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Solids dispersion is an important part of hydraulic fracturing, both in helping to
understand phenomena such as tip screen-out and spreading of the pad, and in new
process variations such as cyclic pumping of proppant. Whereas many frac fluids have
low viscosity, e.g. slickwater, others transport proppant through increased viscosity. In
this context, one method for influencing both dispersion and solids-carrying capacity
is to use a yield stress fluid as the frac fluid. We propose a model framework for this
scenario and analyse one of the simplifications. A key effect of including a yield stress
is to focus high shear rates near the fracture walls. In typical fracturing flows this
results in a large variation in shear rates across the fracture. In using shear-thinning
viscous frac fluids, flows may vary significantly on the particle scale, from Stokesian
behaviour to inertial behaviour across the width of the fracture. Equally, according
to the flow rates, Hele-Shaw style models give way at higher Reynolds number to
those in which inertia must be considered. We develop a model framework able to
include this range of flows, while still representing a significant simplification over
fully three-dimensional computations. In relatively straight fractures and for fluids
of moderate rheology, this simplifies into a one-dimensional model that predicts
the solids concentration along a streamline within the fracture. We use this model to
make estimates of the streamwise dispersion in various relevant scenarios. This model
framework also predicts the transverse distributions of the solid volume fraction and
velocity profiles as well as their evolutions along the flow part.

Key words: Hele-Shaw flows, plastic materials, suspensions

1. Introduction

In hydraulic fracturing, specially engineered suspensions are pumped at high
pressure and rate into the reservoir, causing a propagating fracture to open. When
the pressure is released the fracture is held open by packed grains of solid proppant
(typically natural angular sand) that are left behind. This method increases the
hydraulic conductivity and consequently enhances well production. At various stages
in the process, streamwise dispersion of proppant can be important, e.g. tip screen-out
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and spreading of the pad. Streamwise dispersion is also critically important in a recent
process variation called the channel fracturing technique (CFT) (Gillard et al. 2010).
The key concept here is to substitute the usual continuous stream of proppant slurry
that fills the fracture with discrete pillars of proppant that hold open the fracture.
The increased hydraulic conductivity of the clear channels between the pillars has the
overall effect of a significant increase in fracture conductivity. To produce the pillar
configuration in the fracture, slugs of proppant are interspersed with clear fracturing
fluid at the wellhead. Eventually it is expected that these slugs enter the fracture,
and remain distinct for sufficiently long for the fracture to close on them. Proper
design of this pumping technique obviously requires an understanding of dispersion
mechanisms, both in the well and along the fracture. One proposed method for
controlling dispersion is via the frac fluid rheology and in particular use of a yield
stress fluid, which may also enhance the transport capacity. In this study we aim
to develop a model framework for studying these flows within the fracture, with
a particular emphasis on streamwise dispersion and shear-thinning yield stress frac
fluids.

By design, our study cuts across many related areas. There are many examples of
using the Hele-Shaw approach to model fracture flows (e.g. Pearson 1994; Hammond
1995; Mobbs & Hammond 2001; Lakhtychkin, Vinogradov and Eskin 2011; Boronin
& Osiptsov 2014; Boronin, Osiptsov & Desroches 2015), wherein the assumption is
made that the velocity field and gradients can be scaled differentially, according to the
fracture aspect ratio. This allows the neglect of the inertial terms under the assumption
that the bulk flow Reynolds number, Re, multiplied by a small width-to-length ratio,
is vanishingly small. On the experimental front, there are also experimental studies
in Hele-Shaw cell geometries on viscous fingering (e.g. Buka, Kertesz & Vicsek
1986; Buka & Palffy-Muhoray 1987; Lemaire et al. 1991; Lindner, Coussot & Bonn
2000; Lindner et al. 2002; Makino et al. 2002) and on fracturing flows (e.g. Lyon &
Leal 1998; Liu, Gadde & Sharma 2007). In real fractures and under realistic process
conditions, geometric and inertial effects may become significant and there is a
significant literature on improving the Hele-Shaw approach. Low-Re experiments and
computations through laboratory-produced fractures or computer-generated fractures
have shown that reasonable corrections can be made for roughness and tortuosity at
zero Re (e.g. Patir & Cheng 1978; Brown 1987; Zimmerman, Kumar & Bodvarsson
1991). These studies typically correct the usual (Newtonian) cubic flow law via
definition of an appropriate hydraulic gap width, proposing corrections that depend
on dimensionless geometric ratios such as the standard deviation to mean gap width,
wavelength to mean gap width, etc.

Some of these flow laws extend to non-zero Re (e.g. Hasegawa & Izuchi 1983).
Apart from via simulation, it is often hard to decouple purely geometric effects from
inertial effects in studying the flows through fractures. Thus, for example, Yeo, De
Freitas & Zimmerman (1998) constructed artificial sandstone fractures and compared
the results of flow tests with numerical simulations based on the Reynolds equation,
reporting 20–25 % discrepancies for 18<Re< 60. Following the use of the hydraulic
gap width from Hasegawa & Izuchi (1983), the error was reduced by around a third.
However, it is notable that significant errors persist at smaller Re than might be
considered from a strict scaling analysis. There are also classical inertial corrections
such as the Forchheimer correction (used in porous media flows) and the Ergun
equations (used in packed beds).

There have been long-standing attempts to model non-Newtonian effects in porous
media – see e.g. the fine early review of Savins (1969) – but less specifically directed
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Dispersion of solids in fracturing flows of yield stress fluids 95

at yield stress fluids. Typically the end result is a specification of a non-Darcy (or
nonlinear filtration) closure law relating superficial velocity to pressure gradients.
In the case of yield stress fluids, these are generally of limiting pressure gradient
type (e.g. Sultanov 1960; Entov 1967). Included in these studies and of relevance to
fracture flows are some detailed two-dimensional (2D) studies: along wavy walled
channels (Balhoff & Thompson 2004; Frigaard & Ryan 2004; Putz, Frigaard &
Martinez 2009; Roustaei & Frigaard 2013), through bed/fibre-type geometries (Bleyer
& Coussot 2014; Shahsavari & McKinley 2016), or other geometric variants (Roustaei,
Gosselin & Frigaard 2015; Roustaei et al. 2016). There is also some limited study
of inertial effects Roustaei & Frigaard (2015). In summary, these studies show that
the simplistic picture of a plane Poiseuille flow with a rigid central plug is quickly
destroyed by streamwise geometric variation, that new non-Darcy effects emerge via
static fouling of deep wall undulations or roughness, but that suitable flow laws and
limiting pressure gradient closures can be derived for specific classes of geometry.

In considering flows of yield stress fluid suspensions, we need to consider additional
complexities: the frac fluid is now strongly shear thinning and, apart from a generic
rheological description, process conditions can have a significant impact on the local
conditions felt by particles. These conditions and effects are analysed later in this
paper (§ 2.2), but to pre-empt, we find that fracture flows of yield stress fluids are
unusual in allowing for a massive variation in local strain rates and effective viscosity.
The consequence is that for many typical fracture flows the particle dynamics
ranges from Stokesian in the fracture centre to significantly inertial close to the
fracture walls. The local rheological behaviour of yield stress fluid suspensions in
the Stokesian regime has recently been characterized (at least approximately) by
Ovarlez, Bertrand & Rodts (2006), Chateau, Ovarlez & Luu Trung (2008), Mahaut
et al. (2008), Coussot et al. (2009), Vu, Ovarlez & Chateau (2010), Ovarlez et al.
(2012), Dagois-Bohy et al. (2015) and Ovarlez et al. (2015). We utilize these results
below.

In particulate flows, the particle distribution results from hydrodynamics and multi-
body interactions of the particles. In a non-homogeneous shear flow of Newtonian
suspensions, it is observed that particles migrate from high- to low-shear-rate
regions (Leighton & Acrivos 1987; Phillips et al. 1992). This has been modelled
phenomenologically by attributing shear-induced diffusive migration to a combination
of collisional Brownian motion and viscosity variation effects. These components
have measured experimentally for Newtonian suspensions by Gadala-Maria & Acrivos
(1980), Chapman (1990), Phillips et al. (1992), Hampton et al. (1997), Lyon & Leal
(1998) and Snook, Butler & Guazzelli (2016). A different approach is the suspension
balance model (SBM), which is a hybrid theoretical–phenomenological approach in
which particle migration is modelled through normal stress gradients in the particle
phase. The various constants and multipliers in this approach are determined from
experimental measurements and numerical simulations (e.g. Morris & Boulay 1999).
Although there are still unanswered questions and ongoing debate on the nature
of particle stress in Newtonian suspensions (e.g. Lhuillier 2009; Nott, Guazzelli &
Pouliquen 2011; Guazzelli & Morris 2012; Brady 2015), numerous experimental and
computational studies have been conducted that support and advance this approach
(e.g. Chapman 1990; Phillips et al. 1992; Merhi et al. 2005; Morris 2009; Dbouk,
Lobry & Lemaire 2013).

The above solids dispersion models are largely restricted to Stokesian regimes
and Newtonian fluids. In the fracturing context, geometric, inertial and rheological
complexities are present. Neglecting the particles, there is a growing literature on

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

46
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.465


96 S. Hormozi and I. A. Frigaard

dispersion in fractures (e.g. Drazer & Koplik 2000, 2002; Auradou et al. 2005, 2006).
As with porous media dispersivities, there is considerable anisotropy due to the flow
direction and fracture geometry. More recent studies have considered the effects of
shear-thinning rheology on tracer dispersion Boschan et al. (2007), Auradou et al.
(2008), Boschan et al. (2008, 2009). One of the main features of these studies and
others that focus purely on fluid flow (e.g. Skjetne, Hansen & Gudmondson 1999) is
that at moderate Re the flow tends to channel through a (smoothed) central part of
the fracture, leaving significant parts of the fracture with near-zero velocity, whereas
creeping flows tend to fill the fracture. Similar effects were found with yield stress
fluids by Roustaei & Frigaard (2015) and Roustaei et al. (2015). These features can
have a significant effect on dispersion. It appears that there is relatively little work
concerned with suspensions directly in this context.

The main novel contributions of our study are as follows. Firstly, we carry out an
order-of-magnitude analysis of proppant transport along typical hydraulic fractures
using viscous fluids (shear thinning and yield stress), specifically focusing on the
macroscale flow and the particle scale. We include recent rheological models for
yield stress suspensions, in which the presence of particles increases local strain rates,
thus reducing local effective viscosity. Through our analysis we show that typical
suspensions in hydraulic fracturing flows exhibit a transition from Stokesian to inertial
regimes, on the particle scale, as we move across the fracture width (§ 2.2). Secondly,
we develop a two-phase continuum framework for modelling fracturing flows, based
on the SBM of Nott & Brady (1994). Owing to the particle-scale behaviour and
the nature of the fluids, we extend the SBM approach in two directions: (i) we
incorporate the shear-thinning yield stress rheology of the fluid; (ii) we incorporate
inertial/unsteady ranges of particle behaviour using an order-of-magnitude analysis
of the different flow regimes. We also incorporate in our model closure expressions
for the various forces experienced by the particles, but only so far as to give an
estimate of the size of these effects (§ 2.4). Thirdly, we reduce the overall model
using scaling arguments to arrive at two tractable systems of reduced equations that
model these flows, depending on whether or not the macroscale effects of inertia are
negligible, which depends on the usual lubrication modelling criterion of Reδt � 1
(Re being the Reynolds number and δt a suitable aspect ratio). Both systems (see
§ 3) result in 2D models of the in-plane flow variables and distribution of proppant.
Finally in § 4 we explore a simplification of the lubrication model (Reδt � 1) that
allows a one-dimensional (1D) model of proppant dispersion along a streamline of
the width-averaged flow. We find that to leading-order dispersion is advective not
diffusive, and use this model to study pulsed proppant distributions such as in the
CFT. In addition, we obtain the transverse distributions of the solid volume fraction
and velocity profiles as well as their evolutions along the flow part.

2. Flow regimes in fractures

A difficulty in modelling many industrial processes is the wide range of operational
regimes and parameters. From a fluid mechanics perspective, we need to understand
the influence of operational parameters on the flows, defining what are typical flows
and identifying the key characteristics. This is the goal here. We first discuss some
general parameter ranges directly below. We then address the rheology of viscoplastic
suspension flows under shear in § 2.1. Section 2.3 groups bulk fracture flows broadly
into three types, each of which shows different characteristic variations in strain rate
and local effective viscosity across the fracture. The consequences of this variation are
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discussed in § 2.3, from the perspective of regimes that the particle experiences, and
this is put in the context of recent dimensional scaling studies. In summary, we build
a comprehensive physical intuition of these flows before developing our continuum
modelling approach in § 2.4.

2.1. Rheology
For a broad picture of the full range of complex fluids used in hydraulic fracturing,
we refer the reader to the recent review of Barbati et al. (2016). As mentioned in
the introduction, we focus on viscous frac fluids as opposed to slickwater slurries,
and we target dispersive phenomena in proppant transport. Thus, shear rheology is
more important than viscoelasticity for these aspects, although viscoelasticity is ever
present in frac fluids. A wide range of fluids are used, according to operation and
company, often with proprietary formulation, e.g. typically aqueous polymer gels (guar,
hydroxypropyl guar (HPG), etc.), either linear gels or cross-linked (e.g. with borate).
These fluids are quite viscous and often strongly shear thinning. A common oilfield
characterization is via a power-law model, with consistency κ̂0 ≈ 0.01–5 Pa sn and
power-law index n≈0.2–1. Some fluids may have a modest yield stress, τ̂Y0≈0–15 Pa.
For a typical frac fluid based on guar, we might expect 0.35 < n < 0.6 and 0.1 <
κ̂0 < 1 (Pa sn). One also sees frac fluids with shear-thinning exponents in the 0.2–0.3
range, often with larger κ̂0. Rheological parameters are not independently variable. At
high shear rates the effective viscosity tends to plateau, e.g. we would not expect the
effective viscosity of viscous frac fluids to fall significantly below 0.01 Pa s.

To incorporate the range of shear rheologies, we will assume that the effective
viscosity of the pure frac fluid is modelled reasonably well as a Herschel–Bulkley
fluid, with effective viscosity η̂f ,0( ˆ̇γ ), possibly bounded below at high shear. Ovarlez
and co-workers have recently developed a general framework for shear-thinning and
yield stress fluid suspensions that has been validated at least partially (see Ovarlez
et al. 2006, 2012, 2015; Chateau et al. 2008; Mahaut et al. 2008; Coussot et al.
2009; Vu et al. 2010; Dagois-Bohy et al. 2015). The bulk suspension viscosity η̂, is
decomposed as

η̂= η̂fηr(φ), (2.1)

where η̂f is referred to as the liquid-phase viscosity and ηr(φ) is the dimensionless
relative viscosity, modelled for example by the Krieger–Dougherty law

ηr(φ)=

[
1−

φ

φm

]−2.5φm

, (2.2)

or a close variant (see Maron & Pierce 1956; Dougherty 1959; Krieger 1972;
Quemada 1982). Apart from conceptual simplicity, there exist generalizations of
such laws to particles of different shapes, e.g. rods/fibres (see Wierenga & Philips
1998). Here φm denotes the maximal packing fraction. The relative viscosity is further
decomposed into ηr(φ)= ηp(φ)+ 1, where ηp(φ) is called the particle-phase viscosity,
satisfying ηp(φ)∼ φ as φ→ 0 and ηp(φ)→∞ as φ→ φm. The combination η̂fηp(φ)
usually appears as part of the solids-phase stress.

In the liquid phase the particles act to amplify effects of a bulk shear rate imposed
on the suspension, i.e. since the particles themselves do not deform. This amplification
can be crudely estimated as

ˆ̇γloc =

[
ηr(φ)

1− φ

]1/2

ˆ̇γ , (2.3)
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FIGURE 1. (Colour online) Schematic of a channel-like fracture. The solid phase,
i.e. proppant with volume fraction φin, is added at the inlet to the fracturing fluid in a
cyclic fashion to produce a network of open channels.

which is verified reasonably well by experimental results (Ovarlez et al. 2006; Mahaut
et al. 2008; Dagois-Bohy et al. 2015) and agrees with the theoretical considerations
of Chateau et al. (2008). When the strain rate ˆ̇γ is imposed on the suspension, ˆ̇γloc
is representative of that felt by the local fluid and particle, and assuming a Herschel–
Bulkley type closure,

η̂f ( ˆ̇γ , φ)= η̂f ,0( ˆ̇γloc(φ))= κ̂0

[
ηr(φ)

1− φ

](n−1)/2

ˆ̇γ n−1
+
τ̂Y0

ˆ̇γ

[
ηr(φ)

1− φ

]−1/2

. (2.4)

This can be interpreted as assuming the liquid within the suspension obeys a Herschel–
Bulkley type law, but with φ-dependent consistency and yield stress defined by

κ̂ = κ̂0

[
ηr(φ)

1− φ

](n−1)/2

, τ̂Y =
τ̂Y0[

ηr(φ)

1− φ

]1/2 . (2.5a,b)

When ηr(φ) is included, the effective viscosity of the suspension increases with φ, but
note that the fluid viscosity (η̂f above) decreases with φ.

2.2. Dimensional analysis
Figure 1 schematically illustrates a fracture, somewhat distant from the well.
Fundamentally, this is a shear flow along a channel of varying width and orientation.
We assume three characteristic lengths: width D̂ (5–25 mm), length L̂ (100–600 m)
and height Ĥ (20–100 m). We assume that in-plane variations occur on a length scale
L̂t . min{L̂, Ĥ}, where L̂t� D̂. On a scale smaller than D̂, one might also include a
roughness scale d̂w.

The pumping process is modelled by a representative inflow velocity Û0
(0.1–3 m s−1), or alternatively a flow rate. Additionally we specify the inflowing
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proppant solids fraction φin, (typically 5 %–40 %). These variables will be time-varying
in a complex pumping operation. As the slurry travels along the fracture, some of the
frac fluid may leak off into the formation. This leads to higher solid volume fractions
in the fracture. Although at times this is a significant effect, for now we focus only
on transport along the fracture. Although a range of proppants may be used, common
is a 20/40 mesh sand with approximately spherical particles, a representative diameter
d̂p in the range 0.42–0.84 mm and density ρ̂s = 2650 kg m−3. Slurry rheology has
been discussed in § 2.1. We assume a frac fluid density ρ̂f (≈ 1000 kg m−3) and a
representative viscosity µ̂f .

Even with the simplistic description above, a minimum of 11 dimensional
parameters arise, depending on three independent dimensions. Thus, we expect
eight dimensionless groups (plus φin) to govern these flows. Five of these groups are
geometric. The roughness δw= d̂w/D̂� 1 we shall neglect for simplicity. On adopting
D̂ and L̂t as natural length scales for transverse and streamwise directions, we have
two groups, L = L̂/D̂ and H = Ĥ/D̂, that simply indicate the extent of the fracture.
More relevant to the transport processes are δp = d̂p/D̂ and δt = D̂/L̂t i.e. a scaled
particle diameter (ratio of particle diameter to fracture width) and the local fracture
aspect ratio, respectively. Note that throughout this paper we write all dimensional
quantities with a ·̂ symbol and dimensionless parameters without.

The remaining dimensionless groups include φin, the density ratio s= ρ̂s/ρ̂f ≈ 2.65
and two others, namely the densimetric Froude number (Fr) and Reynolds number
(Re):

Fr=
Û0√

ĝ(s− 1)D̂
, Re=

ρ̂f Û0D̂
µ̂f

. (2.6a,b)

In characterizing the rheology, we would expect at least two dimensionless groups,
e.g. n and a Bingham number Bl = τ̂Y0/[κ̂0(6Û0/D̂)n]. Here, µ̂f is the effective
viscosity of the suspending fluid and the Bingham number Bl is based on the
nominal laminar wall shear rate, 8Û0/D̂. Further dimensionless groups may arise in
characterizing the suspension (e.g. φm) and in operational parameters.

2.3. Characteristics of fracture flows
In the above two subsections we have indicated the main ranges of slurry rheologies
and other dimensional parameters that arise in hydraulic fracturing. In order to model
these flows effectively, we need to consider the behaviour at both the bulk scale and
the particle scale.

Regarding the bulk flow, pure liquid Reynolds numbers up to a maximum of
(5–10)× 103 are possible, but would be reduced via the presence of particles. More
typically Re ∼ 102 would be common in fracture transport regimes, reducing to
zero in cases of screen-out. In considering asymptotic models of flow in long thin
geometries, the leading-order inertial terms would be of size δtRe. Thus, at the outset
we deduce that, while non-inertial lubrication-type models have validity in suitably
straight fractures, inertia of the bulk flow is important in more complex fractures
even at moderate flow rates.

To understand the shear-rate regime with the fluids considered, note that a uniform
channel flow of pure frac fluid (φ = 0) would have a layered structure consisting of
an unyielded plug flow occupying a central fraction yY of the channel:

Bl

yY
(1− yY)

(
1−

1
n+ 1

yY −
n

n+ 1
y2

Y

)n

=

(
3(2n+ 1)

n

)n

(2.7)
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Flow type Slow Normal Fast

Slurry mean velocity Weak Moderate High
Viscosity/yield stress High Moderate Low
φ Moderate–high Moderate Moderate–low
δt � 1 . 10−2 . 10−1

Pseudo-plug yY 40 %–85 % 15 %–40 % 0 %–15 %
Pseudo-plug viscosity (Pa s) & 10 & 1 0.1–0.2
Pseudo-plug Stp � 1 � 1 � 1
Wall layer viscosity (Pa s) 0.05–0.2 0.03–0.05 ≈ 0.01
Wall layer ˆ̇γloc (s−1) . 600 300–1500 1000–3000
Wall layer Stp . 1 1–10 1–20

TABLE 1. Fracture flow categories: slow, normal and fast. First four rows define the
category in terms of operational parameter ranges (see § 2.2). Remaining rows characterize
the flow structure.

(yY ∈ [0, 1] is readily calculated numerically). Outside of the plug we have yielded
shear layers approaching the wall. This simple model can be adapted here by adjusting
Bl to include the effects of φ and typical variations in rheology, to give some
idea of the range of plug variation. We find that the plug could occupy between
10 % and 85 % of the width. Now we need to consider that the fracture is not
uniform. For such fluids, slow geometric variations in the flow direction induce
extensional stresses that break the plug. In such situations (e.g. Putz et al. 2009)
we may assume the deviatoric stress remains just above the yield stress with the
shear-rate scale determined by geometric variations, i.e. approximately ˆ̇γ ' Û0/L̂t

here. Considering the various effects of extensional stresses, inertial stresses, irregular
streamwise variations in geometry and potential transverse settling of dense particles,
it is sensible to assume that any predicted plug region is effectively a low-shear
pseudo-plug, rather than a rigid plug. Finally, let us note that this type of velocity
profile (low-shear-rate pseudo-plug plus sheared wall layers) is found in various
models for pressure-driven suspension flows, simply due to particle migration effects
and regardless of non-Newtonian effects.

The structure of pseudo-plug and sheared wall layer is helpful in evaluating the
local behaviour within the suspension, to which we now turn. First, given the relatively
high shear rates and nature of the solids-phase, Brownian and colloidal interactions
may be safely ignored. Key interactions are likely to be hydrodynamic and possibly
collisional. Within the wide operational ranges of dimensional parameters outlined
in § 2.2, we now consider combinations of parameters that produce characteristically
different effects in the flow at both bulk and particle scales. For simplicity we
categorize these as slow, normal and fast, as defined by the first four rows in table 1.

For each flow category we now use the rheological models outlined in § 2.1 together
with (2.7) to estimate: (i) the width of the low-shear pseudo-plug; (ii) characteristic
low-shear viscosities within the pseudo-plug; (iii) typical particle Stokes numbers
within the pseudo-plug; (iv) minimal viscosities, found near the walls; (v) maximal
local shear rates, found near the walls; and (vi) maximal particle Stokes numbers
within the wall layers. These parameters are tabulated in the lower rows of table 1.
This type of analysis is crude in not explicitly including particle migration effects,
but does begin to paint a clearer picture of the flows encountered.
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In general, the shear rate is relatively constant across the pseudo-plug and then
increases continuously but sharply through the shear layers. Shear thinning together
with the local strain-rate amplification of (2.3) result in significant centre-to-wall
variations in local particle Stokes number (Stp) given by

Stp =
ρ̂sd̂2

p

3πη̂f

ˆ̇γloc, (2.8)

which is interpreted as the ratio of the time scale for viscous drag to affect particle
momentum and the characteristic time scale of the suspension: ∼1/ ˆ̇γloc. Note that,
since δp� 1, transverse variations in both effective viscosity and shear rate (due to
the bulk imposed flow) are felt and evaluated locally on the particle length scale.

The Stokes number gives a measure of fluid–solid coupling. As expected,
considering the full range of likely process and geometric conditions, the pseudo-plug
regions are completely non-inertial in all flow types: Stp � 1. The main differences
are reflected in the size of the central low-shear region yY . In moving from the
pseudo-plug towards the wall, Stp increases due to both the increase in ˆ̇γloc and the
decrease in η̂f . For slow fracture flows we find Stp .1 throughout the fracture, whereas
for normal flows Stp > 1 for approximately half of the sheared layer, approaching
∼10 at the walls. For fast flows we would have 1. Stp . 20 over approximately half
the fracture width, for typical 20/40 proppant.

A representative particle Reynolds number is

Rep =
ρ̂f ˆ̇γlocd̂2

p

η̂f
=

3π

s
Stp, (2.9)

which closely follows the variations in Stp across the fracture as 3π/s∼O(1). While
Stp and Rep have similar size, the physical interpretation of these quantities is different.
Larger Rep > 1 values imply that we enter a nonlinear regime of drag (viscous to
inertial), whereas Stp > 1 indicates that the particle velocity is not fully relaxed.
The latter implies that the fluctuating components of the particle velocity becomes
important. Commonly, this is represented via the granular or particle temperature
Θ̂ > 0, which is the root-mean-square fluctuating velocity of the particle phase.
Temperature Θ̂ is present throughout the flow, but in Stokesian regimes (such as
within the pseudo-plug) Θ̂ becomes very small, serving primarily to regularize
diffusive fluxes (see e.g. Nott & Brady 1994). Particle temperature is more commonly
used in kinetic theories of particle dynamics and in granular flows.

2.4. Modelling flow in the fracture
The main modelling challenge is to allow for a broad range of both bulk-scale flow
effects (arising from geometry and process variations) and particle-scale effects as we
traverse the fracture width. We adopt a continuum approach in which variables are
interpreted as being volume-averaged over a suitably chosen local averaging volume,
but not time-averaged. (Note that for typical δp ≈ (2–4) × 10−2, we have 25–50
particle diameters across the fracture, so that we are close to the limit of validity
of a continuum approach.) Operational choices, cyclical pumping (e.g. CFT), particle
migration, the possibility of screen-out, etc. all combine to imply that models for
transport along the fracture should consider a full range of φ, from relatively dilute
to concentrated suspensions.
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102 S. Hormozi and I. A. Frigaard

The description emerging is of a Stokesian pseudo-plug layer bounded by shear
layers in which inertial and unsteady fluid–particle coupling effects are progressively
important towards the walls. Variables specific to solid or liquid phases are phase-
averaged, defined using the characteristic function of the phase, the local instantaneous
variable (e.g. solids-phase velocity) and a suitable smoothing or weighting function G
(see e.g. Drew 1983, [). Our dimensional variables will be denoted with a ·̂ throughout.
The suspension mass and momentum balances are

∇̂ · û= 0, (2.10)
D
Dt̂
[ρ̂û] = b̂+ ∇̂ · Σ̂, (2.11)

where û is the volume-averaged suspension velocity, b̂ and Σ̂ are the volume-averaged
suspension body force and stress tensor, respectively (see Batchelor 1970). The
suspension stress Σ̂ is often decomposed into individual contributions from both fluid
and solid phases:

Σ̂ =−p̂f I+ τ̂f + Σ̂p. (2.12)

The material derivative in (2.11) is

D
Dt̂
=
∂

∂ t̂
+ û · ∇̂. (2.13)

These equations are obtained by phase-averaging the individual equations for solid and
liquid phases, then summing to eliminate the inter-phase terms. Thus, we also need
to consider conservation equations for one phase, taken here as the solids phase:

∂φ

∂ t̂
+ ∇̂ · [φûp] = 0, (2.14)

ρ̂s
Dp

Dt̂
φûp = ∇̂ · Σ̂p +

i=np∑
i=1

∫
Si

n · σ̂G dS+ b̂. (2.15)

Here ûp is the phase-averaged particle velocity and φ is the solids volume fraction.
On the left-hand side of (2.15), Dp/Dt̂ denotes the material derivative using ûp for the
advective term. The first term on the right-hand side is the particle stress, i.e. particle
contribution to the suspension stress. The second term is the volume-averaged traction
on the particle surfaces and the last term is the average body force.

2.5. Developing the suspension balance framework
Diffusive and dispersive effects combine with the averaged forces acting on the solids
phase to distribute the particles. The solid-phase mass conservation equation (2.14) is
typically manipulated to give a transport equation for evolution of φ. Note that the
phase averaging adopted preserves the instantaneous dynamics of each configuration,
so that (2.14) has no diffusive flux. At least two general approaches have been
taken to model particle-phase diffusion: (i) the diffusive flux approach of Leighton
& Acrivos (1987), modified by Phillips et al. (1992); and (ii) the SBM of Nott &
Brady (1994).
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Dispersion of solids in fracturing flows of yield stress fluids 103

Following the SBM approach here, the relative velocity (ûr = ûs− ûf ) is substituted
into (2.14) to give

∂φ

∂ t̂
+ ∇̂ · [φû] = −∇̂ · [φ(ûp − û)] =−∇̂ · [φ(1− φ)ûr]

= ∇̂ · [φ(1− φ)M̂(η̂f , d̂p, φ)f̂ D], (2.16)

where M̂ denotes the particle mobility and f̂ D is the phase-averaged particle drag force.
The usual approach now is to consider (2.15) in the limit of small inertia, whereby
f̂ D may be substituted into (2.16), leading to the divergence of the remaining terms
on the right-hand side of (2.15).

More recently Lhuillier (2009) and Nott et al. (2011) have shown that the
volume-averaged traction (second term on the right-hand side of (2.15)) may be
expressed as the sum of a particle-averaged force and the negative divergence of the
particle stress. In this sense, the particle stress does not contribute to the particle
momentum equation. The only terms remaining on the right-hand side of (2.15)
are the external body force and the particle-averaged force, which consists of the
hydrodynamic forces, contact traction forces and interparticle forces. This questions
the foundation of the SBM model in attributing the shear-induced particle migration
to the divergence of particle-phase stress. However, Nott et al. (2011) showed that the
particle-averaged force can itself be expressed in terms of an interphase drag force
and the divergence of a stress tensor, which includes the effects of hydrodynamic,
contact and interparticle forces. Consequently, the form of particle-phase momentum
equation used in the SBM approach is correct, but using conventional closures
for the interphase drag force and the stress tensor is currently under debate (see
Lhuillier 2009; Nott et al. 2011; Brady 2015). Thus, we continue below to follow the
classical SBM approach in developing our model, but incorporate the local viscosity
of the shear-thinning yield stress suspension as outlined in § 2.1, and other necessary
extensions.

One advantage of the SBM approach is that the particle temperature is included,
which is helpful for modelling non-Stokesian particle effects present in fracture flows,
as we do below, and in interpreting the results. We therefore replace (2.15) with the
solid momentum equation:

ρ̂sφ
Dp

Dt̂
ûp = f̂ B + f̂ P + ∇̂ · Σ̂p. (2.17)

The phase-averaged forces acting on the particles contribute to two terms: f̂ B

representing the net solids-phase body force and f̂ P representing the hydrodynamic
forces. The phase-averaged net solids-phase body force is

f̂ B = φ[ρ̂s − ρ̂f ]g. (2.18)

In this paper we simplify by assuming that the phase-averaged net particle force is
given primarily by the drag force, f̂ P≈ f̂ D, neglecting all other hydrodynamic particle
forces. This in turn is modelled via a hindered settling closure:

f̂ D =−
3φρ̂f CD(Rep,l)

4h(φ)d̂p

|ûr|ûr. (2.19)
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104 S. Hormozi and I. A. Frigaard

We adopt the same framework as Ovarlez and co-workers. In Ovarlez et al. (2012) the
authors study particle settling in yield stress fluids, perpendicular to the main direction
of shear. They advocate using a Newtonian hindering function h(φ),

h(φ)=
1− φ
ηr(φ)

, (2.20)

to modify the single-particle settling speed. They identify two limits (a plastic regime
and a viscous regime) in each of which they use a drag law incorporating η̂f ( ˆ̇γ , φ), as
defined in (2.4). A quite similar usage of η̂f for fitting a drag coefficient is described
in Tabuteau, Coussot & de Bruyn (2007). The drag coefficient CD(Rep,l) is extended
to cover inertial regimes, for which there are a number of similar closure laws. There
is an advantage to having a drag coefficient closure law that is easily invertible, and
consequently we adopt

CD(Rep,l)=


24

Rep,l
, Rep,l < 1.4,

ACD

Re0.625
p,l

, 1.4 6 Rep,l 6 500,
(2.21)

where ACD = 24/1.40.375. Note that the range of Rep,l > 500 is unlikely to be attained.
The Reynolds number is based on η̂f ( ˆ̇γ , φ) and |ûr|, i.e.

Rep,l =
ρ̂f |ûr|d̂p

η̂f
. (2.22)

Inverting (2.19), with the drag coefficient (2.21), leads straightforwardly to the relation
ûr =−M̂(φ, ˆ̇γ , |f̂ D|)f̂ D, required for (2.16). We specify a dimensionless version of the
mobility M̂ later.

Returning to the SBM derivation, it is assumed that the left-hand side of (2.17)
is relatively small (which would hold, for example, in conditions where the flow is
steady, rectilinear and fully developed). In this case, we may write

f̂ D ≈−[f̂ B + ∇̂ · Σ̂p], (2.23)

and the solids mass conservation equation becomes

∂φ

∂ t̂
+ ∇̂ · [φû] =−∇̂ · [φ(1− φ)M̂(φ, ˆ̇γ , |f̂ D|)(f̂ B + ∇̂ · Σ̂p)]. (2.24)

The particle stress tensor is usually modelled by the expression

Σ̂p =−Π̂Z + η̂fηp(φ) ˆ̇γ (2.25)

(see e.g. Fang et al. 2002). The second term in (2.25) is the particle shear stress
term. The bulk rate-of-strain tensor for the suspension is ˆ̇γ = ˆ̇γij. Note that the bulk
suspension strain rate is

ˆ̇γ =

[
1
2

3∑
i,j=1

ˆ̇γ 2
ij

]1/2

. (2.26)
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Dispersion of solids in fracturing flows of yield stress fluids 105

The first term in (2.25) is a product of the particle pressure Π̂ and the tensor Z ,
through which we account for normal stress differences. It is argued that a reasonable
approximation to the tensor Z is

Z =

λ1 0 0
0 λ2 0
0 0 λ3

 , (2.27)

where the directions x1 and x2 are in the plane of shear (here this would be locally
aligned with the mean flow along the fracture). According to the scaling, λ1 + λ2 +

λ3=3, and from Brady & Morris (1997), a common choice for shear flow is λ1=λ2=

2λ3 = 6/5. Other choices can be made if there is specific knowledge of the normal
stress differences. The particle pressure is modelled using the particle temperature in
place of the strain rate, considering that ˆ̇γ 2

∝ d̂−2
p Θ̂ in a homogeneous suspension. The

form selected is

Π̂ = η̂f d̂−1
p Θ̂

1/2p(φ), p(φ)= 2
√

3kφφ1/2(ηp)
A. (2.28a,b)

An evolution equation for Θ̂ is derived in Nott & Brady (1994) as a simplified form
of the mechanical energy balance for the particle phase:

3ρ̂sφC(φ)
DpΘ̂

Dt̂
= Σ̂p, ˆ̇γ + 4

√
3η̂f d̂−2

p β(φ)Θ̂
1/2
|ûr| − 12η̂f d̂−2

p α(φ)Θ̂ − ∇̂ · q̂. (2.29)

There are slight differences due to our preference to work with the particle diameter
rather than radius, and a factor of 1/3 absent in Nott & Brady (1994), compared to the
usual definition of particle temperature. The heat-capacity term C(φ) is not specified,
and not used below. The functions α(φ) and β(φ) are specified semi-empirically by
considering different limits of the model. The field q̂ represents the phase-averaged
fluctuating component of the solids-phase dissipation, i.e.

q̂=−〈Σ̂ ′p · (ûp − 〈û〉p)〉, (2.30)

which is modelled via a Fourier-type ‘conductive heat flux’ law,

q̂=−3η̂fκΘ(φ)∇̂Θ̂. (2.31)

Although phenomenological in many respects the above model has proven successful
in predicting solids-phase distributions in pressure-driven shear flows and many others.

2.6. Unsteady inertial effects
The model outlined above is the standard SBM approach, extended to include non-
Newtonian frac fluids (§ 2.1) and steady inertial effects via the nonlinear drag regime.
In fracturing flows, within the shear layers approaching the walls, unsteady inertial
effects also arise. We now look in more detail at the response of the suspension in
the different parts of the flow, with the aim of developing a rational framework that
covers these effects.

Following Cassar, Nicolas & Pouliquen (2005) and Andreotti, Forterre & Pouliquen
(2013) we consider a particle that accelerates within the suspension, under the
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106 S. Hormozi and I. A. Frigaard

action of a pressure P̂ and drag force F̂d. The particle responds on at least three
different microscopic time scales related to rearrangement of the suspension. Either
P̂ is balanced by pure acceleration (leading to t̂1 ∼ ρ̂sΘ̂

1/2d̂p/P̂), or P̂ is balanced
by F̂d. The latter leads to t̂2 (∼ η̂f /P̂) if the drag is principally viscous, or to

t̂3 (∼ d̂p

√
ρ̂f CD/P̂) if the drag is principally inertial. When the suspension is itself

under shear, there is also a macroscopic time scale arising from the strain rate. We
have seen that the bulk strain rate ( ˆ̇γ ) is felt locally as ˆ̇γloc, which is still macroscopic
on the particle scale.

Comparison of the macroscopic time scale ( ˆ̇γ −1
loc ), with each of t̂1–t̂3 leads to three

dimensionless groups, the relative size of which determines the dominant characteristic
behaviour of the suspension, i.e. at different positions across the fracture and in
different types of bulk flow. For example, when t̂1 & t̂2 and t̂1 & t̂3, the rate-limiting
microscopic time scale is t̂1 and suspension behaviour is described primarily by
I = ˆ̇γ t̂1 (case I). In this regime particle inertia dominates. If t̂2 & t̂1 and t̂2 & t̂3, then
t̂2 is the rate-limiting microscopic time scale and suspension behaviour is described
primarily by J = ˆ̇γ t̂2 (case II: viscous drag regime). Finally, when t̂3 is rate-limiting,
we expect JI = ˆ̇γ t̂3 to describe the suspension behaviour (case III: inertial drag
regime).

These three microscopic regimes are plotted schematically in figure 2. Note that the
drag coefficient CD is used on the vertical axis in order to capture both viscous and
inertial balances. The fluctuating component of velocity has characteristic size Θ̂1/2,
which is used to define a (fluctuating) particle Reynolds number:

Rep,Θ =
ρ̂f d̂pΘ̂

1/2

η̂f
. (2.32)

Using Rep,Θ in the usual Stokesian drag law allows us to evaluate t̂1/t̂2=
√

sRep,Θ/24
∝
√

Stp,Θ . One can similarly evaluate t̂1/t̂3 ∝ s1/2Re5/16
p,Θ , over the inertial range likely

in this process (and eventually t̂1/t̂3 ∝ s1/2 as Rep,Θ→∞).
In each microscopic regime it is possible to derive order-of-magnitude estimates

for the key terms in the solids-phase conservation laws, as was done by Jenkins &
McTigue (1990) for the granular regime; see table 2. In table 2, ĥ = d̂p[ηr(φ)/(1 −
φ)]−1/2 denotes a representative particle separation, estimated consistently with our
earlier treatment of the local strain rate. Particle conductivity and dissipation terms
are described later with the transport equation for Θ̂ (see appendix A).

It remains to interpret the different fracture flows in terms of the localized
suspension characteristics described above. To do this we balance ˆ̇γloc ∼ Θ̂1/2/dp,
to enable us to relate Stp,Θ to Stp. Note that ˆ̇γloc is imposed by the macroscopic flow,
whereas Θ̂1/2/dp is a measure of the local response of the fluctuating particle velocity
to this strain rate. Figure 2 shows schematically where the (process-scale) fracture
flows ‘live’ in terms of the (I, J, JI) cartoon that indicates microscopic regimes. The
arrows indicate the variation across the fracture from the pseudo-plug in the centre
to more inertial and unsteady regimes at the fracture walls.

This schematic indicates to us how non-Stokesian effects enter as we move across
the fracture width, and table 2 suggests the appropriate scaling for extending the
different terms in the SBM. Although we take this approach below, it is not the
only way to model and include inertial/unsteady effects in the SBM. An alternative
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Case II
viscous drag

Case I

Case III
inertial drag

Fracture wall

Fracture wall
Pseu

do

-plug

1

1

Slow

Normal

Fast

FIGURE 2. (Colour online) Variation of the local suspension regimes with slow, normal
and fast fracture flows. The arrows indicate the variation across the fracture from the
pseudo-plug in the centre to more inertial regimes at the fracture walls (styled after figure
7.13 in Andreotti et al. (2013)).

Case I Case II Case III

Pressure ∼
ρ̂sΘ̂ d̂p

ĥ
∼
η̂f (1− e)Θ̂1/2

ĥ
∼
ρ̂f Θ̂(1− e)d̂p

ĥ

Viscosity ∼
ρ̂sΘ̂

1/2d̂2
p

ĥ
∼
η̂f d̂p

ĥ
∼
ρ̂f Θ̂

1/2d̂2
p

ĥ

Conductivity ∼
ρ̂sΘ̂

1/2d̂2
p

ĥ
∼
η̂f d̂p

ĥ
∼
ρ̂f Θ̂

1/2d̂2
p

ĥ

Dissipation ∼
ρ̂sΘ̂

3/2(1− e)

ĥ
∼
η̂f Θ̂

d̂pĥ
∼
ρ̂f Θ̂

3/2d̂p

ĥ

TABLE 2. Scalings of solid-phase properties for cases I, II and II.

approach is to introduce an O(Rep,Θ) ‘correction’ into the energy equation of the
SBM (and into the other closures), drawing from kinetic theory. Closure models
in these regimes have been developed by Koch and co-workers (e.g. Sangani et al.
1996; Wylie, Koch & Ladd 2003), targeted primarily at dense inertial gas suspensions,
but also applicable to liquid suspensions with sufficiently large density ratio, s. An
application of this style of model to slurry flows in fractures is developed by Eskin
& Miller (2008). The gas kinetic theory closures are not strictly applicable for the
s typical of fracturing flows, but this body of work does indicate the order of Rep,Θ
correction. We outline this approach and compare with the direct scaling approach in
appendix B.

In the Stokesian regime (case II) these scales are well known and those in table 2
are consistent with those of the SBM in Nott & Brady (1994). Comparing the
scalings for case I with those for case II gives us the extension to the SBM closures
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Case I Case II Case III

Pressure ∼sRep,Θ
η̂f Θ̂

1/2

d̂p

p0(φ)
η̂f Θ̂

1/2

d̂p

p0(φ) ∼Rep,Θ
η̂f Θ̂

1/2

d̂p

p0(φ)

Viscosity ∼sRep,Θ η̂fηp(φ) η̂fηp(φ) ∼Rep,Θ η̂fηp(φ)

Conductivity ∼sRep,Θκcη̂fηp(φ) κcη̂fηp(φ) ∼Rep,Θκcη̂fηp(φ)

Dissipation ∼sRep,Θ
η̂f Θ̂

d̂2
p

ηp(φ)

φ

η̂f Θ̂

d̂2
p

ηp(φ)

φ
∼Rep,Θ

η̂f Θ̂

d̂2
p

ηp(φ)

φ

TABLE 3. Forms of solid-phase properties for cases I, II and III, scaled with the
Stokesian case.

as we transition from Stokesian to the granular regime. Comparing the scalings for
case III with those for case II gives us the extension to the SBM closures as we
transition from Stokesian to the inertial hydrodynamic regime. The results of making
these comparisons are illustrated in table 3. We observe that (dimensionally) the
first column has a prefactor sRep,Θ compared to the Stokesian regime (case II), and
the third column has a prefactor Rep,Θ . The case III scalings are based on a fully
inertial regime (in which the drag coefficient becomes Reynolds-invariant), but in this
application we are still in the weakly inertial regime at the particle scale. Typically
s≈ 2.65 (sand–water), or sometimes s≈ 3–4 (ceramic proppants), so that the relevant
extensions to the Stokesian closures may be regarded as being of order Rep,Θ .

Although we have used table 2 directly, the same order of magnitudes result
on using the micro–macro time scale balances outlined above, which has some
current popularity. A recent example of this is from Trulsson et al. (2012), who
use a 2D computational approach to model the transition between case I and case
II regimes. They show that the sRep,Θ prefactor is multiplied by a constant (≈0.6
for the ranges studied). This suggests that the scaling approach followed here is
valid and that we may also expect O(1) constant multipliers to the prefactors listed
in table 3. Determination of these multipliers, however, requires extensive further
experimentation and/or simulation, which is not our intent here. Instead, we assume
constant unit multipliers for simplicity, which leads to the following extensions to the
SBM closures:

ηs = ηp(φ)(1+ sRep,Θ), (2.33)

Π = ηfΘ
1/22
√

3kφφ1/2ηp(φ)(1+ sRep,Θ), (2.34)

α =
kαηp(φ)

φ
(1+ sRep,Θ), (2.35)

κΘ = kcηp(φ)(1+ sRep,Θ). (2.36)

3. Dimensionless model

To clarify the different physical effects present in the model derived in § 2.4, we
scale the various equations. We assume a (locally) Cartesian coordinate system at any
position along the fracture, with x̂ in the direction of flow, ŷ measured across the
fracture and ẑ measured downwards, aligned with gravity. We define dimensionless
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coordinates and velocity components as

(x, y, z)=
(

x̂

L̂t

,
ŷ

D̂
,

ẑ

L̂t

)
, (u, v,w)=

(
û

Û0
, δt

v̂

Û0
,

ŵ

Û0

)
, (3.1a,b)

and time is scaled with L̂t/Û0. The scaled fracture has walls at y=−yw,−(x, z) and y=
yw,+(x, z). Recall that δt = D̂/L̂t� 1 reflects the local aspect ratio of the fracture (δ−1

t
is thus a representative distance along the fracture over which significant geometric
changes take place). Components of the particle velocity and relative velocity are
scaled in identical fashion. On applying this scaling, it follows that the leading-order
strain rates are shear components in the plane of the fracture, of size Û0/D̂, with
extensional strain rates O(δt) smaller.

The extensional strain rates are felt primarily where the shear components vanish.
As discussed in § 2.2, the slowly varying geometry tends to induce a pseudo-plug
region in the fracture midplane within which the yield stress is marginally exceeded
and the strain rates are of the size of the extensional strain rate. Although there are
analyses of velocity profiles within such regions, these are geometry-specific and
amount only to an O(δt) correction. To include this geometric effect in a general (but
phenomenological) way, we simply modify the strain rate as

ˆ̇γ =
Û0

D̂
γ̇ =

Û0

D̂

[(
∂u
∂y

)2

+

(
∂w
∂y

)2

+ δ2
t

]1/2

, (3.2)

wherever it appears in the effective viscosity. This is essentially a regularization: the
strain rate will not vanish in the pseudo-plug and the effective viscosity will remain
finite. In the sheared layers (since δt� 1), this results in a minor perturbation to the
leading-order shear stresses and flow.

As the leading-order strain rates are ∼Û0/D̂, we define a viscosity scale η̂0 as

η̂0 = κ̂0

(
Û0

D̂

)n−1

, (3.3)

which we use to scale all viscous terms. The dimensionless liquid-phase viscosity is

ηf (γ̇ , φ)= [γ̇loc(γ̇ , φ)]
n−1
+

B
γ̇loc(γ̇ , φ)

, (3.4)

where γ̇loc(γ̇ , φ) is a dimensionless local strain rate and B is the Bingham number:

γ̇loc(γ̇ , φ)=

[
ηr(φ)

1− φ

]1/2

γ̇ =

[
ηr(φ)

1− φ

]1/2
[(

∂u
∂y

)2

+

(
∂w
∂y

)2

+ δ2
t

]1/2

, (3.5)

B=
τ̂Y0D̂

η̂0Û0
=

τ̂Y0

κ̂0

(
Û0

D̂

)n . (3.6)

The relative viscosity ηr(φ) and particle-phase viscosity ηp(φ) are already
dimensionless.
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To scale the remaining stresses, we need a scale for the particle temperature and
the pressure. Considering the relation to the strain rate in a homogeneous sheared
suspension, we write Θ̂ = δ2

pÛ2
0Θ . We scale the fluid pressure as

p̂f = ρ̂f ĝẑ+
1
δt
η̂0

Û0

D̂
pf , (3.7)

which anticipates the usual viscous shear-flow balance with the leading-order shear
stresses. The hydrostatic component ρ̂f ĝẑ is subtracted from the total stress and
included as part of the body force in the momentum equations. The remaining
stresses, when scaled with η̂0Û0/D̂ adopt the following form:

Σ =−
1
δt

pf I+ ηf


O(δt)

∂u
∂y

O(δt)

∂u
∂y

O(δt)
∂w
∂y

O(δt)
∂w
∂y

O(δt)


︸ ︷︷ ︸

τf

− ηfΘ
1/2p

λ1 0 0
0 λ2 0
0 0 λ3


︸ ︷︷ ︸

ΠZ

+ τp, (3.8)

p= 2
√

3kφφ1/2ηp(φ)(1+ sRep,Θ), (3.9)

τp = ηfηp(φ)(1+ sRep,Θ)


O(δt)

∂u
∂y

O(δt)

∂u
∂y

O(δt)
∂w
∂y

O(δt)
∂w
∂y

O(δt)

 . (3.10)

Finally, we scale the phase-averaged particle forces with η̂0Û0/d̂2
p. For the drag force

we have

f D =−


18φηf

h(φ)
ur,

δpRe|ur|

ηf
6 1.4,

18φηf

h(φ)

(
δpRe|ur|

1.4ηf

)3/8

ur,
δpRe|ur|

ηf
> 1.4,

(3.11)

where ur = (ur, δtvr, wr). Alternatively, we can write the relative velocity in terms of
a scaled mobility function, ur =−M(|f D|)f D:

ur =−


h(φ)

18φηf
f D,

δpReh(φ)|f D|

18φη2
f

6 1.4,

h(φ)
18φηf

(
1.4

18φη2
f

δpReh(φ)|f D|

)3/11

f D,
δpReh(φ)|f D|

18φη2
f

> 1.4.
(3.12)

3.1. Scaled governing equations
The dimensionless suspension mass and momentum equations are:

0=∇ · u+O(δt)︸ ︷︷ ︸
CT

, (3.13)
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δtRe
D
Dt
(ρu)=−

∂pf

∂x
+
∂

∂y

[
ηf [1+ ηs]

∂u
∂y

]
− δtλx

∂Π

∂x
+O(δt)︸ ︷︷ ︸

CT

+O(δ2
t )︸ ︷︷ ︸

SSG

, (3.14)

δ3
t Re

D
Dt
(ρv)=−

∂pf

∂y
− δtλy

∂Π

∂y
+O(δ2

t )︸ ︷︷ ︸
CT

+O(δ2
t )︸ ︷︷ ︸

SSG

, (3.15)

δtRe
D
Dt
(ρw)=

Re
Fr2

φ −
∂pf

∂z
+
∂

∂y

[
ηf [1+ ηs]

∂w
∂y

]
− δtλz

∂Π

∂z
+ O(δt)︸ ︷︷ ︸

CT

+O(δ2
t )︸ ︷︷ ︸

SSG

. (3.16)

The terms identified as CT and SSG indicate the next order of terms that enter the
equations. Here CT denotes curvature terms, i.e. due to the streamwise variations in
the local coordinate system. Similarly, SSG denote the next-order terms in the shear
stress gradients.

We now consider the solids-phase momentum balance. The aim is to use the
momentum balance to estimate the relative size of the drag force components and
hence the relative velocity, which is needed in order to evaluate the solids-phase
transport via the mass conservation equation, i.e. in (2.16). The x- and z-momentum
equations are

δtRe sφ
Dp

Dt
up =

fD,x + fD′,x

δ2
p

+
∂

∂y

[
ηfηs

∂u
∂y

]
− δtλx

∂Π

∂x
, (3.17)

δtRe sφ
Dp

Dt
wp =

Re
Fr2

φ +
fD,z + fD′,z

δ2
p

+
∂

∂y

[
ηfηs

∂w
∂y

]
− δtλz

∂Π

∂z
, (3.18)

where we have neglected terms of O(δt) related to curvature and terms of O(δ2
t )

related to shear stress gradients. The term fD′ denotes all forces other than drag
and buoyancy that act on the particles. Assuming that δtRe . O(1), we see that the
leading-order contributions to the drag force are

|fD,x| ∼O(δ2
p)+ |fD′,x|, fD,z ∼−fD′,z − δ

2
p

Re
Fr2

φ +O(δ2
p). (3.19a,b)

Although we ignore fD′ in our reduced model later, we include here some
discussion, as it is helpful for future modelling. Other than viscous drag and
gravitational/buoyancy forces, a number of other forces act on particles immersed in
a fluid (see e.g. Maxey & Riley 1983). These include the Archimedes force, added
mass, Basset force, components of lift force and various smaller terms (e.g. Faxen
corrections). The added mass and Basset forces are related to fluid and particle
accelerations and to the time evolution of the relative motion. Although closure
expressions for these forces can be found in the literature, we ignore them as there
is no clear directional bias to these contributions. Similarly, we ignore the Magnus
component of the lift force, which is related to systematic rotation of solid particles.
The leading-order Archimedes force is likely to be transverse to the main flow
direction, driven by streamline curvature (see below). There has been considerable
work on the lift forces experienced by particles in shear flows at moderate Re
(e.g. Hogg 1994; Asmolov 1999; Asmolov, Lebedeva & Osiptsov 2009; Asmolov &
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Osiptsov 2009; Lebedeva & Asmolov 2011), with the last specifically focused on
fracturing. These studies do require small particle Reynolds numbers and are aimed
at dilute suspensions. Although this limits the accuracy of applying these closures
directly, they are valuable in assessing the magnitude of the lift force. In particular,
when the principal components of the velocity are in the plane of the fracture, the
main lift force components acts transversely, in the y-direction. In summary, the main
contributions to fD′ will be in the y-direction, which means that the main contribution
to ( fD,x, fD,z) comes from the term δ2

pφRe/Fr2, aligned with gravity.
The solid-phase y-momentum balance is important in that the particle forces here

contribute to the diffusive particle fluxes:

O(δ2
t Re)︸ ︷︷ ︸
IT

= δtRe sφ
u2

s,str

rκ
− λy

∂Π

∂y
+

fD,y + fD′,y

δ2
p

+O(δt)︸ ︷︷ ︸
CT

+O(δt)︸ ︷︷ ︸
SSG

, (3.20)

with the same meaning as before, regarding the terms identified as CT and SSG.
The terms marked IT in (3.20) are inertial terms of the specified order. At lower
order (moved to the right-hand side) is a centrifugal term that may become important
in cases where the fracture has streamwise curvature: here the scaled radius of
curvature is rκ and us,str indicates the solids-phase speed in the local (x, z)-plane,
along the fracture. As commented above, the two leading-order terms in fD′,y that
have a consistent directional bias are a transverse Archimedes force and lift force.
The transverse Archimedes force is similar to the centrifugal term but involves the
fluid density and speed in the local (x, z)-plane. Combining this with the centrifugal
term in (3.20) leads to

fA,y ≈ δ
2
pδtRe(s− 1)φ

u2
+w2

rκ
, (3.21)

with relative error of the size of the relative velocity. We denote the scaled lift
forces by fL,y and note simply that prescribing fL,y fully is not possible from the
current literature. The expressions deriving from Hogg (1994) and Asmolov (1999)
and similar relate to Newtonian fluids and dilute regimes. Recent studies by Lashgari
et al. (2014, 2016) show that lift affects the particle distribution only at smaller
solid volume fractions (see also Segre & Silberberg (1961)): for φ > 0.2, the particle
distribution is governed increasingly by particle–particle interactions and particle-phase
stress.

In summary, from (3.20) we find that

fD,y = δ
2
pλy
∂Π

∂y
− fA,y − fL,y +O(δ2

pδt)+O(δ2
pδ

2
t Re). (3.22)

In substituting for the relative velocity in (2.16), we will take the divergence of the
relative velocity. Owing to the scaling, the y-derivative in the divergence operator
is multiplied by 1/δt. Thus, in neglecting small terms in fD,y, to be consistent with
the (x, z)-directions we should neglect only the terms of O(δ2

pδt) and O(δ2
pδ

2
t Re). We

cannot say whether or not the lift and Archimedes terms are consistently smaller/larger
than the stress gradient term. In all likelihood there will be parameter regimes where
these forces are significant, e.g. tortuous fractures at high speeds for fA,y and dilute
regimes for fL,y. We continue by assuming that the three contributions to fD,y are
comparable in (3.22). Note, however, that we have neglected terms that are strictly

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

46
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.465


Dispersion of solids in fracturing flows of yield stress fluids 113

O(δ2
p) in estimating fD,x and fD,z, retaining only the term δ2

pφRe/Fr2. Consistent with
this approximation is that the magnitude of the drag force vector does not involve fD,y
at leading order, i.e. at leading order we have |fD| = δ

2
pφRe/Fr2 and consequently

ur ≈−M

(∣∣∣∣∣δ2
pφRe

Fr2

∣∣∣∣∣
)(

0, δ2
pλy
∂Π

∂y
− fA,y − fL,y, −δ

2
p

Re
Fr2

φ

)
. (3.23)

The leading-order relative velocities are now inserted into the solids mass conservation
law:

∂φ

∂t
+∇ · [φu] =

δ2
p

δt

∂

∂y

[
φ(1− φ)M

(∣∣∣∣∣δ2
pφRe

Fr2

∣∣∣∣∣
)(
λy
∂Π

∂y
−

fL,y + fA,y

δ2
p

)]

+
δ2

pRe

Fr2

∂

∂z

[
φ2(1− φ)M

(∣∣∣∣∣δ2
pφRe

Fr2

∣∣∣∣∣
)]

. (3.24)

Finally, the granular temperature equation scales as follows:

0 = ηfηs(φ, Θ)[u2
y +w2

y] − 12ηfα(φ, Θ)Θ + δ
2
p
∂

∂y

[
3ηfκ(φ, Θ)

∂Θ

∂y

]
− δ2

pδtRe sφC(φ)
DpΘ

Dt
+O(δ2

pδ
2
t )︸ ︷︷ ︸

HFT

+O(δ2
t )︸ ︷︷ ︸

VDT

, (3.25)

where neglected terms are lower-order terms in the heat flux (HFT) and viscous
dissipation functional (VDT). The convective terms are small and to leading order the
balance is simply

0= ηfηs[u2
y +w2

y] − 12ηfα(φ, Θ)Θ + δ
2
p
∂

∂y

[
3ηfκ(φ, Θ)

∂Θ

∂y

]
. (3.26)

As in Nott & Brady (1994) the heat flux term is largely inactive unless we have large
gradients in Θ .

3.2. Viable modelling frameworks
The (x, z)-domain has size L × H. We regard δt as characteristic of streamwise
geometrical variations. The principal equations are (3.13)–(3.16), (3.24) and (3.26),
with all terms CT and SSG neglected. Evidently, if we consider all O(δt) terms,
we invite suffocating geometric complexity, quite apart from the additional normal
stresses and shear stress contributions. Neglecting terms strictly of O(δt), we see that
the Hele-Shaw type of model is recovered as δt→ 0 at fixed Re. If Re is O(1), then
anyway the Hele-Shaw type of averaging is valid, but in practice many fracturing
flows have large Re. Insofar as the bulk suspension flow is concerned, the terms of
O(δtRe) are probably the most important to include at high flow rates. These terms
change the form of the momentum balance. Equally, at higher flow rates we would
expect larger gradients in shear rates and thus inertial effects to appear at the particle
scale in sheared layers nearer the walls. In summary, it appears that two types of
model are feasible within this framework, according partly to the fracture geometry,
fluid rheology and flow rates.
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3.2.1. Long thin uniform fractures
Here we effectively assume that δt ∼ 1/L, that Re is moderate and that the fracture

width D̂ is small enough for δ2
p� δt. The following model equations result:

0=∇ · u, (3.27)

0=−
∂pf

∂x
+
∂

∂y

[
ηf [1+ ηs]

∂u
∂y

]
, (3.28)

0=−
∂pf

∂y
, (3.29)

0=
Re
Fr2

φ −
∂pf

∂z
+
∂

∂y

[
ηf [1+ ηs]

∂w
∂y

]
, (3.30)

∂φ

∂t
=−∇ · [φu] +

δ2
p

δt

∂

∂y

[
φ(1− φ)M

(∣∣∣∣∣δ2
pφRe

Fr2

∣∣∣∣∣
)(
λy
∂Π

∂y
−

fL,y + fA,y

δ2
p

)]

+
δ2

pRe

Fr2

∂

∂z

[
φ2(1− φ)M

(∣∣∣∣∣δ2
pφRe

Fr2

∣∣∣∣∣
)]

, (3.31)

0= ηfηs[u2
y +w2

y] − 12ηfα(φ, Θ)Θ + δ
2
p
∂

∂y

[
3ηfκ(φ, Θ)

∂Θ

∂y

]
. (3.32)

This model has potential for further analysis and is continued below in § 4, where we
shall neglect fL,y and fA,y for simplicity.

3.2.2. Inertial hydraulics in rough fractures
A second set of equations that it makes sense to consider involve more geometrically

complex fractures, where δt � 1/L, higher flow rates and lower viscosities are
considered. Inertial terms would need modelling in the momentum balance. These
flows are likely to have a modified velocity profile from that which results from the
long thin model above, as physically the geometry prevents the flow from ever fully
developing; see e.g. the computations of Skjetne et al. (1999) for a Newtonian flow.
This unsteadiness may warrant incorporation of an additional diffusive term in the
solids-phase mass conservation equation.

Computationally, this type of model still benefits from being reduced with respect to
a full Navier–Stokes problem, but would need resolving as the flow evolves along the
fracture. Effectively, the Navier–Stokes system is reduced to a set of boundary layer-
type equations. The solids-phase mass conservation equation now does not necessarily
evolve to a dispersive limit. This model framework requires considerable development,
in both modelling and computation. Although such a model is needed for inertial flows
in spatially varying fractures, note that, if developed, this model should incorporate all
the dynamics of the model in § 3.2.1, which is anyway a limiting case.

4. Analysis of flows in long thin uniform fractures
In the remainder of the paper we explore the model in § 3.2.1. We note that the

momentum and temperature balances are stationary, driven by time variations in φ
solved by integrating forward (3.31). It is worth mentioning that recently Dontsov
& Peirce (2014) and Lecampion & Garagash (2014) have studied the leading-order
Stokesian flows of Newtonian slurries in long thin uniform fractures. Our analysis
extends beyond this by considering inertial flows of non-Newtonian slurries in
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the presence of gravitational effects in both leading order and first order, and in
developing a general framework. Particularly, our main interest is in the streamwise
development of the suspension properties along the fracture.

We consider first the limit δt/δ
2
p � 1 of rapid transverse equilibrium. The physical

meaning of this limit can be heuristically explained as follows. The advective time
scale along the fracture is t̂a∼ L̂t/Û0. Solids-phase diffusivity, on the other hand, scales
with ˆ̇γ d̂2

p, so that the time scale for equilibration across the fracture is t̂d = D̂2/( ˆ̇γ d̂2
p).

Therefore, the ratio of these time scales is

t̂d

t̂a
∼

D̂2Û0

ˆ̇γ d̂2
pL̂t

=
δt

δ2
p

. (4.1)

In other words, the limit δt/δ
2
p � 1 corresponds to that in which a rapid transverse

equilibrium of the solids distribution is attained over a length scale that is shorter than
L̂t. For simplicity, and since we do not have adequate closure models, we ignore the
terms fL,y and fA,y for the remainder of the paper. We also approximate φRe/Fr2 by
φ̄Re/Fr2 in (3.30), where φ̄ is the value of φ averaged across the fracture, i.e. assume
the local distribution of φ has a secondary influence on determining the velocity field,
in terms of the distribution of buoyancy forces (but not in terms of viscous effects);
see appendix B for a discussion of this. This implies that the velocity vector in the
plane of the fracture, (u,w), is parallel to the modified pressure gradient:

(u,w)
∥∥∥∥(−∂pf

∂x
,−

∂pf

∂z
+

Re
Fr2

φ̄

)
. (4.2)

We orient the coordinates in the direction ξ , parallel to (u, w), to evaluate the
leading-order streamwise dispersion. Therefore, (3.28)–(3.30) are replaced by a single
momentum equation for the streamwise velocity, parametrized at each location by the
distribution of φ, Θ . Time evolution occurs only via (3.31).

Defining ε= δt/δ
2
p� 1, we seek an approximation to φ and the other variables using

a regular asymptotic expansion in ε, i.e.

U =U0 + εU1 + · · · , φ = φ0 + εφ1 + · · · , Θ =Θ0 + εΘ1 + · · · , etc. (4.3a−c)

We substitute the above into (3.27)–(3.32) and collect terms of the same order. Note
that U here is in the direction of the streamlines, which are not themselves evaluated
in this simple model, i.e. we look at evolution along a streamline.

Zeroth-order problem:
At leading order we have

0=
∂U0

∂ξ
+
∂v0

∂y
, (4.4)

|G|y=
[
ηf [1+ ηs]

∂U0

∂y

]
, |G| =

∣∣∣∣(∂pf

∂x
,
∂pf

∂z
−

Re
Fr2

φ̄0

)∣∣∣∣ , (4.5a,b)

0=−
∂p0f

∂y
, (4.6)

0=
∂

∂y

[
φ0(1− φ0)M

(∣∣∣∣∣δ2
pφ0Re

Fr2

∣∣∣∣∣
)
λy
∂Π0

∂y

]
, (4.7)
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0= ηfηs

[
∂U0

∂y

]2

− 12ηfα0(φ0)Θ0, (4.8)

with boundary conditions U0= 0 at y=∓yw,∓(x, z). Note that |G| here is independent
of y. In practice we may know the local mean speed, say Ū0, and the local average
solids fraction, φ̄0. Thus, two additional constraints are

Ū0 =

∫ yw,+

−yw,−

U0 dy, (4.9)

φ̄0hw(x, z)=
∫ yw,+

−yw,−

φ0 dy, (4.10)

where hw(x, z)=[yw,+(x, z)+ yw,−(x, z)] is the local fracture width. The coupled system
of equations (4.5)–(4.10) can be solved to obtain |G|, U0(y), φ0(y) and Θ0(y). The
form of the equations guarantees a unique solution for specified mean velocity and
mean volume fraction; see § 4.1.

First-order problem:
At first order we use only the solids mass conservation equation:

∂φ0

∂t
+U0

∂φ0

∂ξ
+ v0

∂φ0

∂y
=
∂

∂y

[
φ0(1− φ0)M

(∣∣∣∣∣δ2
pφ0Re

Fr2

∣∣∣∣∣
)
λy
∂Π1

∂y

]
. (4.11)

We integrate (4.11) across the width of the fracture and use (4.4) to get

0=
∫ yw,+

−yw,−

∂φ0

∂t
dy+

∫ yw,+

−yw,−

∂

∂ξ
U0φ0 dy, (4.12)

which can be written as

0=
∂

∂t
[hwφ̄0] +

∂

∂ξ
[hw(F(φ̄0, Ū0)+ Ū0φ̄0)]. (4.13)

The flux F is defined as

F(φ̄0, Ū0) =
1
hw

∫ yw,+

−yw,−

Ũ0(y)φ̃0(y) dy, (4.14)

U0 = Ū0 + Ũ0(y), φ0 = φ̄0 + φ̃0(y), (4.15a,b)

which we note is a form of covariance or correlation between Ũ0 and φ̃0.
The form of first-order problem (4.13) is quite general. The characteristics of

the leading-order distributions of U0 and φ0 determine the type of leading-order
transport. We can continue the asymptotic approximation to the next order to derive
an advection–diffusion equation for the slow-time evolution of φ0. This next-order
diffusive term is effectively the Taylor dispersion. For example, such an approach
was followed recently in Ramachandran (2013) for flows of Newtonian suspensions
modelled by Stokesian SBM. Whether or not the diffusive terms govern proppant
dispersion depends on the first-order flux. As we shall see below, the leading-order
distributions of φ0 show significant transverse variation and generally the flux
F(φ̄0, Ū0) is non-zero. Thus, the dominant contribution to spreading comes at first
order and we do not extend the analysis deeper here.
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4.1. Computation of F(φ̄0, Ū0)

Our leading-order model is based on the conservation law (4.13), which is governed
by F(φ̄0, Ū0). In order to construct F, let us assume that φ̄0 and Ū0 are given. If we
integrate (4.7) once and impose a symmetry condition on Π0 at y = 0, we see that
Π0 is constant across the fracture. Thus, we have three variables to find, U0(y), φ0(y)
Θ0(y), as well as two constants, the pressure gradient |G| and the leading-order solids
pressure Π0.

To solve our nonlinear system of three variables and two constants, we first note
that (4.8) relates Θ0 algebraically to φ0 and |U′0| (denoting the y-derivative of U0(y)).
It may be verified that this expression has a unique solution for given |U′0| and φ0 ∈

[0, φm). Thus, below, we assume that Θ0 is a known function of |U′0| and φ0. Since
we have Π0 = const., we set this value from values at y= 0, i.e. we use

Π0 = (ηfΘ
1/2
0 p)

∣∣∣
y=0
. (4.16)

This uniquely defines Π0 in terms of the centreline value of φ0, i.e. φ0(0). On
evaluating Π0 in this way, we may then calculate φ0(y) across the fracture, with the
distribution depending only on φ0(0) and |U′0|.

Next, for any (φ0, Θ0) with φ0 ∈ [0, φm[, the function ηf [1 + ηs]|U′0| is strictly
monotone with respect to the velocity gradient |U′0|. This is effectively the flow curve
(constitutive law) of the suspension under steady shear. As discussed above, (φ0, Θ0)
are themselves determined by |U′0| and φ0(0)

Thus, for given |G| and φ0(0), (4.5) uniquely determines the velocity gradient at
each y. We now iterate with respect to φ0(0) at fixed |G| in order to satisfy (4.10).
Finally, on integrating out from the wall, U0(y) is determined from |U′0|(y), and a
further integration yields the flow rate. The applied pressure gradient |G| is adjusted
in order to satisfy the flow rate constraint (4.9).

The various nonlinear equations to be solved are either algebraically solved,
or involve monotone continuous functions, for which various robust root-finding
procedures can be used. We regularize the relative viscosity to remove the singular
behaviour of ηr(φ0) as φ0→ φ−m . The relative viscosity is regularized as

ηr(φ)= (1− φ/φm + ε)
−2.5φm, (4.17)

where ε is the regularization parameter. The results of this paper are invariant for
ε 6 10−5. The equations are then solved iteratively in the nested fashion indicated in
the above description, i.e. |G| → U0(y)→ φ0(0)→ φ0(y)→ Θ0(y). Finally, having
computed U0(y) and φ0(y), we subtract Ū0 and φ̄0, respectively, and integrate (4.14)
to give F(φ̄0, Ū0).

4.1.1. Example results
To illustrate the main parametric variations of the flux function and associated

zeroth-order model, we consider a simple scenario of a uniform fracture (hence
yw,± = 1/2 and hw = 1). We assume a local mean velocity Ū0 = 1 and explore
variations about a representative set of dimensionless parameters: Re = 10, B = 1,
n= 0.5, Fr= 1, s= 2.65, δp= 0.05 and δt= 0.0001 (and, where needed, φin= φ̄0= 0.5).
Keeping this base set of parameters fixed, we compute F(φ̄0) = F(φ̄0, 1), and
the zeroth-order solution variables, by individually varying the Bingham number
B = 1, 2, 4, 6, 8, 10, the power-law index n = 0.3, 0.4, 0.5, 0.6, 0.7, 1.0 and the
Reynolds number Re= 1, 10, 100, 200, 400.
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FIGURE 3. (Colour online) Flux function for a range of flow parameters: B =
1, 2, 4, 6, 8, 10, Re = 1, 10, 100, 200, 400 and n = 0.3, 0.4, 0.5, 0.6, 0.7, 1.0. The solid
red line corresponds to a representative set of dimensionless parameters: Re= 10, B= 1,
n= 0.5, Fr= 1, s= 2.65, δp= 0.05 and δt = 0.0001. The flow profiles are associated with
the case of φ̄0 = 0.4.

Figure 3 shows the results. Figure 3(a) indicates the computed flux function under
each parameter variation. Note here that φ̄0 varies between 0 and φm=0.57. Increasing
B tends to reduce the amplitude of F(φ̄0) and skew the flux function towards higher

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

46
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.465


Dispersion of solids in fracturing flows of yield stress fluids 119

concentrations. Intuitively, larger B results in a more uniform velocity that reduces Ũ0,
but we also find a contributing reduction in φ̃0.

The reverse effect is found for increasing Re, which increases the amplitude of
F(φ̄0) and increases axial dispersion. However, the increase in Re also results in
a more symmetric F(φ̄0). These changes are again attributable to increases in the
amplitudes of Ũ0 and φ̃0. Similarly, increasing n results in increased amplitude and
symmetry of F(φ̄0). Since the conservation law (4.13) is a quasi-linear first-order
equation, the qualitative behaviour is governed by the derivative F′(φ̄0) and by the
heights of kinematic shocks that will result. These are highly dependent on the
shape of F(φ̄0). Examples of the variations in the base solution are presented in
figure 3(b–d) for the case φ̄0 = 0.4. The results for φ0(y) show that particles migrate
towards the centre of the fracture where the pseudo-plug exists and where φ0(y)
approaches a critical volume fraction φc 6= φm.

Interestingly, we have not considered at leading order the conductive term in the
particle temperature equation. In the Newtonian SBM channel flow, this term is critical
in keeping a small non-zero Θ0 at the channel centre, which acts to regularize and
remove the cusp that otherwise results. There is a different form of regularization in
our model, within the pseudo-plug region: namely, we have assumed a limiting strain
rate of ∼δt due to axial variation along the fracture. Although this term would act to
smooth φ0(y) at the centre, this is not the reason for φ0(y)∼ φc < φm in the pseudo-
plug, as we now explain.

Having φc <φm by a finite amount is consistent with the recent rheological results
of Dagois-Bohy et al. (2015), which explored the constitutive laws of non-colloidal
particles in yield stress fluids. Using the frictional viewpoint, it is shown that
the effective friction and the solid volume fraction depend on two dimensionless
parameters, J = η̂ ˆ̇γ n/P̂ and Jy = τ̂Y/P̂. For a constant Jy, the volume fraction was
found not to approach φm as J → 0 (controlled via vanishing ˆ̇γ ). Instead, it was
shown that φ approaches a volume fraction φc <φm that depends on Jy. However, φm
can be approached by φc in the limit of Jy→ 0, i.e. vanishing yield stress.

In our results, we have the leading-order particle pressure constant across the
fracture and hence also Jy. Both the Jy and J from Dagois-Bohy et al. (2015) are
included in our J, introduced earlier, as our local viscosity includes both viscous
shear-thinning and yield stress terms. As we enter the pseudo-plug the viscous term
approaches zero and therefore only the constant Jy remains. As with Dagois-Bohy
et al. (2015), the solid volume fraction does not approach φm in the pseudo-plug or
at the centre. The physical interpretation is that the particle pressure balances with
the yield stress, limiting further migration. An interesting observation is that, as we
increase the yield stress of the suspending fluid, the final solid volume fraction (in the
limit of zero shear rate) decreases. This suggests that even a finite confining pressure
cannot break the unyielded plug regions forming between the particles resisting
the squeezing motions. We are currently studying this problem experimentally. The
hypothesis is that compaction does not occur in the case of a suspending yield stress
fluid and that the usual jamming fraction is not approached (see Firouznia et al.
2016).

Recently Lecampion & Garagash (2014) developed a model for confined flows
of neutrally buoyant Newtonian suspensions based on frictional rheology. Basically,
the authors extended the framework presented by Boyer, Boyer & Pouliquen (2011)
to achieve the fully jammed state (the random close-packing limit) in the limit of
zero shear rate when the shear-induced migration of particles occurs. Formation of a
Bingham-like plug in Newtonian suspensions is further studied by Ahnert, Münch &
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Wagner (2014) from a two-phase flow perspective. Later Oh et al. (2015) carried out
experimental measurements of the solid volume fraction in a pipe configuration for
flows of neutrally buoyant Newtonian suspensions and showed that the fully jammed
state is achievable in the central region of the pipe. As pointed out by Oh et al.
(2015), the underlying mechanism associated with the compaction in the plug region
(meaning the region in which φ approaches φm in Newtonian suspensions) can be
related to microscopic particle rearrangements caused by velocity fluctuations of the
particles. Potentially, the yield stress prevents these fluctuations, accounting for the
different plug behaviour.

The effects of varying B, Re and n on Θ0(y) are illustrated in figure 3(d). In general
Θ0(y) drops to close to zero within the pseudo-plug, but is certainly significant in
the shear layers close to the walls. The maximal Θ0(y) is found at the wall and is
observed to increase with B, but to decrease with both Re and n.

4.2. Proppant propagation
To study proppant propagation behaviour, we solve (4.13) numerically for a given
F(φ̄0) under different operational scenarios. This is a first-order quasi-linear hyperbolic
equation, for which many numerical methods exist. Here we have used a second-order
extension of the staggered Lax–Friedrichs scheme introduced by Nessyahu & Tadmor
(1990) with Superbee limiter (see Leveque 2002). The implementation has been tested
with a range of test problems, omitted here for brevity. In fact, for the numerical
integration, we use an interpolated F(φ̄0) evaluated by solving for F at a number of
discrete values. Here we use spacing δφ̄0 ≈ 0.01.

4.2.1. Spreading of a single slug of proppant
Consider flow of a yield stress frac fluid pumped continuously at the inlet of a

fracture. At times t > t0, proppant with volume fraction φ̄0 is added at the fracture
inlet for a time period T and then turned off, leaving a single slug of proppant to
advect and spread along the fracture. Figure 4 shows the spreading and flow profiles
for a typical fracturing flow with parameters Re = 100, B = 1, n = 1.0, Fr = 1.44,
s= 2.65, δp= 0.03 and δt = 0.0001. A single slug of proppant with φ̄0= 0.5 is added
to the flow at the fracture inlet for a time period T = 0.1. The computed flux function
is shown in figure 4(a). According to (4.13) the streamwise spreading speed is equal
to the wave speed, which is 1+ ∂F(φ̄0)/∂φ̄0. The minimum wave speed is at φ̄0=φm.
The maximum wave speed is somewhere above φ̄0= 0, as F(φ̄0) appears to be convex
close to φ̄0 = 0.

On analysing ∂F(φ̄0)/∂φ̄0 we deduce that the slug should spread at the front and
steepen at the back, which is indeed found in figure 4(b), which shows the streamwise
dispersion of mean solid volume fraction. Also shown in figure 4(c) is the scaled
length of the slug, Ls, which is proportional to the difference in wave speeds at the
front and back of the slug (denoted by φf and φb, respectively),

Ls

Lt
=

[
∂F(φ̄0)

∂φ̄0

∣∣∣∣
φf

−
∂F(φ̄0)

∂φ̄0

∣∣∣∣
φb

]
t. (4.18)

Note that φf and φb can be calculated directly from F(φ̄0). Figure 4(c) shows the
expected linear growth of the slug length with time.
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FIGURE 4. (Colour online) Single slug of proppant for Re=100, B=1, n=1.0, Fr= 1.44,
s = 2.65, δp = 0.03, δt = 0.0001 and φ̄in = 0.5, of duration T = 0.1: (a) flux function;
(b) φ̄0(ξ , t) at regular time intervals; (c) ratio of spreading length to streamwise length
scale.

As the entire leading-order solution is determined by average velocity and solids
fractions (see the computational procedure in § 4.1), we are in a position to reconstruct
the distribution of solids across the fracture at each (y, ξ , t). Snapshots of the solids
fraction φ0(y, ξ , t) are plotted in the left-hand column of figure 5 at successive times.
We see that the maximum solid volume fraction occurs in the pseudo-plug region, but
that a solids-depleted region exists on the top right corner of the slug, i.e. at the front
closest to the wall. As noted previously, the maximum solid volume fraction remains
below φm.

Although sedimentation does not affect the leading-order transport equation for φ̄0,
hindered settling velocities can be estimated from (2.19) and (2.20), post-processed
from the leading-order solution. This is shown in the right-hand column of figure 5.
The colour maps of scaled sedimentation velocity in the (ξ , y) plane have been
normalized using a sedimentation velocity that is calculated for φ̄0= φin= 0.5 and for
the maximal inlet shear rate. We observe that the sedimentation velocity is almost zero
in the pseudo-plug region, but can be significantly larger in the depleted regions near
the wall, which correspond to the regions of lowest fluid viscosity within the slug.
Note, lastly, that, outside the slug, where φ0(y, ξ , t)= 0, there is no sedimentation.

Returning now to figure 4(c) and the estimates of normalized slug length, we now
explore how the scaled dispersion length of the slug at the end of the fracture varies.
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FIGURE 5. (Colour online) (a,c,e,g) Colour maps of φ0(y, ξ , t) as the single proppant
slug propagates. (b,d, f,h) Colour maps of scaled sedimentation velocity as the single
pulse propagates. The sedimentation velocity is scaled with the sedimentation velocity of
φ̄0= 0.5 at the maximum shear rate of the inflow. The representative set of dimensionless
parameters are: Re= 10, B= 1, n= 0.5, Fr= 1, s= 2.65, δp = 0.05 and δt = 0.0001.

Figure 6 takes the same base parameter set as for figure 4, varying each of B, Re and
n. It is evident that increasing the yield stress through the Bingham number limits the
dispersion. Also, we see that dispersion is an increasing function of Re number and
n. This confirms our basic intuition regarding dispersion being controlled by flatter
velocity profiles, governed rheologically by (B, n).
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FIGURE 6. (Colour online) Scaled spreading length for a range of flow parameters: B=
1, 2, 4, 6, 8, 10, Re= 1, 10, 100, 200, 400 and n= 0.3, 0.4, 0.5, 0.6, 0.7, 1.0. The solid red
line corresponds to the following representative set of dimensionless parameters: Re= 10,
B= 1, n= 0.5, Fr= 1, s= 2.65, δp = 0.05 and δt = 0.0001.

4.2.2. Spreading of a sequence of pulsed slugs
As discussed earlier in § 1, recent fracturing techniques such as CFT involve cyclic

pumping of proppant slugs interspersed with clear fracturing fluid, with the intention
of leaving open channels of clear fluid between the proppant slugs at the end of the
operation, to form a series of pillars (in three dimensions) as the fracture pressure
is released. If the pillars disperse into one another, then no increase in hydraulic
conductivity is achieved. If the pillars are too far apart, then the fracture may pinch
closed between pillars. Therefore, it is essential to engineer the optimal distance
between the pillars. Our simple model provides a tool for exploring these aspects of
flow design.

Figure 7 shows a sequence of proppant slugs pumped with the parameters of
figure 4, using a slug length of T = 0.1 and a spacing of 0.1 between slugs. We show
colour maps of the solid volume fraction and scaled settling velocities at different
times along the fracture. The spacing between the slugs decreases due to streamwise
dispersion of solids, but the slugs remain separated. We now decrease both the
spacing and pulsing time by a factor of 5; see figure 8. Two features are evident
here. First, the dispersion length is larger than the spacing between slugs, so that
open channels are not achieved. Second, there exists a considerable depleted region
outside the pseudo-plug with scaled settling velocity of more than 2.
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FIGURE 7. (Colour online) (a,c,e,g) Colour maps of φ0 for multi-pulse propagation. The
pulsing time is T = 0.1. (b,d, f,h) Colour maps of scaled sedimenting velocity as a single
pulse propagates. The sedimenting velocity is scaled with the sedimenting velocity of φ̄0=

0.5 at corresponding maximum shear rate. Flow parameters are as in figure 5.

To study the effects of yield stress, inertia and shear thinning, we perform similar
computations as in figure 9 for the following base parameters: Re= 10, B= 1, n= 0.5,
Fr = 1, s = 2.65, δp = 0.05 and δt = 0.0001. The results at final time are given in
figure 9. Figure 9(a,b) indicates the base set of parameters. In (c,d) we have changed
the following parameters: n = 1 and Fr = 1.6. Figure 9(e,f ) increases Re = 400 and
Fr= 2.5; and (g,h) increases B= 10. We see that for larger values of power-law index
and Reynolds number compared to those of the base solution, the dispersion and the
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FIGURE 8. (Colour online) (a,c,e,g) Colour maps of φ0 for multi-pulse propagation. The
pulsing time is T = 0.02. (b,d, f,h) Colour maps of scaled sedimenting velocity as a single
pulse propagates. The sedimenting velocity is scaled with the sedimenting velocity of φ̄0=

0.5 at corresponding maximum shear rate. Flow parameters are as in figure 5.

depleted region near the wall are significantly larger. This suggests the possibility of
slug interaction even with large time spacing between the pulses. We also see that,
for a sufficiently large value of the yield stress, the dispersion is significantly reduced.
This allows for control of slug interaction even with smaller time spacing and shorter
slugs. Note also that the solids-depleted wall regions are significantly smaller.
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FIGURE 9. (Colour online) (a,c,e,g) Colour maps of φ0 for multi-pulse propagation at
T = 1. (b,d, f,h) Colour maps of scaled sedimenting velocity. The sedimenting velocity is
scaled with the sedimenting velocity of φ̄0 = 0.5 at corresponding maximum shear rate.
(a,b) Flow parameters as in figure 5. (c,d) Flow parameters as in figure 5 except n = 1
and Fr = 1.6. (e, f ) Flow parameters as in figure 5 except Re = 400 and Fr = 2.5. (g,h)
Flow parameters as in figure 5 except B= 10.

5. Discussion
We have developed a model that is suitable for investigating dispersion of solid

particles within a yield stress fracturing fluid. This is targeted at various common
fracturing scenarios, e.g. initial pad propagation, tip screen-out, as well as at newer
techniques such as the channel fracturing technique (CFT). In each of these scenarios
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a front between slurry and pure frac fluid exists and it is operationally important to
predict the behaviour of this region.

We started with a comprehensive analysis of the range of hydraulic fracturing flows
found. This revealed that typically a significant variation in the local particle Reynolds
(and Stokes) number exists across the fracture due to the change in local effective
viscosity of yield stress fracturing fluid. This is due to both the shear-thinning nature
of the fluids and the presence of particles. In the central region (pseudo-plug region
with high viscosity), Stokesian particle regimes are found. However, on entering the
sheared regions and approaching the walls, large shear rates arise and the local particle
flows become progressively inertial/unsteady. Hence, unlike Newtonian suspension,
both Stokesian and inertial flow regimes may exist across the fracture.

The model framework developed is continuum-based and exploits the suspension
balance methodology to model particle-phase transport and dispersion. The main
novelties are that the SBM approach has been extended (i) towards yield stress fluids
and (ii) to incorporate inertial/unsteady effects. The former uses recent rheological
advances of Chateau et al. (2008) and Ovarlez et al. (2012, 2015). The latter uses
scaling arguments stemming from Jenkins & McTigue (1990), Cassar et al. (2005),
Boyer et al. (2011) and Andreotti et al. (2013), extended and found compatible with
the recent results of Dagois-Bohy et al. (2015). Insofar as these aspects of the model
are concerned, we acknowledge that significant work is still needed to fully calibrate
the closures. What our work does is to provide motivation for the more focused
studies that are needed to isolate flow effects and determine prefactors.

There exist model flow studies that may be adapted to yield stress fluid paradigms
(e.g. Guazzelli & Morris 2012), and specialized rheometry techniques such as those of
Dagois-Bohy et al. (2015) and Ovarlez et al. (2015) are evolving. Unlike Newtonian
suspensions, computational techniques are significantly less evolved for yield stress
fluids. In particular, loss of linearity prevents the application of methods such as
Stokesian dynamics or others that resolve the particle dynamics economically via
semi-analytical means. Instead, fully resolved computations appear the only tool and
these are still painfully slow for yield stress fluid suspensions in three dimensions.

Later in this paper we have scaled and simplified the general model proposed.
In the limit of thin and long fracture, an asymptotic method was used to derive a
leading-order 1D model describing streamwise dispersion of solid volume fraction.
The leading-order system of equations has been solved numerically for a range of
fracturing flows. The results show a strong dependence of solid dispersion on both
non-Newtonian rheology and inertial effects, as well as on process inputs. One main
operational conclusion is that the use of a yield stress fluid may be exploited to
limit the dispersion of proppant slugs transported within the fracture. Although the
model itself is novel and the results are interesting from an industrial perspective,
this remains a toy model. We are cautious about the industrial application, as this 1D
model is mainly intended to be illustrative of what may be predicted by developing
the broader framework in § 3.2.1 into two dimensions.

In further developing a 2D model following § 3.2.1, it is important to include
leak-off effects (neglected here), as these will modify local solids fractions, as well
as geometric variations in width and fracture orientation. The results shown have
illustrated significant patterns of solids depletion and pseudo-plug propagation. In
oriented 2D fractures, the consequences of such evolution may become apparent
in large-scale solids settling patterns. Also we note that in two dimensions pulsed
proppant slugs correspond to propagating layers of higher suspension viscosity
interspersed with lower-viscosity pure fluid layers. Each such pair has both a
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high–low and low–high viscosity front, the latter of which is likely to be vulnerable to
fingering-type instability, possibly providing a break-up mechanism to form proppant
pillars in the fracture. The study of such phenomena, as well as the effects of
near-wellbore inflow conditions, fracture geometry and leak-off, are the main goals
for a 2D model of this type.

Although the approach of § 3.2.1 (1D or 2D) allows study of transverse distributions
of the flow variables, it is important to note that this is via post-processing and
these variations are not explicitly coupled back into the model. One important
phenomenon is that of so-called ‘convection’, in which a region of dense suspension
(e.g. the pseudo-plug) moves as a dense single-phase fluid, settling rapidly. In the
1D approach this is not possible, as we have replaced the buoyancy term Reφ0/Fr2

by Reφ̄0/Fr2, in order to simplify the modified pressure gradient by making it
independent of y. To include this effect fully would necessitate integration across the
fracture (numerically), resulting in what is sometimes called a 2.5D (or 1.5D) model
similar to that outlined in § 3.2.2. Avoiding this and keeping to the simpler models
means that the results may be interpreted/used to assess the risk of phenomena
such as convection and predict solids depletion, but remain with some limitations.
Developing the model in § 3.2.2 is a longer-term prospect, with significant complexity
in developing closure expressions for both bulk inertial flows in complex geometries
and the leading-order particle forces neglected (lift and centrifugal effects).

Finally, we should note that it is crucial to perform experimental studies to validate
and refine our proposed framework. However, the experiments are challenging
due to several limitations present in the available experimental methods, such
as particle tracking velocimetry (PTV), nuclear magnetic resonance (NMR) and
magnetic resonance imaging (MRI), e.g. lack of optical access for model yield
stress suspensions to perform PTV, and poor temporal resolutions in MRI and
NMR techniques. Recently, we have introduced a new technique based on X-ray
radiography with high temporal (O(0.1 s)) and spatial (O(10 µm)) resolutions to
study the evolution of solid volume fractions in fast suspension flows regardless
of optical access and nonlinearity of the suspending fluids (Gholami et al. 2017).
Currently, we are making use of this technique to study fracturing flows of yield
stress fluids experimentally.
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Appendix A. Inertial extension of the SBM using kinetic theory
Here we outline the extension of the SBM using kinetic theory. We start with the

fluctuation energy balance for the entire suspension:

D
Dt̂

Ê= Σ̂ : ˆ̇γ + 〈F̂
′

B · û
′
〉 −
ˆ̇Φ − ∇̂ · q̂, (A 1)

where the prime denotes the fluctuation from the averaged value and where ˆ̇Φ is the
average rate of dissipation of mechanical energy into heat. Here Ê denotes the total
energy,

Ê= 3φρ̂sΘ̂ + (1− φ)ρ̂f 〈û
′
· û′〉f , (A 2)
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where the 〈·〉f indicates the average over the fluid phase. In practice, on assuming
a fully developed flow and averaging across the gap, the left-hand side of (A 1)
will be neglected, so there is little difference in considering Ê rather than Θ̂ . This
is analogous to the neglect of C(φ) in the SBM analyses of (2.29). Following
Eskin & Miller (2008), we neglect the fluid phase part of the dissipation functional,
approximating

Σ̂ : ˆ̇γ ≈ Σ̂p : ˆ̇γ , (A 3)

and we adopt the models from Sangani et al. (1996) and Wylie et al. (2003) for
collisional and viscous contributions to ˆ̇Φ = ˆ̇Φc +

ˆ̇Φv, i.e.

ˆ̇Φc =
24
√

π
(1− e)φ2χ(φ)

ρ̂sΘ̂
3/2

d̂p

, (A 4)

ˆ̇Φv = 54φ
η̂f

d̂2
p

Θ̂[Rdiss,0(φ)+ Rep,ΘKW(φ)], (A 5)

where e is the coefficient of restitution for particle collisions, and Rdiss,0 and KW are
dimensionless coefficients:

Rdiss,0 = 1+ 3

√
φ

2
+

135
64
φ ln φ

+ 11.26φ(1− 5.1φ + 16.57φ2
− 21.77φ3)− φχ(φ) ln εm, (A 6)

KW(φ)=
0.096+ 0.142φ0.212

(1− φ)4.454
. (A 7)

Here εm represents a scaled separation distance between particles at which hydro-
dynamic lubrication breaks down, i.e. effectively a roughness scale of the particles.

The dissipation rate terms contribute to the term α in (2.29), which depends also
on Θ̂ in the inertial extension. This may be expanded in terms of Rep,Θ :

α(φ, Θ̂)=
kαηp(φ)

φ
+

9φRdiss,0

2
+ Rep,Θ

(
9φKW(φ)

2
+

2s
√

π
(1− e)φ2χ(φ)

)
. (A 8)

Note that for the Stokesian regime α(φ) is defined only loosely in Nott & Brady
(1994), to satisfy physical limits on Π̂ and Θ̂ as φ→ 0 and as φ→ φm, which is
unaffected by the inclusion of inertial terms. For Rep,Θ 6= 0 and φ 6= 0 the zeroth-order
dissipation above is modified significantly from that in Nott & Brady (1994) (i.e. by
the term with Rdiss,0). This modification will, however, mostly affect the Stokesian
central plug region of a fracture flow, reducing Θ̂ there by a numerical factor. For
simplicity, we neglect the phase slip term β(φ) in (2.29) at this stage. The relative
velocity may be important in dispersion, but here we are considering the contribution
of the relative velocity to the distribution of Θ̂ .

We modify the heat flux q̂ in a similar way to α, combining the expressions from
Nott & Brady (1994) and those from Gidaspow (1994):
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q̂ = −3η̂f

[
κΘ,0(φ)+ Rep,Θ

(
150
√

πsφ
384(1+ e)χ(φ)

[
1+

6(1+ e)φχ(φ)
5

]2

+
2s(1+ e)φ2χ(φ)

√
π

)]
∇̂Θ̂. (A 9)

The zeroth-order term is a Stokesian term, related to the particle-phase viscosity. The
two first-order terms in the expression above come from the kinetic theory of dense
gases, and are related to kinetic and collisional effects, respectively (see Eskin &
Miller 2008).

Finally, we modify the closures for the particle stress, in terms of both the particle
pressure and particle-phase viscosity. Again we use (2.25) but with

Π̂ =
η̂f Θ̂

1/2

d̂p

[
2
√

3kφφ1/2ηp(φ)+ Rep,Θ
sφ[1+ 2φχ(φ)(1+ e)]

√
3

]
, (A 10)

τ̂p

η̂f
=

[
ηp(φ)+ sRep,Θ

(
5
√

π

48(1+ e)χ(φ)

(
1+

4
5
(1+ e)φχ(φ)

)2

+
4(1+ e)φ2χ(φ)

5
√

π

)]
ˆ̇γ . (A 11)

The Stokesian term in (A 10) is as defined for the SBM, with the power-law index of
ηp(φ) fixed to 1 in order to reproduce the expected pressure behaviour (Π̂ ∼ φ2) as
φ→0. The form of O(Rep,Θ) terms chosen comes from kinetic theory, as in Gidaspow
(1994). The modification of the particle deviatoric stress is selected to extend into the
inertial regime the balance between the particle stress dissipation term and the term
involving α(φ, Rep,Θ) in (A 1).

A.1. Comparison
Using the above closures for fracturing flows is admittedly questionable. First, these
closures are not able to fully model the dense suspension regime, where the whole
system is connected via short-range, long-range and multi-particle interactions. Second,
the range of density ratios s encountered in hydraulic fracturing falls below the usual
range for which these closures were derived. However, inclusion of these closures
allows a comparison with the direct scaling method used earlier and also serves to
illuminate gaps in present physical understanding.

We now compute the fraction of the fluctuation energy dissipated by viscous and
inertial effects:

Φ̇vs

/∑
Φ̇i = 1/(1+ sRep,Θ), Φ̇es

/∑
Φ̇i = sRep,Θ/(1+ sRep,Θ). (A 12a,b)

We may compare the relative fractions of viscous and inertial dissipation, between
the modified kinetic theory approach and the direct scaling approach earlier. This is
done at φ = 0.45 and for s= 2.65. The results are shown in figure 10. We see that,
for small values of the Stokes number (Rep,Θ 6 1), the fluctuation energy is mainly
dissipated by viscous effects in both approaches. However, when Rep.Θ > 1, it is
mainly inertial effects that contribute to the dissipation of the fluctuation energy in
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FIGURE 10. (Colour online) Comparison of the relative fractions of viscous and inertial
dissipation for the modified kinetic theory approach and the scaling approach.

the direct scaling approach. In the kinetic theory approach, inertial effects dissipate
only approximately 10 % of the fluctuation energy. We see that kinetic approach
does not appear to adequately capture the expected transition from viscous to inertial
dominance. This motivates our adoption of the direct scaling approach. Of course,
as commented already, the kinetic approach has been extended algebraically (and
somewhat crudely) outside its domain of validity.

Appendix B. Consequences of using the averaged buoyancy

Here we discuss the range of validity of approximating φ(y)Re/Fr2 by φ̄Re/Fr2,
as we have done in order to make the zeroth-order problem tractable. The main
question is whether the transversely varying buoyancy gradients become significant
with respect to the gap-averaged gradients. In the first place, when considered as a
regular perturbation procedure, we would expect that the leading-order approach is
valid at least when Reφ/Fr2

� 1. We have seen that the system (4.5)–(4.10) leads to a
unique leading-order solution. Let us now consider a posteriori the effect of replacing
φ̄Re/Fr2 by φRe/Fr2 in the momentum balance. Assuming the pressure gradient is
unchanged, then the relative error in the momentum balance is |φ(y)− φ̄|Re/(Fr2G).
When this quantity is relatively small, we might also expect that any correction in the
pressure gradient terms that arises from using φ(y)Re/Fr2 to have similar size, i.e. the
argument is simply one of linearization. Of course, when this quantity becomes large,
then the nonlinearity of (4.5)–(4.10) means that we can say very little.

Figure 11 plots |φ(y)− φ̄|Re/(Fr2G) for two representative values of Re/Fr2, over a
range of φ̄ and for modest B and n. Comparing figures 11(a) and 11(b) reveals that, as
expected, the errors are larger as Re/Fr2 grows. Perhaps surprisingly, for Re/Fr2

∼ 10
(figure 11a) the errors are small, and even for Re/Fr2

∼ 60 (figure 11b) the errors are
less than 10 % for dense suspensions (φ̄ > 40 %), which have been the focus of our
study (see figures 5–10).

A number of factors contribute to keeping the errors smaller than might be expected.
First, even in the case of a Newtonian fluid, with unit mean velocity through a channel
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FIGURE 11. (Colour online) Colour maps of |φ(y) − φ̄|Re/(Fr2G) for a typical inertial
fracturing flow with parameters (a) Re= 10, B= 1, n= 0.5, Fr= 1, s= 2.65 and δp= 0.05
and (b) Re= 400, B= 1, n= 0.5, Fr= 2.5, s= 2.65 and δp = 0.05.

with unit width, the modified pressure gradient is G = 24. The pressure gradient is
now increased by both rheology B and by the solids phase (although reduced by
shear thinning). The point is that Reφ/Fr2

� 1 is anyway conservative with respect
to the typical pressure gradients encountered. Secondly, we note that the rheological
effects combine to influence φ(y) in a positive way, i.e. φ(y) is more blunt than in
a Newtonian suspension, which directly reduces the error |φ(y)− φ̄|Re/(Fr2G). Two
reasons for this are: (i) the velocity profiles and shear rates in shear thinning and
yield stress fluids are more plug-like, which influences migration; (ii) as revealed in
our model and as confirmed in Dagois-Bohy et al. (2015), φ(y) approaches a critical
value less than the jamming volume fraction at the channel centre. The latter means
that φ(y) must spread more. Note also that in figure 11 we have plotted results
with a modest value of B. To conclude, our results suggest that the validity of our
leading-order solutions extends beyond Reφ/Fr2

� 1 to Reφ/Fr2
∼ 1, and even further

depending on the specifics of φ̄ and B. A more detailed study would be required to
explore this and other limitations, e.g. particle depletion in wall layers. We note too
that examining the errors in the leading-order model is further hampered since in our
simplified approach, the two momentum equations in axial and vertical directions are
replaced by a single momentum equation along the streamlines. This means that the
information about the direction of the main flow is lost. A more comprehensive study
of the model error is, however, planned for our future work.

Finally, one of the main issues in making the approximation of φRe/Fr2 by φ̄Re/Fr2

concerns what has been called ‘slurry convection’, whereby heavier and denser parts
of the suspension may fall as a consolidated plug, balanced by an upflow of solids-
depleted lighter fluid (closer to the walls). If such a situation occurs, the leading-
order solution presented will not be valid (see also Dontsov & Peirce 2014). The
point about slurry convection is that the local particle drag, which has relatively small
relative velocity, is replaced by a bulk-scale buoyancy-driven motion, which allows
for larger relative velocities. However, slurry convection is not well understood. The
actual occurrence of slurry convection is not a simple matter of being able to develop
a different 1D velocity solution following a different transverse description of the
solids distribution. In particular, we should note that bulk exchange flows in pipes
and channels frequently do not remain stratified with buoyancy balanced by viscous
stresses. The rapid motions induced by buoyancy become balanced by bulk inertial
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stresses, which leads to mixing, so that model-predicted 1D convection states are not
always found in practice.
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