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Fluidisation is the process by which the weight of a bed of particles is supported
by a gas flow passing through it from below. When fluidised materials flow down
an incline, the dynamics of the motion differs from their non-fluidised counterparts
because the granular agitation is no longer required to support the weight of the
flowing layer. Instead, the weight is borne by the imposed gas flow and this leads to
a greatly increased flow mobility. In this paper, a framework is developed to model
this two-phase motion by incorporating a kinetic theory description for the particulate
stresses generated by the flow. In addition to calculating numerical solutions for fully
developed flows, it is shown that for sufficiently thick flows there is often a local
balance between the production and dissipation of the granular temperature. This
phenomenon permits an asymptotic reduction of the full governing equations and the
identification of a simple state in which the volume fraction of the flow is uniform.
The results of the model are compared with new experimental measurements of the
internal velocity profiles of steady granular flows down slopes. The distance covered
with time by unsteady granular flows down slopes and along horizontal surfaces and
their shapes are also measured and compared with theoretical predictions developed
for flows that are thin relative to their streamwise extent. For the horizontal flows,
it was found that resistance from the sidewalls was required in addition to basal
resistance to capture accurately the unsteady evolution of the front position and the
depth of the current and for situations in which sidewall drag dominates, similarity
solutions are found for the experimentally measured motion.

Key words: fluidized beds, particle/fluid flow, multiphase flow

1. Introduction
Particles are often transported in the form of dense currents under the influence

of gravity. Their bulk flow rate is greatly enhanced if part or all of their weight is
supported by a gas flow through them. When particles are poured onto a slope that
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is less than their angle of repose, they are held stationary by the action of contact
friction and merely flow down the surface of the pile in a thin layer as more grains
are successively added. When they are poured onto a slope that is steeper than the
angle of repose, a thin, dense current forms in which the particles move in bulk down
the slope (see, for example, Ishida, Hatano & Shirai 1980; GDR MiDi 2004). If a
gas is passed vertically through the particles then the drag it exerts on the particles
bears some of their net weight and hence the frictional forces decrease. Consequently,
the effective angle of repose of the particles decreases as does the minimum slope
angle at which bulk flow takes place (Nott & Jackson 1992). When the gas flow
is sufficiently large for the entire weight of the particles to be supported (i.e. the
particles are fluidised), then bulk frictional forces are insignificant and very mobile
currents form, even on horizontal surfaces. The influence of a fluidising gas flow
through particles on their mobility is exploited widely in industrial settings where it is
necessary to transport bulk materials either to move them from one place to another
using air slides (which can be several kilometres long), or to keep horizontal surfaces
clear of particles in pieces of processing equipment such as circulating fluidised beds
(Savage & Oger 2013). There are also features in many particulate environmental
flows in which there is significant upward gas flow and this enhances their speed and
range (e.g. Druitt 1998; Roche et al. 2004).

There have been extensive studies of the flow of particles down a slope and of
some of the effects of fluidisation. A common approach to mathematically modelling
these motions is based on a continuum description that couples expressions of mass
conservation with expressions of the balance of momentum within each phase (e.g.
Nott & Jackson 1992). Under this approach, the fluidised material is treated as two
inter-penetrating phases that interact with each other. The models do not resolve the
motion of individual particles, but rather the evolution of averaged, bulk properties,
which depend upon the net effect of direct interactions between particles within the
current and between the particles and their surroundings. The duration of contacts
between the constituent particles has important consequences: if the contacts are
sustained then they are likely to be frictional in nature; if they are instantaneous
then they are collisional in nature (e.g. Campbell 2006). The stresses induced by
instantaneous collisions between pairs of particles (i.e. in dilute and rapid granular
flows) can be evaluated through the use of granular kinetic theories (Jenkins &
Savage 1983), in which a key dependent variable is the granular temperature, T , a
measure of the variance of the instantaneous velocity field. Hydrodynamic equations
of motion have then been derived for granular materials that are much like those for
dense gases except there is substantial energy dissipation through inelastic collisions
(see Haff 1983; Jenkins & Savage 1983; Lun et al. 1984, for example). It is possible,
of course, for there to be collisions over a range of durations and these ideas do not
translate to dense and slowly shearing flows where contacts are prolonged and thus,
in part, frictional. The action of the interstitial fluid is a further factor that needs to
be considered when modelling granular flows. For example, in contrast to the original
studies of granular kinetic theories, Koch & Sangani (1999) proposed that interaction
with the fluid could generate agitation within the flows and that fluctuating viscous
forces could be the generators of particle temperature.

There have been relatively fewer studies that report granular flows that are aerated
or fluidised. An early approach was to treat the fluidised particles as a non-Newtonian
fluid of power-law rheology, sometimes with a yield stress (Botterill & Bessant 1973;
Botterill & Abdul-Halim 1979; Ishida et al. 1980; Savage & Oger 2013). This
approach can be made to work well in specific practical situations (Singh, Callcott &
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Steady and unsteady fluidised granular flows down slopes 69

Rigby 1978), but is entirely reliant on empirical methods to determine the effective
rheology in each circumstance since such approaches do not capture the fundamental
dynamics of the particle motion.

A more fundamental approach is to model the evolution of averaged properties of
the inter-penetrating phases. Ogawa, Umemura & Oshima (1980) modelled steady,
one-dimensional fully fluidised currents down slopes. They derived constitutive
relations based on the collisions between a particle and its neighbours, which were
represented by an imaginary spherical shell surrounding it. This resulted in a balance
between collisional stresses and gravitational forces. Nott & Jackson (1992) coupled
a kinetic theory for collisional grain flows with a Coulomb-like model for frictional
effects to predict the bulk mass flow rate of aerated grains down an inclined channel.
The experiments and model featured gas flow rates up to the minimum required to
fully fluidise the particles. Their mathematical model of friction in the flows followed
Johnson & Jackson (1987) and Johnson, Nott & Jackson (1990) and assumed that
the frictional component (dominant at high particle volume fractions, φ) was simply
added to the collisional component (dominant at low φ). They pursued a similar
approach to the interaction term between the gas and the particles adding together
a contribution based on the Ergun equation (dominant at high φ) and one from the
Richardson and Zaki equation (dominant at low φ). No contribution was included
from slip between the two phases in the direction of the slope. Oger & Savage
(2013) took a similar approach (although with some different closures of the models),
again retaining a frictional term, and solved the resulting equations using the MFIX
numerical code to study the dynamics of granular motion within air slides, computing
the steady, fully developed velocity and granular temperature fields for flows within
a channel of rectangular cross-section. Finally, Eames & Gilbertson (2000) reported
the unsteady flow of fluidised materials along horizontal surfaces. For their system,
they showed that collisional stresses would be small compared with those associated
with fluid drag and so when fully fluidised, the force balance set hydrostatic pressure
gradient against fluid drag terms. We will show below how our work differs from
their modelling framework and yet is able to reproduce features of their experimental
results.

Key to furthering our understanding of the dynamics of fluidised flows is direct
and detailed experimental evidence against which theoretical models can be validated.
However, there are few measurements of fluidised granular currents, especially down
slopes. Previous experimental studies have presented bulk properties such as total
flow depth and mass flow rate (e.g. Nott & Jackson 1992; Eames & Gilbertson 2000).
Some measurements of local properties such as velocity have been made though
these have often been with instruments such as optical probes or turbine elements
(e.g. Botterill & Bessant 1973, 1976; Ishida et al. 1980; Nott & Jackson 1992).
Whilst providing important information, the disadvantages to these techniques are that
they lack spatial resolution, are intrusive (especially in fluidised particles Rowe &
Masson (1981) and offer only point measurements i.e. traverses are necessary to build
velocity profiles and they are therefore only suited to steady flows. More recently,
particle image velocimetry (PIV) has been applied to fluidised systems such as static
beds (Bokkers, van Sint Annaland & Kuipers 2004) and dam-break experiments
over horizontal surfaces of initially fluidised, fine natural volcanic ash (Girolami
et al. 2010). PIV has the advantage of offering high spatial resolution and allows
instantaneous velocity fields to be calculated. The experiments of Girolami et al.
(2010) had a short-lived phase of quasi-constant flow following the initial release of
material; however, they also experienced compaction of the solid phase during the
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flow because the grains were not continuously fluidised along the apparatus. This
meant that even though the materials were highly expanded initially because of the
very small particle size, they decelerated rapidly due to the loss of mobility associated
with compaction in the terminal flow phase. As such, they are not representative of
fully fluidised flows.

The aim of the present work is to understand better the dynamics of fluidised
granular flows by providing further experimental evidence and proposing a new
unsteady model of these flows that fully takes into account the interaction between the
particles and the fluid and incorporates collisional stresses. Both of these processes
play a crucial role in the dynamics of fluidised granular flows in which the gas
flow bears most of the weight of the particulate layer and the particle interaction
contribute significantly to the shear stresses developed by the flow. This implies
that the dynamics are different from ‘dry’ granular flows in which the role of the
interstitial fluid is negligible (e.g. Lun et al. 1984; Forterre & Pouliquen 2008;
Woodhouse, Hogg & Sellar 2010).

In this work, experimental measurements were made of granular currents over
a range of slope inclinations and conditions and the experimental arrangement is
described in § 2. The measurements were made in an apparatus that confined the
flow between two walls, which enabled the overall size and shape of currents to
be measured over time. In addition, PIV was used to measure the velocity profiles
of the particles within the currents, enabling their overall behaviour to be linked to
their rheology. Section 3 develops the general continuum model and the equations
of motion for the flowing state. This builds upon the ‘two-fluid’ approach in which
the gas and grains are treated as two inter-penetrating phases (Jackson 2000). Fully
developed flows are tackled in § 4 and compared with experimental observations. The
continuum model in this section is analysed in the regime for which the properties
of the flowing layer vary only with distance from the underlying boundary and the
solutions are computed numerically and asymptotically in a regime where the flow
thickness far exceeds the diameter of an individual grain. Unsteady and transient
effects found in flows along inclined channels are investigated in § 5 and a new
model developed in the ‘lubrication’ regime where the downslope length scale is
much large than that perpendicular to the slope. Flows along horizontal surfaces
differ their counterparts along inclines (§ 6) and measurements of their inherently
unsteady motion are reproduced well by a new self-similar solution to the flow
model in the lubrication regime. Finally our findings are summarised and discussed
in § 7. We also include two appendices. In the first we analyse the consequences of
an extended kinetic theory, following the constitutive laws of Jenkins (2007). In the
second the effects of the sidewalls are analysed in the regime that the flow depth is
much less than the channel width.

2. Experimental approach
2.1. Experimental set-up

The experimental arrangement conformed to that shown in figure 1. The apparatus
was a long, narrow channel (1 cm × 100 cm, 50 cm in height) which could be
inclined to some angle, θ , to the horizontal. The bottom of the channel was a porous
plastic distributor material (Vyon ‘D’) through which dry air was passed from a
windbox below at a speed wg, but for which the pressure drop over it was much
larger than that through the granular flow. This ensured that the gas flow was evenly
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FIGURE 1. Schematic of flows and experimental set-up. Material is introduced from the
raised end of the apparatus at a constant flux, Q. A flow of fluidising gas enters the
apparatus at speed wg through a porous distributor plate and is constant along the entire
length of the apparatus and duration of an experiment. The apparatus can be included to
some angle, θ . The resulting flow has a height profile, h(x, t), length (front position), xf (t),
and longitudinal velocity profile, v(x, t). For flows down inclined channels, the height of
the current increases near to the front (head) to a constant value which is obtained towards
the rear of the flow (body).

distributed i.e. the gas flow entering the apparatus was uniform and perpendicular
to the distributor plate so that at the base of the granular layer, the gas velocity is
u|z=0 = (0, wg/(1 − φ(0))) where φ(0) is the particle volume fraction evaluated at
the base of the flow. The particles were constrained between vertical parallel walls,
so that the motion is effectively two-dimensional and the motion of particles within
the current could be seen. The front wall was made from a glass sheet allowing the
flows to be viewed and the other sides were made of aluminium plate. The rear plate
was painted black to increase the contrast between it and the white particles. Particles
entered the apparatus at one end (the uppermost when inclined) through a funnel
giving a constant volumetric flux, Q, which could be changed between experiments
by changing the aperture of the funnel (Nedderman 1992). The flow rate Q was the
flow rate of the current based on the bulk volume when the particles were at rest;
so, the volume flow rate per unit width of particles q0 = φmQ/B where φm is the
particle volume fraction of a static bed of particles, and the distance between the
front and back of the flows is B= 1 cm. It could be controlled by using funnels of
different sizes, each of which could then be associated with a bulk flow rate, Qnom;
however, this is a nominal flow rate as the actual flow rate could vary from occasion
to occasion. The apparatus had closed ends; so, to avoid ‘backing up’ when running
experiments with a non-horizontal slope, particles were removed from the downslope
end using a vacuum cleaner. This had no measurable effect on the height profiles
obtained but allowed experiments to be run for longer. No removal of particles was
necessary for the slower-moving horizontal flows. The value of q0 was accurate to
within ±3 %.

The material used for all the experiments was approximately spherical, glass beads
(Potters Ballotini) with particle diameters in the range 250–425 µm and a mean
diameter d ≈ 375 µm. We measured the particle volume fraction of densely packed,
static material (i.e. a maximum) as φm=0.610±0.005, which is close to the maximum
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value of 0.64 for random, close-packed, mono-sized spheres (Jaeger & Nagel 1992),
and the (unfluidised) bulk density was 1.520± 0.008 g cm−3. The powder corresponds
to a class B powder according to Geldart (1973), so no bubble-free expansion when
fluidised is expected within a ‘static’ bed. The minimum fluidisation speed, umf , was
found by independent experiment where the gas flow rate through a static bed of
material was gradually increased and the resulting pressure drop through the bed
measured (Davidson & Harrison 1963). We found that the entire weight of the bed
was supported when wg(= umf )= 10.77 cm s−1.

2.2. Shape of currents and front position extraction
The flows, viewed from the side, were recorded using a digital video camera.
Calibration was performed using an image of a block of known dimensions placed
in the apparatus once the camera was set-up in position for a given experiment.
Still images from the recorded experiments were analysed by transforming the RGB
images to grey scale. These were then turned into binary images through thresholding.
Though the threshold value was calculated automatically, the contrast between black
back wall and white particles meant that the resulting binary images were robust and
consistent. The upper and lower surfaces of the outline of a current were defined as
the first and last white pixels when descending a column of the binary image. 95 %
confidence intervals for height measurements are ±0.1 cm. The front position was
taken as the point where the top surface met the bottom one.

2.3. Velocity measurements
PIV was used to make measurements of the velocity fields of the flows using a high-
speed video camera capturing at 500 frames per second (f.p.s.) close up to a particular
region of the flow. The PIV measurements required the flow to be seeded with marker
particles for which we used the same-sized particles as for our other experiments
but approximately one third of which were dyed black. The properties of the dyed
particles (umf , angle of repose etc.) were identical to the non-dyed particles.

Two-dimensional velocity fields were calculated by processing image pairs (two
consecutive frames) from the video taken by the high-speed camera using the
open-source Matlab-based DPIVSoft2010 code. The software makes an initial
estimation of the velocity field on a coarse grid and then uses this to translate and
deform the interrogation window in the second image in keeping with the deformation
of the flow field. Errors associated with image pattern distortion, as is the case when
velocity gradients are large, are greatly decreased using this method (Meunier &
Leweke 2003). Several initial iterations were run to get a good approximation for
the flow field. A final run was performed with an interrogation window of 32 ×
32 pixels (≈5d) and velocity vectors were calculated using a 50 % overlap between
adjacent windows. A median filter was then applied with a limit of 0.5 to remove
spurious vectors (e.g. Adrian & Westerweel 2010, p. 406).

Instantaneous velocity profiles may not be representative of the flow as a whole.
In particular, the bubbles of gas that could form spontaneously in the flows often
disrupted the instantaneous velocity profiles. However, flows down the steeper slopes
in our experiments, 10◦ and 15◦, reached a steady state very quickly, and for these
flows an ensemble average of the flow velocity could be found by averaging over
both many points in time and at several positions along the flow. The quality, and
hence the accuracy, of time-averaged velocity fields has been shown to be greatly
improved when the average instantaneous correlation function is used to calculate

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

45
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.458


Steady and unsteady fluidised granular flows down slopes 73

the velocity field (Meinhart, Wereley & Santiago 2000). We therefore modified
the PIV routines accordingly to produce a single time-averaged velocity field per
experiment using an interval of twenty frames (0.04 s) between image pairs, and
fifteen image pairs per experiment. This interval is larger than characteristic time
for shear ((dv/dz)−1

≈ 0.01 s), so the velocity fields at successive intervals are
uncorrelated. Velocity profiles were then formed from the streamwise vectors of
the time-averaged velocity field lying on a depthwise transect at points separated at
intervals of 1 cm and averaged to form the ensemble average velocity profile. The
resolution of PIV measurements can be expressed as (Adrian 1991),

σu ≈
c1Md
1t

, (2.1)

where c1 is the uncertainty of locating the centroid of the correlation peaks, M is the
magnification factor of the lens and 1t = 1/500 s is the time step between images.
For our set-up, M = 1/2, and c1 ≈ 10 % so that σu =O(1) cm s−1.

For the steady flows it is more useful to define error based on the sum of variances
of the all the m profiles used to calculate the ensemble-averaged standard deviation
over the n images given by

σ 2
ens ave(z)=

1
m× n

m×n∑
i=1

σ 2
i (z). (2.2)

This average standard deviation was then used to calculate 95 % confidence intervals
for the velocities.

3. Equations of motion
We investigate the motion of granular currents down an inclined surface when the

particles are fluidised, as shown in figure 1. These flows are gravitationally driven,
but do not accelerate unboundedly; instead the principle action of particle interactions
is to contribute to the shear stresses that balance the down slope acceleration and
potentially lead to steady motion. We formulate a mathematical model of the two-
phase motion that couples mass conservation for each phase with expressions for the
balances of momentum and we show how this formulation may be applied to steady
fully developed flows that vary only with distance from the underlying boundary (§ 4),
and to unsteady, relatively thin flows for which the acceleration perpendicular to the
underlying boundary is negligible (§§ 5 and 6).

The mathematical model is built upon a continuum description of two inter-
penetrating phases which interact with each other. These models do not resolve the
motion of individual particles; rather, they allow the computation of the evolution
of averaged properties. Such approaches have been employed often for confined,
horizontal fluidised beds (e.g. Bokkers et al. 2004; Goldschmidt, Beetstra & Kuipers
2004), but these studies differ from the dynamics of the flows analysed in this
contribution where there is persistent shear flow down the inclined surface. The flows
analysed here also differ in an essential way from non-fluidised granular motion
down inclines since the support of the weight of the grains by the imposed gas flow
significantly reduces resistive forces and increases mobility. Nevertheless, we find
that steady flows are admissible and thus the motion must develop sufficient shear
stresses to balance gravitational acceleration. Our model assumes that these stresses
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arise from particle interactions and are collisional and the particle fluctuations may be
characterised by a granular temperature since friction as a bulk property is virtually
eliminated by fluidisation and the viscous forces associated with interstitial gas flow
are negligible. The granular temperature will be shown to be relatively small and thus
the interactions generate only relatively weak shear stresses, but these are sufficient
to balance the gravitational acceleration.

The collisional nature of the motion is justifiable in all but some small regions of
the currents, for example close to the surface of the slope. The model captures only
the relatively slow evolution of averaged quantities. In particular bubbles (i.e. volumes
largely evacuated of particles that travel through fluidised particles) are not explicitly
resolved. Bubbles are an important feature of deep, static fluidised beds as apart from
strongly affecting the local instantaneous volume fraction of particles and they are the
primary source of granular temperature in such a bed (Menon & Durian 1997). There
are several processes that might lead to the generation or suppression of bubbling,
most notably including the dissipation of granular temperature through collisions,
which is prone to clustering instabilities (Goldhirsch & Zanetti 1993; Fullmer &
Hrenya 2017). Some studies have sought to predict the onset of bubbling in static
beds through linear stability analysis (e.g. see the review by Jackson 2000). The
flows of fluidised materials analysed here are somewhat different from these stability
analyses, however, due to the persistent production of granular temperature by work
done by the velocity field shear against the shear stresses, a process absent in static
beds; hence, by means of a scaling analysis Eames & Gilbertson (2000) showed that
the contribution of these bubbles to the overall balance for granular temperature is
likely to be negligible for this downslope motion. Furthermore, shallowness in the
bed is thought to suppress bubbling (Botterill et al. 1972; Tsimring, Ramaswamy &
Sherman 1999), as is shear (Botterill & Abdul-Halim 1979; Ishida et al. 1980). We
therefore assume that bubbling is likely to have a limited influence on the fluidised
currents. Extensive bubbling was not observed in the currents. The photograph shown
later in figure 9 is typical with no apparent bubbles. While agitation was visible at
the top of the currents, bubbles sufficiently large to fill the width of the bed were
hardly ever seen.

Most of the theoretical developments in this study will be for two-dimensional flows
and the effects of the front and back walls of the apparatus are neglected. The use
of this planar set-up allows the structure of the system to be seen and measured (as
described in § 2), but at the expense of it being bounded by walls not present in
realistic, three-dimensional systems. Arguably, because fluidisation eliminates internal
friction, a large part of the effect that the presence of these walls might also be
eliminated. Here, in most of what follows, we analyse the motion in the regimes that
the sidewalls play a negligible role; however in § 6.1, we also analyse the case when
the sidewalls have a dominant effect on horizontal currents and in appendix B, we
derive the extra, weak retardation on flows down slopes that arises from sidewall drag
when the depth of the flow is much smaller than the width.

The general equations of motion for a continuum model, known as a ‘two-fluid
model’, of a gas–particle system have been developed by Jackson (2000). The
conservation of mass in each phase is given by

∂

∂t
(1− φ)+∇ · ((1− φ)u)= 0 (3.1)

∂φ

∂t
+∇ · (φv)= 0, (3.2)
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where φ denotes the volume fraction of solids and u and v the velocity field of the
gas and solid phase, respectively.

Following Jackson (2000), the balance of momentum for the gas is given by

(1− φ)ρg
Dgu
Dt
= (1− φ)∇ · Sg

−FD + (1− φ)ρgg (3.3)

and for the particles

φρs
Dsv

Dt
=∇ · Ss

+ φ∇ · Sg
+FD + φρsg, (3.4)

where ρg and ρs are the densities of the gas and solid phase respectively, S is the
spatially averaged stress tensor of each phase with the superscript (g, s) denoting the
gas or solid phase, respectively, FD is the drag force exerted by the particles on the
fluid due to the difference in their velocities and g denotes gravitational acceleration.
The material derivatives, Dg/Dt and Ds/Dt denote the rate of change moving with the
gas and the solid phase respectively. A number of researchers, including Ergun (1952)
and Jackson (2000), have suggested that FD= β(u− v), where β is a drag coefficient.
Virtual mass and particle shear forces are neglected.

These equations will be solved for the situation shown schematically in figure 1.
The slope is inclined at angle, θ , to the horizontal with the underlying boundary at
z= 0 and the upper surface of the current at z= h, while the x-axis is aligned with
the basal boundary. A mixture of solid particles and gas runs down the slope under
the influence of gravity.

4. Fully developed flows
4.1. Model for fully developed flows

First, fully developed flows are investigated, in which the dependent variables are
functions only of the distance from the boundary, z, and the velocity fields of the
gas and solids are given by u = (u(z), 0, w(z)) and v = (v(z), 0, 0), respectively.
Conservation of mass for the solid phase is automatically satisfied by this form, but
for the fluid phase we deduce that

(1− φ)w=wg, (4.1)

where wg is the fluidising gas flux per unit area normal to the boundary.
The expressions for the balance of momentum follow those proposed by Johnson &

Jackson (1987) and Agrawal et al. (2001) where for the gas phase down the slope

ρgwg
∂u
∂z
= (1− φ)ρgg sin θ + (1− φ)

∂

∂z

(
µg
∂u
∂z

)
+ β(v − u), (4.2)

where g = |g| denotes gravitational acceleration and µg is the gas viscosity.
Perpendicular to the slope, we find

ρgwg
∂w
∂z
=−(1− φ)

∂p
∂z
− (1− φ)ρgg cos θ − βw+ (1− φ)

4
3
µg
∂2w
∂z2

, (4.3)

where p is the pressure within the fluid phase. In (4.2) and (4.3) we have assumed
that the gas phase is incompressible and can be treated as Newtonian with constant
viscosity, µg.
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For the solid phase, the balance of down slope momentum is given by

0= φρsg sin θ +
∂σxz

∂z
− β(v − u)+ φ

∂

∂z

(
µg
∂u
∂z

)
, (4.4)

while normal to the slope,

0=−φρsg cos θ +
∂σzz

∂z
− φ

∂p
∂z
+ βw+ φ

4
3
µg
∂2w
∂z2

. (4.5)

In (4.4) and (4.5), σxz and σzz are components of the solid-phase stress tensor, Ss, and
at this stage we have not yet invoked any constitutive model for these stresses. Further,
from (4.4) the driving force for the current is gravity and within this framework,
currents over horizontal surfaces are inherently unsteady as they decelerate.

The downslope balance of momentum (4.4) differs from previous contributions. Nott
& Jackson (1992) implicitly assumed that there was no relative component of velocity
downslope between each of the phases and thus there was no drag force (i.e. β(u−
v)= 0). Eames & Gilbertson (2000) did not consider momentum balance for the fluid
phase and imposed u= 0; thus within their model, the drag force βv is dominant and
by assumption the shear stress associated with the solid phase is negligible. We do
not invoke either of these assumptions at this stage, instead maintaining the various
dynamical processes until their relative magnitudes have been fully assessed below.

Adding the normal momentum equations (4.3) and (4.5), we find that

∂

∂z
(p− σzz)=−(ρg(1− φ)+ ρsφ)g cos θ +

4
3
µg
∂2w
∂z2
− ρgwg

∂w
∂z
. (4.6)

When the current is homogeneous so that particle volume fraction φ is constant, from
(4.1) the vertical component of the gas velocity is also constant; so, (4.6) expresses
the hydrostatic balance between the vertical gradient of the normal stress from both
solid and fluid phases and the weight of the fluidised grains.

It is also insightful to eliminate the fluid pressure field between (4.3) and (4.5) to
find that

∂σzz

∂z
+

φ

(1− φ)
ρgwg

∂w
∂z
= φ(ρs − ρg)g cos θ −

βw
1− φ

. (4.7)

This expression reveals the fundamental dynamical role played by fluidisation. The
slope-normal component of the inter-phase drag, incorporated into the model by βw,
can balance the weight of the grains and thus it is possible for the normal stress
tensor of the solid phase σzz to be much reduced from its non-fluidised magnitude.
This in turn reduces the magnitude of the solids shear stress σxz and thus the mobility
of the fluidised flows is greatly enhanced. Equation (4.7) is different from the classical
model of a static fluidised bed because velocity gradients lead to normal stresses in the
solid phases and these may contribute in a non-negligible way to the balance between
weight and drag as shown below.

4.1.1. Inter-phase drag and constitutive equations
The drag on the solid phase due to the fluidising gas flow is given by β(u − v),

where the drag coefficient, β, may be written

β =
µg

d2
f0(φ)+

ρf

d
|u− v|f ∗0 (φ), (4.8)
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where f0 and f ∗0 are given in table 1 (Ergun 1952). The first term on the right-hand
side of the equation represents the drag associated with viscous processes, and the
second term with inertial processes. For the regime of interest in this study, the inertial
effects are negligible since the Reynolds number, based on gas velocity and particle
size, is sufficiently small (Re≡ρgwgd/µg<10); however for completeness at this stage
we maintain it in the model formulation. Other expressions for the drag coefficient
have been used (e.g. Agrawal et al. 2001; Oger & Savage 2013) and these could
replace (4.8) within this modelling framework.

It was noted above that particle interactions are dynamically important because of
the momentum transfer arising from particle collisions (Lun et al. 1984; Garzo &
Dufty 1999). Here we examine the collisional stresses and follow Nott & Jackson
(1992) and Agrawal et al. (2001) amongst others who incorporate these effects into
models of fluidised and aerated flows, to write the shear and normal components
of stress in terms of a granular temperature, T , which measures the fluctuations of
velocity about the mean, the volume fraction of solids, φ, and the coefficient of
restitution e, which characterises dissipation in the instantaneous collisions. While the
constitutive laws invoked here have been validated in some scenarios by simulation
and experimentation, there remains some uncertainty about their generality. Hence we
pose the model quite generally so that the constitutive relations could be updated as
required.

For fully developed flows, we write

σxz = f1(φ, e)ρs dT1/2 ∂v

∂z
, (4.9)

σzz =−f2(φ, e)ρsT, (4.10)

where f1 and f2 are dimensionless functions given in table 1. In this study, we employ
the constitutive formulae derived by Garzo & Dufty (1999) and recently used for
modelling dense avalanches by Jenkins & Berzi (2010).

Granular temperature may be generated and ‘conducted’ via the flow processes and
dissipated in the collisions. Following Lun et al. (1984) and Garzo & Dufty (1999)
amongst others, these effects are encompassed in the following expression of energy
balance within the flow

0=−
∂Ψ

∂z
+ σxz

∂v

∂z
− f3(φ, e)ρs

T3/2

d
, (4.11)

where the flux of granular temperature is given by

Ψ =−f4ρsdT1/2 ∂T
∂z
− f ∗4 ρsT3/2d

∂φ

∂z
, (4.12)

and f3, f4 and f ∗4 are dimensionless functions given also in table 1. In posing this
balance of granular temperature we have neglected generation and dissipation of the
granular temperature mediated by viscous interactions with gas (Koch & Sangani
1999).

Following the formulation of Agrawal et al. (2001), dissipation by viscous processes
is much smaller than dissipation through inelastic collisions when

µgT
d2
�
ρs(1− e2)T3/2

d
. (4.13)
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f0 =
150φ2

(1− φ)

f ∗0 =
9φ
4

f1 =
5
√

π

4g0

(
1− 2

5 (1+ e)(1− 3e)φg0
) (

1+ 4
5 (1+ e)φg0

)(
13+ 12e− e2 − c∗

(
2
3 +

3
16 e− 9

16 e2
)) +

4
5
√

π
(1+ e)φ2g0

(
1−

c∗

32

)
f2 = φ(1+ 2(1+ e)φg0)

f3 =
12
√

π
(1− e2)φ2g0

(
1+

3c∗

32

)
f4 =

25
√

π

4(1+ e)g0

(
1+ 6

5 (1+ e)φg0
)(

9+ 7e+ 1
64 (12e− 221)c∗

) [1+
3
5
(1+ e)2(2e− 1)φg0

+

(
1+

3
10
(1+ e)2φg0

)
c
]
+

2
√

π
(1+ e)φ2g0

(
1+

7c∗

32

)

f ∗4 =
75
√

π

8(1+ e)φg0

(
1+ 6

5 (1+ e)φg0
)(

19− 3e+
(

177
64 e− 161

64

)
c∗
)
40(1− e)

3

(
1+ φ

d
dφ

log g0

)(
1+

3c∗

32

)
(
9+ 7e+ 1

64

(
237
64 e− 221

64

)
c∗
)

×

(
1+ (1+ (1+ e)φg0)c∗ +

3
5
φ(1+ e)2g0

(
2e− 1+

(
1
2
+

e
2
−

5
3(1+ e)

)
c∗
))

+
1
3

(
1+ 4(1+ e)φg0 + 2(1+ e)φ2 dg0

dφ

)
c∗

−
4φg0

5

(
1+

1
2
φ

d
dφ

log g0

)
(1+ e)

(
e(1− e)+ c∗

(
1
3
+

e(1− e)
4

))
f5 = f1

(
π

2
√

3

φ

φm
g0ψ

)−1

f6 =
π
√

3
6

φ

φm
g0ψ

f7 =
π
√

3
4

φ

φm
(1− e2

w)g0

TABLE 1. The constitutive laws for granular kinetic theory applied to fluidised systems.
Here e denotes the coefficient of restitution characterising collisions between particles; ew
is the coefficient of restitution between the walls and the particles; φm is the volume
fraction at maximum packing; ψ is the specularity coefficient (after Johnson & Jackson
1987); and g0 is the radial basis function which accounts for particle packing (4.15). The
coefficient c∗ = 32(1 − e)(1 − 2e2)/(81 − 17e + 30e2(1 − e)) (Garzo & Dufty 1999). f0
contributes to the inter-phase drag in the viscous regime and f ∗0 in the inertial regime (see,
for example, van der Hoef, Beetstra & Kuipers 2005). f1, f2 model the volume fraction
dependence in the collisional contributions to stresses (Garzo & Dufty 1999); f3, f4 and
f ∗4 model contributions to the granular energy balance (Garzo & Dufty 1999). f5 to f7
determine boundary conditions at the base of the flow: f5 contributes to the boundary
condition for momentum balances and f6 and f7 to that for fluctuation energy (see Johnson
& Jackson 1987; Johnson et al. 1990).
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Furthermore, the generation of granular temperature by viscous processes is much
smaller than that by granular interactions when

µ2
g|u− v|

2

ρsd3T1/2
� ρsdT1/2

(
∂v

∂z

)2

. (4.14)

The constitutive laws, f1 − f ∗4 , as well as those involved the boundary conditions
( f5 − f7, see § 4.1.3) feature the radial basis function, g0(φ). Various authors have
suggested forms for g0 and we employ an expression that is close to the suggestion
of Vescovi et al. (2014), who empirically fitted a function to match data from
discrete element simulations. Importantly, the radial basis function diverges as the
volume fraction approaches maximum packing (as established by Torquato (1995))
and following Vescovi et al. (2014) we write

g0 = ĝ
2− φ

2(1− φ)3
+ (1− ĝ)

2
φm − φ

, (4.15)

where the weighting function is given by

ĝ=


1 φ < φ∗,

1−
(
φ − φ∗

φm − φ∗

)n

φ∗ <φ <φm.
(4.16)

Thus, when φ < φ∗ the radial basis function is given by the formula proposed by
Carnahan & Starling (1969), but it exceeds this value when φ∗ < φ and diverges
as maximum packing is approached. Vescovi et al. (2014) suggest that n = 2 and
that φ∗ = 0.4. While this choice ensures that g0 and its derivative are continuous at
φ = φ∗, the second derivative is discontinuous. This is problematic for the system
of differential equations that we will integrate numerically; therefore, we employ the
values n= 3 and φ∗= 0.4, which ensure that g0 is sufficiently smooth. Moreover, our
expression (4.16) with these values is close to those proposed by Torquato (1995) and
Vescovi et al. (2014) and appears to match the simulation data adequately.

The energetic balance encompassed in (4.11) assumes that the particles are
sufficiently agitated so that the particle diameter is the appropriate correlation length
scale over which dissipated occurs (and the rate of dissipation is then given by
ρsf3T3/2/d). Recently, however, Jenkins (2007) has suggested that at relatively high
concentrations, clusters of particles begin to form and thus the correlation length
increases to Lc (> d) and then the rate of dissipation is given by ρsf3T3/2/Lc. This
extended kinetic theory has been applied to unfluidised flows of grains down inclined
planes by Jenkins & Berzi (2010, 2012), where an empirical formula for Lc, informed
by comparison with simulations and experimental measurements, is proposed in terms
of the dependent flow variables. In our study there is potentially the need to include
this phenomenon into the modelling framework to obtain good comparison between
the predicted and measured results. However, as shown in appendix A, we find
that extended kinetic theory makes negligible difference to the model predictions
for the fluidised flows in our regime of interest and so we do not include it in the
calculations that follow.
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4.1.2. Coefficient of restitution
The dynamical effects of collisions between particles and between particles and

the underlying boundary are characterised in the model by three parameters: the
coefficients of restitution between the particles, e, and between the particles and the
boundary, ew, and the specularity coefficient ψ , which governs the dynamic interaction
between the particles and the bottom surface (4.32). These parameters are relatively
difficult to measure directly.

The coefficient of restitution, e, plays an important role in continuum models and
in discrete particle (or element) models (DPMs), which endeavour to calculate the
motion of large ensembles of particles and to resolve individual particle collisions.
In continuum models, the difference of e from unity is proportional to the rate at
which the collisions dissipate energy (see the definition of f3 in table 1), whereas in
DPMs it controls the ratio of normal velocities before and after binary collisions and
in these models, there are potentially additional means of energy dissipation. Often
values for the coefficient of restitution are adopted without independent experimental
confirmation and for DPM studies, typical values are relatively high (for example,
e= 0.90 and 0.97 respectively in the studies of Goldschmidt et al. (2004) and van der
Hoef et al. (2008)). These values are close to measured values of discrete collisions
(see, for example, Kharaz, Gorham & Salman 2001). When used in kinetic theory
models, commonly adopted values of e are rather lower and Jenkins & Zhang (2002)
suggest a means by which the appropriate value for kinetic theories can be derived
from directly measured normal and tangential coefficients of restitution and the
tangential coefficient of friction. For glass spheres of 3 mm diameter, the measured
data of Foerster et al. (1994) correspond to an effective coefficient of e= 0.85 if the
method of Jenkins & Zhang (2002) is employed and this is the value we employ in
this study. We have no direct measurements of the appropriate coefficient of restitution
for the collisions between the particles and underlying boundary; we choose ew= 0.75,
but note that its magnitude has very little influence upon the computed flow profiles
apart from within thin basal boundary layers.

4.1.3. Boundary conditions
The boundary conditions for this problem follow the formulation of Johnson &

Jackson (1987) and Johnson et al. (1990). At the base, there is no slip for the fluid
phase, a slip condition for the particle phase and a condition specifying the flux of
granular temperature. These are respectively given by

u= 0, f5d
∂v

∂z
= v and Ψ = ρsT1/2( f6v

2
− f7T) at z= 0. (4.17a−c)

What this means physically is that solid-phase slip is allowed and stress is transmitted
in the downslope direction by specularity i.e. the degree to which the angle of exit
of a particle after collision with the base is different from the entry angle. This is
mathematically represented by the specularity coefficient ψ (0<ψ < 1). Furthermore,
fluctuation energy (granular temperature) is generated at the bottom surface and
potentially dissipated by inelastic collisions, encompassed through a coefficient of
restitution, ew.

At the top of the current z= h, there are the free-surface boundary conditions that
fluid shear and normal stresses vanish, given by

∂u
∂z
= 0, and p−

4µ
3
∂w
∂z
= 0 at z= h. (4.18a,b)
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However, in addition, the flux of granular temperature vanishes and the solid-phase
normal and shear stresses adopt small values, representing the surface as being the
location where collisional behaviour ends and instead the particles follow ballistic
trajectories (see Johnson et al. 1990). Thus we enforce

Ψ = 0 and (σxz, σzz)=
π

6
ρs

(
φ

φm

)2/3

gd(sin θ,−cosθ) at z= h. (4.19a,b)

The boundary conditions (4.17)–(4.19) are of the same character as those employed by
researchers in other flow regimes (see, for example, Jenkins & Berzi 2010) and as for
the constitutive laws, the framework for analysing these flows is robust to variations
in the closures used for these conditions.

4.1.4. Non-dimensionalisation of equations
We now identify typical dimensional scales for the dependent variables and assess

the magnitude of the various terms in the governing equations. It is convenient to
sum the downslope momentum equations of each phase (4.2) and (4.4) to eliminate
the inter-phase drag so that

ρgwg
∂u
∂z
= (ρsφ + ρg(1− φ))g sin θ +

∂

∂z

(
ρsf1dT1/2 ∂v

∂z

)
+µg

∂2u
∂z2

. (4.20)

In this expression, the key driving force is the downslope gravitational acceleration
and it is this term that the other terms must balance. Since the density of the gas
is much smaller than that of the solid phase and the effects of gas viscosity are
negligible away from boundaries in this streamwise balance, we deduce that the
dominant resistance is provided by the shear stress associated with the solid phase.
Coarsely scaling the variables and assuming the volume fraction and the constitutive
functions of it are of order unity,

ρsg sin θ ∼ ρsdT1/2v/h2. (4.21)

Furthermore, if the granular temperature is in local equilibrium between production
and dissipation (an assumption that will be tested in the numerical solutions that
follow), then from (4.11),

dT1/2(v/h)2 ∼ T3/2/d; (4.22)

whence, the scaling for the velocity field is given by

v ∼

(
gh3 sin θ

d2

)1/2

. (4.23)

It is now convenient to introduce dimensionless variables, given by

ẑ= z/h, û= u
(

gh3 sin θ
d2

)−1/2

, v̂ = v

(
gh3 sin θ

d2

)−1/2

ŵ=
w
wg
, p̂=

p
ρsgh cos θ

and T̂ =
T

gh sin θ
.

 (4.24)
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µg 1.7× 10−5 kg ms−1 S 5.2× 10−2
− 2.7× 10−1

ρg 1.2 kg m−3 R 4.8× 10−4

ρs 2500 kg m−3 δ O(0.01)
d 3.75× 10−4 m Wg 2.7× 10−4

− 1.65× 10−3

St 5.6–12.4
θ 3◦–15◦ Re 1.43–8.55

wg
0.09–0.34 m s−1

(0.5–3.0umf )

Qnom 15–80 cm3 s−1

TABLE 2. Range of values of the physical parameters in the experiments and the
dimensionless groups derived from them as defined by (4.25).

This set of scalings for the dependent variables of fluidised flows differs from those
for flows of unfluidised, collisional granular media (Woodhouse et al. 2010). For non-
fluidised flows, the granular agitation must provide sufficient normal stress to support
the weight of the overlying layer. This would require the granular temperature to be of
magnitude gh cos θ , which is considerably larger than the estimate deduced here (4.24)
unless the motion is along relatively steep inclines (i.e. when tan θ ∼ 1). For fluidised
flows, however, granular temperature is generated by collisions but the imposed gas
flow through the underlying particles provides most of the normal stress to balance
the weight of the flowing layer. The granular temperature, therefore, is lower and
consequently the shear stresses are lower, which in turn significantly increases the
mobility of these flows. Hence these fluidised flows are characterised by relatively
high flow speeds and relatively weak resistance.

The model is characterised by five dimensionless groups:

S= tan θ, R=
ρg

ρs
, δ =

d
h
,

Wg =
µgwg

ρsd2g cos θ
, and St=

ρsd(g sin θh)1/2

µg
δ2,

 (4.25)

which represent respectively the inclination of the underlying boundary, the relative
density of the gas to the solid phases, the size of the particles relative to the flow
depth, the magnitude of the drag exerted by the fluidising gas flow relative to the
weight of the granular layer and the reduced Stokes number, which compares particle
inertia to fluid viscous effects.

It is also possible to define a particle Reynolds number,

Re=
ρgwgd
µg
=

RWgSt2

Sδ3
. (4.26)

Notably, the Reynolds number defined in this way is independent of the inclination
of the slope. The magnitude of the various model parameters for the experiments are
set out in table 2. These scales may be used to show that the granular temperature
dissipation and generation by viscous processes are negligible compared with direct
particle interactions: (4.13) is satisfied when δ2/St� 1 and (4.14) when Wg� 1.

We have five governing equations: mass conservation (4.1), downslope fluid
momentum conservation (4.2), the combined normal momentum equation from
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which the fluid pressure has been eliminated (4.7), the downslope solids momentum
equation (4.4) and the equation for the conservation of granular temperature (4.11).
Non-dimensionalised, these become

(1− φ)ŵ= 1, (4.27)

δRe
∂ û
∂ ẑ
= RSt(1− φ)+ (1− φ)δ2 ∂

2û
∂ ẑ2
+ (v̂ − û)( f0 + f ∗0 ReU), (4.28)

−S
∂

∂ ẑ
( f2T̂)+

δWgReφ
(1− φ)

∂ŵ
∂ ẑ
= φ(1− R)−Wg

ŵ
1− φ

( f0 + f ∗0 ReU), (4.29)

0= φ +
∂

∂ ẑ

(
f1T̂1/2 ∂v̂

∂ ẑ

)
−
( f0 + f ∗0 ReU)

St
(v̂ − û)+

φδ2

St
∂2û
∂ ẑ2

, (4.30)

0= δ2 ∂

∂ ẑ

(
f4T̂1/2 ∂T̂

∂ ẑ

)
+ δ2 ∂

∂ ẑ

(
f ∗4 T̂3/2 ∂φ

∂ ẑ

)
+ f1T̂1/2

(
∂v̂

∂ ẑ

)2

− f3T̂3/2, (4.31)

where U measures the magnitude of the dimensionless relative velocity between the
phases and is given by U 2

= S2(û− v̂)2/(WgSt)2+ ŵ2. From (4.17), the dimensionless
boundary conditions at the base (ẑ= 0) are given by

û= 0, f5δ
∂v̂

∂ ẑ
= v̂ and −δf4

∂T̂
∂ ẑ
=

f6

δ2
v̂2
− f7T̂, (4.32a−c)

while from (4.18), we enforce at the top surface (ẑ= 1)

∂ û
∂ ẑ
= 0,

∂T̂
∂ ẑ
= 0 and

(
f1T̂1/2 ∂v̂

∂ ẑ
, f2T̂

)
=

πδ

6

(
φ

φm

)2/3

(1, S−1). (4.33a−c)

The system of governing differential equations (4.27)–(4.31) and boundary
conditions (4.32)–(4.33) form a seventh-order differential boundary value problem.
We use (4.27) to eliminate ŵ in favour of 1/(1− φ) and we also evaluate d2φ/dz2 in
(4.31) by explicitly differentiating (4.29). The system is then integrated numerically.
(For this task we employ the boundary value problem solver bvp4c in MatLab.)
Example solutions for the volume fraction, φ(ẑ), the granular temperature, T̂(ẑ), and
the velocity of the solid phase, v̂(ẑ), are plotted in figures 2–4 for various values
of the governing dimensionless parameters. We do not plot the gas velocity, û(ẑ),
because outside of thin basal boundary layers, it is indistinguishable from the solids
velocity, v̂(ẑ). This basal boundary layer exists because the while the gas phase
satisfies a no-slip condition, the solid phase exhibits slip.

The general trends are that the volume fraction is approximately uniform while the
granular temperature decreases with distance from the bottom boundary. Additionally
there is a small slip velocity for the solid phase and the velocity shear decreases with
distance from the boundary. There are some systematic deviations from these general
trends, most notably in regions close the upper and lower boundaries. Since the
interactions with the basal boundary are more dissipative than interactions with the
constituent grains, the granular temperature decreases within a region in the vicinity
of the boundary. This boundary effect is diminished as the flow becomes thicker
(i.e. as δ decreases, see figure 2), but is magnified where either the fluidising gas
flow is increased (figure 3) and the slope is increased (figure 4). We also find that
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FIGURE 2. (Colour online) The volume fraction, φ(ẑ), velocity of the solid phase, v̂(ẑ),
and the granular temperature, T̂(ẑ), as functions of the dimensionless depth within the
current for parameter values R= 10−3, ψ = 0.5, φm = 0.63, e= 0.85, ew = 0.75, S = 0.1,
St= 103δ2, Wg= 10−3 and (i) δ= 0.1, (ii) δ= 0.01 and (iii) δ= 0.001. Also plotted are the
asymptotic solutions (dotted lines), although these are often overlain by the full solution.

throughout the bulk of the domain, away from thin layers adjacent to the upper and
lower boundaries, the production of granular temperature is in close balance with its
dissipation, thus confirming the dimensional scales identified above (4.24).

It is of particular interest to evaluate the dimensionless flux of solids per unit width
and the average concentration of particles, respectively given by

q̂=
∫ 1

0
φv̂ dẑ and φ =

∫ 1

0
φ dẑ, (4.34a,b)

and these are plotted as functions of the dimensionless parameters in figures 5–7.
From figure 5, we observe that the dimensionless volume flux per unit width, q̂,

and the average volume fraction, φ, do not vary strongly with the relative particle
size, δ. Thus, we deduce that boundary-related effects on the bulk characteristics are
negligible for flows that are in excess of twenty particles thick. This result is of
particular significance when unsteady shallow flows are analysed (§ 5).

The effects of the fluidisation velocity, Wg, are rather more subtle (see figure 6).
Increasing Wg increases the normal support of the weight of the granular layer due to
the gas flow and this lowers the concentration of the layer. However, the net volume
flux, q̂, does not vary monotonically with Wg. Indeed, for the parameters in figure 6,
it attains a maximum at a dimensionless gas flow rate Wg = 2.3 × 10−3 and at that
value of Wg, φ = 0.43. This reflects the trade-off between the increased mobility
but lower solids fraction of more dilute currents. Finally there is also relatively
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FIGURE 3. (Colour online) The volume fraction, φ(ẑ), velocity of the solid phase, v̂(ẑ),
and the granular temperature, T̂(ẑ), as functions of the dimensionless depth within the
current for parameter values R= 10−3, ψ = 0.5, φm = 0.63, e= 0.85, ew = 0.75, S = 0.1,
St= 0.1, δ= 0.01, (i) Wg = 0.5× 10−3, (ii) Wg = 1.0× 10−3 and (iii) Wg = 2× 10−3. Also
plotted are the asymptotic solutions (dotted lines).

complex behaviour with increasing slope angle (figure 7). For the computations in
this figure, as we increase the inclination, we also adjust Wg and St, but maintain Re
constant (see (4.25) and (4.26)). We find that as the slope increases, the normal stress
developed by the particle collisions increases with increasing granular temperature
and this supplements the fluidising gas flow, leading to a progressively decreasing
average volume fraction. However the dimensionless volume flux exhibits a more
complicated dependency because while the velocity fields increase with increasing
slope, the volume fraction diminishes and eventually becomes sufficiently dilute for q̂
to be maximised at some finite value of S. (For the parameters analysed in figure 7,
the local maximum in the flux occurs at S= 0.22.)

4.1.5. Asymptotic solution
In the bulk of the flow away from the boundaries, it is possible to deduce an

asymptotic solution to the governing equation for the regime δ� 1 and R� 1. This
regime will have a widespread validity as d� h in order to use a continuum approach,
and for gas–solid flows ρg � ρs. From (4.28), we note that to leading order and
away from boundaries, the downslope velocities of the two phases must be equal
(û = v̂ + O(1)). Furthermore, from (4.31) there is a local balance between granular
temperature production and dissipation such that

f1

(
∂v̂

∂ ẑ

)2

= f3T̂, (4.35)
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FIGURE 4. (Colour online) The volume fraction, φ(ẑ), velocity of the solid phase, v̂(ẑ),
and the granular temperature, T̂(ẑ), as functions of the dimensionless depth within the
current for parameter values R = 10−3, ψ = 0.3, φm = 0.63, e = 0.85, ew = 0.75, St =
0.1, δ = 0.01, Wg = 10−3, (i) S= 0.1; (ii) S= 0.2 and (iii) S= 0.3. Also plotted are the
asymptotic solutions (dotted lines).
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FIGURE 5. The dimensionless volume flux per unit width transported by the flowing layer,
q̂, and the depth-averaged volume fraction, φ, as functions of the relative particle size for
parameter values R = 10−3, ψ = 0.50, φm = 0.63, e = 0.85, ew = 0.75, S = 0.10, St =
103δ2 and Wg = 10−3. Also plotted are the asymptotic solutions (dashed) and the simple
approximate solutions (dotted).

provided the volume fraction of particles is not too small (i.e. φ � δ, so that the
‘conductive’ effects of the granular temperature remain negligible).
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FIGURE 6. The dimensionless volume flux per unit width transported by the flowing layer,
q̂, and the depth-averaged volume fraction, φ, as functions of the dimensionless strength of
the fluidising gas flow, Wg, for parameter values R= 10−3, ψ = 0.50, φm= 0.63, e= 0.85,
ew = 0.75, S = 0.10, St = 0.10 and δ = 10−2. Also plotted are the asymptotic solutions
(dashed) and the simple approximate solutions (dotted).
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FIGURE 7. The dimensionless volume flux per unit width transported by the flowing layer,
q̂, and the depth-averaged volume fraction, φ, as functions of the slope of the underlying
boundary, S= tan θ , for parameter values R= 10−3, ψ = 0.50, φm = 0.63, e= 0.85, ew =

0.75, δ = 10−2, Wg = 9.95 × 10−4(1 + S2)1/2, St = 0.317S1/2(1 + S2)−1/4. Also plotted are
the asymptotic solutions (dashed) and the simple approximate solutions (dotted). Note the
local maximum at S= 0.21.

The governing equations for the normal and perpendicular momentum balances,
(4.29) and (4.30), are then given by

−S
∂

∂ ẑ
( f2T̂)= φ −Wg

f0

(1− φ)2
, (4.36)

∂

∂ ẑ
(( f1f3)

1/2T̂)=−φ. (4.37)

These reduced governing equations neglect shear stresses in the fluid phase, which
become non-negligible as the basal boundary is approached and which allow the
velocities of the two phases to differ. Also the ‘conduction’ of granular temperature
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is neglected because, to leading order, we find a balance between production and
dissipation (4.35). When δ � 1, the lower boundary layer corresponds to a region
within which the velocity of the solid phase is small, while the upper boundary
layer to a region within which the granular temperature is small. The leading-order
boundary conditions are then given by T̂(1)= 0 and the volume fraction at the base
is given by φ(0) = φ0, which is determined by substituting for ∂v̂/∂ ẑ from (4.35)
into (4.32),

0=
(

f6 f 2
5 f3

f1
− f7

)
T̂, (4.38)

where the constitutive functions ( fi) are evaluated at φ=φ0. The basal volume fraction
is thus a function of e, ew, ψ and φm.

Rearranging (4.36) and (4.37) and denoting f = ( f1f3)
1/2, we find that

( f ḟ2 − ḟ f2)T̂
∂φ

∂ ẑ
=

(
−φ +

Wgf0

(1− φ)2

)
f
S
+ f2φ, (4.39)

(ḟ f2 − f ḟ2)
∂T̂
∂ ẑ
=

(
−φ +

Wgf0

(1− φ)2

)
ḟ
S
+ ḟ2φ, (4.40)

where ˙ denotes differentiation with respect to φ. It is straightforward to integrate
numerically these coupled first-order equations subject to the boundary conditions
T̂(1)= 0 and φ(0)=φ0. The solutions are plotted in figures 2–4 and it is evident that
these asymptotic solutions accurately reproduce the numerical solution of the complete
system (very often in these figures, the asymptotic curves are indistinguishable from
the numerical solution of the complete system).

There is also an even simpler approximate solution. The coupled system admits a
homogeneous solution φ(z)= φ when

φ −
f0Wg

(1− φ)2
=

Sφf2

( f1f3)1/2
, (4.41)

where the constitutive functions are evaluated at φ = φ. In this case, the temperature
gradient is constant, ∂T̂/∂ ẑ = −λ, with λ = φ/f . This solution is ‘attracting’ in the
sense that trajectories in the phase plane (φ(ẑ), T̂(ẑ)) approach it when

f ḟ2 − ḟ f2 < 0, (4.42)

which in turn demands that φ > φc(e) and that S < Sc(e) (see figure 8c). If these
inequalities are not held then the reduced system evolves towards a state different
from a uniform volume fraction (φ=φ) and may not admit solutions at all. Physically,
when S > Sc, the dissipation of granular temperature, here encapsulated through a
coefficient of restitution e, is insufficient to allow for a steady balance between the
weight of the flowing layer, the fluidising drag and the normal stresses generated
through particle interactions (a balance expressed by (4.36)). When e / 0.85, we
find that this limitation does not play for parameter values associated with the
flows considered in this study and that a flow with a homogeneous volume fraction
of particles provides a good representation of the more complete dynamics (see
figures 2–4).

When the dimensionless fluidisation velocity Wg and the slope S are set, the
average volume fraction within the current, φ, can be calculated using (4.41).
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FIGURE 8. (Colour online) (a) The limiting volume fraction, φc and slope, Sc, for which
the uniform volume fraction is the ‘attracting’ solution as functions of the coefficient of
restitution; (b) the volume flux per unit width, q̂, (c) the average volume fraction, φ, as
functions of the slope, S, for Wg= 10−3 and varying values of the coefficient of restitution
and (d) the product of φ and the mobility factor, F, as a function of φ for various values
of the coefficient of restitution.

Figure 8(a) shows the effect of e on the curves of φ as a function of slope S when
the fluidisation flow is constant (Wg = 10−3). The curves in this plot are continued
up to the maximum value of the slope, Sc(e), for which the reduced model leads
to a homogeneous volume fraction and it can be seen that the slope at which this
can be achieved is successively reduced as dissipation in the collisions is decreased.
From figure 8(b), for a given slope, S, and fluidisation gas flow rate, Wg, flows with
lower coefficients of restitution lead to higher dimensionless volume fluxes per unit
width. This is simply rationalised: as a high coefficient of restitution implies reduced
dissipation and high granular temperatures. Consequentially there are higher stresses
and greater resistance to the downslope motion.

Since the granular temperature must vanish at the surface ẑ = 1 to leading order,
we find for the simple approximate solution with uniform volume fraction that the
granular temperature is given by

T̂ =
φ

( f1f3)1/2
(1− ẑ), (4.43)
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and the velocity field of the solid phase is given by

v̂ = F 2
3(1− (1− ẑ)3/2), (4.44)

where F = (φ
2
f3/f 3

1 )
1/4. The scaled slip velocity at the wall Ff5δ can be added to

(4.44), but when δ � 1, it is negligible. The velocity profile (4.44) is similar to
the dimensionless ‘Bagnold’ velocity profile up to the factor F, which controls the
mobility of the flowing layer and is influenced by the fluidisation velocity. In many
situations the approximate solution provides a very good representation of the solution
to the complete system (see figures 2 to 4).

Also in this regime (δ� 1), the approximate solution yields

q̂= 2
5φF, (4.45)

and this is plotted in figures 5–7, once again illustrating the utility of this asymptotic
solution. The quantity φF thus plays a crucial role in determining the dimensionless
flux, q̂ and in figure 8(d), we plot its dependence on volume fraction for a range of
values of e. We note that φF is maximised for φ≈0.41 (with the precise value weakly
dependent on e) and vanishes both when φ vanishes and when it approaches maximum
packing. This variation reflects the balance between fast-moving dilute flows and slow-
moving concentrated flows, leading to a flux maximum at intermediate values (φ ≈
0.41). Finally, we note that a dimensional estimate of the depth of a fluidised current
may be obtained

h=
(

5
2

d
φF

q0
√

g sin θ

)2/5

, (4.46)

where q0 is the dimensional flux per unit width at the source and the effects of slip
at the wall has been neglected.

4.2. Experimental measurements of fully developed flows
4.2.1. Depth of currents

A typical velocity profile is shown in figure 9, superimposed on a captured image
from the recording of an experiment. There is a small slip at the lower boundary, an
approximately linear increase in velocity with distance from the wall until a maximum
velocity is attained and then a progressive drop to zero. There appears to be a top to
the current where the particle volume fraction suddenly drops and, there, hvis(≡ h):
hvis is greater than the height at which the maximum velocity is attained. Above hvis

particles are detected, but their velocity drops with increasing height and it has a large
variance. This is consistent with there being a ballistic region into which individual
particles may be projected. The height at which particle velocity drops to zero is the
top of the entire current and is denoted by hmax. The depth of the current can fluctuate
a little with time (see figures 18 and 19a). As a result, the averaging process will
occasionally include points that are above the average height of the current so that
the averaged velocity at these points will be necessarily lower than in the bulk of the
current and the variance will be higher. The measured heights for the different currents
are summarised in table 3 compared with the height estimated from (4.46).

The asymptotic solution yielded an approximate formula linking height and source
volume flux (4.46), and this is shown in figure 10. In this figure, fixed values of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

45
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.458


Steady and unsteady fluidised granular flows down slopes 91

 0.5

 0

1.0

1.5

45 46 47 48 49 50 51

FIGURE 9. Image of a granular current with the measured velocity superimposed onto it
(solid line). The image is an average-intensity composite of the images used in the PIV
measurements. Note the non-zero (slip) velocity at the base (v0). The dashed lines indicate
the 95 % confidence interval using (2.2). Also shown are the height where the velocity
profile drops to zero, hmax, the maximum visible height of the current, hvis, and the height
of the peak of the velocity profile, z(v= vmax). For this figure θ = 15◦, Q= 42.5 cm3 s−1,
wg/umf = 1.5.

Experimental measurements Estimate
θ/(◦) Q/(cm3 s−1) z(v = vmax)/(cm) hvis/(cm) hmax/(cm) h/(cm)

10 33.1 0.56 0.74 1.42 0.68
33.8 0.61 0.96 1.00 0.77
53.5 0.76 1.35 1.35 0.93

15 11.2 0.52 0.69 0.94 0.43
38.2 0.73 1.07 1.19 0.71
42.5 0.77 1.09 1.25 0.74

TABLE 3. Various estimates of height in steady-state currents. hvis is measured from
photographs of the currents such as that in figure 9. It may be compared with the
prediction, h, calculated from (4.46) with F based on φ̄est (see table 4), e = 0.85 and
ψ = 0.50. hmax is found directly as the height at which particle velocity drops to zero.
In all cases wg = 1.5umf .

φ were used because from (4.41), φ depends on θ and it was not possible to find
a solution for the full experimental range of θ for a fixed value of e = 0.85. The
decreasing effect of φ on mobility as its value approaches φc = 0.40 reflects the
effect it has on mobility φF shown in figure 8(d). The theoretical formula contains
no adjusted parameters and is an approximation to the more complete description, but
it yields a reasonable quantitative representation of the relationship between the depth
of the flowing layer, the source flux and channel inclination.

4.2.2. Velocity profiles
The ensemble-averaged velocity profiles for 10◦ and 15◦ slopes measured half-way

along the tank are shown in figure 11. The features described for figure 9 are reflected
in each of the profiles. The structure of the currents posited by the model is similar in
structure to the experimental measurements up to the point at which the velocity is a
maximum (see figure 2). Above this point, the variance of the velocity measurements
increases markedly as the velocity drops off. As described above this effect could be
because the PIV is simply sampling ballistic particle trajectories.

The velocity profiles measured on inclinations of θ = 10◦, with source fluxes Q=
33 cm3 s−1 and Q= 34 cm3 s−1 are distinct from each other with the former forming
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FIGURE 10. The height of the flowing layer as a function of the scaled volume flux,
q0/
√

g sin θ , for a range of channel inclinations. The model curves are for (4.46) with
φm = 0.63 and e= 0.85.

a current that is deeper and much faster than the latter. It is not clear why there is
such a large difference between the measured profiles. One possibility could be that
the flowing layer exhibits multiple states for the same imposed flux. This behaviour is
known in models of unfluidised granular flows (Woodhouse et al. 2010); however, we
failed to find such multiplicity of solutions in the governing equations examined in this
study in the parameter regime corresponding to these experiments. The relatively fast
and expanded flow with Q= 33 cm3 s−1 leads to small estimates of particle volume
fraction with an excessive portion of the flow where h> hvis (see below, § 4.2.3. Based
on hvis, φ̄ = 0.33; based on hmax, φ̄ = 0.22), which seem physically unlikely, and so
this experimental run is not reported further.

Figure 12 shows some instantaneous velocity profiles half-way along the tank for
shallower slope angles whose motion may not be steady. The velocity profiles for the
3◦ and 5◦ slopes are similar in character to the averaged profiles for steeper slopes.

4.2.3. Particle volume fraction
The expectation from the model is that the particle volume fraction φ would be

approximately uniform within the fluidised currents. It is not possible to analyse the
degree to which φ is a function of position in the currents from our experimental
set-up; however, it is evident that towards the top of the current above hvis, φ drops
sharply so that the current loses its opacity. This is consistent with the decreasing
particle velocity there. Some bubbles were seen in the currents, but not many and
at a small number of sites, even once the current had traversed the bottom of the
container, and those that were seen were small in size.

From the measured velocity profiles, it is possible to estimate the average volume
fraction, φ̄, by integrating the particle velocity profiles and dividing the measured
particle flow rate φ0Q by the result. The results φmeas are shown in table 4, using
hvis as the overall depth of the current, to give measured volume fraction of the
currents (φ̄meas). The measured values of particle volume fraction can be compared
with estimated values, φest, which have been calculated using (4.41).
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FIGURE 11. Ensemble-averaged velocity profiles for steady flows for θ = 10◦ and θ = 15◦.
Error bars are 95 % confidence limits calculated from (2.2) with m= 5 and n= 16.

There can be quite good agreement between φ̄est and φ̄meas despite several inherent
uncertainties in their computation. Overall, the values of φ̄meas were comparable to
the values of φ̄est and with the typical values of φ = 0.50–0.60 for static fluidised
beds (Epstein & Young 1962). In between hvis and hmax particles are present, but in
practice the fall off of velocity above hvis is sufficiently rapid that this makes very
little difference to calculations of φmeas: if φmeas is calculated on the basis of the top
of the current being hmax rather than hvis, then its value decreases by less than 0.02,
except when θ = 15◦ and Q= 11.2 cm3 s−1, when it reduces by 0.09.
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FIGURE 12. Measured velocity profiles from experiment for individual fluidised granular
flows that are potentially unsteady when they are at shallow angles. Error bars are
calculated from (2.1) with values of c1 determined from the correlation functions
calculated during the PIV analysis.

θ/(◦) Q/(cm3 s−1) φ̄est φ̄meas

10 33.8 0.51 0.59± 0.05
53.5 0.51 0.45± 0.05

15 11.2 0.41 0.60± 0.02
38.2 0.41 0.40± 0.02
42.5 0.41 0.40± 0.02

TABLE 4. Measured estimates for Q and φ̄ from integration of the velocity profiles.
Values of φ̄est are found from solving (4.41), and those for φ̄meas from integration of the
measured velocity profiles up to hvis. The errors are calculated using 95 % confidence limits
calculated from (2.2).

4.2.4. Slip at the wall
Specularity coefficients have not been measured for fluidised granular currents

and some modellers think they should not be used at all for individual collisions
(Goldschmidt et al. 2004). Their value is sufficiently badly defined that in their
investigations of bubbling fluidised beds of glass particles Altantzis, Bates & Ghoniem
(2015) used values between 10−4 and 0.5 and Li, Grace & Bi (2010) from 0 to 0.5.
Our computations showed that apart from within relatively narrow layers close to the
boundary, the magnitude of the specularity coefficient had relatively little effect upon
the flow profiles. It is, however, possible to estimate the value of ψ from the directly
measured slip velocities and gradients using the boundary condition (4.17) and the
definition of f5 in table 1, so that in terms of dimensional variables

ψ =
2
√

3
π

φm

φ̄

f1

g0

d
v(0)

∂v

∂z

∣∣∣∣∣
z=0

. (4.47)
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θ/(◦) Q/(cm3 s−1) v(0)/(cm s−1)
∂v

∂z

∣∣∣∣
z=0

/
(1 s−1) Slip length ψ δf5

10 33.8 7.1 113 1.68 0.22 0.022
53.5 6.6 147 1.20 0.30 0.014

15 11.2 0 61 — — —
38.2 4.2 134 0.83 0.37 0.020
42.5 6.7 133 1.34 0.23 0.019

TABLE 5. Measured slip velocities at the wall, v(0), and velocity gradients ∂v/∂z|z=0 with
the resulting estimate for slip length and for ψ using (4.47). The slip length is expressed
in terms of particle diameters and is defined as v(0)/d(∂v/∂z)|z=0. e= 0.85, φm = 0.63.

The results are shown in table 5, and it can be seen that a measured average value of
ψ is 0.28. The values for ψ shown in table 5 should be treated as only indicative as
the velocity gradients close to the wall are shallow and the slip velocities small, so
small variations in the velocity profiles can result in significant changes in the value
of ψ ; however, despite these uncertainties, the value of ψ is reasonably consistent.
The effect of ψ on the velocity profiles is to introduce a slip velocity proportional to
δf5. Even for the relatively large values of ψ estimated here, the magnitude of this
dimensionless term is relatively small.

4.2.5. Scaling of the velocity profiles
The measured velocity profiles scaled as v̂ and ẑ are plotted in figure 13. With the

exception of the lowest flow rate when θ = 15◦, the data collapse well in the region
close to the wall. The model predicts dependence of the theoretical curve on the slope
angle for the flow through its influence on φ̄ and hence F, but this is not reflected
in the experimental curves for which the scaling appears to eliminate the effect of S.
F is also affected by the value of e. Increasing e causes a decrease in the predicted
dimensionless velocity: the theoretical curves shift towards the left and the difference
between the curves for θ = 10◦ and 15◦ becomes less (see inset, figure 13).

5. Unsteady, developing flows on slopes
The mathematical model may be extended to unsteady, developing flows of fluidised

currents down slopes, but it now takes a somewhat different form because streamwise
gradients can no longer be neglected. In this situation, we analyse the motion in
the ‘lubrication’ regime, for which a representative streamwise length scale, L, far
exceeds a representative length scale perpendicular to the boundary, H(H/L � 1).
This means that accelerations perpendicular to the boundary are negligible and that
to leading order, the normal stresses adopt the ‘hydrostatic’ balance given by (4.6).
We again assume that the flows are many particles thick, δ� 1, the density of the
gas is negligible relative to that of the solids, R� 1, and the effects of gas viscosity
are negligible (see § 4.1.5). The leading-order dimensional momentum equations of
each phase parallel with the incline then take the form,

0=−(1− φ)
∂p
∂x
+ β(v − u) (5.1)

ρsφ
Dv
Dt
=−φ

∂p
∂x
+
∂σxz

∂z
+
∂σxx

∂x
+ φρsg sin θ − β(v − u), (5.2)
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FIGURE 13. Velocity profiles with measurements scaled as (4.24) compared with the
model scaled velocity profile under steady state (4.44) for each angle where e= 0.85. The
curves correspond to φ̄= 0.51 when θ = 10◦ and φ̄= 0.41 when θ = 15◦. Wg= 8.09× 10−4

when θ = 10◦ and Wg = 8.24× 10−4 when θ = 15◦. The inset graph shows the effect of
the value of e on the model solutions with the chain-dot curves corresponding to e= 0.95
and the dotted curves to e= 0.75.

where the average volume fraction in the flowing layer, determined by the balance
between the fluidising gas flow and the particle weight, is given by (4.41). It is
interesting to note from (5.1) that now there must be a leading-order difference
between the downslope velocities of the two phases. Furthermore, since the flow is
spatially and temporally evolving, we must include the inertia of the solid phase,
which in (5.2) is given by the term ρsφ Dv/Dt (here D/Dt denotes the material
derivative). Summing these two momentum balances to eliminate the inter-phase drag
and assuming further that the stresses in the solid phase are isotropic (σxx = σzz) and
that the current is in hydrostatic balance (4.6), we deduce that

ρsφ
Dv
Dt
= ρsφg

(
sin θ − cos θ

∂h
∂x

)
+
∂σxz

∂z
. (5.3)

The granular temperature of the flow in this regime is assumed to be in local
balance between its production and dissipation through collisions, and these processes
dominate its advective and diffusive transport. We proceed further by adopting the
appropriate dimensionless scales following the distinguished scaling identified in
§ 4.1.4 and embodied in the dimensionless variables of (4.24) and (4.24). However,
here we non-dimensionalise the depth of the flowing the current h by a representative
depth-scale H, (ĥ= h/H) and, additionally

v̂ =
v

F(g sin θH3/d2)1/2
, x̂=

x
L

and t̂= F
(

g sin θH3

d2

)1/2 t
L
. (5.4a−c)
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Then, using the approximate form of the solution established in § 4.1.5, we find that
the depth-integrated, dimensionless momentum equation is given by

R
(
∂

∂ t̂

∫ ĥ

0
v̂ dẑ+

∂

∂ x̂

∫ ĥ

0
v̂2 dẑ

)
+

1
∆

∂

∂ x̂

(
ĥ2

2

)
= ĥ−

(
∂v̂

∂ ẑ

)2

z=0

, (5.5)

where ∆= L tan θ/H and

R=
F2H3

d2L
. (5.6)

In this setting, as for Kumaran (2014), R measures the relative magnitude of the
inertial to resistive terms. Unlike a Reynolds number for viscous fluid flows, it features
only the length scales in the problem and F, because both the inertial terms and the
shear stresses are proportional to the square of velocity.

To proceed further we assume that the velocity field adopts similar dependence to
(4.44) on distance from the boundary and this permits the evaluation of the integral
and boundary quantities in terms of the average velocity and the depth of the layer:∫ ĥ

0
v̂ dẑ= ĥv,

∫ ĥ

0
v̂2 dẑ=

5
4
v2ĥ and

∂v̂

∂ ẑ

∣∣∣∣
z=0

=
5v

2ĥ
. (5.7a−c)

To complete the model, we express conservation of mass,

∂ ĥ
∂ t̂
+
∂

∂ x̂
(vĥ)= 0. (5.8)

This system is subject to the boundary condition that we impose a sustained source
of particles at the origin

φĥv = q̂0 at x̂= 0. (5.9)

Additionally, if the flow is supercritical then we must enforce the Froude number at
the source. We impose the initial condition, ĥ(x̂, 0)= 0 and the current forms a front
x̂= x̂f (t̂), such that ĥ(x̂f , t)= 0.

Before constructing solutions, it is convenient to relate the height and streamwise
length scales. We choose L = H/tan θ and thus ∆ = 1. The lubrication regime
requires that streamwise lengths far exceed the thickness of the flow; since the
current is expanding in the streamwise direction, this regime is inevitably entered
after sufficient time. However the adopted scaling may imply that in terms of these
variables, the initial evolution may not be well captured by the lubrication assumption.
We further choose the dimensional height H, using (4.46) so that

H =
(

d
φF

q0
√

g sin θ

)2/5

. (5.10)

The governing equations now entail the single dimensionless parameter, R =
tan θF2H2/d2.

We construct travelling wave solutions for the dimensionless height and velocity
fields. We write ĥ(x̂, t̂)≡ ĥ(x̂− ct̂) and v̂(x̂, t̂)≡ v̂(x̂− ct̂), where c is the dimensionless
wave speed which is to be determined. Conservation of mass then implies that v̂= c
and in particular, the front speed is given by

x̂f = ct̂. (5.11)
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FIGURE 14. The position of the front of the fluidised current as a function of time for
flows along channels of varying inclinations with varying source fluxes and fluidising gas
flows.

Balance of momentum leads to

Rc2

4
ĥ′ + ĥĥ′ = ĥ−

25
4

c2

ĥ2
, (5.12)

where a prime denotes differentiation with respect to η= x̂− ct̂. Distant from the front,
the flowing layer carries a constant volume flux of material determined by the source
conditions (cĥ→ 1 as η→−∞). Here we note that the travelling wave solutions do
not satisfy the source condition precisely at x̂= 0, but instead it is satisfied as η→
−∞. For these flows, we find that the current adjusts over a short distance behind the
front to a uniform depth and velocity and thus the travelling wave solution provides an
accurate representation of the solution for the flow. Thus, we deduce that the position
of the front and the far-field depth are given by

c=
(

2
5

)2/5 and ĥ→ ĥ∞ =
(

5
2

)2/5
. (5.13a,b)

Experimental measurements of the distance travelled by fluidised currents with time
are shown in figure 14, in which the inclination of the channel, the source volume
flux and the fluidising gas velocity were varied; the measured flow speeds ranged over
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FIGURE 15. The rescaled position of the front as a function of rescaled time on
logarithmic and linear axes (with scalings given by (5.4)). The model curve corresponds
to (5.11). Legend as for figure 14.

a factor of five. The measurements for the fully fluidised currents (ug/umf > 1) after
scaling are shown in figure 15. From (5.11), x̂f should be proportional to t̂ and this is
true even when the slope angles are small. Individually, the currents display a constant
speed; however, the measured speeds can be significantly different from that expected
from the model (q0/φh).

The degree of data collapse for different parameters – wg, the nominal flow rate
Qnom, and θ – is shown in figure 16. For all three parameters, the scaling eliminates
much of the scatter, but it is not fully eliminated. The collapse of data onto different
lines with the same values of θ and Qnom for wg is excellent. It can be quite good for
θ , especially at low t̂. For Qnom the collapse of data is often incomplete. There will
be some variation reflecting the difference in value of the true value of Q from the
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FIGURE 16. The effect of different variables on the distance travelled by flows down
slopes before and after scaling. The graphs from the top downwards show the effects of
varying wg, Q and θ . The points in the graphs correspond to the legend in figure 15.
For wg there are four families of curves: θ = 3◦, Qnom = 35 cm3 s−1 (+); θ = 5◦, Qnom =

15 cm3 s−1 (E); θ = 5◦, Qnom = 20 cm3 s−1 (@); θ = 15◦, Qnom = 35 cm3 s−1 (×). For
Q there are three families of curves corresponding to θ = 3◦ (+), 5◦ (E), 10◦ (@), with
wg= 1.5umf . For θ there are four families of curves: when wg= 1.5umf , Qnom= 15 cm3 s−1

(+), 35 cm3 s−1 (E), 60 cm3 s−1 (@), and when wg = 2.0umf , Qnom = 35 cm3 s−1 (×).

nominal value Qnom. It can be seen in figure 16(a) that the effect of wg is small, but
significant; however, it is eliminated after scaling, as shown in figure 16(b).

A systematic omission from our model is the effect of sidewall drag and this could
provide an additional resistance to motion, thus slowing the speed of propagation. In
appendix B, we analyse the effects of the sidewalls when the height of the current,
H, is much less than the breadth of the channel, B. We demonstrate that there is a
weak retardation to the dimensionless speed proportional to (H/B)2 when H/B� 1.
We analysed the speed of the flow from the data plotted in figure 14 and found no
systematic dependence on H/B and thus there is no evidence that these relatively
shallow currents were significantly slowed by sidewall effects.
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FIGURE 17. The scaled height of the current, ĥ/ĥ∞, as a function of position η/ĥ∞ =
(x̂ − ct̂)/ĥ∞ for parameter values (i) A = R/(4ĥ3

∞
) = 0; (ii) A = 1; (iii) A = 5; and (iv)

A= 10.

5.1. Time taken to establish steady uniform behaviour
The dimensionless profile of a fluidised current moving down a slope is determined
from (5.12) and is implicitly given by∫ ĥ/ĥ∞

0

s2(A+ s)
s3 − 1

ds=
η

ĥ∞
, (5.14)

where A=R/(4ĥ3
∞
). We plot in figure 17 the height of the travelling wave of material

as a function of distance from the front for various values of the inertial parameter, R,
and note that the length scale over which the flow adjusts to the uniform depth, ĥ∞,
increases with increasing R. One measure of the streamwise length, ∆ε , over which
the flow attains its uniform depth is given by evaluating when ĥ(−∆ε)= ĥ∞(1− ε),
which when ε� 1 is given by

−
∆ε

h∞
= 1+

1
3
(A+ 1) log ε +

1
6
(2A− 1) log 3−

√
3π

18
+ · · · (5.15)

At a fixed location, it is then possible to evaluate the dimensionless time-scale over
which the uniform depth is established, t̂ε =∆ε/c.

Figure 18 shows examples of the development of the fluidised currents at different
angles of channel inclination. In figure 18, the flows on the steeper slopes relatively
rapidly attain a uniform state in which the current does not vary along the apparatus,
whereas those on shallower slopes and with smaller sources fluxes take much longer to
approach this state. Flows along horizontal channels never approach a uniform state;
instead currents adopt the shape of a wedge and do not progress at constant speed.
These are analysed in § 6.

Figure 19 shows the change of height with time for five flows with the same
nominal flow rate half-way along the apparatus before and after scaling. It can be
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FIGURE 18. Shape of the currents over time for fluidised flows at different slope angles.
The numbers on the contours indicate time in seconds after the release of material. A
spatial Gaussian filter with a kernel size of 0.5 cm has been applied to the contours in
order to improve clarity. Note that the vertical scale is different in each plot and the
horizontal scale is different in (a) from the other diagrams. (a) θ = 0◦, Q= 49.1 cm3 s−1.
Time interval 0.25 s between contours. Note the growth and decay of the surface waves
near the origin. (b) θ = 3◦, Q = 15.0 cm3 s−1 (A = 0.09). The time interval between
contours is 0.5 s. The flow becomes uniform after about 4 s in this case. (c) θ = 5◦,
Q= 79.5 cm3 s−1 (A= 1.57). The time interval between contours is 1 s with a uniform
state achieved after about 2 s. (d) θ = 10◦, Q= 38.2 cm3 s−1 (A= 0.75). The time interval
between contours is 0.5 s and the current reaches uniform state within 1 s.

seen that the scaled times at which the currents achieve a constant height (and
systematically with A), as would be expected, but they are an order of magnitude
larger than t̂ε . For the expected values of t̂ε , the currents would have to achieve their
constant height very quickly, almost instantly, and for the values of A corresponding
to the experimental flows, from figure 17 the front of the currents would be expected
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FIGURE 19. The transition from unsteady to uniform behaviour of fluidised currents down
slopes. In both panels, t∗ is the time at which the current reaches the measuring position
x∗ = 50 cm from the source. (a) Shows the measured depth of the flowing current at
a fixed position as a function of time at a fixed point for currents on slopes between
0–15◦ with the same nominal source flux (60 cm3 s−1). Experimental conditions are: θ =
3◦, Q= 59.44 cm3 s−1; θ = 5◦, Q= 58.75 cm3 s−1; θ = 10◦, Q= 58.76 cm3 s−1 and θ =

15◦, Q= 56.38 cm3 s−1. (b) Shows the scaled height of the current, ĥ/ĥ∞, as a function
of scaled time after the front reaches x∗ using the scales of (5.4) and using the definition
of H in (5.10). ε= 0.05 and when θ = 3◦, A= 0.28, t̂ε = 1.38; θ = 5◦, A= 0.45, t̂ε = 1.60;
θ = 10◦, A= 1.07, t̂ε = 2.41; θ = 15◦, A= 2.56, t̂ε = 4.38.
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FIGURE 20. The position of the front of the fluidised current as a function of time for
varying source fluxes and fluidising gas flows.

to be ‘blunt nosed’, with quite steep gradients of height at the front of the current.
In fact, the front of the currents (figure 18) had a relatively shallow gradient.

6. Horizontal flows
Figure 20 shows the distance travelled by the front of a fluidised flow over

horizontal surface as a function of time. It is evident that the currents do not travel
at a constant speed. The shapes of the currents are shown in figure 21 and, ignoring
the disturbance at the start of the currents at the point that they are poured into the
system, they have an approximately triangular shape, though one with a low aspect
ratio (i.e. their extent far exceeds their depth). Furthermore they flow through ‘bulk’
motion, not through the build-up of lamina arising from the constant avalanching
down the current’s top surface seen for non-fluidised granular flows. They must also
be scaled differently because the length and time scales introduced in (5.4) become
singular when θ = 0. To this end, we introduce the characteristic height scale, H̃ and
define the following dimensionless variables

h̃=
h

H̃
, ṽ =

v

F(gH̃3)1/2/d
, x̃=

x

H̃
, and t̃=

Ft(gH̃)1/2

d
. (6.1a−d)

The depth-integrated expression of momentum balance is then given by

R̃
(
∂

∂ t̃
(h̃ṽ)+

5
4
∂

∂ x̃
(h̃ṽ2)

)
+

h̃
2
∂ h̃
∂ x̃
=−

25
4
ṽ2

h̃2
, (6.2)
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FIGURE 21. Change in shape of horizontal fluidised currents with no scaling for Q =
49.05 cm3 s−1 and wg/umf = 1.5. The different profiles are drawn at 0.25 s intervals. The
dashed line corresponds to t= 1 s and the dotted line to t= 3 s.

instead of (5.5), where the residual dimensionless parameter R̃ = (FH/d)2 is the
relative magnitude of inertial to resistive forces.

Conservation of mass is given by

∂ h̃
∂ t̃
+
∂

∂ t̃
(ṽh̃)= 0. (6.3)

The appropriate dimensional depth scale, H̃, is determined from the source flux,

H̃ =
(

q0dg2

Fφ

)1/5

, (6.4)

so that the boundary condition is given by

ṽh̃= 1 at x= 0. (6.5)

Flows over horizontal surfaces decelerate as the basal drag is no longer balanced
by a sustained downslope acceleration. Thus, at sufficiently early times the flow
speeds and depths are set by source conditions, and after the flow has propagated
for sufficient time, the resistive forces become non-negligible and the motion enters
a dynamical regime in which the drag force balance the streamwise gradients of the
hydrostatic pressure and the inertial forces are negligible. Analogously to Hogg &
Woods (2001), simple scaling shows that this regime is fully attained when t̃� R̃.
In this scenario, we deduce from (6.2) that

ṽ =
2
5

(
−h̃3 ∂ h̃

∂ x̃

)1/2

(6.6)
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and consequentially from (6.3)

∂ h̃
∂ t̃
+
∂

∂ x̃

2
5

h̃5/2

(
−
∂ h̃
∂ x̃

)1/2
= 0, (6.7)

subject to the source condition

2
5

h̃5/2

(
−
∂ h̃
∂ x̃

)1/2

= 1. (6.8)

Equation (6.7) may be integrated numerically to reveal the evolution of the front
position as a function of time and the variation of the depth of the current along its
length; however, for these currents flowing over a horizontal surface, we may also
construct a quasi-analytical similarity solution for the motion.

First, we determine the gearing between spatial and temporal scales that underpins
the similarity solution for unsteady flow over a horizontal surface. To do this we scale
and balance terms in the governing equation (6.7) and boundary condition (6.8). This
yields

h̃
t̃
∼

h̃3

x̃3/2
and

h̃3

x̃1/2
∼ 1. (6.9a,b)

Thus we deduce that x̃∼ t̃6/7 and h̃∼ t̃1/7. We may then seek a similarity solution of
the form

h̃=K3/4 t̃1/7H(y), (6.10)
x̃f (t̃)=Kt̃6/7, (6.11)

where K is a dimensionless constant to be determined as part of the solution and y=
x̃/x̃f (t̃). On substitution in the governing equation (6.7), this gives

1
7H−

6
7 yH′ + 2

5 [(−H
′)1/2H5/2

]
′
= 0, (6.12)

where a prime denotes differentiation with respect to y. This ordinary differential
equation (6.12) is to be integrated subject to the boundary conditions

H(1)= 0 and 2
5 K2/7(−H′)1/2H5/2

= 1 at y= 0. (6.13a,b)

The location y= 1 is a singular point of the differential equation (6.12); we therefore
start the numerical integration at y= 1− ε (ε� 1), noting that

H(1− ε)=
(

30
7

)1/2
ε1/4

(
1− 1

60ε +
43

28 880ε
2
+ · · ·

)
. (6.14)

It is then straightforward to integrate the differential equation (6.12) numerically and
evaluate H(0)=2.038, H′(0)=−0.479, and so K=0.753. The dimensional expression
for distance covered by a horizontal, fluidised current with time is then

xf = 0.753
(

gF2q4
0

d2φ4

)1/7

t6/7. (6.15)
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FIGURE 22. The scaled height of the current as a function of downslope distance at
various instances of time from the similarity solution for unsteady propagation along a
horizontal channel.

We plot in figure 22 the similarity solution for the height profile along the current
noting that, again, the model predicts a blunt-nosed current that advances along the
channel.

The scaled distance against time is shown in figure 23, and the data are collapsed
sufficiently for the power-law form of the curve to appear to be reasonable, though
the value of the exponent is different from that predicted. However, the shape of
the current predicted by the scaled model is very different from the experimental
measurements, taking the form of nearly flat current with a snub nose (figure 24).

6.1. Flow within a narrow channel
One of the differences between the experimentally-realised flows over horizontal
surfaces and those down slopes is that the former are significantly thicker than the
latter, and so it is possible for the sidewalls to have a strong influence on their
development. Here, we analyse the motion of a fluidised current as it flows within
a narrow channel of width B, between sidewalls for which the streamwise extent of
the flow far exceeds the depth of the current (L�H), which in turn far exceeds the
width of the flow (H� B). For this regime, it is possible to simplify the governing
equations for the unsteady motion down an incline on the basis that gradients across
the flow are much greater than those in any other direction. In this scenario, the
dynamical balance is somewhat different from that analysed in § 4 and the resulting
governing equations for the unsteady evolution of the thickness of the flow are also
different (§ 5).

Our derivation of the governing equation in a narrow channel is developed from
the dimensional expressions presented in § 3 and then depth integrated to establish a
shallow layer model; however, it will be shown that it leads to a similarity solution
with a different gearing between the spatial and temporal variables. Here we only
present the governing equations for flows along horizontal channels, but the inclusion
of a channel gradient is a straightforward generalisation and could lead to travelling
wave solutions analogous to § 5.
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FIGURE 23. The scaled position of the front of the current, x̃f as a function of scaled
time. The data are drawn from figure 20 with distance and time scales according to (5.4)
and theoretical line given by (6.10) (solid line). Key is as per figure 20.
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FIGURE 24. The scaled height of the current, H, as a function of the scaled distance,
y = x̃/x̃f , at various instants of time. The data are drawn from figure 21 scaled using
(6.10). The model solution (6.10) is represented by the chain-dotted line.

It is assumed that the solid particles are fully fluidised by an imposed gas flow
and attain a state in which the volume fraction is uniform, φ = φ. Since the flow
is relatively thin, vertical accelerations are negligible and the motion is governed by
hydrostatic balance given by

∂

∂z
(p− σzz)=−ρsφg. (6.16)
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In this expression we have neglected the contribution due to the weight of the gas
phase since ρg/ρs� 1. In the downslope direction, after neglecting terms proportional
to the density and viscosity of the gas, the combined momentum equation of both
phases to leading order is given by

ρsφ
Dv
Dt
=−

∂

∂x
(p− σzz)+

∂σxy

∂y
, (6.17)

where y is the distance across the channel. Here it has been assumed that the normal
stresses of the solid phase are isotropic (σxx = σzz) and that gradients across the flow
dominate all others. To complete this model, we introduce the granular temperature,
which provided the channel is much wider than the grain size, is in local equilibrium
between its production and dissipation. Then we may write

f1d2

(
∂v

∂y

)2

= f3T, (6.18)

and the constitutive law for the shear stress is given by

σxy = f1dρsT1/2 ∂v

∂y
. (6.19)

Finally, by eliminating the fluid pressure from the normal force balances of each phase
(see (4.7)), we find that

∂σzz

∂z
= φρsg−

βwg

(1− φ)2
. (6.20)

The volume fraction, temperature and, therefore, the normal stress component, σzz, are
independent of z to leading order, and thus we deduce that

0= φρsg−
βwg

(1− φ)2
. (6.21)

This expression determines the average volume fraction as a function of the fluidising
gas flux and marks an important departure from the shallow layer model of § 5,
because to leading order the solid stresses do not contribute to the support of the
granular layer.

We progress by assuming that the velocity field of the solid phase exhibits cross-
stream dependence, which is identical to that found in fully developed flows with the
shear in the vertical plane. Thus we write

v = v
5
3

(
1−

∣∣∣∣1− 2y
B

∣∣∣∣3/2
)
, (6.22)

and consequentially ∂v/∂y = 5v/B at y = 0. The dimensional governing equations
then express conservation of mass and after sufficient time has passed so that inertia
is negligible, a balance between the streamwise pressure gradient and the sidewall
stresses is given by

∂h
∂t
+
∂

∂x
(vh)= 0, (6.23)
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gh
∂h
∂x
=−

50d2v2h
F2B3

. (6.24)

For these flows over a horizontal surface we adopt the dimensionless variables given
by

h= h/H, x= x/H and t= (q0t)/(φH2B), (6.25a−c)

where the height scale, H, is determined by

H =
q0d

Fφ(gB5)1/2
. (6.26)

The dimensionless governing equation then becomes

∂h
∂t
+

1

5
√

2

∂

∂x

(
h
(
−
∂h
∂x

)1/2)
= 0, (6.27)

subject to
1

5
√

2
h
(
−
∂h
∂x

)1/2

= 1 at x= 0. (6.28)

We may construct a similarity solutions to this governing equation (6.27) and
boundary condition (6.28) by first deducing the gearing between the spatial and
temporal scales. The governing equation demands h/t∼ h

3/2
/x3/2, while the boundary

condition leads to h
3/2
∼ x1/2. Thus we deduce that x ∼ t3/4, h ∼ t1/4 and that the

similarity solutions of the following form may be sought

h=C3t1/4H(y) and xf =Ct3/4
, (6.29a,b)

where y= x/xf (t) and C is a constant to be determined. In dimensional variables,

xf =C
(

q0F2gB2

φd2

)1/4

t3/4. (6.30)

On substitution of h̄ into the governing equation (6.27), we deduce that

1
4H−

3
4 yH′ + 1

5
√

2
[H(−H′)1/2]′ = 0, (6.31)

subject to H(1)=0 and C4H(0)[−H′(0)]1/2=5
√

2. The similarity differential equation
(6.31) is singular at y= 1 and the numerical solution may be initiated from a series
solution valid close to that value, given by

H(1− s)= 225
9 (s− s2/5+ · · ·), (6.32)

when s� 1. It is then straightforward to integrate (6.31) to compute the height profile,
shown in figure 25, and the dimensionless constant C= 0.5434.

The scaled distance against time for the experiments is shown in figure 26. There is
reasonably good collapse of the data (better than in figure 23). Furthermore, it appears
to follow a power law, though the exponent of the power law is slightly small than
that predicted. The measured, scaled shape of the currents is plotted in figure 27. The
predicted shape is now much closer to that of the experiments, although the scaling
does not collapse completely all the measured data.
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FIGURE 25. The height of the current as a function of distance along a narrow horizontal
channel at various instances of time.
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FIGURE 26. The scaled position of the front of the fluidised current in a horizontal
channel as a function time. The data are those plotted in figure 20 and scaled using (6.25)
with the model prediction from (6.30) (solid line). The key is given in figure 20.

7. Discussion and conclusions

This investigation of fluidised granular currents reveals important distinctions in
their dynamical properties from both dry granular flows and static fluidised beds.
Most significantly, there is substantial and sustained shear in the velocity profiles.
Consequentially particles are driven into each other and this provides a mechanism
for the generation of stresses. In the regime we investigated, the inertia of individual
grains remains relatively high and thus the particles interact with each other through
dissipative collisions, and it these interactions that lead to the shear stress that

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

45
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.458


112 D. E. Jessop, A. J. Hogg, M. A. Gilbertson and C. Schoof

5

 0

10

15

20

25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
y

FIGURE 27. The scaled depth of the fluidised current along a horizontal channel, H, as a
function of the scaled position, y= x/xf . The data are drawn from figure 21 scaled using
(5.4). The model solution is from (6.29) and is represented by the chain-dotted line.

balances the downslope gravitational acceleration. Granular flows in the absence of
fluidisation must generate sufficient normal stresses to support the weight of the
flowing layer and thus typically their shear stresses are also relatively large; however,
fluidisation changes the balance of forces acting on the current. The fluidising gas
flow provides most of the normal support to the flowing layer and thus both normal
and shear stresses from the particulate phase are reduced relative to their non-fluidised
counterparts, leading to flows that are much more mobile.

In this study we have formed a framework of modelling fluidised currents based on
the solid-phase stresses that is generated from collisions between the particles. The
degree of agitation in the system is measured through the granular temperature and
constitutive laws are employed to determine the stress tensor in terms of the gradients
of the velocity field, the granular temperature and the volume fraction of solids, as
well as several material parameters. For the regime studied here in which the flows are
many particles thick, a local balance emerges between the generation and dissipation
of granular temperature. This leads to an accurate asymptotic model for the complete
dynamics, in which the flowing material is essentially modelled by a nonlinear local
rheology. Furthermore, this reduction leads to a Bagnold-like expression between the
flow depth and the flux of particles carried by the current, with the volume fraction,
determined by the fluidising gas flow, contributing to this relationship. Although this
approximation is a simplified description of the more complete dynamics, it embodies
the key processes of these flows: the fluidised currents are granular flows in which
the fluidisation affects the normal support of the layer.

The experimental measurements provide encouraging support for the model. For
example, without tuning through empirical factors, the predictions are quite close to
the measured flow depths and flow speed in both the uniform steady state and the
transient state as it becomes established. Additionally, when applied to flows along
horizontal channels, the model is able to predict the unsteady motion to reveal both
the progressive deceleration and the growth in flow depth. There are, however, some
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systematic features in the measurements that are not reproduced in the model. Perhaps
the most significant of these is the decrease in particle velocity towards the top of the
layer. This feature is absent from the model and presumably corresponds to particles
in the ‘free-board’ of the fluidised layer (i.e. the region above the dense current
within which the volume fraction of the particles is reduced). Such a dilute layer
is subject to slightly different dynamical interactions: the role of particle collisions
becomes much reduced and the particles may saltate, and are potentially intermittently
suspended above the denser layer below. The model predictions are also dependent
upon the material properties that characterise the collisions between the particles
and the boundaries. These can be difficult to measure directly, but the specularity
coefficient, ψ , and the boundary coefficient of restitution, ew, only play a significant
role for a relatively thin boundary layer in the dynamical regime considered in this
study. It is arguable that the boundary conditions require further research to refine
and sharpen their formulation.

One important feature that emerges from the modelling framework is the
determination of the volume fraction of particles in the fluidised current. Here
we have assumed that the flows are relatively dense and that the Ergun equation
provides an appropriate representation of the volume fraction dependence of the drag
due to the fluidising gas flow. Other expressions could easily be used in its place
(see Nott & Jackson 1992; Agrawal et al. 2001; Oger & Savage 2013). However,
perhaps of greater significance is whether there are ‘bubbles’, or inhomogeneities
in the volume fraction within the fluidised current. Patches of increased voidage
locally provide paths through which the fluidising gas can more readily flow and
thus it is possible for the layer to exhibit fluctuations or instabilities on relatively
rapid time scales. Since the local volume fraction affects the mobility of the flowing
layer, one might expect fluctuations in volume fraction and velocity to be correlated
and consequentially to influence the bulk dynamics. Bubbles may also affect the
particle volume fraction in the bed. The classical model of fluidised beds (Toomey &
Johnstone 1952) proposes that all the gas in excess of that necessary to fluidise the
particles forms bubbles so that the particle volume fraction in the bulk of the flow
is insensitive to wg: this is contrast with (4.41). The lack of dependence on θ of the
experimental scaled velocity profiles in figure 13 also suggests that φ̄ may change
less with conditions than might be expected. In contrast to static fluidised beds,
the stability of fully developed fluidised flow down inclines has not been assessed
(Jackson 2000) and this appears to be an interesting topic for future research. Indeed
it is intriguing that linear shear flows of unfluidised granular materials appear to
exhibit transient linearised growth, but asymptotic stability (Savage 1992; Scmid &
Kytomaa 1994). It would be interesting to investigate whether these properties carry
over to sheared fluidised motions.

Our modelling framework and experimental methods could be extended to a
number of related flow problems. First, one could investigate fluidised currents that
are generated by instantaneous or non-sustained releases, that are not fully fluidised
and for which the fluidising gas flow is localised to the region close to the source.
These flows would be largely unsteady and, in situations where the fluidisation is
not maintained, would introduce additional mechanisms for generating resistive shear
stresses as the contact friction begins to become important. Non-monodisperse granular
materials would also be interesting to investigate because the onset of full fluidisation
is dependent upon grain size and the proportion of each particle component (Formisani
1991). It is possible that mixtures of particles segregate according to size and generate
an inhomogeneous flowing current in terms of composition and therefore, the average
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volume fraction (φ̄). Finally, we comment that liquid fluidised systems may pose
additional challenges since it is likely that viscous forces at the particle scale are
non-negligible and that collisions are strongly affected by lubrication pressure in the
fluid between particles.

Although direct applications have not been the focus of our study, our model
formulation could be readily applied to larger-scale flows, either in industrial contexts
or in nature. There are a number of practical implications of our results. For example,
the transport of granular materials when they are fluidised is likely to be more
efficient on even shallowly inclined surfaces than on horizontal surfaces. In addition,
the transport is unlikely to be greatly improved by an increase in the gas flow rate,
wg, once the granular materials are fully fluidised. This is because it only directly
affects the average volume fraction, φ̄, and for practical materials φ̄ can strongly
depend on their characteristics (e.g. the bubble-free expansion seen in small, light
Geldart (1973) group A particles), as can the value of the coefficient of restitution e.

The assumption at the heart of the modelling framework is that inelastic particulate
collisions generate stresses that provide the resistance to motion and this is likely
to be the case for larger-scale flows. Of particular note is that for steady flow, no
assumption is made for the relative importance of inertial and resisting forces and
hence the resulting model is valid for flows of arbitrary scale. The results show that,
at least for some granular flows, full understanding of their nature can only be reached
if full account is taken of both the interactions between particles and those between
particles and the interstitial fluid.
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Appendix A. Extended kinetic theory

In this appendix we analyse the consequences for the predicted flow field of
employing the extended kinetic theory proposed by Jenkins (2007) and recently
used to compute unfluidised flow down inclined planes by Jenkins & Berzi (2010,
2012) and Berzi (2014). In essence, the extension to kinetic theory is based upon
the realisation that at higher concentrations, particles begin to form structures in the
flow that have a correlation length in excess of their own diameter. Thus the rate
of dissipation is reduced and in terms of the expression of the evolution of granular
temperature (4.11), the dissipation term is now given by ρsf3T3/2/Lc. Jenkins (2007)
suggested a phenomenological model for the length, Lc, in which its magnitude is
proportional to the rate of compression that occurs along at least one axis in shear
flows and inversely proportional to the agitation (the granular temperature) that can
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FIGURE 28. The volume fraction, φ(ẑ), velocity of the solid phase, v̂(ẑ) and the granular
temperature, T̂(ẑ), as functions of the dimensionless depth within the current for parameter
values R= 10−3, ψ = 0.5, φm= 0.63, e= 0.85, ew= 0.75, S= 0.1, St= 103δ2, δ= 0.01 and
Wg = 10−3 for extended kinetic theory (solid lines) and ‘standard’ kinetic theory (dashed
lines).

destroy these structures. Thus in dimensional form for simple shear flows v = v(z)x̂,
Jenkins & Berzi (2010) propose

Lc

d
=max

(
1,

ĉ(φg0)
1/3d

2T1/2

∂v

∂z

)
, (A 1)

where ĉ is a dimensionless constant of order unity (often ĉ= 1/2). Jenkins & Berzi
(2010) validate this formulation empirically for unfluidised granular flows. We are
not aware of any studies that have tested formulae for fluidised flows, but we can
nevertheless employ this formulation (A 1) to compute profiles of the volume fraction
of particles, the velocity field and the granular temperature for typical parameter
values used in this study (figure 28). For a dimensionless fluidising gas flow rate, Wg
equal to 10−3 and a slope S of 0.1, we find negligible differences in the profiles apart
from very close to the base of the flow. Moreover the dimensionless volume flux per
unit width for the ‘standard’ kinetic theory q̂= 0.1117, while for the extended kinetic
theory q̂= 0.1127.

For more weakly fluidised flows, there can be a significant difference between
the predictions of the two theories, because in these situations the concentration
of particles is higher and thus Lc/d exceeds unity in many parts of the flow. For
example when Wg = 4.1 × 10−4 and S = 0.1, we find that extended kinetic theory
predicts more energetic and faster-moving flows (see figure 29). For these parameter
values, the dimensionless volume flux, q̂ = 0.0198 for the ‘standard’ kinetic theory,
whereas q̂= 0.0284 for the extended kinetic theory. The flows that we consider in this
study are more strongly fluidised than this example and thus we find it unnecessary
to include this phenomenon in our analysis in the main body of this paper because
it introduces negligible difference to the computed flow.
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FIGURE 29. The volume fraction, φ(ẑ), velocity of the solid phase, v̂(ẑ), and the granular
temperature, T̂(ẑ), as functions of the dimensionless depth within the current for parameter
values R = 10−3, ψ = 0.5, φm = 0.63, e = 0.85, ew = 0.75, S = 0.1, St = 103δ2, δ = 0.01
and Wg= 4.1× 10−4 for extended kinetic theory (solid lines) and ‘standard’ kinetic theory
(dashed lines).

Appendix B. The effects of sidewall stresses
In this appendix we analyse the effects of sidewall resistance on the motion of

shallow fluidised flows down inclined channels (see § 5) and derive the first-order
correction to the prediction of the front speed for flows that are unaffected by
sidewalls. We show that the reduction in front speed is proportional to (H/B)2, where
H is the scale depth of the current given by (5.10) and B is the channel breadth.

The downslope flows studied experimentally are realised within a channel, the width
of which is usually greater than the flow depth, but not far in excess of the depth.
Thus, it is feasible that sidewall stresses may play a non-negligible role in the overall
dynamics and may further retard the motion. Indeed for flows along horizontal surface
for which the flow depth is much greater than the width of the channel, we postulate
that the sidewall stresses may even play a dominant role in the resisting the driving
forces (see § 6).

We analyse the motion in a channel of width B in a regime for which the volume
fraction is spatially uniform and given by φ. On depth and width averaging the
streamwise balance of momentum (5.3), we find that the dimensional governing
equation is given by

ρsφ

(
∂

∂t

∫ B

0

∫
0

hv dz dy+
∂

∂x

∫ B

0

∫ h

0
v2 dz dy+ g cos θ

∫ B

0

∫ h

0

∂h
∂x

dz dy
)

= ρsφg sin θBh−
∫ B

0
σxz(0, y) dy−

∫ h

0
(σxy(z, 0)− σxy(z, B)) dz, (B 1)

where σxz(y, 0) = f1ρsdT1/2∂v/∂z denotes the basal shear stress and σxy(0, z) =
−σxy(B, z)= f1ρsdT1/2∂v/∂y denotes the sidewall stresses.
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In general, to include these sidewall effects, even if the flow had adjusted to a local
balance that was independent of the streamwise coordinate, we would have to resolve
the variations of the dependent fields in the (y, z) plane (see, for example, Oger &
Savage 2013). In this subsection we take a different strategy and develop a model
which is appropriate to the regime H/B� 1, where H is the scale depth of the flow
and given by (5.10). In this regime, we treat the granular temperature and flow field
as predominantly varying with the distance from the basal boundary and assume that
these flow fields adopt the form established in § 4.1.5 (see Jenkins & Berzi 2010).
This approach was used above to derive the depth-averaged model above, but is now
generalised to include lateral gradients in order to model the sidewall stresses.

Adopting the dimensionless variables using the scales of (5.4), we estimate the
velocity gradient at the sidewall ∂v̂/∂ ŷ=αHv̂/B, where α is a dimensionless constant
of order unity. We may then compute the depth and width averages to deduce a
governing equation for a travelling wave solution ĥ(x, t)= ĥ(x− ct) that features the
additional stresses due to the sidewalls (cf. (5.12)); it is given by

Rc2

4
ĥ′ + ĥĥ′ = ĥ−

25
4

c2

ĥ2
−

25α
9

(
H
B

)2

c2. (B 2)

The final term of (B 2) represents the extra stress due to the sidewalls. Then using the
uniform conditions far from the front (x̂− ct̂→−∞) we deduce that

0=
1
c
−

25c4

4
−

25αH2c2

9B2
. (B 3)

Thus the speed, c, is reduced by the action of the sidewall stresses and in the regime
α(H/B)2� 1, we find that

c=
(

2
5

)2/5
(

1−
4α
45

(
2
5

)−4/5 (H
B

)2

+ · · ·

)
(B 4)

The value of the coefficient of the second term of the expansion is ∼0.2.
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