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Challenges raised by aging (increasing longevity) have prompted policy debates featuring
policy proposals justified by reference to some notion of intergenerational equity.
However, very different policies ranging from presavings to indexation of retirement ages
have been justified in this way. We develop an overlapping-generations model in
continuous time that encompasses different generations with different mortality rates and
thus longevity. Allowing for trend increases in both longevity and productivity, we
address the normative issue of intergenerational equity under a utilitarian criterion when
future generations are better off in terms of both material and nonmaterial well-being.
Increases in productivity and longevity are shown to have very different implications for
intergenerational distribution. Further, the socially optimal retirement age, dependency
ratio, and intergenerational burden sharing in the case of a trend increase in longevity are
shown to depend on how individuals’ utility for time/leisure is affected by age and
longevity.
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1. INTRODUCTION

A trend of increase in longevity is a major driver underlying demographic shifts
in all OECD countries. According to Wilmoth (2000), longevity (life expectancy
at birth) increased from 67 to 72 years for men and 75 to 79 years for women
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over the period from 1970 to 1995. Further, according to recent UN forecasts [see
United Nations (2008)], the growth rate of longevity is expected to be 0.2% per
year. The effects are large and a main cause of projected increases in demographic
dependency ratios. The policy debate thus centers on the paradox that increases
in longevity, on one hand, constitute a major welfare improvement1 and, on the
other hand, threaten the financial viability of various welfare arrangements. To
reap the benefits of increased longevity, policy adjustments are needed, and in
policy debates it is often stressed that the adjustments made should ensure inter-
generational equity. But what is the precise meaning of intergenerational equity
when different cohorts have different longevity? This issue becomes even more
complicated when it is taken into account that future generations may also be
richer because of productivity growth.

In policy formulations, specific proposals are often justified with reference to
intergenerational equity, although this seems to lead to very different implications.
To illustrate, the UK pension committee interpreted it to imply that retirement ages
should be proportional to longevity:

Over the long run, fairness between generations suggests that average pension ages
should tend to rise proportionately in line with life expectancy, with each generation
facing the same proportion of life contributing to and receiving state pensions. [UK
Pensions Commission (2005, p. 4)]

In contrast, the Swedish fiscal policy framework has taken presaving or consol-
idation of public finances prior to changing demographics as being called for by
intergenerational equity:2

A current high level of public saving is basically motivated by the need to ensure
a more equal distribution of consumption possibilities across generations. [Swedish
Government (2008, p. 170)]

The aim of this paper is to clarify the notion of intergenerational equity when
overlapping generations (OLG) have different mortality and thus longevity. We
approach this from a utilitarian perspective (further discussed in Section 6) and
consider the socially optimal allocation across generations. More precisely, the
aim of the paper is to analyze the normative issue of how consumption of pro-
duced goods and leisure should be allocated to individuals belonging to different
generations. This paper can thus be seen as reverting to the classical paper by
Samuelson (1958) considering the social optimal allocation across generations.
The novel aspect in this paper is its allowing for OLG with different mortality
and thus longevity. Rather than appealing to money as a social contrivance, we
assume a small open economy facing a given (and time-invariant) interest rate at
which consumption possibility can be intertemporally substituted (see Section 6).
This also allows us to avoid the complications arising when the capital stock is
endogenized [see Diamond (1965)].

In a seminal paper, Calvo and Obstfeld (1988) consider the role of mortality in
the social optimal allocation (utilitarian) in a continuous-time setting with an age-
dependent survival rate.3 Basic consumption smoothing arguments imply that the
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social optimum has consumption to be invariant to age. The models presented in
Sheshinski (2006, 2008) analyze allocations across two individuals with different
survival rates, in which case consumption smoothing entails redistribution from
individuals with high mortality (low longevity) to individuals with low mortality
(high longevity). However, the issue of retirement (and thus leisure on par with
consumption) is not considered.

This paper makes two important extensions to these earlier papers. First, we
consider different mortality rates across generations capturing the empirically
observed trend increase in longevity. This implies that demographics is in tran-
sition over time/generations, precluding a steady state analysis. Overlap and re-
distribution across generations with different mortality (longevity) raise particular
modeling issues that cannot be handled in standard models or by comparing steady
state equilibrium under various assumptions concerning longevity. We present a
model in continuous time in which there is overlap of cohorts with different mor-
tality paths and thus longevity.4 Second, allowing for changes in longevity makes
the usual OLG simplification of dividing life length into periods of exogenous
length denoted “young” and “old” dubious. We allow endogenous determination
of these phases of life by including the retirement age as an endogenous vari-
able under rather general specifications of the utility functions, allowing us to
capture various age and health effects, including healthy aging. The endogene-
ity of the retirement age implies that the economic environment may display
certain stationarity properties, although the underlying demographics does not
necessarily do so. To focus on the issue of longevity, we assume fertility to be con-
stant, implying that all demographic shifts are generated by changes in mortality
rates.

We link changes in longevity explicitly to changes in mortality rates that are
cohort-specific. Hence, we allow for a trend increase and an overlap of gen-
erations with different survival rates (and thus longevity). The specific model-
ing of mortality rates is inspired by the approach in Boucekkine et al. (2002)
featuring age/cohort-specific mortality rates.5 This approach can be seen as a
generalization of the Yaari–Blanchard approach assuming stochastic survival with
age-independent survival rates [see Blanchard (1985)]. The latter is obviously
in contradiction to the empirical evidence,6 and the formulation adopted here
captures the fact that mortality rates are (almost) constant (and low) up to a certain
age, after which they are increasing in age.7 We take mortality rates as exogenous
to focus on the basic issues on intergenerational equity when different cohorts
have different longevity.

This paper is organized as follows: The modeling of demographics, includ-
ing trend changes in mortality rates, is laid out in Section 2, together with the
specification of individual utility functions. The social planner allocation prob-
lem under a utilitarian social welfare function is formulated and analyzed in
Section 3, and the optimal allocation is interpreted in Section 4. Decentralization
of this allocation is discussed in Section 5. Finally, a few concluding remarks are
given in Section 6.
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2. AN OVERLAPPING-GENERATIONS MODEL WITH
COHORT-DEPENDENT LONGEVITY

Consider a setting in continuous time where a given (and constant) number of
individuals are born at each instant. Individual lifetime is stochastic, but the
fraction of a given cohort surviving is deterministic. The survival rates and thus
longevity (life expectancy at birth) are allowed to change over time and thus to
differ across cohorts. Hence, OLG alive at a given point in time differ not only in
age but also in longevity. Life has two phases, “young” and “old,” where young
refers to the phase in life when individuals are working and old refers to the phase
when they are not working (retired). The length of these two phases is endogenous,
because the retirement age is a choice variable. The social planner (utilitarian)
decides on consumption and work (retirement) profiles—that is, allocations across
“young” and “old” at a given point in time and across time under the intertemporal
resource/budget constraint. The economy is small and open in global capital
markets, implying that the interest rate r is exogenous and, for simplicity, assumed
to be time-invariant.8 A deficit is therefore financed by borrowing from abroad at
the interest rate r , whereas a surplus is spent on lending to foreigners at the same
interest rate.

2.1. Demographics

Survival functions. The number of individuals born at each point in time is
assumed to be constant and normalized to 1. Following Boucekkine et al. (2002),
it is assumed that the unconditional probability for an individual born at time t of
reaching age a (the survival rate) is given by the function9

m̂ (a, β(t)) = e−aβ(t) − α

1 − α
, (1)

where α > 1, β(t) < 0, and a ∈ [0, A(t)], where A(t) is the highest age any
member of the cohort born at t can reach, i.e., the age at which m̂ (A(t), β(t)) = 0:

A(t) = − ln α

β(t)
. (2)

To incorporate demographic shifts into the model, the parameter β(t) is assumed
to be time-dependent. Hence, the maximum age A(t) is also time-dependent.

Using (2) in (1) gives the survival rate as

m (a,A(t)) = α
a

A(t) − α

1 − α
. (3)

Note that m (0, A(t)) = 1; i.e., there is no infant mortality, and m(A(t), A(t)) = 0,
implying that A(t) is the highest age any member of the cohort born at t can reach,
as discussed in the preceding.
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m(a,A(t))
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FIGURE 1. Survival rates for different cohorts with different longevity.

In the following we term this maximum age A for a given longevity for the
cohort. This can be justified by noting that life expectancy at birth,

v(t) =
∫ A(t)

a=0
a

[
−∂m (a,A(t))

∂a

]
da =

[
α ln α − (α − 1)

ln α (α − 1)

]
A(t), (4)

is strictly increasing in the maximum age; i.e., ∂v(t)
∂A(t)

=
[

α ln α−(α−1)
ln α(α−1)

]
> 0.10,11

It is easily established that

∂m (a,A(t))

∂a
= −

ln α
A(t)

α
a

A(t)

α − 1
< 0

∂2m (a,A(t))

∂a2
= −

[
ln α
A(t)

]2
α

a
A(t)

α − 1
< 0,

∂m (a,A(t))

∂A(t)
=

a ln α
A(t)2 α

a
A(t)

α − 1
> 0

∂2m (a,A(t))

∂A(t)∂a
=

ln α
A(t)2

[
1 + a ln α

A(t)

]
α

a
A(t)

α − 1
> 0.

The survival rate is strictly decreasing and concave in age. Combining this
with the preceding results implies that m(a,A(t)) ∈ [0, 1], i.e., the survival rates
are between zero and one. Hence, the function m(a,A(t)) is well-defined for all
a ∈ [0, A(t)]. Moreover, it is strictly increasing in longevity and the effect of
higher longevity on the survival rate is increasing in age. Hence, an increase in
the longevity of a cohort results in higher survival probabilities at every age, but
the increase is greater the older an individual is. These properties are independent
of the value of the parameter α (as long as α > 1). The survival rate function is
illustrated in Figure 1. The figure also shows that greater longevity A (τ) > A (s)

for a generation born at τ than for a generation born at s implies an outward shift
in the survival curve from the full line [corresponding to A (s)] to the dotted line
[corresponding to A (τ)], and hence the survival to any age is nondecreasing in
longevity.
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In accordance with empirical evidence (see the Introduction), we assume that
there is a trend increase in longevity.12 Hence, we make the following assumption:

Assumption 1. Longevity of the generation born at time t , i.e., A(t), follows
the process

dA(t) = μA(t)dt; μA(t) ≥ 0,
∂μA(t)

∂t
≤ 0. (5)

Hence, longevity of the generation born at some time t relates to longevity for
the generation born at s < t as

A(t) = A (s) +
∫ t

j=s

μA (j) dj for t ≥ s.

Equation (5) implies that each new generation has a longevity that is no less than
that of the previous generation. Further, it is assumed that growth in longevity is
nonincreasing over time.13 Note that because we can have μA(t) = 0 for some t

and ∂μA(t)
∂t

≤ 0 for all t , it follows that a special case of this setup is one where
there is an upper bound to longevity.

As discussed earlier, the longevity of an individual born at time t is denoted
by A(t). Hence, the longevity of an individual aged a at time t is denoted by
A(t −a), because he is born at time t −a. At any point in time the last person from
some generation passes away, i.e., the generation becomes extinct. At time t this
happens for the generation born at time t − Ã(t) with longevity Ã(t); i.e., Ã(t)

denotes the longevity of the generation that becomes extinct at time t . Using this
and (5), the longevity of the generation aged a at time t relates to the longevity of
the generation that becomes extinct at time t as

A(t − a) = Ã(t) +
∫ t−a

j=t−Ã(t)

μA (j) dj for Ã(t) ≥ a ≥ 0. (6)

This relation allows us to restate the survival probability function (3) conve-
niently in terms of the longevity of the generation that becomes extinct today (at
time t); i.e.,

m̃(a, Ã(t)) ≡ m(a,A(t − a)), (7)

where A(t−a) is given in (6). From (3), (6), and (7), it is obvious that m̃
(
0, Ã(t)

) =
1 and m̃

(
Ã(t), Ã(t)

) = 0. Moreover,14

∂m̃
(
a, Ã(t)

)
∂a

< 0
∂2m̃

(
a, Ã(t)

)
∂a2

< 0

∂m̃
(
a, Ã(t)

)
∂Ã(t)

> 0
∂2m̃

(
a, Ã(t)

)
∂Ã(t)∂a

> 0.

https://doi.org/10.1017/S1365100514000716 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100514000716


LONGEVITY, GROWTH, AND INTERGENERATIONAL EQUITY 991

Hence, the m̃-function has properties similar to those of the m-function, 0 ≤
m̃
(
a, Ã(t)

) ≤ 1, and it is bounded on a ∈ [0, Ã(t)
]

and hence its integral exists.
These properties are important because they ensure that the population size, i.e.,
the number of young and the number of old individuals, is well-defined in the
model.

Population composition. Although the birth rate is constant, the population
size is not, because survival rates and longevity change. Because, by assumption,
one individual is born at each point in time, the number of individuals aged a in
time t is m̃

(
a, Ã(t)

)
. Hence, the total population at time t is given as

N(t) =
∫ Ã(t)

a=0
m̃
(
a, Ã(t)

)
da. (8)

The retirement age of an individual born at time t is denoted by R(t). It follows
that we may classify individuals born at time t as young when their age is between
0 and R(t), i.e., a ∈ [0, R(t)], and old when their age is between R(t) and
the maximum age A(t), i.e., a ∈ (R(t), A(t)]. Further, the retirement age of an
individual aged a at time t is denoted by R(t − a) because he is born at time
t −a. At any point in time, individuals from some generation retire. At time t , this
happens for the generation born at time t − R̃(t) with retirement age R̃(t), i.e.,
R̃(t) denotes the retirement age of the generation that retires at time t . It follows
that individuals aged between 0 and R̃(t), i.e., a ∈ [

0, R̃(t)
]
, are young at time

t , and individuals aged between R̃(t) and Ã(t), i.e., a ∈ (
R̃(t), Ã(t)

]
, are old at

time t . Note that the retirement age is allowed to depend on time and thus to be
cohort-specific.

The numbers of young (working) and old (retired) individuals, respectively, at
time t are therefore

Nw(t) =
∫ R̃(t)

a=0
m̃
(
a, Ã(t)

)
da = Nw

(
R̃(t), Ã(t)

)
> 0, (9)

No(t) =
∫ Ã(t)

a=R̃(t)

m̃
(
a, Ã(t)

)
da = No

(
R̃(t), Ã(t)

)
> 0. (10)

Hence, both the number of young and the number of old individuals at time t can
be expressed as functions of the longevity of the generation that becomes extinct
at time t , i.e., Ã(t), and the retirement age of the generation that retires at time t ,
i.e., R̃(t). Obviously, total population size is given as N(t) = Nw(t) + No(t), as
can be verified from (8), (9), and (10).

The dependency ratio15 is defined as the ratio between the number of old and
young individuals:
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K(t) = No(t)

Nw(t)
= No

(
R̃(t), Ã(t)

)
Nw

(
R̃(t), Ã(t)

) ≡ K
(
R̃(t), Ã(t)

)
. (11)

Note that even though demographic stock variables need not be stationary, because
of a trend increase in longevity, it follows that compositional variables such as the
dependency ratio may be stationary, because they depend on how the retirement
age responds to demographic changes. This turns out to be crucial in the following.

We can now work out how the upward trend in longevity (5) affects the key
demographic variables N(t), Nw(t), No(t), and K(t). We have (see Appendix
B) that both the number of young and the number of old increase [for a given
retirement age R̃(t)]. The latter is straightforward and the former arises because
an increase in longevity implies a decrease in mortality rates at all ages (see
Figure 1). However, the number of old individuals increases by more than the
number of young individuals, and hence we have that the dependency ratio unam-
biguously increasing. In summary, we have

dN(t) > 0,

dNw(t) > 0,

dNo(t) > 0,

dK(t) > 0.

Note that R̃(t) is endogenous in the social planner’s maximization problem and,
hence, so are Nw(t), No(t), and K(t). This prevents the dependency ratio K(t)

becoming infinitely large over time.

2.2. Individual Utility

Individuals consume when young and old, but work when young only. Utility is as-
sumed in the conventional way to depend (separably) on utility from consumption
and leisure/time. Working hours are exogenous and hence the only dimension of
labor supply is along the extensive margin related to retirement. Upon retirement,
the agent gains more leisure, which under standard assumptions is a utility gain.
One simple approach is to assume age-independent and constant disutility from
work or utility from leisure, in which case retirement at any age releases a constant
utility gain along the leisure/time dimension for the remaining life, which then
has to be traded off against the implications for consumption [see, e.g., Sheshinski
(1978), Crawford and Lilien (1981), and Kalemli-Ozcan and Weil (2002)]. This
approach cannot readily be applied in a context such as here where mortality rates
and thus implicitly health status differ across generations. Age and health effects
will in general affect both the disutility from work and the utility of time/leisure.
The following thus assumes a relationship between age, as well as longevity, and
health; i.e., health is decreasing with age, and health is better at a given age, the
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higher the longevity. We propose a general formulation capturing these effects and
that embeds various approaches taken in the literature.16,17

The utility function for a young (working) individual aged a at time t is given
as a separable function specified over consumption18 cw(t) and time, i.e.,

Ww(t, a) = U(cw(t)) + L (a,A(t − a)) ∀ a ∈ [0, R̃(t)
]
, (12)

where U is the utility function specified over consumption, and satisfies standard
conditions. The utility from leisure/time is given by the function L(a,A(t −
a)) depending on age and longevity (recall that working hours are exogenous
and thus implicit in the formulation).19 We assume that disutility from work is
nondecreasing with age, and hence L is nonincreasing in a. The disutility from
work is assumed to be nonincreasing in health, captured by longevity A(t − a).
We have that

∂L (a,A(t − a))

∂a
≤ 0, (13)

∂L (a,A(t − a))

∂A (t − a)
≥ 0. (14)

Hence, the utility from time for a young individual aged a is greater (disutility
from work lower) when longevity of his generation is A1 years than when it is
A2 < A1 years.20

The utility of an old (retired) individual aged a at time t is similarly given as

Wo(t, a) = Q(co(t)) + H (a,A(t − a)) ∀ a ∈ (R̃(t), Ã(t)
]
, (15)

where Q is the utility function specified over consumption, and satisfies standard
conditions. The value of leisure is assumed to depend on age and health/longevity,
capturing the fact that the ability to use time is affected by the two. Specifically,
the value of leisure time is nonincreasing in age and nondecreasing in longevity;
i.e.,

∂H (a,A(t − a))

∂a
≤ 0, (16)

∂H (a,A(t − a))

∂A (t − a)
≥ 0. (17)

Observe that the different specifications of utility from consumption [U(·) and
Q(·)] when working and retired capture different needs in the two situations, but
all qualitative results that follow hold if the utility functions are the same.

The utility generated from time uses (leisure) takes into account various possible
time-consuming activities such as work, leisure activities, and rest,21 and the
formulation is thus rather general. Note that we need to specify utility of time both
when working and when retired, and hence the separate functions22 L (·) and H (·).
Importantly, at retirement there is a discrete change in utility from leisure/time
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from L (·) to H (·); cf. the following. To ensure that there is an interior retirement
age, we assume that

∂ [L (a,A(t − a)) − H (a,A(t − a))]

∂a
< 0, (18)

∂ [L (a,A(t − a)) − H (a,A(t − a))]

∂A(t − a)
> 0, (19)

lim
a→A(t−a)

[L (a,A(t − a)) − H (a,A(t − a))] → −∞. (20)

The first assumption implies that the urge to retire increases with age, whereas
the second says that it is reduced by higher longevity. This captures the fact
that health and the ability to enjoy time (working or spent on leisure activities,
etc.) worsen with age but increase with longevity (a healthy aging effect; see also
Section 4.1). This captures the fact that health (morbidity) is related to age. The age
effect (18) says that the utility from time when working decreases more than the
utility from time when retired; that is, the gain in the utility from time when retired
relative to when working increases with age. This can, for example, be because
working becomes more physically challenging when individuals become older
and their health worsens. The longevity effect (19) says that increased longevity
tends to increase the utility from time more when working than when retired (lower
disutility from work); that is, the gain in utility from time of retirement at a given
age decreases with longevity. This is consistent with empirical evidence found by
Haliday and Podor (2009) showing that improvements in health status have large
and positive effects on time allocated to home and market production and large
negative effects on time spent on watching TV, sleeping, and consumption of other
types of leisure activities. Finally, (20) is needed to ensure an interior solution for
the retirement age.

When the functions L and H are homogeneous of degree zero, any increase
in longevity makes health increase proportionally for all ages; that is, the utility
from time (disutility from work) for a person at age a and with longevity A is the
same as for a person at age λa and longevity λA (for all λ > 0). However, when
the degree of homogeneity is positive, health at different ages increases more than
proportionally to longevity. Bloom et al. (2007) assume that disutility from work
is increasing in age and decreasing in life expectancy as well as homogeneous of
degree zero in the two. We make a more general assumption by allowing the value
of time for retired persons also to depend on age and longevity (life expectancy)
and by not restricting the utility functions to be homogeneous of degree zero in
the two arguments; cf. the following.

In the following it turns out to be more convenient to analyze the model when the
value of leisure is expressed in terms of the longevity of the generation becoming
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extinct at time t , i.e., Ã(t). By use of (5), we have that

L̃
(
a, Ã(t)

) ≡ L (a,A(t − a)) ,

H̃
(
a, Ã(t)

) ≡ H (a,A(t − a)) ,

where A(t − a) is given in (6), and hence utilities for young and old are given as

W̃w (t, a) = U(cw(t)) + L̃
(
a, Ã(t)

)
,

W̃o (t, a) = Q(co(t)) + H̃
(
a, Ã(t)

)
,

where we, by the use of (6) and the properties of the L and H functions, have

∂L̃

∂a
= ∂L

∂a
− μA(t − a)

∂L

∂A(t − a)
< 0,

∂L̃

∂Ã(t)
= [

1 + μA

(
t − Ã

)] ∂L

∂A(t − a)
> 0,

∂H̃

∂a
= ∂H

∂a
− μA(t − a)

∂H

∂A(t − a)
≤ 0,

∂H̃

∂Ã(t)
= [

1 + μA

(
t − Ã

)] ∂H

∂A(t − a)
≥ 0.

It is easily verified that this changes none of the qualitative insights from the
preceding. Note that (18), (19), and (20) are readily shown to hold for the modified
values of time for young and old (L̃, H̃ ).

2.3. Productivity

The earnings capability is assumed to be exogenous but to be driven by productivity
growth. Hence, we set forth the following assumption:

Assumption 2. Output of a young individual at time t , i.e., y(t), follows the
process

dy(t) = μyy(t)dt; μy ≥ 0. (21)

Total output in the economy Nw(t)y(t) is endogenous because Nw(t) is endoge-
nous. Note that productivity is only included for comparative purposes, allowing
a comparison of intergenerational distributions arising from different longevity or
economic possibilities across cohorts.

2.4. Planner Allocation

The aim of the paper is to analyze how consumption and leisure (retirement)
should be allocated to individuals belonging to different generations. Hence, the
social planner decides on consumption and work (retirement age). It is easiest
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to characterize and interpret the social planner allocation if it is cast in terms of
taxes and transfers relative to the reference outcome where individuals consume
their labour income. Therefore, consumption of a young and an old individual,
respectively, at time t is

cw(t) = y(t) − Tw(t), (22)

co(t) = To(t), (23)

where Tw(t) is net taxes paid by a young individual and To(t) is net transfers
to an old individual at time t . We cast the model in this way both because it is
analytically more tractable and because it gives a simple relation to the analysis
of social security schemes in standard two-period OLG models. Further, because
y(t) is exogenous, choosing Tw(t) and To(t) is tantamount to choosing cw(t) and
co(t) in the model.

We have made the informational restriction that the social planner cannot make
taxes and transfers age-dependent, but only dependent on labor market status
(working or not working). This can be motivated in terms of information and
transactions costs, which apparently are high in reality, because actual schemes
in general satisfy the condition imposed here. Hence, at a given point in time, the
social planner has to collect the same amount of tax from each young (working)
individual and give the same amount of transfer to each old (retired) individual.
Because the output of each young individual is only time-dependent, it follows
from (22) and (23) that, at a given point in time, consumption of each young
and each old individual is independent of age. This fits the specification of the
utility functions from before, i.e., that the marginal utility from consumption is
independent of age [see U(·) and Q(·) in (12) and (15), respectively].

The policy package thus includes three elements, namely, the tax levied on the
young (working), the transfer to the old (retired). and the retirement age. The
policy problem is thus to choose

{
Tw(i), To(i), R̃(i)

}∞
i=t

at each point in time t .
The primary budget balance of this scheme in any period t reads

B(t) = Nw(t)Tw(t) − No(t)To(t). (24)

whereas the intertemporal budget constraint at time t can be written as23

D(t) =
∫ ∞

i=t

e−r(i−t)B(i)di, (25)

where r is the interest rate. From (25), debt dynamics can be written

dD(t) ≡ D (t + dt) − D(t)

= rdtD(t) − B(t)dt

= [rD(t) − B(t)] dt, (26)
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where it is used that er ≈ 1 + r . Note that D(t) stands for foreign debt and there
is no other storage technology present, such as capital.

3. SOCIAL OPTIMUM

We consider the social optimum under a utilitarian criterion.24 Although this
criterion is neither unproblematic nor uncontroversial, it is useful to illustrate
some basic trade-offs that arise, and we consider it a useful benchmark case for
studying intergenerational distribution; cf. the discussion in Section 6.

The objective of the social planner at time t is to maximize the sum of the
present values of lifetime utilities of generations born at time t or later and the
present values of utilities for the remaining lives of generations alive at time t . We
assume that the social planner discounts at the same subjective rate as individuals
(θ ), which may be considered the “pure” utilitarian case where utility achieved at
any point in time gets the same weight irrespective of who obtains the utility.

Under the utilitarian criterion, the objective of the social planner at time t can
be written as the present value of instantaneous utility generated to all living
individuals, as is shown in Appendix C. The social welfare function can therefore
be written as

W(t) =
∫ ∞

i=t

e−θ(i−t)Z(i)di, (27)

where

Z(i) =
∫ R̃(i)

a=0
m̃
(
a, Ã(i)

)
W̃w(i, a)da

+
∫ Ã(i)

a=R̃(i)

m̃
(
a, Ã(i)

)
W̃o(t, a)da,

where (6) and (7) are used.
The problem facing the policy maker is

Max
{Tw(i),To(i),R̃(i)}∞

i=t

W (t) , (28)

subject to the budget constraint from (25) [and (24)] and given (5) and (21).
The problem is solved by setting up the Hamilton–Jacobi–Bellman (HJB) equa-

tion, which determines the value function

V (D(t), y(t), Ã(t)) = Max
{Tw(i),To(i),R̃(i)}∞

i=t

W(t),
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where Ã(t) is defined in the following. The HJB equation is in shorthand (sup-
pressing time indices)

θV
(
D, y, Ã

) = Max
Tw,To,R̃

⎧⎪⎨⎪⎩
∫ R̃

a=0 m̃
(
a, Ã

) [
U (y − Tw) + L̃

(
a, Ã

)]
da

+ ∫ Ã

a=R̃
m̃
(
a, Ã

) [
Q(To) + H̃

(
a, Ã

)]
da

+ 1
dt

dV
(
D, y, Ã

)
⎫⎪⎬⎪⎭

s.t.

dD = {
rD − [

Nw

(
R̃, Ã

)
Tw − No

(
R̃, Ã

)
To

]}
dt

dÃ = μ̂Adt

dy = μyydt, (29)

with Nw and No given from (9) and (10), respectively, and μ̂A ≡ μA

1+μA
.25 This gives

the following first-order conditions for the optimal Tw, To, and R̃, respectively:26

VD(·) = −U ′ (y − Tw) , (30)

VD(·) = −Q′ (To) , (31)

[Tw + To] VD(·) = U (y − Tw) + L̃
(
R̃, Ã

)− Q(To) − H̃
(
R̃, Ã

)
. (32)

Further, this gives the following law of motion for the marginal value function:

dVD(·) = (θ − r) VDdt. (33)

To give an intuition for the meaning of the marginal value function VD(·), con-
sider the first two equations [(30) and (31)]. These state that consumption of young
and old should be such that the marginal utilities from increased consumption (U ′

and Q′) are equal to the decrease in the value function (−VD) due to lower future
consumption possibilities following an increase in consumption today (the budget
constraint has to hold).

3.1. Neutral Generational Weighting

The relation between the subjective (θ ) and the objective (r) discount rates de-
termines whether the marginal value function is decreasing or increasing over
time; cf. (33). Like models of intertemporal consumption choices, a subjective
discount rate higher (lower) than the objective discount rate implies a profile
for consumption that is decreasing (increasing) over time; see, e.g., Blanchard
and Fischer (1989). This source of reallocation across time and thus generations is
standard. In the following we therefore consider only the case where the subjective
and objective (world market) discount rates are identical, θ = r . The assumption
is standard in a small open economy setting because it ensures that there is no
systematic accumulation or decumulation of assets vis-à-vis the world [see, e.g.,
Blanchard and Fischer (1989)]. This may also be interpreted as a case of neutral
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generational weighting in the sense that the subjective and objective discount rates
are equal. Hence, discounting per se does not imply any profile benefitting current
or future generations in a particular way. In short, we refer to this case as neutral
generational weighting. Under this assumption we have (relaxing the shorthand)

dVD

(
D(i), y(i), Ã(i)

) = 0 (34)

for all i ≥ t ; i.e., the optimal policy package is such that the marginal value
function VD(·) is the same for all i ≥ t .

Applying this to (30)–(32) gives

VD(t) = −U ′ (y(i) − Tw(i)) , (35)

VD(t) = −Q′ (To(i)) , (36)

and

[Tw(i) + To(i)] VD(t) = U (y(i) − Tw(i)) + L̃
(
R̃(i), Ã(i)

)
−Q(To(i)) − H̃ (R̃(i), Ã(i)), (37)

for all i ≥ t , where VD(t) is written as a function of t to indicate that it is the same
for all i ≥ t .

Combining (35)–(37) gives

U ′ (y(i) − Tw(i)) = Q′ (To(i)) (38)

and

[Tw(i) + To(i)] Q′ (To(i)) = Q(To(i)) + H̃ (R̃(i), Ã(i))

−U (y(i) − Tw(i)) − L̃
(
R̃(i), Ã(i)

)
. (39)

The RHS of (39) gives the discrete change in utility upon retirement, that is,
the difference between utility when working and not working at the retirement
age (and given the longevity of the retiring cohort). The LHS is the cost given
as the product of the total tax wedge on the retirement decision (sum of taxes
paid as working and transfers received as retired) times the marginal utility of
consumption. Clearly the socially optimal allocation balances the benefits and
costs of retirement. It is an implication of (39) that the agent at the moment of
retirement experiences a utility gain, because

H̃ (R̃(i), Ã(i)) + Q(To(i)) > U (y(i) − Tw(i)) + L̃(R̃(i), Ã(i))

follows, because Q′ (To(i)) > 0, Tw > 0, and To > 0. Because there is a cost of
retirement captured by the tax wedge, it follows that retirement is not taking place
at the age at which the utility when retired equals the utility when working.

https://doi.org/10.1017/S1365100514000716 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100514000716


1000 TORBEN M. ANDERSEN AND MARIAS H. GESTSSON

3.2. Optimal Policy Package

An optimal policy package
{
Tw(i), To(i), R̃(i)

}∞
i=t

must satisfy (35)–(37) as well
as the intertemporal budget constraint

D(t) =
∫ ∞

i=t

e−r(i−t)

[
Nw(R̃(i), Ã(i))Tw(i)

−No(R̃(i), Ã(i))To(i)

]
di, (40)

where Nw

(
R̃(i), Ã(i)

)
and No(R̃(i), Ã(i)) are given in (9) and (10). Hence,

the optimal policy package satisfies conditions for fiscal sustainability [see, e.g.,
European Commission (2006)].

PROPOSITION 1. The social optimum implies that the following holds for
any growth rates of longevity μA(i) and output μy from Assumptions 1 and 2,
respectively:

(i) Taxes and transfers:

Tw(i) = Tw(t) + y(t)
(
eμy [i−t] − 1

)
,

To(i) = To(t), (41)

for all i ≥ t .
(ii) Consumption:

cw(i) = cw(t),

co(i) = co(t), (42)

for all i ≥ t .
(iii) Retirement:

dR̃(i) = ηy(i)dy(i) + ηA(i)dÃ(i),

where

ηy(i) = VD(t)[
∂L̃
∂a

− ∂H̃
∂a

]
a=R̃(i)

> 0,

ηA(i) = −

[
∂L̃

∂Ã(i)
− ∂H̃

∂Ã(i)

]
a=R̃(i)[

∂L̃
∂a

− ∂H̃
∂a

]
a=R̃(i)

> 0, (43)

for all i ≥ t .

Proof. See Appendix D.

According to Proposition 1, the tax payment of young individuals is given
as some time-invariant component plus the income growth since time t ; i.e., all
income growth is fully taxed. Old individuals receive a time-invariant transfer.
This implies that the consumption level of both the young and the old is constant
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over time. Income growth is thus smoothed across generations; that is, it affects
the overall level of consumption but not the profile (recall the assumption θ = r).
To put it differently, current and future generations all share the gains from future
productivity increases in terms of a higher consumption level.

According to (35) and (36), the optimal policy implies that the marginal utility
of consumption is equal for young and old; i.e.,

U ′ (y(i) − Tw(i)) = Q′ (To(i))

or

U ′ (cw(i)) = Q′ (co(i)) ,

from (22) and (23), capturing the well-known finding that a utilitarian policy
maker redistributes to ensure equal marginal utilities of consumption (income). If
utility functions over consumption are the same for young and old, U(·) = Q(·),
it is an immediate implication that they will have the same consumption level.
This generalizes the Calvo and Obstfeld (1988) result to a setting with time-
varying mortality rates and thus different longevity across generations (and income
growth). If the marginal utility of consumption is higher when working (for young
individuals), the solution implies that the consumption level for young individuals
is higher than that for old ones.

The preceding results on consumption are neither surprising nor new, because
they follow straightforwardly from standard consumption-smoothing arguments
under separable utility. More interesting and novel are the implications for the
retirement age. Two issues are important here, namely, the level of the retirement
age and its profile over time (due to growth in productivity and longevity). The
former is discussed in Section 5, where the allocation under the social optimum is
compared with the allocation under individual decision making, whereas results
for the latter are stated in Proposition 1 and discussed next.

Consider the two drivers, productivity growth and increasing longevity. First,
we have that productivity growth unambiguously implies that the retirement age
should be increasing over time, because ∂R̃(i)/∂y(i) > 0 from (43) and because
output is increasing over time from (21). The intuition is that the generations with
higher productivity should work more than the generations with lower productivity.
Hence, although productivity growth implies front loading of consumption in the
sense that both current and future generations benefit from productivity growth in
terms of a higher consumption level, it implies a rising profile for the retirement
age and thus a shift of the work load onto future generations.

Second, the effect of increasing longevity on the retirement age implies that the
retirement age should increase over time, because ∂R̃(i)/∂Ã(i) > 0 from (43).
Using (6), this implies that

∂R̃(i)

∂A(i − R̃)
> 0, (44)

https://doi.org/10.1017/S1365100514000716 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100514000716


1002 TORBEN M. ANDERSEN AND MARIAS H. GESTSSON

that is, generations with greater longevity should retire later. This reflects that
greater longevity (better health) decreases the direct utility gain from retirement
[from (19)], and therefore retirement is delayed. The retirement age increases
basically because of better health, measured in terms of the value of time. Hence,
although longevity does not influence the consumption profiles for working and
retired persons, it does influence retirement ages.27

To conclude, longevity and productivity do not affect the socially optimal con-
sumption profiles (development over time), but they do affect the retirement age
profile.

4. IMPLICATIONS

As discussed in the Introduction, policies are often motivated by some notion of
intergenerational equity, although this has been interpreted in quite different ways.
This section interprets the properties of the social optimum in relation to some of
these policy views.28

4.1. Retirement Age and Healthy Aging

Consider first the perception that intergenerational equity implies that the retire-
ment age should evolve proportionally to longevity. We consider under which
assumptions this is implied by the socially optimal policy derived in the preced-
ing and then argue that these assumptions are closely related to the notion of
healthy aging. This argument involves only longevity, and we therefore disregard
productivity growth; i.e., dy(i) = 0.

The first result is given in the following lemma (remember that R̃(i) is the
retirement age of the generation that retires at time i, and Ã(i) is the longevity of
the generation that passes away at time i):

LEMMA 1. The social optimum implies that

R̃(i) = κÃ(i) (45)

for all i ≥ t , where κ is some constant (> 0), iff the L̃ and H̃ functions are
homogeneous of degree zero.

Proof. See Appendix E.

Lemma 1 gives the conditions that need to be fulfilled for the social optimum
to imply that the retirement age should be proportional to the longevity of the
generation that becomes extinct today. Intuitively the retirement age should be
related to the longevity of the generation retiring rather than the longevity of the
generation becoming extinct. The following lemma shows an equivalence:

LEMMA 2. Given constant growth in longevity, there exist κ and ψ (< κ) such
that

R̃(i) = κÃ(i) iff R̃(i) = ψA
(
i − R̃

)
for all i ≥ t .
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Proof. See Appendix E.

Hence, given constant growth in longevity, a retirement age being proportional
to the longevity of the generation that becomes extinct today [Ã(i)] is equivalent
to a retirement age being proportional to the longevity of the generation that retires
today [A

(
i − R̃

)
]. Therefore Lemma 1 also gives the necessary conditions for the

social optimum to imply the retirement age being proportional to longevity of the
generation that retires today.

Empirical evidence strongly supports healthy aging or the so-called compressed
morbidity hypothesis; that is, life extension is associated with a postponement of
the age at which morbidity appears [see Payne et al. (2007) and Fries et al. (2011)].
Empirical research on the relationship between age and health also confirms this
and finds support for the time-to-death approach; see also OECD (2006). This
approach counts backward from a given fixed reference point (date of death) rather
than using the forward measure given by age; see, e.g., Batljan and Lagergren
(2004) and Werblow et al. (2007). This suggests an approach29 where time until
death replaces age as the demographic indicator of health status corresponding
to the homogeneity property mentioned previously. To see this, note that healthy
aging implies that the health conditions at a given age improve proportionally
with longevity. That is, the direct utility consequences of retirement at age a0

for a person belonging to a generation with longevity A(0) are the same as the
consequences of retiring at an age a1 = a0

A(1)
A(0)

for a person from a generation

with longevity A(1) ( �= A(0)).30 This is implied in the present setup if the L

and H functions are homogeneous of degree zero,31 which is implied by zero
homogeneity of the L̃ and H̃ functions when there is constant growth in longevity,
as the following lemma shows:

LEMMA 3. Given constant growth in longevity, the L̃ and H̃ functions are
homogeneous of degree λ iff the L and H functions are homogeneous of degree λ.

Proof. See Appendix E.

This leads us to the following proposition:

PROPOSITION 2. Given constant growth in longevity and homogeneity of the
L and H functions, social optimum implies

R̃(i) = κÃ(i),

R̃(i) = ψA(i − R̃),

for all i ≥ t where κ and ψ are positive constants (ψ < κ), iff the L and H

functions are homogeneous of degree zero (healthy aging).

Proof. See Appendix E.

In the presence of healthy aging the social optimum thus implies that the
retirement age should be proportional to longevity. It is interesting to observe that
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pension reforms in many countries in recent years have moved in the direction
of linking statutory retirement ages to longevity; see OECD (2011). This implies
that the tendency for the fraction of life spent in retirement to increase has been
reversed.

4.2. Dependency Ratio

Policy debates center on the dependency ratio for the obvious reason that it gives
the balance between contributing and receiving persons in a pay-as-you-go type
of scheme. The basic problem is that aging under unchanged policies implies an
increasing dependency ratio and worsening budget balance; cf. Section 2 and (24).
When the retirement age is a policy instrument, the choice of the retirement age
may ensure that a balance between the shares of the population working and non-
working is maintained. Hence, even if demographic stock variables may display
nonstationarity, it does not necessarily follow that the key economic variable—the
dependency ratio—does so. We therefore consider the implications of the socially
optimal policy for the dependency ratio.

The change in the dependency ratio is given as [from (11)]

dK(i) = ∂K

∂R̃(i)
dR̃(i) + ∂K

∂Ã(i)
dÃ(i) (46)

for all i ≥ t . We have already shown in Section 2 that dK(i) > 0 for a fixed
retirement age, i.e., ∂K/∂Ã(i) > 0, and obviously a higher retirement age reduces
the dependency ratio, i.e.,

∂K(i)

∂R̃(i)
=

∂No

∂R̃(i)
Nw(i) − No(i)

∂Nw

∂R̃(i)

Nw(i)2

=
− ∂Nw

∂R̃(i)
[Nw(i) + No(i)]

Nw(i)2
< 0, (47)

because ∂Nw

∂R̃(i)
= − ∂No

∂R̃(i)
> 0.

The case of productivity growth only is trivial (dÃ(i) = 0). In this case Ã(i) is
constant and the retirement age is increasing, cf. from (43). Hence, the dependency
ratio is declining. The following proceeds under the assumption that productivity
growth is zero, i.e., dy(i) = 0, to focus on the effects of longevity. It follows from
(46) that

∂K(i)

∂Ã(i)
� 0 iff

∂R̃(i)

∂Ã(i)
� −

∂K

∂Ã(i)

∂K

∂R̃(i)

> 0 (48)

for all i ≥ t when the retirement age is allowed to respond to changes in longevity.
This emphasizes that the dependency ratio increases unless the optimal policy
implies a sufficiently large increase in the retirement age. The question is thus
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whether this is implied by the socially optimal policy and what conditions need to
be met for it to hold.

To address this issue, we consider the case where growth in productivity is
constant. Under the assumption of zero growth in productivity we have from (41)
that To(i) = To(t) and Tw(i) = Tw(t) for all i ≥ t . Using this in (37) implies that
the development of the retirement age over time under the social optimal policy
can be written as a function of longevity only,

R̃(i) = R
(
Ã(i)

)
, (49)

for all i ≥ t and where we, by use of (43), have R′ > 0. Under the social optimal
policy the relative retirement age is related to longevity as

φ(i) = R̃(i)

Ã(i)
≡ φ

(
Ã(i)

)
(50)

for all i ≥ t . Note that we have φ′ = 0 and R̃′ = φ(i) = κ (a constant from before)
in the case of a retirement age proportional to longevity. In general, we have the
following relationship between the relative retirement age and the dependency
ratio:

LEMMA 4. Given constant growth in longevity,

∂K(i)

∂Ã(i)
� 0 iff φ′ � 0

for all i ≥ t .

Proof. See Appendix F.

Hence, if the social optimal policy is such that the relative retirement age
increases following an increase in longevity, then the dependency ratio decreases.
It follows directly that if the retirement age is proportional to longevity, φ′ = 0,
we have ∂K(i)/∂Ã(i) = 0. In this case the social optimal policy implies that the
dependency ratio is constant over time. Combining this with the results from last
section gives

COROLLARY 1. Given constant growth in longevity and healthy aging, the
social optimum implies that the dependency ratio is constant over time.

The so-called retirement–consumption puzzle states that consumption when
young is greater than when old. This is ensured if U(cw(i)) ≥ Q(co(i)) holds in
the socially optimal solution. Assuming this gives the following:

LEMMA 5. Given (i) constant growth in longevity, (ii) that utility from con-
sumption when young is no less than when old, and (iii) that the L and H functions
are homogeneous of degree λ, where λ is sufficiently close to zero, it holds that

φ′ � 0 iff λ � 0

for all i ≥ t .
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Proof. See Appendix F.

Hence, if homogeneity is less (greater) than zero, the socially optimal policy is
such that the relative retirement age increases (decreases) over time. This leads to
the following proposition, which has Corollary 1 as a special case:32

PROPOSITION 3. Given (i) constant growth in longevity, (ii) utility from con-
sumption when young no less than when old, and (iii) L and H functions homoge-
neous of degree λ, where λ is sufficiently close to zero, the social optimum implies
that

∂K(i)

∂Ã(i)
� 0 iff λ � 0

for all i ≥ t .

Proof. See Appendix F.

Hence, the dependency ratio is increasing (decreasing, constant) over time under
socially optimal policy if the homogeneity of the L and H functions is greater
than (less than, equal to) zero. Hence, only in the case of healthy aging does the
socially optimal policy imply a constant dependency ratio.

4.3. Presavings

The idea of presavings is very predominant in debates on how to cope with the
financial problems arising from increasing dependency ratios; see, e.g., IMF(2004)
and European Commission (2006, 2009). The argument is that consolidation of
the government’s budget is needed in advance of expenditure increases driven by
the demographic transitions. This is sometimes phrased “unpaid bills should not
be left in the nursing room.” Although such consolidation may seem common
sense, it is less obvious from a normative perspective, taking into account that
future generations may enjoy both higher productivity and greater longevity. The
present framework makes it possible to address this issue.

Having formulated the problem in terms of taxes and transfers makes it possible
to assess the extent of intergenerational redistribution by considering the budget
profile. From (9), (10), and (24), we have that the primary budget balance at time
i reads

B(i) = Nw(R̃(i), Ã(i))Tw(i) − No

(
R̃(i), Ã(i)

)
To(i), (51)

for all i ≥ t . Taking the total difference and using (41), (9), and (10) gives

dB(i) = {
[Tw(i) + To(t)] m̃(R̃(i), Ã(i))

}
dR̃(i)

+
⎡⎣ Tw(i)

∂Nw(R̃(i),Ã(i))
∂Ã(i)

−To(t)
∂No(R̃(i),Ã(i))

∂Ã(i)

⎤⎦ dÃ(i)

+ [
Nw

(
R̃(i), Ã(i)

)]
dy(i) (52)
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for all i ≥ t , where Tw(i) is given by (41) and it has been used that dTo(i) = 0
and m̃

(
Ã(i), Ã(i)

) = 0.
Considering (52), we have three channels affecting the evolution of the budget

balance, namely (i) a higher retirement age improves the budget balance because
more individuals work and pay taxes and fewer individuals are retired and receive
transfers, (ii) the direct effect of aging (increasing longevity) is in general ambigu-
ous because it implies both more young (working) individuals and thus higher tax
revenue and more old (retired) individuals and thus expenditures on transfers, and
(iii) productivity growth improves the budget via improved tax revenue.

Consider first the case with productivity growth only, i.e., dÃ(i) = 0. Point
(iii) implies positive effects of productivity growth on the budget balance. In
addition to this, productivity growth has positive effects on the retirement age and,
hence, on the budget balance under the optimal policy; cf. (43). It can thus be
concluded that productivity growth unambiguously implies an “upward” profile
for the primary budget balance; that is, the budget balance improves over time.
Hence, productivity growth tends to imply current borrowing to be matched by
future savings (i.e., no presavings). The intuition for this derives directly from the
consumption smoothing implied by the optimal policy, because if all generations
are to share the fruits of future productivity growth, then intertemporal substitution
calls for current borrowing.

We now turn to the role of increasing longevity in the absence of productivity
growth, i.e., dy(i) = 0. To simplify, assume moreover that the initial debt level is
zero, i.e., D(t) = 0. This enables us to determine whether presaving is an optimal
policy by looking at the primary budget balance at time t , i.e., B(t).

Consider the expression for the budget balance (51) rewritten in terms of the
dependency ratio from (11),

B(i) = [
Tw(i) − K

(
R̃(i), Ã(i)

)
To(i)

]
Nw

(
R̃(i), Ã(i),

)
for all i ≥ t . Note that in the absence of productivity growth we have Tw(i) = Tw(t)

and To(i) = To(t) ∀i ≥ t from (41). Hence,

dB(i) = −To(t)Nw

(
R̃(i), Ã(i)

)
dK (·)

+ [
Tw(t) − K

(
R̃(i), Ã(i)

)
To(t)

]
dNw (·)

for all i ≥ t and where [from (9)]

dNw (·) = ∂Nw

∂R̃(i)
dR̃(i) + ∂Nw

∂Ã(i)
dÃ(i) > 0,

because ∂Nw/∂Ã(i) > 0, ∂Nw/∂R̃(i) > 0, and dR̃(i) > 0 from (43).
Observe first that if the optimal policy implies that the dependency ratio is

constant, i.e., ∂K/∂Ã(i) = 0, as is the case when there are constant growth in
longevity and healthy aging (from Corollary 1), then it follows that the primary
budget must balance in all periods to satisfy the intertemporal budget constraint
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in (40), i.e.,
Tw(t) − K(R̃(i), Ã(i))To(t) = 0.

Hence, the initial primary budget balance is zero, B(t) = 0, and remains so, and
presaving is not implied by socially optimal policy.

More generally, if the optimal policy implies that ∂K/∂Ã(i) > 0, we must have
that the primary budget balance at t is positive, i.e.,

Tw(t) − K
(
R̃(t), Ã(t)

)
To(t) > 0,

because dNw(·) > 0, and (40) must hold. Hence, presaving is an optimal policy
if the dependency ratio is increasing over time. However, if the socially optimal
policy is such that ∂K/∂Ã(i) < 0, we must have the converse,

Tw(t) − K
(
R̃(t), Ã(t)

)
To(t) < 0,

because dNw(·) > 0 and (40) must hold.
Hence, for presaving to be implied by socially optimal policy, the dependency

ratio must increase with longevity (after adjustment of the retirement age) over
time. Connecting this to the results obtained earlier indicates that it is necessary
that the value of time functions for the young and old be homogeneous of degree
greater than zero (nonhealthy aging) for presaving to be an optimal policy. These
results are summarized in the following:

Summary 1. Given (i) constant growth in longevity, (ii) that utility from con-
sumption when young is no less than when old, and (iii) that the L and H

functions are homogeneous of degree λ, where λ is sufficiently close to zero, the
social optimum implies that

Homogeneity Dependency ratio Presaving
λ < 0 Decreases No
λ = 0 Constant No
λ > 0 Increases Yes

As this discussion indicates, it is not generally the case that presaving is im-
plied by the socially optimal policy. In the benchmark case of healthy aging, the
dependency ratio is constant, and given an initial budget balance, there are no
intergenerational transfers.33 Further, relaxing the assumption of zero growth in
productivity, it becomes less likely that presaving can be a socially optimal policy,
because productivity growth implies current borrowing (from abroad) financed by
future savings to smooth consumption.

5. DECENTRALIZED EQUILIBRIUM

Finally, consider the question of whether the socially optimal allocation can be
decentralized. In an OLG setting with age heterogeneity w.r.t. mortality risk and
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perfect annuities markets to insure individuals against uncertain lifetimes, Calvo
and Obstfeld (1988) show that the social optimal allocation can be decentralized
provided there is a sufficiently rich set of age- and time-dependent instruments.
In that setting, longevity and output are constant over time and the population is
stationary. Similarly, Sheshinski (2008) shows that a first-best solution is obtained
in decentralized equilibrium when annuities markets are available to insure indi-
viduals against uncertain lifetimes. In that setup, there are no intergenerational
differences; i.e., output and longevity are constant over time. With a sufficiently
rich set of instruments this result should carry over to the present setting.

In the following we briefly consider whether the social optimum allocation
derived in Section 3 in our setting with changing mortality and thus longevity can
be decentralized when policy instruments (taxes and transfers) cannot be made
dependent on age but only on labor market status. This case is interesting because
it matches current policy settings.

To solve for the decentralized equilibrium, we follow Sheshinski (2008) in how
the individual’s problem is set up. An individual chooses consumption and retire-
ment conditional on taxes and transfers levied on individuals. The government
then chooses taxes and transfers now and in the future.34 Note the difference from
previous sections. Before the social planner was choosing {Tw(i), To(i), R̃(i)}∞i=t ,
but now the government’s policy package is {Tw(i), To(i)}∞i=t , and individuals
from different cohorts choose {R̃(i)}∞i=t (as well as consumption). The question is
whether the individual’s chosen retirement age can be made to coincide with the
socially optimal retirement age.

Compare first the socially optimal retirement decisions and retirement in the
decentralized equilibrium. Consider an arbitrary generation born at time i − Rd .
According to the decentralized equilibrium, this generation retires at the age Rd

at time i. If we assume that the same consumption levels are arising in the social
planner’s and decentralized equilibrium allocations (partial equilibrium, direct
effects), we have that the retirement age differs because

Rs(i) � Rd(i) for Tw(i) + To(i) � 0. (53)

The reason is that there is a common pool problem not taken into account in the
individual decision making. Specifically, a marginal increase in the retirement age
affects public finances by Tw(i) + To(i). If this expression is positive (negative),
retirement imposes a burden (gain) on other cohorts, which the individual does
not take into account. Therefore the individually chosen retirement age differs in
general from the socially optimal retirement age. In the empirically relevant case
the individual tends to retire too early from a social point of view.35

These results are a strong indication that the social planner’s allocation cannot
be attained in the decentralized equilibrium. More formally, we have the following
proposition, whose proof is available from the authors upon request:36

PROPOSITION 4. The socially optimal allocation cannot in general be
decentralized.
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Note that the failure to decentralize the socially optimal allocation holds despite
the presence of annuities markets handling the problems caused by uncertain
individual lifetimes.

6. CONCLUDING REMARKS

The notion of intergenerational equity has been considered under a utilitarian
criterion in an OLG model allowing for both productivity growth and increasing
longevity. The latter is the more interesting aspect, both because of its relevance
to current debates on demographics and because it requires a modelling approach
allowing for OLG with different mortality rates and thus longevity. As in Calvo
and Obstfeld (1988), the socially optimal allocation is found under generational
neutral weighting to imply consumption smoothing across generations and time;
i.e., young and old have the same consumption flows at all times. This is a straight-
forward implication of intertemporal substitution under the utilitarian criterion and
with separable utility functions. However, in addition, the retirement age differs
across generations, and both productivity growth and increasing longevity tend to
call for increasing retirement ages over time. The former holds generally and de-
rives from a higher return to work when its marginal productivity is high, whereas
the latter follows under mild conditions amounting to increasing longevity being
reflected in better health at given ages.

In policy debates strong assertions are often made about the implications of
intergenerational equity, such as retirement ages following longevity proportion-
ally or presavings. We show that the former holds under so-called healthy aging,
whereas the latter arises if the retirement age does not increase sufficiently to avoid
an increasing (economic) dependency ratio. Note that even if the socially optimal
policy implies some presavings, the needed savings are affected by the fact that
retirement ages increase across generations because of increasing longevity.

Intergenerational distribution and equity have been considered from a utilitarian
perspective. Utilitarianism is the dominant approach in welfare analyses, and for
comparative purposes it is thus a natural starting point for addressing the issue
of changing mortality rates (and productivity). Working out the implications of
utilitarianism makes it easier to discuss its pros and cons. It should be noted
that the analysis assumes the same underlying utility function across generations,
weighted in a way that does not imply any generational preference or bias. The
criticism of utilitarianism [see, e.g., Konow (2003) for a survey and references]
includes aspects such as interpersonal (generational) comparability of utility (car-
dinal measurement) and consequentialism assessing outcomes only in terms of
utility, disregarding the underlying processes or elements affecting well-being.
Utilitarianism implies redistribution based on the ability to generate utility at the
margin (marginal utilities) rather than the level of utility per se. This is reflected
in the present analysis, and it may be questioned whether future generations
should work more (retire later) because they have higher longevity and are more
productive.
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This paper has taken mortality rates to be exogenous. Although this is a natural
starting point to clarify the basic issues involved, it is also clear that changes in
mortality rates and thus longevity are driven by both individual (lifestyle, eating
habits, housing, etc.) and public decisions (health care). A small but growing liter-
ature is exploring the consequences of endogenizing longevity via these channels
[see Philipson and Becker (1998), Leroux et al. (2008)]. It is an obvious agenda
for future research to endogenize mortality rates.

Finally, a small open economy assumption has been adopted with respect to
financial markets. This is a reasonable assumption to make for most countries,
given financial globalization. Consequences of changes in the interest rate pro-
file can readily be analyzed within the model. Because aging is a global phe-
nomenon, there is an issue with respect to how aging itself and the induced
policy changes will affect global interest rates. Although countries acting non-
cooperatively take interest rates as exogenous, there are likely to be important
interdependencies. It is an interesting topic for future research to analyze these
issues.

NOTES

1. The human development index (HDI) published by the UNDP has longevity to weight by 1/3
[see United Nations Development Programme (2008)].

2. Balassone et al. (2009) also argue that intergenerational equity calls for presavings.
The now common metric of fiscal sustainability, S2 [see, e.g., European Commission (2006,
2009)] giving the needed permanent change in the primary budget balance implies presav-
ings if the underlying demographic changes cause a trend deterioration in the primary budget
balance.

3. They also allow the social planner to weight the utility of future generations differently than
implied by the subjective discount rate of the individuals. In the egalitarian or pure utilitarian case
where the two are the same, the flat consumption profile follows.

4. These issues have also been addressed in standard two-period OLG models where longevity
changes are interpreted as extending the length of the second period; see Auerbach and Hassett (2007)
and Andersen (2008).

5. Heijdra and Romp (2008) adopt a similar approach. Both modeling approaches give a fairly good
approximation to observed mortality rates. The main difference is that here there is a given maximum
age, whereas in the Heijdra and Romp (2008) model survival approaches zero in the limit for a high
age.

6. This holds when mortality rates apply to individuals, as is the case in this paper. When these
apply to families the assumption of constant mortality rates is more acceptable, as is discussed in
Blanchard (1985).

7. This is in accordance with empirical evidence; see, e.g., Wilmoth (2000).
8. This is a simplifying assumption, because increasing longevity is a global phenomenon and

it is likely that increased longevity results in changes in world interest rates. Whether it results in
higher or lower rates is, however, generally uncertain. Some empirical studies do show evidence of a
positive relationship between longevity and aggregate savings [see discussion in Sheshinski (2008)].
This implies that interest rates decrease as longevity increases.

9. This function captures the “rectangular” shape of the data-based survival curve shown in Wilmoth
(2000).

10. This holds because lim
α→1+ [α ln α − [α − 1]] = 0, ∂[α ln α−[α−1]]

∂α
= ln α > 0, and hence α ln α−

[α − 1] > 0 ∀ α > 1.
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11. Note that − ∂m(a,A(t))
∂a

is the unconditional probability of passing away at age a for an individual
born at time t .

12. Historically there has been a trend to increased longevity [see Oeppen and Vaupel (2002)], and
demographic evidence does not show signs that human lifespans are approaching fixed limits imposed
by biology or other factors [see also Wilmoth (2000) and Christensen et al. (2009)].

13. The idea is that the growth in longevity is nonincreasing in longevity. Because there is a one-
to-one relationship between longevity and time in the model, this is identical to having the growth in
longevity nonincreasing in time. The results of the paper can be shown to generalize to the case where
there is a constant upward trend in longevity to some upper bound:

dA(t) = μAdt for A(t) < A

dA(t) = 0 for A(t) = A.

All qualitative results in the paper hold under this assumption. The calculations showing this are
available upon request from the authors.

14. The derivatives are shown in Appendix A.
15. This may be termed the economic dependency ratio because it depends on the retirement age,

which is endogenous, and not some exogenously given age.
16. Bloom et al. (2007) use a similar specification to capture the disutility from work: v (z, t),

where z is life expectancy, or longevity, and t is age. They propose that the v function is homogeneous
of degree zero, which can be interpreted as reflecting healthy aging (see Section 4).

17. Further, Diamond (2003) assumes that disutility of labor is a nonincreasing function of the
survival probability.

18. Assuming that the marginal utility of consumption is dependent on age would create a question
of optimal distribution of taxes (consumption) among young individuals, on one hand, and among old
individuals, on the other. Hence, we assume that it is independent of age, as is implied by the separable
formulation adopted here.

19. Alternatively, it could be formulated as L(a, A(t −A)) = −D(a, A(t −A)), where D denotes
disutility from work, and D is increasing in a and decreasing in A.

20. In the case where the function is homogeneous of degree zero, as is proposed in Bloom et al.
(2007), the value of time for a 40-year-old individual with longevity 80 years for his generation is the
same as the value of time for a 50-year-old with longevity 100 years for his generation.

21. Think of time as being spent on three main types of activities: (i) work (hw), (ii) leisure activities
such as travel, sports, hobbies, and home production (ht ), and (iii) rest (hr ), where hw + ht + hr = 1;
i.e., the available time is normalized to one and the various time uses are exogenous. Using the time
constraint, the utility from time use measured relative to time spent on the fallback option “rest” can
be written

L(a,A) = κw(a, A) [hw − hr ] + κt (a,A) [ht − hr ] ,

where κw and κt give the respective marginal values of time spent on work and leisure activities.
Assuming that ∂κw/∂a < 0 and ∂κt /∂a < 0 corresponds to less utility from work (more disutility
from work) and leisure activities with age, whereas assuming that ∂κw/∂A > 0 and ∂κt /∂A > 0
implies that the utility from work and utility from leisure activities increase at any age a (disutility
decreases) when longevity increases. Note that the formulation allows for κw(a,A) being positive
for some values of (a,A), implying that people up to some limit like to work, e.g., to use skills and
qualifications acquired in education.

22. Alternatively, one could specify a general function as G(1 − h, a,A(t − a)), where 1 is the
time endowment and h the exogenous hours of work. Hence L(a,A(t − a)) ≡ G(1 − h, a, A(t − a))

and H(a, A(t − a)) ≡ G(1, a, A(t − a)).
23. This constraint makes the economywide resource constraint hold.
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24. Note that it is more accurate to call this a constrained social optimum because the social planner
is constrained by having to collect the same amount of tax from each young individual and give the
same amount of transfer to each old one.

25. Setting a = 0 in (6) gives the relationship between the longevity of the generation born today
and the generation that passes away today. Taking the total difference of this, using (5), and rearranging

gives dÃ(i) = μA(i−Ã)
1+μA(i−Ã)

di.

26. The derivation of the first-order conditions and the law of motion for the marginal value
function are available upon request from the authors. Also, proofs of (i) the first-order conditions being
necessary and sufficient for solving the maximization problem in (29) and (ii) the HJB equation and
the budget constraint in (25) [and (24)] being necessary for solving (28) are available from the authors
upon request.

27. It can be shown that generations with sufficiently high longevity are net contributors in the sense
that their present values of consumption are lower than their present values of production, whereas
those with sufficiently low longevity are net receivers. The calculations showing this are available from
the authors upon request.

28. The main results in this chapter hold under nonconstant consumption (θ �= r) as well as under
the assumption of autarky (balanced budget D(t) = 0 ∀t). The calculations showing this are available
from the authors upon request.

29. The compression in morbidity can be in either an absolute or a relative form. In the absolute
form the number of years with morbidity problems is unchanged irrespective of longevity, whereas
in the relative form the morbidity years are a constant share of longevity. The absolute version is
a stronger form of healthy aging than the relative version, and the present paper adopts the relative
version.

30. In, e.g., OECD (2006), healthy aging is interpreted in the sense that the need for health
care and thus age-dependent health expenditures shift proportionally with longevity to higher
ages.

31. The homogeneity assumption is made in, e.g., Bloom et al. (2007) and Andersen (2008).
32. Note that Corollary 1 does not require an assumption concerning the utilities from consumption.
33. The case of healthy aging implies the optimality of a balanced budget and, hence, the optimality

of a pay-as-you-go type of scheme.
34. A description of the model and a derivation of the decentralized equilibrium are available from

the authors upon request.
35. It can be shown that the retirement age tends to decline when Tw(i) + To(i) is positive. The

demonstration is available from the authors upon request.
36. Necessary conditions for allocation in the decentralized equilibrium being the same as the

social planners’s only hold when the number of young individuals is very close to the number of old
individuals, which gives the proposition.

37. The time separability and exponential discounting following Yaari (1965) imply that problems
of time inconsistency do not arise, and that agents display risk neutrality with respect to the length of
life [see Bommier (2006) and Bommier et al. (2009)].

38. This is available from the authors upon request.
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APPENDIX A: DERIVATIVES OF THE m̃ FUNCTION

The derivatives are as follows:

∂m̃
(
a, Ã(t)

)
∂a

= − 1

A(t − a)

[
1 + a

A (t − a)
μA(t − a)

]
ln αα

a
A(t−a)

α − 1
< 0,

∂2m̃
(
a, Ã(t)

)
∂a2

= − 1

A(t − a)2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
1 + a

A(t−a)
μA(t − a)

]
×
[ [

1 + a
A(t−a)

μA(t − a)
]

ln α

+2μA(t − a)

]
−aμ′

AμA(t − a)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
ln αα

a
A(t−a)

α − 1
< 0,

∂m̃
(
a, Ã(t)

)
∂Ã(t)

=
[
1 + μA

(
t − Ã

)]
a

A(t − a)2

ln αα
a

A(t−a)

α − 1
> 0,

∂2m̃
(
a, Ã(t)

)
∂Ã(t)∂a

=
[
1 + μA

(
t − Ã

)]
A(t − a)2

{
1 + 2 aμA(t−a)

A(t−a)

+ a ln α
A(t−a)

[
1 + a

A(t−a)
μA(t − a)

]} ln αα
a

A(t−a)

α − 1
> 0,

where A(t − a) is given in (6).
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APPENDIX B: CALCULATIONS FOR POPULATION
COMPOSITION dN(t) > 0, dNw(t) > 0, AND

dNw(t) > 0

Applying Taylor approximation to (8), (9), and (10) and erasing terms that contain “dt”
raised to a higher power than 1 [because time is continuous (dt → 0)] gives the following:

dN(t) = ∂N

∂Ã(t)
dÃ(t) =

[∫ Ã(t)

a=0

∂m̃
(
a, Ã(t)

)
∂Ã(t)

da

]
dÃ(t) > 0,

dNw(t) = ∂Nw

∂Ã(t)
dÃ(t) =

[∫ R̃(t)

a=0

∂m̃
(
a, Ã(t)

)
∂Ã(t)

da

]
dÃ(t) > 0,

dNo(t) = ∂No

∂Ã(t)
dÃ(t) =

[∫ Ã(t)

a=R̃(t)

∂m̃
(
a, Ã(t)

)
∂Ã(t)

da

]
dÃ(t) > 0,

where (5) and properties of the m̃ function (from Appendix A) are used. Hence, dN(t) > 0,
dNw(t) > 0, and dNo(t) > 0 all hold.

Proof of dK(t) > 0. Applying Taylor approximation to (11) and erasing terms that
contain “dt” raised to a higher power than 1 [because time is continuous (dt → 0)] gives
the following:

dK(t) =
∂No

∂Ã(t)
Nw(t) − No(t)

∂Nw

∂Ã(t)

Nw(t)2
dÃ(t) = No(t)

Nw(t)

[
∂No

∂Ã(t)

No(t)
−

∂Nw

∂Ã(t)

Nw(t)

]
dÃ(t).

Hence, using (5), dK(t) > 0 iff

∂No

∂Ã(t)

No(t)
>

∂Nw

∂Ã(t)

Nw(t)
,

or, by using (9) and (10),

∫ Ã(t)

a=R̃(t)

∂m̃(a,Ã(t))
∂Ã(t)

da∫ Ã(t)

a=R̃(t)
m̃
(
a, Ã(t)

)
da

>

∫ R̃(t)

a=0
∂m̃(a,Ã(t))

∂Ã(t)
da∫ R̃(t)

a=0 m̃
(
a, Ã(t)

)
da

. (B.1)

Because
∂m̃(a,Ã(t))

∂a
< 0 and

∂2m̃(a,Ã(t))
∂Ã(t)∂a

> 0, we have that∫ R̃(t)

a=0
m̃
(
a, Ã(t)

)
da > R̃(t)m̃

(
R̃(t), Ã(t)

)
,

∫ R̃(t)

a=0

∂m̃
(
a, Ã(t)

)
∂Ã(t)

da < R̃(t)
∂m̃

(
a, Ã(t)

)
∂Ã(t) a=R̃(t)

,
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∫ Ã(t)

a=R̃(t)

m̃
(
a, Ã(t)

)
da <

[
Ã(t) − R̃(t)

]
m̃
(
R̃(t), Ã(t)

)
, and

∫ Ã(t)

a=R̃(t)

∂m̃
(
a, Ã(t)

)
∂Ã(t)

da >
[
Ã(t) − R̃(t)

] ∂m̃
(
a, Ã(t)

)
∂Ã(t) a=R̃(t)

.

Hence,∫ R̃(t)

a=0
∂m̃(a,Ã(t))

∂Ã(t)
da∫ R̃(t)

a=0 m̃
(
a, Ã(t)

)
da

<
R̃(t)

∂m̃(a,Ã(t))
∂Ã(t) a=R̃(t)

R̃(t)m̃
(
R̃(t), Ã(t)

) and

×
∫ Ã(t)

a=R̃(t)

∂m̃(a,Ã(t))
∂Ã(t)

da∫ Ã(t)

a=R̃(t)
m̃
(
a, Ã(t)

)
da

>

[
Ã(t) − R̃(t)

] ∂m̃(a,Ã(t))
∂Ã(t) a=R̃(t)[

Ã(t) − R̃(t)
]
m̃
(
R̃(t), Ã(t)

) .
This gives∫ Ã(t)

a=R̃(t)

∂m̃(a,Ã(t))
∂Ã(t)

da∫ Ã(t)

a=R̃(t)
m̃
(
a, Ã(t)

)
da

>

[
Ã(t) − R̃(t)

] ∂m̃(a,Ã(t))
∂Ã(t) a=R̃(t)[

Ã(t) − R̃(t)
]
m̃
(
R̃(t), Ã(t)

) =
∂m̃(a,Ã(t))

∂Ã(t) a=R̃(t)

m̃
(
R̃(t), Ã(t)

)
=

R̃(t)
∂m̃(a,Ã(t))

∂Ã(t) a=R̃(t)

R̃(t)m̃
(
R̃(t), Ã(t)

) >

∫ R̃(t)

a=0
∂m̃(a,Ã(t))

∂Ã(t)
da∫ R̃(t)

a=0 m̃
(
a, Ã(t)

)
da

.

Hence, (B.1) holds as well as dK(t) > 0.

APPENDIX C: THE WELFARE OBJECTIVE
DERIVED

The objective of the social planner at time t is to maximize the sum of the present values of
lifetime utilities of generations born at time t or later and the present value of utilities for
the remaining lives of generations alive at time t . Hence, the social welfare function is37

W(t) =
∫ ∞

i=t

e−θ(i−t)W (i, t) di +
∫ t

i=t−Ã(t)

e−θ(i−t)W (i, t) di, (C.1)

where

W (i, t) =
∫ R(i)

a=0
e−θam (a,A(i))Ww(i+a, a)da+

∫ A(i)

a=R(i)

e−θam (a,A(i))Wo(i+a, a)da

for all i ≥ t ,

W (i, t) =
∫ R(i)

a=t−i

e−θam (a, A(i))Ww(i+a, a)da+
∫ A(i)

a=R(i)

e−θam (a, A(i))Wo(i+a, a)da

for all t > i ≥ t − R̃(t), and

W (i, t) =
∫ A(i)

a=t−i

e−θam (a, A(i))Wo(i + a, a)da
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for all t − R̃(t) > i ≥ t − Ã(t), where Ww(i + a, a) and Wo(i + a, a) are given in (12)
and (15). It can be shown that (C.1) is well-defined.38

We assume that the social planner discounts at the same subjective rate as individuals
(θ ), which may be considered the “pure” utilitarian case where utility achieved at any point
in time gets the same weight irrespective of who obtains the utility. Under the utilitarian
criterion, (C.1) gives the same welfare measure as is obtained by calculating the present
value of instantaneous utility generated to all living individuals [see Calvo and Obstfeld
(1988)]. The social welfare function can therefore be written as in (27).

APPENDIX D: A PROOF FOR THE OPTIMAL
POLICY PACKAGE

Proof of Proposition 1. (35) and (36) imply that

dTw(i) = dy(i),

dTo(i) = 0,

for all i ≥ t . Using (21) in these gives (41). Using (22) and (23) along with (21) in (41)
gives (42).

(37) and (41) imply that

VD(t)dTw(i) =
[

∂L̃

∂a
− ∂H̃

∂a

]
a=R̃(i)

dR̃(i) +
[

∂L̃

∂Ã(i)
− ∂H̃

∂Ã(i)

]
a=R̃(i)

dÃ(i),

for all i ≥ t , implying that the retirement age evolves according to

dR̃(i) = VD(t)[
∂L̃
∂a

− ∂H̃
∂a

]
a=R̃(i)

dy(i) −

[
∂L̃

∂Ã(i)
− ∂H̃

∂Ã(i)

]
a=R̃(i)[

∂L̃
∂a

− ∂H̃
∂a

]
a=R̃(i)

dÃ(i),

for all i ≥ t , where VD(t) < 0 from (35),
[

∂L̃
∂a

− ∂H̃
∂a

]
a=R̃(i)

< 0 from (18), and[
∂L̃

∂Ã(i)
− ∂H̃

∂Ã(i)

]
a=R̃(i)

> 0 from (19). Hence,

VD(t)[
∂L̃
∂a

− ∂H̃
∂a

]
a=R̃(i)

> 0,

−

[
∂L̃

∂Ã(i)
− ∂H̃

∂Ã(i)

]
a=R̃(i)[

∂L̃
∂a

− ∂H̃
∂a

]
a=R̃(i)

> 0,

for all i ≥ t . This gives (43).
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APPENDIX E: PROOFS FOR RETIREMENT AGE
AND HEALTHY AGING

Proof of Lemma 1. “Only if”: (45) holds only if

dR̃(i)

R̃(i)
= dÃ(i)

Ã(i)
, (E.1)

for all i ≥ t . The expression for the evolution of the optimal retirement age from (43)
implies that this holds only if

−

[
∂L̃

∂Ã(i)
− ∂H̃

∂Ã(i)

]
a=R̃(i)[

∂L̃
∂a

− ∂H̃
∂a

]
a=R̃(i)

= R̃(i)

Ã(i)
, (E.2)

for all i ≥ t . Assume that the L̃ (a, Ã(i)) and H̃ (a, Ã(i)) functions are homogeneous of

degree λ, i.e., L̃
(
a, Ã(i)

) = Ã(i)λL̃
(

a

Ã(i)
, 1
)

and H̃
(
a, Ã(i)

) = Ã(i)λH̃
(

a

Ã(i)
, 1
)

. When

this is used in (E.2), (E.1) holds only if

−λ

[
L̃

(
R̃(i)

Ã(i)
, 1

)
− H̃

(
R̃(i)

Ã(i)
, 1

)]
= 0,

for all i ≥ t . Hence, as long as L̃(R̃(i)/Ã(i), 1) �= H̃ (R̃(i)/Ã(i), 1) and therefore
L̃(R̃(i), Ã(i)) �= H̃

(
R̃(i), Ã(i)

)
because of the homogeneity assumption, which is likely

to hold from (35)–(37), we have that (E.2) holds only if λ = 0. That is, (E.2) holds only if
the L̃ and H̃ functions are both homogeneous of degree 0. This completes the first half of
the proof.

“If”: From (37), (41), and (21), assuming constant output per young individual
(dy(i) = 0) gives

[Tw(t) + To(t)] VD(t) = U (y(t) − Tw(t)) + L̃(R̃(i), Ã(i))

− Q (To(t)) − H̃ (R̃(i), Ã(i)), (E.3)

for all i ≥ t . Assuming that L̃ (a, Ã(i)) and H̃ (a, Ã(i)) are homogeneous of degree 0
implies from (E.3) that

H̃

(
R̃(i)

Ã(i)
, 1

)
− L̃

(
R̃(i)

Ã(i)
, 1

)
= constant.

This can only hold if R̃(i)/Ã(i) is constant, because ∂L̃/∂a < ∂H̃/∂a from (18) and (19).
Hence, we have that (45) must hold.

Proof of Lemma 2. Assuming constant growth in longevity in (6) gives the following
relationship between the longevity of the generation that retires today and the longevity of
the generation that becomes extinct today:

A
(
i − R̃

) = Ã(i) − μA

[
R̃(i) − Ã(i)

]
. (E.4)
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“Only if”: Assuming that

R̃(i) = κÃ(i)

holds and plugging into (E.4) gives

R̃(i) = κ

1 + μA [1 − κ]
A
(
i − R̃

)
.

Choosing ψ = κ
1+μA[1−κ] completes the first half of the proof.

“If”: Assuming that

R̃(i) = ψA
(
i − R̃

)
holds and plugging into (E.4) gives

R̃(i) = ψ [1 + μA]

1 + ψμA

Ã(i).

Choosing κ = ψ[1+μA]
1+ψμA

completes the second half of the proof.

Proof of Lemma 3. “Only if”: Using the definition of the L̃ function, (6), under constant
growth in longevity and assuming that the L̃ function is homogeneous of degree λ gives

kλL̃
(
a, Ã(i)

)
= L̃(ka, kÃ(i))

= L
(
ka, kÃ(i) − μA

[
ka − kÃ(i)

])
= L

(
ka, k

[
Ã(i) − μA

[
a − Ã(i)

]])
= L (ka, kA (i − a))

= kλL (a, A (i − a)) ,

where k is some constant (> 0) and the sixth line uses that L̃
(
a, Ã(i)

) = L (a, A (i − a))

by definition. Hence, the L̃ function is homogeneous of degree λ only if the L function is
also homogeneous of degree λ. Obviously, a similar proof goes for the H function. This
completes the first half of the proof.

“If”: Using the definition of the L̃ function, (6), under constant growth in longevity and
assuming that the L function is homogeneous of degree λ gives

kλL (a, A (i − a))

= L (ka, kA (i − a))

= L
(
ka, k

[
Ã(i) − μA

[
a − Ã(i)

]])
= L

(
ka,

[
kÃ(i) − μA

[
ka − kÃ(i)

]])
= L̃(ka, kÃ(i))

= kλL̃
(
a, Ã(i)

)
,

where k is some constant (> 0) and the sixth line uses that L̃
(
a, Ã(i)

) = L (a, A (i − a))

by definition. Hence, the L̃ function is homogeneous of degree λ if the L function is also
homogeneous of degree λ. Obviously, a similar proof goes for the H function.
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Proof of Proposition 2. This follows directly from Lemmas 1–3.

APPENDIX F: PROOFS FOR THE
DEPENDENCY RATIO

Proof of Lemma 4. Plugging (50) into (9), (10), and (6) assuming constant growth in
longevity, and the resulting equations into (11), gives

K(i) =
Ã(i)

∫ 1
ã=φ(i)

α
ã

1+μA[1−ã] −α
1−α

dã

Ã(i)
∫ φ(i)

ã=0
α

ã
1+μA[1−ã] −α

1−α
dã

=
∫ 1

ã=φ(i)
α

ã
1+μA[1−ã] −α

1−α
dã∫ φ(i)

ã=0
α

ã
1+μA[1−ã] −α

1−α
dã

,

where ã ≡ a/Ã(i) and

∂K

∂Ã(i)
= −φ′

[
α

φ(i)
1+μA[1−φ(i)] −α

1−α

]
[∫ φ(i)

ã=0
α

ã
1+μA[1−ã] −α

1−α
dã

] [1 + K(i)] .

It is clear from this that ∂K/∂Ã(i) � 0 iff φ′ � 0.

Proof of Lemma 5. Assuming that the L and H functions, and hence the L̃ and H̃

functions from Lemma 3, are homogeneous of degree λ, we have from (43) that

R′ = −

⎧⎪⎪⎨⎪⎪⎩λ

[
L̃
(

R̃(i)

Ã(i)
, 1
)

− H̃
(

R̃(i)

Ã(i)
, 1
)]

[
∂L̃
∂a

− ∂H̃
∂a

]
a= R̃(i)

Ã(i)
,Ã(i)=1

− R̃(i)

Ã(i)

⎫⎪⎪⎬⎪⎪⎭ .

From (50) we have that φ′ � 0 iff R′ � φ(i) = R̃(i)/Ã(i). This implies that φ′ � 0 iff

−λ

[
L̃
(

R̃(i)

Ã(i)
, 1
)

− H̃
(

R̃(i)

Ã(i)
, 1
)]

(
∂L̃
∂a

− ∂H̃
∂a

)
a= R̃(i)

Ã(i)
,Ã(i)=1︸ ︷︷ ︸

LHS

� 0.

Assume that the social optimal solution is such that consumption and utility when young
is no less than when old [cw(i) ≥ co(i) and U(cw(i)) ≥ Q(co(i))], which implies from
(37) that H̃ (R̃(i), Ã(i)) > L̃(R̃(i), Ã(i)) and hence that H̃ ( R̃(i)

Ã(i)
, 1) > L̃( R̃(i)

Ã(i)
, 1) because

of the homogeneity assumption. We therefore have that φ′ = 0 iff λ = 0, because ( ∂L̃
∂a

−
∂H̃
∂a

)
a= R̃(i)

Ã(i)
,Ã(i)=1

< 0 from (18) and (19). Further, we have that ∂LHS
∂λ λ=0

< 0 and, hence,

φ′ > 0 (< 0) when (and only when) λ is slightly less (greater) than zero. The general result
is φ′ � 0 iff λ � 0.

Proof of Proposition 3. This follows directly from Lemmas 4 and 5.

https://doi.org/10.1017/S1365100514000716 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100514000716

