mode 1, SLM (Res.).

(c) Mode 2, SLM (SPOD). (d) Mode 2, SLM (Res.).

where 〈ρ, ui〉 is the quadratic variation between the two stochastic processes ρ and ui.
Rewriting in non-conservative form similarly to the deterministic case and applying the
incompressibility condition leads to

dtui + (ud.∇)uidt + (σ dBt.∇)ui = 1
2∇ · (a∇ui) dt + dtFi(X t, t). (A4)

Applied forces are the pressure and viscous stresses,

dtFi = − ∂

∂xi
( pt dt + dpt) + 1

Re
∇ · (∇ui) dt + 1

Re
∇ · (∇(σ dBt)

i), (A5)
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Figure 17. Value of γ SLM noise
j,α,β,ω , Reτ = 550, λ+t = 1000. (a) Mode 1, SLM (SPOD). (b) Mode 1, SLM (Res.).

(c) Mode 2, SLM (SPOD). (d) Mode 2, SLM (Res.).

where pt is the finite-variation contribution of the pressure and dpt is a zero-mean
stochastic process describing the pressure fluctuations due to the martingale part of the
velocity component. Besides its physical meaning, this stochastic term is mandatory to
balance the martingale part of the equations. Similarly, the viscous stresses induced by the
fluid particle stochastic displacement are decomposed in a finite variation and martingale
part. A rigorous justification of this decomposition based on conservation integrals is given
in Mémin (2014).
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Appendix B. Profiles of velocity fluctuations

In this section amplitudes of the three velocity components are presented for waves 1 and 2
at both Reynolds numbers (figures 9–12). This complements the results presented in § 5
and shows that the stochastic modelling improves especially well u of wave 1 and v of
wave 2.

Appendix C. Collinearity criteria

In this section complementary collinearity criteria are given.
Figure 13 shows the collinearity between νt-resolvent modes and SPOD at Reτ = 550.

It shows that all the trends remain similar to those observed at Reτ = 180.
Improvement of collinearity by the SLM is shown for Reτ = 180 for λ+t = 500

(figure 14) and λ+t = 1000 (figure 15), and for Reτ = 550 for λ+t = 500 (figure 16)
and λ+t = 1000 (figure 17). The behaviour is similar for all tested frequencies, and the
improvement is more pronounced at Reτ = 180 than Reτ = 550.
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JOVANOVIĆ, M.R. & BAMIEH, B. 2005 Componentwise energy amplification in channel flows. J. Fluid Mech.

534, 145–183.
KADRI HAROUNA, S. & MÉMIN, E. 2017 Stochastic representation of the Reynolds transport theorem:

revisiting large-scale modeling. Comput. Fluids 156, 456–469.
KAISER, T.L., LESSHAFFT, L. & OBERLEITHNER, K. 2019 Prediction of the flow response of a turbulent

flame to acoustic perturbations based on mean flow resolvent analysis. Trans. ASME: J. Engng Gas.
Turbines Power 141 (11), 111021.

KIM, J., MOIN, P. & MOSER, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds
number. J. Fluid Mech. 177 (1), 133–166.

KLOEDEN, P.E. & PLATEN, E. 2013 Numerical Solution of Stochastic Differential Equations, Stochastic
Modelling and Applied Probability, vol. 23. Springer Science & Business Media.

LECLERCQ, C., DEMOURANT, F., POUSSOT-VASSAL, C. & SIPP, D. 2019 Linear iterative method for
closed-loop control of quasiperiodic flows. J. Fluid Mech. 868, 26–65.

LESSHAFFT, L., SEMERARO, O., JAUNET, V., CAVALIERI, A.V.G. & JORDAN, P. 2019 Resolvent-based
modeling of coherent wave packets in a turbulent jet. Phys. Rev. Fluids 4, 063901.

LOZANO-DURÁN, A. & JIMÉNEZ, J. 2014 Effect of the computational domain on direct simulations of
turbulent channels up to Reτ = 4200. Phys. Fluids 26 (1), 011702.

LUHAR, M., SHARMA, A.S. & MCKEON, B.J. 2014 On the structure and origin of pressure fluctuations in
wall turbulence: predictions based on the resolvent analysis. J. Fluid Mech. 751, 38–70.

MARTINI, E., CAVALIERI, A.V.G., JORDAN, P., TOWNE, A. & LESSHAFFT, L. 2020a Resolvent-based
optimal estimation of transitional and turbulent flows. J. Fluid Mech. 900, A2.

MARTINI, E., RODRÍGUEZ, D., TOWNE, A. & CAVALIERI, A.V.G. 2020b Efficient computation of global
resolvent modes (preprint). arXiv:2008.10904.

MCKEON, B.J. & SHARMA, A.S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658,
336–382.

MÉMIN, E. 2014 Fluid flow dynamics under location uncertainty. Geophys. Astrophys. Fluid Dyn. 108 (2),
119–146.
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