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The rate of change of the perturbation’s kinetic energy E of a perturbed inviscid,
incompressible, axisymmetric, columnar and near-critical swirling flow in a finite-
length, straight, circular pipe with periodic and non-periodic inlet–outlet conditions
is studied using the Reynolds–Orr equation. The perturbation’s mode shape and
growth rate are computed from the linear-stability eigenvalue problem using a novel
asymptotic solution in the case of a flow in a long pipe. This solution technique
is general and can be applied to any vortex flow profile, in a range of swirl levels
around the critical level, and for various boundary conditions. The solutions are used
to analytically estimate the production (or loss) of E at the pipe boundaries and
inside the domain and to shed new light on the Wang–Rusak mechanism of exchange
of global stability around the critical swirl, that is leading to the vortex breakdown
process. It is shown that the production of E inside the domain is modulated by the
base flow strain-rate tensor. For the special case of a solid-body rotating flow, this
term vanishes and the stability is determined only by the asymmetric transfer of E

at the boundaries. For a general base flow, the dominant perturbation’s mode shape
develops deviations in response to the non-periodic inlet–outlet conditions. These
deviations couple with the base flow strain-rate tensor to generate production or loss
of E in the bulk. Together with the asymmetric transfer of E at the boundaries, they
form a critical balance of production of E and determine the flow stability around
the critical state. This behaviour is demonstrated for the Lamb–Oseen and Q vortex
models. This analysis reveals a more complicated, as well more realistic, interaction
between the perturbed flow in the domain and at the boundaries that dominates
vortex flow dynamics.

Key words: vortex breakdown, vortex instability

1. Introduction
The study of the stability of axisymmetric swirling flows in a pipe is a classical

topic in fluid mechanics; see the excellent review papers on this topic by Leibovich
(1984) and Ash & Khorrami (1995). Rayleigh (1916) and Synge (1933) established
that an incompressible and inviscid, columnar, swirling flow in an infinitely long,
straight, circular pipe, or equivalently in a finite-length pipe with periodic inlet–outlet
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conditions, is linearly neutrally stable with respect to axisymmetric perturbations
if and only if the absolute value of the base flow circulation function K(r)
increases monotonically with the radius r from the centre, i.e. Φ = (1/r3) d(K2)/dr > 0.
Specifically, the solid-body rotating flow where K = ωr2 is always neutrally stable
under the periodic conditions. Howard & Gupta (1962) extended this criterion to a
vortex flow with an axial velocity profile W (r). The flow is linearly neutrally stable
with respect to axisymmetric perturbations if Φ > (dW/dr)2/4, reflecting the complex
interaction and exchange of kinetic energy of perturbations with the base flow radial
gradients. Leibovich & Stewartson (1983) used an asymptotic theory to derive a
sufficient condition for vortex flow instability with respect to helical perturbations
with high circumferential wavenumbers. This condition relates between the base flow
strain rates. The numerical growth rate calculations of Lessen, Singh & Paillet (1974)
and Mayer & Powell (1992) agree with this theory. When the vortex flow is stable
according to the above criteria, classical vortex stability theory considers the vortex
core as a neutral waveguide; see for example Gallaire & Chomaz (2004) and Fabre,
Sipp & Jacquin (2006) for insightful discussions of the neutral or near-neutral Kelvin
waves in the Lamb–Oseen vortex. However, the classical theory is limited to the
evolution of axially periodic perturbations and may not describe the actual flow
physics in vortex tubes of a finite length where the effect of non-periodic inlet–
outlet conditions can generate perturbation modes that are different from the axially
periodic waves.

Motivated by the vortex breakdown phenomenon, Squire (1960) and Benjamin
(1962) studied the nature of the family of columnar, axisymmetric swirling flows in
an infinitely long pipe with zero radial velocity and circumferential and axial velocities,
V =ωv0(r) and W = w0(r) respectively, that depend only on the radial distance r . Here
ω is the flow swirl ratio and v0 and w0 are the base flow profiles. These states constitute
a branch of base solutions of the steady, incompressible, inviscid and axisymmetric
flow equations. Along this branch of states they identified a certain critical level of
swirl, denoted as ωB , where an infinitely long infinitesimal axisymmetric standing wave
may first appear as the swirl ratio ω is increased. The critical-state theory of Benjamin
(1962) relates the dynamical characteristics of a swirling columnar flow to its ability
to sustain standing axisymmetric small-disturbance waves. Supercritical vortex flows
have swirl ratios below ωB and allow only downstream propagating waves while
subcritical flows have swirl ratios above ωB and allow the upstream and downstream
propagation of waves. Benjamin (1962) also used a variational principle for the
flow equations and described the axisymmetric breakdown as a transition from an
upstream supercritical columnar vortex flow to a downstream subcritical columnar
flow. It should be noted that Benjamin (1962) did not establish any relationship
between criticality and stability of vortex flows.

In a recent study, Wang (2009) has proved the nonlinear stability to finite-amplitude,
axisymmetric perturbations for any columnar vortex flow in an infinitely long pipe
that satisfies Rayleigh’s criterion. Moreover, an upper bound of the disturbance’s
kinetic energy E has been obtained in terms of the base flow properties and the
initial kinetic energy of the disturbance. This upper bound is valid for any initial
disturbance with a finite amplitude, and thus characterizes the maximum potential for
disturbance growth. It should also be noted that this upper bound does not depend on
the vortex swirl level at all. The nonlinear stability analysis of Wang (2009) shows that
flow criticality is not related at all to the flow stability characteristics in an infinitely
long pipe setting, i.e. disturbances can propagate either upstream or downstream but
are subject to the same upper bound of disturbance amplitude growth. This is in
agreement with the translation-invariant nature of the problem.
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Recent studies have revealed that vortices can also support the transient growth
of waves to significant amplitudes (see Schmid & Henningson 2001 for transient
growth phenomena and Antkowiak & Brancher 2004, Pradeep & Hussain 2006 and
Heaton & Peake 2007 for transient growth in vortices). This behaviour stems from the
non-orthogonal nature of the eigenmodes, which induces a strong coupling among
the eigenmodes. For axisymmetric disturbances, the transient growth, or any type of
growth of whatever physical nature, must obey the upper bound obtained from the
nonlinear stability analysis of Wang (2009). It can be shown that for the Lamb–Oseen
vortex with a moderate size of vortex core, the disturbance’s growth is limited to
relatively small values. Thus, small disturbances in such flows would never develop
into a vortex breakdown state. This is in contrast to results from direct numerical
simulations that show the breakdown of such flows above a certain level of swirl (see,
for example, Rusak, Wang & Whiting 1998). Thus, there is a definite need to choose
an adequate physical model, different from the setting of a flow in an infinitely long
pipe, in the study of the vortex breakdown phenomenon.

Wang & Rusak (1996, hereinafter referred to as WR, to avoid the ambiguity with the
classical Rayleigh instability) studied the stability of an inviscid and incompressible,
columnar, axisymmetric swirling flow in a finite-length pipe with certain non-periodic
boundary conditions imposed at the pipe inlet and outlet. These conditions model
the physical situation of a flow in a long pipe that is generated by a vortex generator
ahead of the pipe inlet at continuous and smooth operation. They found that these
boundary conditions impose a dramatic change on the stability characteristics of a
swirling flow and related for the first time the stability and criticality of a vortex flow.
Using a novel analytical solution of the perturbation’s non-axially periodic mode
shape and its growth rate, both are functions of the swirl ratio, they proved for the
first time that the solid-body rotating flow is unstable at swirl ratios ω above a critical
level ω1. Here ω1 is the corrected critical swirl of Benjamin (1962) for a finite-length
pipe. Note that ω1 approaches ωB as pipe length increases. Moreover, they showed
that general vortex flows, including flows that are stable according to the criterion
of Rayleigh (1916) and Synge (1933) as well as according to all previously known
criteria, develop an instability at swirl ratios ω above their respective critical swirl ω1.
The instability discovered in WR (hereinafter referred to as the WR instability) is a
result of the interaction between swirl-driven azimuthal vorticity waves propagating
upstream, the base flow axial speed convecting disturbances downstream, and the
relatively fixed pipe inlet conditions. These interactions create a critical balance at ω1.
Therefore, the dynamical meaning of the critical swirl ω1 is the same as that of ωB .
When ω <ω1 (the supercritical swirl region) small-disturbance waves are convected
out of the finite domain, leading to the asymptotic decay of the perturbation in time.
At the critical state ω = ω1, a neutral standing wave appears. However, when ω > ω1

(the subcritical swirl region) the waves propagate upstream towards the inlet, are
trapped near the inlet, accumulate, and therefore grow exponentially in time (this is
very much like the initiation of buckling of a beam in structures mechanics). This
stability analysis has also shown for the first time that boundary conditions (the non-
symmetric inlet–outlet conditions) have an important role in the stability of swirling
flows. This type of stability is referred to as global stability to emphasize the influence
of the boundary conditions at the pipe inlet and outlet on the base flow stability.

It is therefore clear that the classical Rayleigh’s stability criterion is closely tied to
the periodic inlet–outlet conditions. From a physical point of view, in the case of an
axisymmetric swirling flow in an infinitely long, straight, circular pipe, or in a finite-
length pipe with periodic inlet–outlet conditions, the disturbance is free to propagate
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upstream and downstream along the vortex core, making the core a waveguide.
However, when non-periodic boundary conditions are imposed in a finite-length pipe,
the propagation of the disturbance is not as free as it is in an infinitely long pipe.
In this case the translation-invariant nature of the flow does not exist any more.
As a consequence, flow criticality has a dominant influence over the flow stability
characteristics. As shown in the present paper, the kinetic energy transfer mechanism
between the dominant disturbance and the base flow at swirl levels around the critical
swirl ω1 is strongly affected by the non-periodic boundary conditions.

Wang & Rusak (1997a) also conducted a global analysis of the dynamics of
swirling flow in a pipe and showed the relationship between the instability mechanism
(WR) and the initiation of the axisymmetric vortex breakdown process, leading to
the development of axisymmetric vortex breakdown states. This mechanism was also
demonstrated by Rusak et al. (1998) using direct numerical simulations of the complex
evolution of vortex states in a pipe with inlet flows described by the Lamb–Oseen
(Burgers) vortex. The effect of real flow parameters such as slight viscosity in high-
Reynolds-number flows (Wang & Rusak 1997b), small pipe divergence (Rusak & Judd
2001), inlet azimuthal vorticity (Rusak 1998) and weak chemical reaction (Rusak,
Kapila & Choi 2002) on the dynamics of general vortex flows was also studied.
All these effects act as physical perturbations and can exist in experimental flow
apparatuses. They modify the transcritical bifurcation of solutions of an inviscid,
incompressible, non-reacting, swirling flow in a straight circular pipe into branches of
non-columnar states with folds at modified critical (limit) swirl levels. These fold points
inherit the properties of the critical swirl ω1 and were shown to be points of exchange
of stability along the modified branches of vortex states with a modified mode of
perturbation of the mode found in WR (see, for example, the stability analysis of
Rusak & Judd 2001 of vortex states in a slightly diverging pipe). In addition, the linear
and global bifurcation and stability analysis of compressible vortex flows in a pipe
also show (Rusak & Lee 2002, 2004; Rusak, Choi & Lee 2007) the further complex
interaction of the azimuthal vorticity waves with acoustic and entropy waves resulting
from the coupling between swirl and temperature gradients (baroclinic effects) and
with the fixed inlet conditions. It leads to a modified dynamic behaviour of vortex
flows at subsonic speeds, which is inherited from the incompressible flow behaviour.
The critical swirl ω1 increases with the increase of the flow subsonic Mach number,
yet the exchange of stability at ω1 is similar to that found by WR. It should be
noted that all of these studies also show that the incompressible, solid-body rotation
is a special flow with a jump bifurcation at the critical swirl to breakdown states.
This jump behaviour is sensitive to perturbations including real flow effects and is
modified by these effects to that of a general swirling flow behaviour.

The WR instability is fundamentally different from all the classical vortex stability
mechanisms. In this paper, we look to shed more light on the underlying physical
mechanism behind this instability. Specifically, we focus on identifying the kinetic
energy balance between the base flow and the perturbation and from where the
disturbance gains the energy to sustain the exponential growth at swirl ratios above
the critical level (in the subcritical region of swirl). For incompressible flows, the
kinetic energy of perturbations, E, provides a non-negative quantitative measure of
the perturbation’s size. The rate of change of E in time is described according to the
classical Reynolds–Orr equation (see the review by Wu, Ma & Zhou 2006), modified
to include the boundaries effect. Note that this fundamental equation shows that
dE/dt is determined by production terms of E inside the flow domain and at the pipe
boundaries. The production of E inside the domain is modulated by the base flow
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strain-rate tensor. We compute the various production terms and then highlight the
exchange of kinetic energy between the perturbations and the base flow in the various
parts of the pipe as swirl ratio is increased. This approach provides an energy-based
mechanism for the formation of the WR instability as swirl ratio increases around
the critical level from the supercritical region to the subcritical region.

We comment here that the strain-free nature of the solid-body rotation results in
no production of E inside the domain, and thereby creates a decoupling of the kinetic
energy of the perturbation from the base flow properties. This is a well-known fact
and was used by Drazin (2002) to show the stability of the solid-body rotation in
a straight pipe with periodic inlet–outlet conditions with respect to finite-amplitude
perturbations. When non-periodic conditions are imposed in a finite-length pipe and
the WR instability arises for swirl ratios above the critical level, the necessary energy to
sustain the perturbation’s exponential growth must therefore be gained by the energy
production at the inlet and outlet. Recently, Gallaire & Chomaz (2004) considered this
problem by studying the solid-body rotation in a finite-length, straight, circular pipe.
They described the perturbation’s mode shape and, through integration by parts of
E, found that the disturbance gains or loses its kinetic energy only at the boundaries
of the pipe as swirl is increased around the critical level ω1. In this special case, the
vortex core serves again as a neutral waveguide, convecting the perturbations from
the inlet to the outlet without affecting their size. Here the difference between the
inlet and outlet production terms determines the WR instability. Gallaire, Chomaz &
Huerre (2004) developed an optimal linear control approach to delay the onset of
instability of the solid-body rotation at ω1 to higher values.

In this paper, we study the rate of change of the perturbation’s kinetic energy
E of a perturbed inviscid, axisymmetric, and near-critical swirling flow in a finite-
length, straight, circular pipe with periodic and non-periodic inlet–outlet conditions.
The mathematical model and the linear stability problem are described in § 2. The
perturbation’s mode shape and growth rate as a function of swirl ratio are computed
in § 3 using a new asymptotic solution of the linear stability problem in the case of
a long pipe where the eigenvalue problem is simplified. Results for the representative
and physically relevant Lamb–Oseen and Q vortices are presented in a range of swirl
levels around their respective critical levels and for various boundary conditions. The
Reynolds–Orr equation for E is presented in § 4, including the production terms of E

inside the domain and at the pipe inlet and outlet. The solutions of the perturbation’s
mode shape are used in § 5 to derive an asymptotic form of the Rayleigh–Orr
equation. This form is further explored in § 6 to provide an asymptotic estimate of
the production (or loss) of E at the pipe boundaries and inside the domain and to
shed a new light on the WR mechanism of exchange of global stability around the
critical swirl. In § 7, the physical interpretation of the results is discussed. The focus
is on the basic mechanism of the global stability and its difference from the classical
Rayleigh stability mechanism.

The present analysis shows that the production of E inside the domain is an
important part of the WR instability mechanism. It is modulated by the base flow
strain-rate tensor. For a relatively general base flow such as the Lamb–Oseen and
Q vortices, the perturbation’s mode shape develops a natural deviation with respect to
the critical mode in response to the non-periodic inlet and outlet conditions at x =0
and x = L, respectively (here x is the axial position along the pipe). This deviation
couples with the base flow strain-rate tensor to generate production or loss of E inside
the domain. The mode shape deviation also results in asymmetric production of E at
the boundaries. These effects together form a critical balance of production of E from
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the base flow and determine the flow stability around the critical state. This analysis
reveals a more complicated and more realistic interaction between the perturbed flow
inside the domain and at the boundaries that dominates vortex flow dynamics. The
flow in the domain is active in not only convecting the perturbations as a waveguide
from the inlet to the outlet but also affecting their size and growth rate by engaging
with the base flow strain rates to produce (or lose) their kinetic energy. With this
mechanism in mind, it is clear that real physical effects such as pipe divergence,
slight viscosity, inlet vorticity disturbances and weak reaction also naturally add to
the mode shape deviation and enhance the production of the perturbation’s kinetic
energy inside the domain. They alter the production of energy inside the domain and
promote the onset of instability at swirl ratios below critical. On the other hand, real
flow effects such as pipe contraction and compressibility increase the loss of energy
in the bulk to delay the onset of the instability to swirl ratios above critical. These
effects can be proved by similar analysis techniques.

2. Mathematical model and linear stability problem
We consider an axisymmetric, incompressible and inviscid flow in a straight, finite-

length circular pipe. We use cylindrical coordinates (r, θ, x) where (u, v, w) are the
radial, azimuthal and axial velocity components, respectively. In a dimensionless form,
axial and radial distances are scaled with the pipe radius (that is set as unit) and pipe
non-dimensional length is L. Velocity components are scaled with the characteristic
axial speed entering the pipe. Time t is scaled with the ratio of pipe radius to inlet
characteristic speed. Let y = r2/2. By virtue of the axisymmetry, a streamfunction
ψ(x, y, t) can be defined such that u = −ψx/

√
2y and w = ψy . The reduced form of

azimuthal vorticity is χ = −(ψyy+ψxx/2y) (where the azimuthal vorticity is η =
√

2yχ).
The circulation function K(x, y, t) is defined as K = rv =

√
2yv.

The equations which relate the evolution of ψ(x, y, t), χ(x, y, t) and K(x, y, t) can
be written in a compact form (see for example Szeri & Holmes 1988) as

Kt + {ψ, K} = 0,

χt + {ψ, χ} =
1

4y2
(K2)x,

⎫⎬
⎭ (2.1)

where the bracket {f, g} is the canonical Poisson bracket or Jacobian defined as

{f, g} = fygx − fxgy. (2.2)

The first equation in (2.1) describes the transport of circulation along a flow pathline.
The second equation describes the interaction between the convection of the reduced
azimuthal vorticity χ along a pathline and vorticity stretching by the axial gradient of
the circulation. The latter effect is swirl dependent and generates swirl-driven waves
that can move either downstream or upstream towards the inlet.

We study the dynamics of the vortex flow in the pipe under the certain conditions
imposed on the boundaries to reflect a physical setting of a flow in a pipe generated
by a vortex generator ahead of the pipe that is at a steady and continuous operation.
In this setting, the profiles of the axial and circumferential velocity components as
well as the azimuthal vorticity at the exit of the vortex generator and that enter the
pipe at x = 0 are assumed to be fixed for all time t and smooth in y, i.e. we assume
that for all time t � 0 and for 0 � y � 1/2, ψ(0, y, t) =ψ0(y) and K(0, y, t) =ωK0(y)
are given at the pipe inlet. Here ω � 0 is the base flow swirl ratio, ψ0(y) is the inlet
volumetric flux profile and K0(y) is the inlet circulation profile, rescaled with ω. These
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functions must satisfy the symmetry conditions at y = 0, ψ0(0) = 0 and K0(0) = 0. We
also set ψxx(0, y, t) = 0 to fix the reduced azimuthal vorticity to be χ(0, y, t) = −ψ0yy

along the inlet for all time t and 0 � y � 1/2. For the steady-state case, this set of
pipe inlet conditions describes for all ω a total head conserving apparatus which can
be physically realized (see the discussion in Appendix A).

At the pipe outlet x = L, two types of conditions may be considered. The first
possible outlet condition refers to a sufficiently long pipe (where L � 1) and describes
an expected fully developed columnar state with zero radial velocity, i.e. for all time t ,
ψx(L, y, t)= 0 for 0 � y � 1/2. This outlet condition was used in the stability analysis
of WR. The second possible outlet condition refers to pipes with a discharge device.
Then, a more relevant boundary condition at the pipe outlet may fix the flow flux
profile, i.e. for all time t , ψ(L, y, t) =ψ0(y) for 0 � y � 1/2. In this paper, we study
the flow stability under either one of these two possible outlet conditions. In addition,
along the pipe centreline at y = 0 the symmetry condition is imposed, i.e. ψ(x, 0, t)= 0
for 0 � x � L and for all time t � 0. Along the pipe wall at y = 1/2 the streamfunction
is fixed ψ(x, 1/2, t) = ψ0(1/2) for 0 � x � L and for all time t � 0 to describe the total
volumetric flux ψ0(1/2) across the pipe and the flow tangency along the pipe wall.

We consider a steady, columnar (x independent) base flow solution of (2.1) where,
for all incoming swirl levels ω, the velocity components are functions of y only, i.e.

u = U (y) = 0, v = V (y) = ωv0(y), w = W (y) = w0(y). (2.3)

From (2.3) we find that the base flow is characterized by ψ = ψ0(y) =
∫ y

0
w0(y

′) dy ′,

χ =χ0(y) = −w0y = −ψ0yy and K = ωK0(y) = ω
√

2yv0(y).
To study the linear stability of this flow, an infinitesimal unsteady streamfunction

disturbance ψ1(x, y, t) and a circulation disturbance K1(x, y, t) are superimposed on
the base flow functions:

ψ(x, y, t) = ψ0(y) + ε1ψ1(x, y, t) + · · · ,

K(x, y, t) = ωK0(y) + ε1K1(x, y, t) + · · · ,

}
(2.4)

with 0 � ε1 � 1. Then, χ(x, y, t) = −ψ0yy +εχ1(x, y, t)+· · · and χ1 = −(ψ1yy +ψ1xx/2y)
is the disturbance of the reduced azimuthal vorticity. On substituting these expressions
into (2.1) and neglecting the second-order perturbation terms, one obtains at order
O(ε1) the linearized equations of motion relating ψ1, χ1 and K1:

K1t + ψ0yK1x − ωK0yψ1x = 0,

χ1t + ψ0yχ1x + ψ0yyyψ1x =
ωK0

2y2
K1x.

⎫⎬
⎭ (2.5)

From the boundary conditions set above, we have for all t � 0 at order O(ε1) the
linearized boundary conditions for ψ1 and K1:

ψ1(x, 0, t) = 0, ψ1(x, 1/2, t) = 0 for 0 � x � L,

ψ1(0, y, t) = 0, φ1xx(0, y, t) = 0, K1(0, y, t) = 0 for 0 � y � 1/2,

ψ1x(L, y, t) = 0 or ψ1(L, y, t) = 0 for 0 � y � 1/2.

⎫⎬
⎭ (2.6)

We introduce mode analysis of (2.5) and (2.6) of the form

ψ1(x, y, t) = φ(x, y; σ ) eσ t ,

K1(x, y, t) = k(x, y; σ ) eσ t .

}
(2.7)
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Here σ is the non-dimensional growth rate. From (2.5) and (2.7), we obtain
the linear stability equation for the solution of σ and φ(x, y; σ ):(

φyy +
φxx

2y
+

(
Ω

K0K0y

2y2ψ2
0y

− ψ0yyy

ψ0y

)
φ

)
xx

− σψ0yyy

ψ2
0y

φx +
2σ

ψ0y

(
φyy +

φxx

2y

)
x

+
σ 2

ψ2
0y

(
φyy +

φxx

2y

)
= 0. (2.8)

Here Ω =ω2 is a modified swirl parameter. For the detailed derivation of (2.8), see
WR.

From the conditions (2.6), the corresponding boundary conditions for φ and k are

φ(x, 0; σ ) = 0, φ(x, 1/2; σ ) = 0 for 0 � x � L,

φ(0, y; σ ) = 0, φxx(0, y; σ ) = 0, k(0, y; σ ) = 0 for 0 � y � 1/2,

φx(L, y; σ ) = 0 or φ(L, y; σ ) = 0 for 0 � y � 1/2.

⎫⎪⎬
⎪⎭ (2.9)

The inlet condition k(0, y; σ ) = 0 can be replaced by (see details in WR)

φyyx(0, y; σ ) +
φxxx(0, y; σ )

2y
+

(
Ω

K0K0y

2y2ψ2
0y

− ψ0yyy

ψ0y

)
φx(0, y; σ ) = 0. (2.10)

3. Novel asymptotic solution of vortex linear stability problem for a long pipe
3.1. Model linear stability problem for a swirling flow in a long pipe

Let ε = 1/L2. In the case of a long pipe where L � 1, 0 <ε � 1. The stability problem
(2.8), (2.9) and (2.10) may have the following asymptotic solution:

φ(x, y; σ ) = φB(y)A(X; σ ∗) + εφ̄(X, y; σ ∗) + O(ε2). (3.1)

Here X =
√

εx and then the rescaled pipe length is X0 =
√

εL =1. Also, σ ∗ = σ/ε3/2,
Ω = ΩB + �Ω , �Ω = κωε, and ΩB = ω2

B and φB(y) are the square of Benjamin’s
critical swirl and related eigenmode, respectively, and both result from the solution
of the first eigenvalue of the problem:

φByy +

(
ΩB

K0K0y

2y2ψ2
0y

− ψ0yyy

ψ0y

)
φB = 0,

φB(0) = φB(1/2) = 0.

⎫⎪⎪⎬
⎪⎪⎭ (3.2)

We first analyse the boundary conditions (2.9) and (2.10) of the problem. From (2.9)
and asymptotic solution (3.1), the function A(X; σ ∗) must satisfy the inlet conditions
A(0; σ ∗) = 0, AXX(0; σ ∗) = 0 and either AX(1; σ ∗) = 0 or A(1; σ ∗) = 0 outlet condition.
Also, the function φ̄(X, y; σ ∗) must satisfy

φ̄(0, y; σ ∗) = 0, φ̄XX(0, y; σ ∗) = 0 for 0 � y � 1/2,

φ̄X(1, y; σ ∗) = 0 or φ̄(1, y; σ ∗) = 0 for 0 � y � 1/2,

φ̄(X, 0; σ ∗) = 0, φ̄(X, 1/2; σ ∗) = 0 for 0 � X � 1.

⎫⎬
⎭ (3.3)
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The inlet condition (2.10) becomes

ε1/2

(
φByy +

(
ΩB

K0K0y

2y2ψ2
0y

− ψ0yyy

ψ0y

)
φB

)
AX(0; σ ∗)

+ ε3/2

(
φ̄yyX(0, y; σ ∗) +

(
ΩB

K0K0y

2y2ψ2
0y

− ψ0yyy

ψ0y

)
φ̄X(0, y; σ ∗)

)

+ ε3/2

(
φB

2y
AXXX(0;σ∗) + κω

K0K0y

2y2ψ2
0y

φBAX(0; σ ∗)

)
+ O(ε2) = 0. (3.4)

From (3.2), the leading-order term O(ε) in (3.4) vanishes. At O(ε3/2), (3.4) becomes

φ̄yyX(0, y; σ ∗) +

(
ΩB

K0K0y

2y2ψ2
0y

− ψ0yyy

ψ0y

)
φ̄X(0, y; σ ∗)

+
φB

2y
AXXX(0; σ ∗) + κω

K0K0y

2y2ψ2
0y

φBAX(0; σ ∗) = 0. (3.5)

We analyse now the linear stability equation (2.8). Substituting (3.1) into (2.8) gives

ε

(
φByy +

(
ΩB

K0K0y

2y2ψ2
0y

− ψ0yyy

ψ0y

)
φB

)
AXX + ε2

(
φ̄XXyy +

(
ΩB

K0K0y

2y2ψ2
0y

− ψ0yyy

ψ0y

)
φ̄XX

)

+ ε2

(
φB

2y
AXXXX + κω

K0K0y

2y2ψ2
0y

φBAXX + σ ∗

(
2

ψ0y

φByy − ψ0yyy

ψ2
0y

φB

)
AX

)

+ O(ε3) = 0. (3.6)

From (3.2), the leading-order term O(ε) vanishes. At O(ε2), and using (3.2) for
expressing φByy in terms of φB , (3.6) becomes

φ̄XXyy +

(
ΩB

K0K0y

2y2ψ2
0y

− ψ0yyy

ψ0y

)
φ̄XX +

φB

2y
AXXXX + κω

K0K0y

2y2ψ2
0y

φBAXX

− σ ∗

(
ΩB

K0K0y

y2ψ3
0y

− ψ0yyy

ψ2
0y

)
φBAX = 0. (3.7)

Multiplying (3.7) by φB(y), integrating over the domain 0 � y � 1/2, integrating the
term related to φ̄ by parts and using the boundary conditions (3.3) gives the following
solvability condition:

δAXXXX + κωN2AXX − σ ∗NsAX = 0, (3.8)

where

δ =

∫ 1/2

0

φ2
B

2y
dy,

N2 =

∫ 1/2

0

K0K0y

2y2ψ2
0y

φ2
B dy,

Ns =

∫ 1/2

0

(
ΩB

K0K0y

y2ψ3
0y

− ψ0yyy

ψ2
0y

)
φ2

B dy.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.9)
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Integrating (3.8) with respect to X gives

δ(AXXX − AXXX(0)) + κωN2(AX − AX(0)) − σ ∗Ns(A − A(0)) = 0. (3.10)

In addition, multiplying (3.5) by φB(y), integrating over the domain 0 � y � 1/2,
integrating the term related to φ̄yy by parts, using (3.2) and the boundary conditions
(3.3), and using coefficients (3.9) gives the following inlet condition:

δAXXX(0) + κωN2AX(0) = 0. (3.11)

From condition (3.11), (3.10) results in the model eigenvalue problem for the solution
of the mode growth rate σ ∗ and the mode axial shape function A(X; σ ∗):

σ ∗τA = AXXX + κωβAX, (3.12)

with inlet conditions A(0; σ ∗) = 0, AXX(0; σ ∗) = 0 and either AX(1; σ ∗) = 0 or
A(1; σ ∗) = 0 at the outlet. Here, we define τ = Ns/δ and β = N2/δ. The right-hand
side of (3.12) represents the growth rate of the disturbance. The term related to AX

constitutes the mode shape as swirl is changed around ΩB whereas the term AXXX

dictates the spread of the mode shape along the pipe. A rescaling parameter of the
linear problem is assumed in the form of AX(0; σ ∗) = 1.

3.2. Analysis of the model linear stability problem

We first identify the neutral critical states according to (3.12) when σ ∗ = 0. The
neutral mode solutions of (3.12) that satisfy the inlet conditions and the first outlet
condition AX(1; σ ∗) = 0 are A= sin((2n − 1)πX/2) (with n being a positive integer)
and κω,n =(2n − 1)2π2/(4β). Then, from the definitions of ε and κω, the critical swirls
are Ωn = ΩB + (2n − 1)2π2/(4βL2), i.e. ω2

1 = Ω1 =ΩB + π2/(4βL2), ω2
2 = Ω2 = ΩB +

9π2/(4βL2), and so on. Similarly, the neutral mode solutions of (3.12) that satisfy
the inlet conditions and the second outlet condition A(1; σ ∗) = 0 are A= sin(nπX)
(here again n is a positive integer) and κω,n = n2π2/β . Then, the critical swirls are
Ωn = ΩB + n2π2/(βL2), i.e. ω2

1 = Ω1 = ΩB + π2/(βL2), ω2
2 = Ω2 = ΩB + 4π2/(βL2), and

so on.
Integrating (3.12) with respect to X and using the inlet conditions for A gives

σ ∗τ

∫ X

0

A(X′; σ ) dX′ = AXX + κωβA. (3.13)

Multiplying (3.13) by A, integrating with respect to X from X = 0 to X = 1, and using
the boundary conditions for A and the relationships∫ 1

0
A(

∫ X

0
A(X′; σ ∗) dX′) dX = 1

2
(
∫ 1

0
A dX)2 and

∫ 1

0
AAXX dX = −

∫ 1

0
(AX)2 dX results

in

1

2
σ ∗τ

(∫ 1

0

A dX

)2

= −
∫ 1

0

(AX)2 dX + κωβ

(∫ 1

0

A2 dX

)
. (3.14)

Similarly, multiplying (3.12) by A, integrating with respect to X from X = 0 to

X = 1 and using the boundary conditions for A and the relationships
∫ 1

0
AAXXX dX =

AXX(1; σ ∗)A(1; σ ∗) + 1
2
(A2

X(0; σ ∗) − A2
X(1; σ ∗)) and

∫ 1

0
AAX dX = 1

2
A2(1; σ ∗) results in

σ ∗τ

(∫ 1

0

A2 dX

)
= AXX(1; σ ∗)A(1; σ ∗) +

1

2

(
A2

X(0; σ ∗) − A2
X(1; σ ∗)

)
+

1

2
κωβA2(1; σ ∗).

(3.15)
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We now use (3.12), (3.14) and (3.15) to show for the two suggested outlet conditions
the change of vortex stability at the respective critical swirl Ω1 and to describe the
related deviations in mode shape as swirl is varied around Ω1. For the case with
outlet condition AX(1; σ ∗) = 0, we assume that the mode shape at swirl levels around
Ω1 = ΩB +π2/(4βL2) is given by A= sin(πX/2)+O(ε2) where 0 � ε2 � 1. Substituting
this in (3.14) gives at the leading order O(1),

σ ∗ =
π2β

4τ

(
κω − π2

4β

)
or σ =

π2N2

4NsL
(Ω − Ω1). (3.16)

Here we used σ = σ ∗ε3/2, ε = 1/L2, κωε = Ω−ΩB , and the definitions in (3.9). The result
(3.16) proves the change of the vortex stability around Ω1, i.e. the perturbation’s mode
is asymptotically stable (σ < 0) when ω <ω1 and unstable (σ > 0) when ω >ω1. This
again establishes the WR instability, but here for a sufficiently long pipe. Moreover,
from (3.12) we find that σ ∗τA(1; σ ∗) = AXXX(1; σ ∗). Therefore, as swirl changes from
below ω1 to above ω1 and σ ∗ from negative to positive values, AXXX(1; σ ∗) also
changes from negative to positive values. As ω further increases and AXXX becomes
sufficiently positive, AXX also increases from negative values to zero and positive
values. This shows that the natural mode shape deforms as ω changes around ω1. From
a dynamical point of view, when ω <ω1 (in the supercritical region), perturbations are
convected downstream towards the outlet and stabilize on a monotonically increasing
mode shape with a maximum point at X =1 that is the slowest decaying perturbation.
On the other hand, when ω increases sufficiently above ω1 (in the subcritical region),
perturbations can move upstream towards the inlet and stabilize on the fastest-
growing mode shape with a local minimum point at X =1 and a maximum point
that moves upstream with the increase of swirl, ahead of X = 1. These changes in
the dominant natural mode shape are demonstrated in the numerical examples in § 4.
They affect the production of the perturbation’s kinetic energy inside the domain as
well as its transfer at the boundaries.

For the case with outlet condition A(1; σ ∗) = 0, we assume that the mode shape at
swirl levels around Ω1 = ΩB + π2/(βL2) is given by A= sin(πX)+O(ε2), where again
0 � ε2 � 1. Substituting this in (3.14) gives at the leading order O(1),

σ ∗ =
π2β

4τ

(
κω − π2

β

)
or σ =

π2N2

4NsL
(Ω − Ω1). (3.17)

The result (3.17) proves the change of the vortex stability around Ω1 for the second
outlet condition as well, i.e. the perturbation’s mode is asymptotically stable (σ < 0)
when ω <ω1 and unstable (σ > 0) when ω >ω1. This extends the WR instability
to the case of a vortex flow in a sufficiently long pipe with a fixed flux at the

outlet. Moreover, from (3.15) we find that in this case σ ∗τ (
∫ 1

0
A2 dX) = 1

2
(A2

X(0; σ ∗) −
A2

X(1; σ ∗)). Therefore, as swirl changes from below ω1 to above ω1 and σ ∗ changes
from negative to positive values, A2

X(0; σ ∗) − A2
X(1; σ ∗) also changes from negative

to positive values. Again, from a dynamical point of view, when ω <ω1 (in the
supercritical region), perturbations are convected downstream towards the outlet
and the mode shape deviates from the symmetric critical mode about X = 1/2.
It stabilizes on the slowest-decaying mode that is asymmetric about X = 1/2 and
exhibits A2

X(0; σ ∗) <A2
X(1; σ ∗) and a maximum point location that moves downstream

of X = 1/2 with decrease of swirl. On the other hand, when ω >ω1 (in the subcritical
region), perturbations can move upstream and stabilize on the fastest-growing mode
shape that exhibits A2

X(0; σ ∗) >A2
X(1; σ ∗) and a maximum point location that moves
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upstream of X = 1/2 with increase of swirl. These changes in the dominant natural
mode shape are also demonstrated in the numerical examples in § 4. They also affect
the production of the perturbation’s kinetic energy inside the domain as well as
its transfer at the boundaries. Also note that the change of growth rate with swirl
σ/(Ω − Ω1) = π2N2/(4NsL) is the same for the two outlet boundary conditions and
depends on the vortex base velocity profiles.

The solution of the eigenvalue problem (3.12) is found numerically by defining
Z1 =A, Z2 = AX, Z3 =AXX and using the Runge–Kutta fourth-order method in
Matlab to solve the system of equations

dZ1/dX = Z2, dZ2/dX = Z3, dZ3/dX = σ ∗τZ1 − κωβZ2, (3.18)

with inlet conditions Z1(0) = 0, Z2(0) = 1 (a rescaling parameter of the linear problem)
and Z3(0) = 0. We use Newton iterations to determine the value of σ ∗ as a function
of κω for which either Z1(1) = 0 or Z2(1) = 0 is satisfied at the outlet. The numerical
solution of the problem (3.18) provides the perturbation’s leading-order mode shape
φ(x, y; σ ) =φB(y)A(X; σ ∗) and its growth rate σ = σ ∗ε3/2. The mode shape is extremely
important for computing the perturbation’s kinetic energy production at the pipe
boundaries and inside the domain. In the next section, we describe solutions of the
linear stability problem for representative and physically relevant vortices such as
the Lamb–Oseen and Q vortices in a long pipe, at a range of swirl levels around
the vortex Benjamin’s critical swirl ΩB , and for the two relevant outlet conditions
mentioned above. The results will be used in § 6 together with the Reynolds–Orr
equation (developed in § 5) to compute the perturbation’s kinetic energy production
and explore energy transfer mechanisms in the flow and its relationship to flow change
of stability at ω1.

Note that when the pipe is sufficiently long, the solution of the eigenvalue problem
(3.12) can be applied to study the linear stability of vortex flows in a pipe with
general circumferential and axial velocity profiles, at a range of swirl levels around
ΩB , and with several outlet conditions. Our numerical experience shows that this
new asymptotic approach gives accurate results for pipes with L � 6 when compared
to the solutions for the Lamb–Oseen vortex obtained by linear operator theory in
Wang, Taylor & Ku Akil (2010). The relative error decreases with pipe length. The
present approach significantly simplifies the solution of the linear stability problem
(2.8) and (2.9), and generalizes it for wider applications. The simplification is a result
of the ability to use, in the case of a long pipe, a leading-order solution in the form of
separation of variables. This reveals that in a long pipe the small-disturbance linearized
evolution can be decoupled in the axial and radial directions and in time. The
radial direction is dominated by Benjamin’s eigenmode for an infinitely long pipe.
The deviations of the axial mode from the critical shape occur along the pipe
and at the boundaries and significantly affect the production of the perturbation’s
kinetic energy at the various places. These deviations support the change of stability
characteristics of the flow as swirl level is varied from below the critical level ω1 to
above the next critical level ω2.

4. The linear stability of Lamb–Oseen and Q vortices in a finite-length, long,
circular pipe

The new linear stability problem (3.12) is applied to the family of Q vortex flows
where the non-dimensional velocity profiles, scaled with the characteristic inlet axial
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Figure 1. The growth rate curves of the Lamb–Oseen vortex with b =4, d = 0, pipe length
L = 6, and the outlet condition AX(1; σ ∗) = 0, computed by using the long-pipe approach, and
the eighth-order method based on the linear operator theory of Wang et al. (2010).

velocity, are

V (y) =
ω√
2y

(
1 − e−2b1y

)
, W (y) = 1 + de−2b2y. (4.1)

Here b1 is the vortex core-size parameter, where the non-dimensional vortex core
radius scaled with the pipe radius is rc = 1.12/

√
b1, b2 is the axial velocity shape

parameter, and d describes the axial velocity character; d = 0 is the case of a uniform
axial flow (the Lamb–Oseen vortex), d > 0 is the case of a swirling jet flow, and
−1 < d < 0 is the case of a swirling wake flow. These model vortices represent realistic
swirling flows in experimental apparatuses such as described in Leibovich’s (1984)
review paper. In the following examples, we take the representative case where
b1 = b2 = b = 4. Also, a representative pipe of non-dimensional length (scaled with
pipe radius) L =6 is used, which characterizes the length scale of experimental
apparatuses. Then, ε = 1/36.

We first describe the solutions of (3.12) for the Lamb–Oseen vortex with b = 4 and
d = 0 and with the first outlet condition AX(1; σ ∗) = 0 and compare the results with
the highly accurate eighth-order solution of the linear stability problem (2.8) for the
Lamb–Oseen vortex obtained by linear operator theory (Wang et al. 2010). Results
of the growth rate (σ ) as a function of Ω from both solution techniques are shown
in figure 1 for a range of swirl levels between Ω =0.777 and Ω =0.806. The figure
demonstrates good agreement between the two solution methods for the range of
swirls studied. It is noticed that although the present solution shows small deviations
from the accurate calculations for Ω > 0.795, the two solutions have a similar shape
with a fold point at the same growth rate level. The present solution method extends
the results of Wang et al. (2010) to find the whole branch of growth rates for Ω

between the first and second critical swirls. The current method is much simpler than
the linear operator method for computing the mode growth rate at swirl levels where
|�Ω | is of the order of ε.
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Figure 2. (a) The growth rate curve of the Lamb–Oseen vortex with b = 4, d =0, pipe length
L =6 and the outlet condition AX(1; σ ∗) = 0, computed by using the long-pipe approach.
(b) The corresponding eigenmodes A(X; σ ∗) for swirl Ω and growth rate σ marked on the
growth rate curve.

A remarkable feature of the present method is that the eigenmode can be readily
computed in the leading order, which is crucial for further investigation of the
energy transfer mechanism between the disturbance and the base flow in a finite-
length pipe setting. The computed growth rates and related eigenmodes A(X; σ ) for
several representative points of interest are shown in figure 2 for the swirl between
Ω = 0.7777 and Ω = 0.8057. We can see that the dominant natural eigenmode changes
significantly along the pipe axis as Ω is increased from the supercritical region (where
Ω < Ω1) to the subcritical region (where Ω > Ω1). Specifically, the mode’s maximum
point is at the outlet when Ω <Ω1 and it moves upstream with increase of swirl level
above Ω1, as has been predicted in § 3. Also, for same value of the inlet derivative
AX(0; σ ∗) = 1, the maximum value of A(X; σ ∗) decreases and the values near the
outlet also decrease and become negative with the increase of swirl level. Essentially,
the mode shape shifts with increase of swirl level from the critical mode sin(πX/2) at
Ω1 = 0.7823 towards the critical mode sin(3πX/2) at Ω2 = 0.8057.

The computed growth rates for the Lamb–Oseen vortex with b =4 and d = 0 and
with the second outlet condition A(1, 0; σ ∗) = 0 are shown in figure 3(a) for a range of
swirls between Ω = 0.7854 and Ω = 0.8269. The eigenmodes for several representative
points of interest in figure 3(a) are shown in figure 3(b). It can be seen that the
first and second critical swirls for this outlet condition increase to Ω1 = 0.7912 and
Ω2 = 0.8269 with respect to those of the first outlet condition. The corresponding
neutral eigenmodes, sin(πX) and sin(2πX) respectively, are symmetric about X = 1/2
(the mid-pipe cross-section). The dominant natural eigenmodes become asymmetric
about X = 1/2 as Ω changes around Ω1, as predicted in § 3 for this outlet condition.
The modes change their shape and maximum points are located towards the outlet
and decay in time in the supercritical region where Ω <Ω1 (where σ ∗ < 0). They shift
towards the inlet and grow in time in the subcritical region where Ω >Ω1 (where
σ ∗ > 0). Also, it can be seen that the radial velocity (related to the X-derivative
of the eigenmode) is positive along the inlet, zero near the mid-pipe cross-section
and negative along the outlet. This non-periodic mode that changes its shape and
stability characteristics is a direct result of the inlet–outlet conditions imposed on
the perturbation. Again, essentially the mode shape shifts with the increase of swirl
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Figure 3. (a) The growth rate curve of the Lamb–Oseen vortex with b = 4, d = 0, pipe length
L = 6 and the outlet condition A(1; σ ∗) = 0, computed by using the long-pipe approach.
(b) The corresponding eigenmodes A(X; σ ∗) for swirl Ω and growth rate σ marked on the
growth rate curve.
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Figure 4. (a) The growth rate curve of the Q vortex with b = 4, d = 1, pipe length L = 6 and the
outlet condition A(1; σ ∗) = 0, computed using the long-pipe approach. (b) The corresponding
eigenmodes A(X; σ ∗) for swirl Ω and growth rate σ marked on the growth rate curve.

from the critical mode sin(πX) at ω1 = 0.7912 towards the critical mode sin(2πX) at
Ω2 = 0.8269.

The computed growth rates for a swirling jet with b = 4, d = 1 and with the
outlet condition A(1; σ ∗) = 0 are shown in figure 4(a) for a range of swirls between
Ω = 2.3253 and Ω = 2.4308. The corresponding eigenmodes are shown in figure 4(b).
The jet axial flow increases the values of the critical levels to Ω1 = 2.338 and
Ω2 = 2.4308, with increased values of growth rates with respect to the Lamb–Oseen
vortex. This is a direct result of the increase in the base flow axial velocity at and
around the vortex axis. The dominant natural eigenmodes exhibit behaviour similar
to the corresponding case described in figure 3(b).

The computed growth rates for a swirling wake with b = 4 and d = −0.5 and with
the outlet condition A(1; σ ∗) = 0 are shown in figure 5(a) for a range of swirls between
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Figure 5. (a) The growth rate curve of the Q vortex with b = 4, d = −0.5, pipe length
L =6 and outlet condition A(1; σ ∗) = 0, computed by using the long-pipe approach. (b) The
corresponding eigenmodes A(X; σ ∗) for swirl Ω and growth rate σ marked on the growth rate
curve.

Ω = 0.2861 and Ω =0.3046. The corresponding eigenmodes are shown in figure 5(b).
The wake axial flow decreases the values of the critical levels to Ω1 = 0.290 and
Ω2 = 0.304, with decreased values of growth rates with respect to the Lamb–Oseen
vortex. This is a direct result of the decrease in the base flow axial velocity at and
around the vortex axis. The dominant natural eigenmodes also exhibit behaviour
similar to the corresponding case described in figure 3(b).

5. The Reynolds–Orr equation for a swirling flow in a straight finite-length pipe
We now consider a general steady, axisymmetric, non-columnar base flow

with velocity components u =U (x, r), v = V (x, r), w =W (x, r) and pressure field
p = P (x, r) (the base flow here may not be columnar). Let u1 = u(x, r, t) −
U (x, r), v1 = v(x, r, t)−V (x, r), w1 = w(x, r, t)−W (x, r) be the radial, circumferential
and axial velocity disturbances from the base flow velocities, respectively, and
p1 = p(x, r, t) − P (x, r) be the pressure disturbance. The energy transfer between
the disturbances and the base flow can be analysed by the Reynolds–Orr equation.
Let E(t) be the specific integrated kinetic energy of the disturbance contained in the
finite-length pipe:

E(t) = π

∫ L

0

∫ 1

0

(
u2

1 + v2
1 + w2

1

)
r dr dx. (5.1)

For an axisymmetric base flow with velocity components (U, V, W ), the Reynolds–Orr
equation (see, for example, the recent monograph by Wu et al. 2006) relates the rate
of change in time of the specific integrated kinetic energy of the disturbance dE(t)/dt

to various ‘source’ terms, i.e.

dE(t)

dt
= −2π

(∫ L

0

∫ 1

0

(u1, v1, w1)B(u1, v1, w1)
Tr dr dx

+

∫ 1

0

[
w1p1

]x=L

x=0
r dr +

1

2

∫ 1

0

[
W

(
u2

1 + v2
1 + w2

1

) ]x=L

x=0
r dr

)
. (5.2)
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Here B is the symmetric strain-rate tensor of the base flow, defined in cylindrical
coordinates by

B =
1

2

⎡
⎢⎢⎢⎢⎣

2Ur r

(
V

r

)
r

Wr + Ux

r

(
V

r

)
r

2U

r
Vx

Wr + Ux Vx 2Wx

⎤
⎥⎥⎥⎥⎦. (5.3)

The source terms include the production of E inside the flow domain (the first
integral on the right-hand side of (5.2)), the production of E caused by the work of
the pressure perturbations at the pipe inlet and outlet (the second integral), and the
production of E resulting from the convection of E by the axial velocity W at the
inlet and outlet (the third integral).

It should be noted that the boundary terms vanish when periodic boundary
conditions are applied at the pipe inlet and outlet. Then, for a general vortex flow,
the rate of change of the perturbation’s kinetic energy is determined only by the
production of E inside the flow domain.

For a base columnar swirling flow with U = 0, V =ωv0(y) and W = w0(y) (for
example, the Q vortex), we have

dE(t)

dt
= −2π

(
ω

∫ L

0

∫ 1/2

0

(
K0y − K0

y

)
u1v1 dy dx +

∫ L

0

∫ 1/2

0

√
2yw0yu1w1 dy dx

+

∫ 1/2

0

[
w1p1

]x=L

x=0
dy +

1

2

∫ 1/2

0

w0(y)
[
u2

1 + v2
1 + w2

1

]x=L

x=0
dy

)
. (5.4)

In this case, the production of the perturbation’s kinetic energy inside the flow domain
is built up of two integrals, one related to the product u1v1 and is modulated by the
profile of base flow strain rate (K0y − K0/y), and the second related to the product
u1w1 and is modulated by the axial velocity profile of the base flow strain rate w0y .
For a typical swirling jet flow, w0y < 0 for 0 � y � 1/2, and this promotes exchange
of energy inside the domain. On the other hand, for a typical swirling wake flow,
w0y > 0 for 0 � y � 1/2, which suppresses exchange of energy inside the domain. For a
columnar swirling base flow with a uniform axial speed U = 0, V = ωv0(y), w0(y) = 1,

the production of the perturbation’s kinetic energy inside the flow domain simplifies
to only one term.

We note here that for a base columnar flow with a uniform axial speed and
imposed periodic inlet–outlet conditions, the second and third terms in (5.2) related
to the boundary terms vanish. Then, the rate of change of E in time is governed
only by the production term inside the flow domain. Furthermore, for the solid-body
rotating flow where K0 = 2y, the strain rate vanishes for all 0 � y � 1/2 and, as a
result, the integrand on the right-hand side of (5.4) also vanishes. This establishes
dE(t)/dt = 0, i.e. the conservation of the kinetic energy of the disturbance for the
solid-body rotation, thereby making it a waveguide; see Drazin (2002).

In addition, for the case of the solid-body rotation with the present boundary
conditions (2.9), again the integral over the flow domain on the right-hand side of
(5.4) vanishes. Then, no perturbation kinetic energy is produced inside the domain
and it is inactive in determining the flow stability (the domain acts as a waveguide).
The terms that involve the boundaries in (5.4) do not vanish and energy transfer at
the boundaries occurs to generate the change of stability as swirl ratio is increased
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across the critical swirl for solid-body rotation. This recovers the result found by
Gallaire & Chomaz (2004).

It should be emphasized that solid-body rotation is the only strain-free vortex flow.
For a general vortex flow, for example the Lamb–Oseen vortex, one finds that

K0y − K0

y
= 2b e−2by − 1 − e−2by

y
, (5.5)

which is negative in the whole domain 0< y � 1/2.
For the present boundary conditions (2.9) with a fixed flux at the outlet, we have

w1(0, y, t) =w1(L, y, t) = 0. Then, one finds that

dE(t)

dt
= 2π

(
ω

∫ L

0

∫ 1/2

0

(
1 − e−2by

y
− 2b e−2by

)
u1v1 dy dx +

1

2

∫ 1/2

0

[
u2

1 + v2
1

]x=0

x=L
dy

)
.

(5.6)

The advantage of this type of a boundary condition is that the second term in (5.2)
related to the work of the pressure perturbation becomes inactive. Equation (5.6)
clearly establishes that for the Lamb–Oseen vortex, the production of the specific
integrated kinetic energy of the disturbance inside of the domain is active (not zero)
and interacts with the production of energy from the boundaries. This result shows
that solid-body rotation is only a special case of vortex flows where the production of
energy inside the domain is inactive. It can be seen that a general vortex flow has richer
dynamics than the solid-body rotation. For general vortex flows, the perturbation’s
kinetic energy production (or loss) inside the domain and at the boundaries interact
with each other and affect the stability characteristics of the flow.

For further analysis, we rewrite (5.4) in the form

dE(t)

dt
= 2π(Euv + Euw + Euuoutlet

− Euuinlet
+ Evvoutlet

+ Ewwoutlet
+ Ewpoutlet

), (5.7)

where

Euv = −ω

∫ L

0

∫ 1/2

0

(
K0y − K0

y

)
u1v1 dy dx,

Euw = −
∫ L

0

∫ 1/2

0

√
2yw0yu1w1 dy dx,

Euuinlet
= −1

2

∫ 1/2

0

w0(y)u2
1(0, y, t) dy,

Euuoutlet
= −1

2

∫ 1/2

0

w0(y)u2
1(L, y, t) dy,

Evvoutlet
= −1

2

∫ 1/2

0

w0(y)v2
1(L, y, t) dy,

Ewwoutlet
= −1

2

∫ 1/2

0

w0(y)w2
1(L, y, t) dy,

Ewpoutlet
= −

∫ 1/2

0

w1(L, y, t)p1(L, y, t) dy.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.8)
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Note that according to the present inlet conditions v1(0, y, t) =w1(0, y, t) = 0 and,
therefore,

Evvinlet
= −1

2

∫ 1/2

0

w0(y)v2
1(0, y, t) dy = 0,

Ewwinlet
= −1

2

∫ 1/2

0

w0(y)w2
1(0, y, t) dy = 0,

Ewpinlet
= −

∫ 1/2

0

w1(0, y, t)p1(0, y, t) dy = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.9)

Note that the Reynolds–Orr equation on its own, without a detailed solution of the
disturbance field and evolution, does not lead to a sharp estimate of the energy transfer
for general swirling flows and to a conclusion about flow stability. However, using
the computed disturbance field, a precise estimate of the energy transfer, including
where and how the base flow’s kinetic energy is transferred to the disturbance or vice
versa, can be obtained by applying the Reynolds–Orr equation. This computation
is demonstrated in the next section for a general vortex flow at swirl levels around
the critical swirl ω1, where the base flow changes its stability according to the WR
instability. Also, specific discussions on the nature of the Lamb–Oseen and the Q

vortices are given.

6. Perturbation’s kinetic energy transfer mechanism in a long pipe
6.1. Asymptotic form of the Reynolds–Orr equation for a swirling flow in a long pipe

We develop an asymptotic form of the Reynolds–Orr equation for a base columnar
swirling flow in a straight long pipe. We use the asymptotic solution (3.1) of the
stability problem for the dominant natural mode. The detailed derivations of the
various terms involved in this section are presented in Appendix B.

Using the perturbation’s form (2.4), the assumed mode shape (2.7) and the
asymptotic solution (3.1) for a long pipe, we find from § B.1 that the radial, axial and
circumferential velocity perturbations may be given by

u1(x, y, t) = ε1ū1(X, y; σ ∗) eσ ∗t∗
+ · · · ,

w1(x, y, t) = ε1w̄1(X, y; σ ∗) eσ ∗t∗
+ · · · ,

v1(x, y, t) = ε1v̄1(X, y; σ ∗) eσ ∗t∗
+ · · · ,

⎫⎪⎬
⎪⎭ (6.1)

respectively, where t∗ = ε3/2t . Also,

ū1(X, y; σ ∗) = − 1√
2y

(ε1/2φB(y)AX + ε3/2φ̄X) + O(ε5/2),

w̄1(X, y; σ ∗) = φBy
(y)A + εφ̄y + O(ε2),

v̄1(X, y; σ ∗) =

√
ΩBK0y√
2yψ0y

φBA + ε

[√
ΩBK0y√
2yψ0y

φB

×
(

κω

2ΩB

A − σ ∗

ψ0y

∫ X

0

A(X′; σ ∗) dX′
)

+

√
ΩBK0y√
2yψ0y

φ̄

]
+ O(ε2).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.2)
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From (5.8), (6.1) and (6.2) we find that

Euv = ε2
1 e2σ ∗t∗(

Ē0
uv + εĒε

uv + O(ε2)
)

+ · · · ,

Euw = ε2
1 e2σ ∗t∗(

Ē0
uw + εĒε

uw + O(ε2)
)

+ · · · ,

Euuinlet
= ε2

1 e2σ ∗t∗(
Ē0

uuinlet
+ εĒε

uuinlet
+ O(ε2)

)
+ · · · ,

Euuoutlet
= ε2

1 e2σ ∗t∗(
Ē0

uuoutlet
+ εĒε

uuoutlet
+ O(ε2)

)
+ · · · ,

Evvoutlet
= ε2

1 e2σ ∗t∗(
Ē0

vvoutlet
+ εĒε

vvoutlet
+ O(ε2)

)
+ · · · ,

Ewwoutlet
= ε2

1 e2σ ∗t∗(
Ē0

wwoutlet
+ εĒε

wwoutlet
+ O(ε2)

)
+ · · · ,

Ewpoutlet
= ε2

1 e2σ ∗t∗(
Ē0

wpoutlet
+ εĒε

wpoutlet
+ O(ε2)

)
+ · · · .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.3)

The various terms in (6.3) are derived in § B.2; the leading-order terms are

Ē0
uv = − 1

2
ΩB(M3a − M3b)A

2(1; σ ∗),

Ē0
uw = 1

2
J1A

2(1; σ ∗),

Ē0
uuinlet

= Ē0
uuoutlet

= 0,

Ē0
vvoutlet

= − 1
2
ΩBM3bA

2(1; σ ∗),

Ē0
wwoutlet

= − 1
2
(ΩBM3a + J1)A

2(1; σ ∗),

Ē0
wpoutlet

= ΩBM3aA
2(1; σ ∗),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.4)

and the first-order terms are

Ēε
uv = −1

2
κω(M3a − M3b)A

2(1; σ ∗) + σ ∗ΩB(N3a − N3b)

×
[
A(1; σ ∗)

∫ 1

0

A(X′; σ ∗) dX′ −
∫ 1

0

A2(X′; σ ∗) dX′
]

− ΩB(I1 − I2)A(1; σ ∗),

Ēε
uw =

1

2
κωM3aA

2(1; σ ∗) +
1

2
δW

[
A2

X(1; σ ∗) − A2
X(0; σ ∗)

]
−σ ∗(2ΩBN3a + J2)

[
A(1; σ ∗)

∫ 1

0

A(X′; σ ∗) dX′ −
∫ 1

0

A2(X′; σ ∗) dX′
]

−
[ ∫ 1/2

0

χ0φByφ̄(1, y; σ ∗) dy

]
A(1; σ ∗),

Ēε
uuinlet

= −1

2
δWA2

X(0; σ ∗),

Ēε
uuoutlet

= −1

2
δWA2

X(1; σ ∗),

Ēε
vvoutlet

= −1

2
κωM3bA

2(1; σ ∗) + σ ∗ΩBN3bA(1; σ ∗)

∫ 1

0

A(X′; σ ∗) dX′ − ΩBI2A(1; σ ∗),

Ēε
wwoutlet

= −ΩBI1A(1; σ ∗) −
[ ∫ 1/2

0

(χ0φBy + χ0yφB)φ̄(1, y; σ ∗) dy

]
A(1; σ ∗),

Ēε
wpoutlet

= σ ∗(ΩBN3a + J2)A(1; σ ∗)

∫ 1

0

A(X′; σ ∗) dX′ + 2ΩBI1A(1; σ ∗)

+

[ ∫ 1/2

0

(2χ0φBy + χ0yφB)φ̄(1, y; σ ∗) dy

]
A(1; σ ∗).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.5)
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Here, we define

M3a =

∫ 1/2

0

K0K0y

2y2ψ0y

φ2
B dy, M3b =

∫ 1/2

0

K2
0y

2yψ0y

φ2
B dy,

N3a =

∫ 1/2

0

K0K0y

2y2ψ2
0y

φ2
B dy, N3b =

∫ 1/2

0

K2
0y

2yψ2
0y

φ2
B dy,

I1 =

∫ 1/2

0

K0K0y

2y2ψ0y

φBφ̄(1, y; σ ∗) dy, I2 =

∫ 1/2

0

K2
0y

2yψ0y

φBφ̄(1, y; σ ∗) dy,

J1 =

∫ 1/2

0

χ0yφ
2
B dy, J2 =

∫ 1/2

0

χ0y

ψ0y

φ2
B dy, δW =

1

2

∫ 1/2

0

w0(y)
φ2

B

2y
dy.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.6)

The asymptotic form of the Reynolds–Orr equation (5.7) for a swirling flow in a
long pipe results in

dE(t)

dt
= ε2

1 e2σ ∗t∗ dE(t)

dt

∣∣∣
t=0

, (6.7)

where

dE(t)

dt

∣∣∣
t=0

= 2π
[(

Ē0
uv + Ē0

uw + Ē0
uuoutlet

− Ē0
uuinlet

+ Ē0
vvoutlet

+ Ē0
wwoutlet

+ Ē0
wpoutlet

)
+ ε

(
Ēε

uv + Ēε
uw + Ēε

uuoutlet
− Ēε

uuinlet
+ Ēε

vvoutlet
+ Ēε

wwoutlet

+ Ēε
wpoutlet

)
+ O(ε2)

]
. (6.8)

6.2. The perturbation’s kinetic energy budget at leading order O(1)

Equations (6.4), (6.7) and (6.8) show the expected result: at order O(1),

Ē0
uv + Ē0

uw + Ē0
uuoutlet

− Ē0
uuinlet

+ Ē0
vvoutlet

+ Ē0
wwoutlet

+ Ē0
wpoutlet

= 0, (6.9)

i.e. the net perturbation’s kinetic energy transfer between the disturbance and base
flow vanishes at the leading order.

This result is true for any vortex flow at all swirl levels and for the two possible
outlet conditions. Also, note that in the case with a fixed flux outlet condition we have
A(1; σ ∗) = 0 and then all the leading-order terms (6.4) are identically zero and (6.9)
is identically satisfied. On the other hand, for the case with a columnar outlet state
(discussed in WR), A(1; σ ∗) �= 0. For the Lamb–Oseen or Q vortices, we find that for
all b, K0y = 2b e−2by > 0 for 0 � y � 1/2 (the vortices are stable according to Rayleigh’s
criterion) and K0y −K0/y < 0 for 0 <y � 1/2 (the base strain rate is negative, see figure
6). Therefore, M3a >M3b > 0. As a result, (i) Ē0

uv < 0, i.e. the disturbance loses its kinetic
energy to the base flow inside the flow domain due to the interaction between the
radial velocity perturbation and circumferential velocity perturbation; (ii) Ē0

vvoutlet
< 0

and Ē0
uw + Ē0

wwoutlet
< 0, i.e. representing the convective loss of the disturbance’s kinetic

energy inside the domain and at the outlet; (iii) Ē0
wpoutlet

> 0, i.e. indicating that
w1(L, y, t) and p1(L, y, t) are opposite in sign (as expected) and a gain of the
disturbance’s kinetic energy from the work of the pressure perturbation at the outlet.
In summary, at the leading order, for all swirl levels around the critical swirl, the loss of
the disturbance’s kinetic energy to the base flow inside the domain and the convective
loss of the disturbance’s kinetic energy inside the domain and at the outlet are
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Figure 6. Ē0
uv/Ē

0
wpoutlet

, Ē0
vvoutlet

/Ē0
wpoutlet

and Ē0
wwoutlet

/Ē0
wpoutlet

versus the flow parameter b.

balanced by the gain of the disturbance’s kinetic energy due to the work of the
pressure perturbation at the outlet and there is no net production or loss of the
perturbation’s kinetic energy.

We define the following ratios of the perturbation’s kinetic energy transfer inside
the domain and at the outlet divided by the gain of disturbance kinetic energy due
to the work of the pressure perturbation at the outlet, i.e.

R0
E,uv =

Ē0
uv

Ē0
wpoutlet

=
M3b

2M3a

− 1

2
,

R0
E,uw =

Ē0
uw

Ē0
wpoutlet

=
J1

2M3a

,

R0
E,vv =

Ē0
vvoutlet

Ē0
wpoutlet

= − M3b

2M3a

,

R0
E,ww =

Ē0
wwoutlet

Ē0
wpoutlet

= −1

2
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.10)

We demonstrate these results for the Lamb–Oseen vortex at various values of the
core parameter b. Then, J1 = 0 and Ē0

uw = R0
E,uw = 0. The values of the leading-order

terms Ē0
uv , Ē0

vvoutlet
, Ē0

wwoutlet
and Ē0

wpoutlet
are computed. The values of R0

E,uv , R0
E,vv and

R0
E,ww as a function of b in the range (0, 8) are shown in figure 6. It can be seen that

Ē0
uv approaches zero as b tends to 0, reflecting the fact that there is no perturbation

kinetic energy production (loss) inside the domain for a solid-body rotation. The
absolute value of Ē0

uv increases with the increase of b (decrease of vortex core radius)
to a level about 12 % of Ē0

wpoutlet
for b = 8. The more slender the vortex core is, the

more significant the loss of the disturbance’s kinetic energy is to the base flow inside
the domain.
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6.3. The perturbation’s kinetic energy budget at order O(ε)

Equations (6.5), (6.7) and (6.8) show that at order O(ε),

dE(t)

dt
= ε2

1ε e2σ ∗t∗
2πσ ∗[ΩB(N3a + N3b) + J2]

∫ 1

0

A2(X; σ ∗) dX, (6.11)

which is but

dE(t)

dt
= 2σ ∗ε e2σ ∗t∗

E(0). (6.12)

One can also verify this result by a direct substitution of (6.1) and (6.2) into (5.1).

Remark 6.1. The result (6.11) demonstrates the strong coupling of the perturbation’s
energy production at the boundaries and inside the domain. In fact, (6.11) is derived
by the mutual cancellations of the perturbation’s energy production terms in the
domain and at the boundaries when they are summed in (6.8).

For general vortices such as the Lamb–Oseen or Q vortices ΩB(N3a + N3b) + J2 > 0

for all b, and obviously ε = 1/L2 > 0 and
∫ 1

0
A2(X; σ ∗) dX > 0. It can be seen that the

net perturbation kinetic energy transfer between the disturbance and the base flow is
directly related to the growth rate σ ∗ as a function of the swirl level Ω . We therefore
find that there is no production of kinetic energy when ω =ω1 (where σ ∗ = 0 is a
neutral state), there is a decay in time of disturbance kinetic energy when ω < ω1

(where σ ∗ < 0 are asymptotically stable states) and there is a gain of disturbance
kinetic energy when ω > ω1 (where σ ∗ > 0 are unstable states).

Equations (6.5) shed light on the details of exchange of the perturbation’s kinetic
energy between the flow domain and the boundaries as the swirl level increases around
the critical swirl. Let

Ēε
domain = Ēε

uv + Ēε
uw,

Ēε
boundaries = Ēε

uuinlet
−

(
Ēε

uuoutlet
+ Ēε

vvoutlet
+ Ēε

wwoutlet
+ Ēε

wpoutlet

)
.

}
(6.13)

Here, Ēε
domain is the total production or loss of the perturbation’s kinetic energy inside

the flow domain at order O(ε) and Ēε
boundaries is the net difference between the inlet

and the outlet transfer of the perturbation’s kinetic energy at order O(ε). We find
from (6.5) that

Ēε
domain − Ēε

boundaries = σ ∗[ΩB(N3a + N3b) + J2

] ∫ 1

0

A2(X; σ ∗) dX. (6.14)

Following the previous arguments, this result shows that for general vortices such as
the Lamb–Oseen or Q vortices Ēε

domain = Ēε
boundaries at the neutral state ω = ω1 (where

σ ∗ =0), Ēε
domain < Ēε

boundaries when ω <ω1 (where σ ∗ < 0) and Ēε
domain > Ēε

boundaries when
ω >ω1 (where σ ∗ > 0).

We conclude that for a general vortex flow and the two possible outlet conditions,
(i) there is a critical balance between the production of the perturbation’s kinetic

energy inside the domain and at the boundaries at the critical swirl ω1;
(ii) the asymptotic stability of the base vortex flow at swirl levels below the critical

level (in the supercritical swirl region) is related to less production of disturbance
kinetic energy inside the domain with respect to the net transfer of kinetic energy at
the boundaries; and

(iii) the WR vortex instability at swirl levels above the critical level (in the subcritical
swirl region) is related to more production of disturbance kinetic energy inside the
domain with respect to the net transfer of kinetic energy at the boundaries.
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6.4. The energy budget at order O(ε) for the outlet condition w1(L, y, t)= 0

To study the perturbation’s kinetic energy production mechanism, we must investigate
the separate contributions from the boundaries and the bulk, respectively. We conduct
a case study for the specific case where the fixed flux outlet condition w1(L, y, t) = 0
is applied and additional analytical insight can be gained. In this case, A(1; σ ∗) = 0.
Then we have from (6.5):

Ēε
uv = −σ ∗ΩB(N3a − N3b)

[ ∫ 1

0

A2(X; σ ∗) dX

]
,

Ēε
uw =

1

2
δW

[
A2

X(1; σ ∗) − A2
X(0; σ ∗)

]
+ σ ∗(2ΩBN3a + J2)

[ ∫ 1

0

A2(X; σ ∗) dX

]
,

Ēε
uuinlet

= −1

2
δWA2

X(0; σ ∗), Ēε
uuoutlet

= −1

2
δWA2

X(1; σ ∗),

Ēε
vvoutlet

= 0, Ēε
wwoutlet

= 0, Ēε
wpoutlet

= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.15)

In this case, none of the terms depends on φ̄,

Ēε
boundaries = 1

2
δW

[
A2

X(1; σ ∗) − A2
X(0; σ ∗)

]
(6.16)

and (6.14) holds. Using (3.15) and the outlet condition A(1; σ ∗) = 0, we can further
simplify Ēε

boundaries:

Ēε
boundaries = −σ ∗δWτ

∫ 1

0

A2(X; σ ∗) dX. (6.17)

It can be seen that Ēε
boundaries > 0 when Ω < Ω1 (σ ∗ < 0) and Ēε

boundaries < 0 when
Ω > Ω1 (σ ∗ > 0) and is directly related in this case to the deviations of mode shape
from symmetry about X =1/2.

Let Rε
E denote the ratio of the kinetic energy production inside the domain at order

O(ε) over the net kinetic energy transfer at the boundaries at order O(ε), i.e.

Rε
E =

Ēε
domain

Ēε
boundaries

. (6.18)

From (6.14) we have

Rε
E = 1 +

2σ ∗[ΩB(N3a + N3b) + J2

] ∫ 1

0

A2(X; σ ∗) dX

δW

[
A2

X(1; σ ∗) − A2
X(0; σ ∗)

] , (6.19)

and from (6.16) and (6.17) we find that for a general base vortex flow with a fixed
flux imposed at the outlet, the ratio Rε

E is a characteristic constant property of the
flow,

Rε
E = 1 − ΩB(N3a + N3b) + J2

δWτ
. (6.20)

In addition, using (6.16) and (6.17) in the expression for Ēε
uw in (6.15) gives

Ēε
uw = σ ∗(2ΩBN3a + J2 − δ(Wτ )

[ ∫ 1

0

A2(X; σ ∗) dX

]
. (6.21)
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Figure 7. The relationship between d and Rε
E,Rε

E,uv and Rε
E,uw for the Q vortex with b = 4.

Let

Rε
E,uv =

Ēε
uv

Ēε
boundaries

and Rε
E,uw =

Ēε
uw

Ēε
boundaries

(6.22)

be the ratios related to the perturbation’s kinetic energy inside the domain resulting
from uv and uw, respectively. From the expression for Ēε

uv in (6.15), for Ēε
uw in (6.21)

and for Ēε
boundaries in (6.17), we also find that for a general base vortex flow with a

fixed flux imposed at the outlet, the ratios Rε
E,uv and Rε

E,uw are characteristic constant
properties of the flow,

Rε
E,uv =

ΩB(N3a − N3b)

δWτ
,

Rε
E,uw = 1 − 2ΩBN3a + J2

δWτ
.

⎫⎪⎪⎬
⎪⎪⎭ (6.23)

Figure 7 shows for the Q vortex the calculated values of the base flow properties
Ēε

uw , Rε
E,uv and Rε

E,uw as a function of the axial flow parameter d for a fixed vortex

core parameter b =4. It is found that Ēε
uw is a monotonically decreasing function of

d while Rε
E,uv is a monotonically increasing function of d . The resulting Rε

E decreases
from 0.16 for d = −0.5 to 0.12 for d = 0.2 and increases thereafter to 0.165 for d = 1.
Thus, swirling flows with strong wakes (d = −0.5) or strong jets (d = 1) enhance the
perturbation’s kinetic energy transfer inside the domain.

For the Lamb–Oseen vortex w0(y) = 1, J2 = 0, δW = δ, δWτ = Ns = 2ΩBN2 (see (3.9))
and Eε

uw =Rε
E,uw =0. Then, the base flow characteristic constants are

Rε
E = Rε

E,uv =
1

2
− N3b

2N2

. (6.24)

Figure 8 shows the calculated relationship between Rε
E and vortex core parameter b.

It was found that Rε
E > 0 for all b, indicating the opposite energy transfer directions

from inside the domain and from the boundary. The magnitude of the ratio Rε
E

increases with the increase of b (decrease of core radius) from Rε
E = 0 as b tends to

zero (the case of a solid-body rotation) to Rε
E of about 14.2 % at b =50.
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Figure 8. Rε
E versus the flow parameter b.

7. Discussion
7.1. Vortex stability mechanisms

As is well known, the WR instability is fundamentally different from the classical
Rayleigh stability theory. It is therefore important to add to the understanding of this
stability (instability) mechanism.

Classical vortex stability theory (Rayleigh 1916) shows that the Lamb–Oseen
vortex in an infinitely long, constant-area circular pipe, or, equivalently, in a finite-
length, straight, circular pipe with periodic boundary conditions, is neutrally stable
to axisymmetric disturbances. To further understand the Rayleigh vortex stability
mechanism, it is useful and instructive to examine the recent nonlinear stability
theory of Wang (2009). It has been discovered that the Rayleigh criterion is also
a necessary and sufficient condition for the nonlinear stability. An upper bound of
the disturbance’s kinetic energy has been obtained, which is valid for any initial
disturbance with a finite amplitude. The nonlinear stability theory of Wang (2009)
also offers a new insight into the stability mechanism of swirling flow. A careful
examination of the nonlinear stability theory shows that the nonlinear stability relies
crucially on two physical facts that hold for an ideal vortex flow:

(a) The infinitely long axially uniform vortex flow forms a translation-invariant
problem, which, according to the Noether theorem (see, for example, Arnold 1989;
Szeri & Holmes 1988), implies the preservation of the axial momentum flux in time.
The absence of an axial external force restricts the kinetic energy transfer between
the disturbance and the base flow. One notes that in the linear stability theory, the
translation-invariant nature is reflected by using the axial normal Fourier mode,
where the axial modes are only supporting the disturbance propagation, and the
vortex stability is solely determined by the radial modes.

(b) Owing to the lack of axial perturbation instability mechanism, the only
instability is the centrifugal instability that is set in flow by the kinetic energy
released from the azimuthal velocity component to the perturbation. For a base flow
that satisfies the Rayleigh criterion, the kinetic energy that can be released from the
azimuthal velocity component is bounded and can be estimated by using an Arnold
function. The Arnold function gives an estimate of the possible kinetic energy that
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can be released from the azimuthal velocity component under the physical constraint
that the circulation (Kelvin’s circulation theorem) and volumetric flux of the flow are
preserved.

On the other hand, for swirling flows in a finite-length, straight, circular pipe under
the influence of the physical non-periodic boundary conditions that are studied in this
paper, a new kinetic energy transfer mechanism arises. This is because the physical
setting at the pipe inlet and outlet exerts an axial force on the flow which effectively
changes the axial momentum flux (the flow force, studied in Wang & Rusak 1997a)
and completely eliminates the basic vortex stability mechanism according to Rayleigh.
Therefore, it is not surprising that another type of flow instability that is different
from the classical Rayleigh’s stability mechanism develops in the flow. This is the
WR instability which is related to the instability of the axial modes that fit the
linear stability equation and connect between the non-periodic boundary conditions.
It should be emphasized that the physical non-periodic boundary conditions serve
merely as a kinetic energy transfer agency and the stability is determined by the
interaction of the base flow with the axial perturbation in the domain and with the
boundary. The stability analysis conducted in WR was the first stability analysis of
swirling flow which took into account the axial confinement effect of a finite-length
pipe. In this sense, the WR instability which develops at relatively high swirls is
but a demonstration of the consequence of the elimination of Rayleigh’s stability
mechanism due to the axial confinement effect of a finite-length pipe.

It should also be emphasized that the interaction between the small disturbance,
base flow and boundary conditions is complicated. The linear stability problem (2.8)
and (2.9) shows that the disturbance dynamics involves the wave structure and its
propagation in both the radial and axial directions and its interaction with the
boundaries. This problem allows an exact analytical solution only for the solid-body
rotation flow in a finite-length pipe (Wang & Rusak 1996). For a general base vortex
flow such as the Lamb–Oseen and Q vortices, the solution of this stability problem
requires a special series solution method (Wang et al. 2009) or numerical techniques
(Leclaire & Sipp 2010). However, these approaches cannot shed explicit light on the
perturbation structure and the energy production from the various components of
the flow. Fortunately, in real swirling flow apparatuses, the pipe is sufficiently long
compared to its radius such that the long-wave asymptotic approach presented in
this paper is valid. Using this approach, we are able to reduce the vortex stability
problem to a simpler problem, yet retaining all the essential physics of the flow. The
underlying physics governing this reduction, as expressed in (3.1), is that in swirling
flows confined in a long straight pipe the axial structure and propagation of the
dominant disturbances is much more important than its propagation in the radial
direction. This physical insight gained from the asymptotic solution, coupled with the
Reynolds–Orr equation, is much greater than any series or numerical solution can
provide.

7.2. Perturbation’s linearized dynamics at near-critical swirl ratios

We can also consider the long-wave asymptotic approach for the solution of the
linearized governing equations (2.5). We assume that the streamfunction of the
perturbation ψ1(x, y, t) is of the form

ψ1(x, y, t) = φB(y)A(X, t∗) + O(ε), (7.1)

with ε =1/L2, rescaled length X = x/L and rescaled time t∗ = t/ε3/2, as introduced
in § 3.1. Through a similar asymptotic analysis at near-critical swirl ratios, it can be
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shown that the dynamics of the perturbation function A(X, t∗) is described by

At∗ =
1

τ
AXXX +

κωβ

τ
AX, (7.2)

where τ, κω and β are defined in § 3.1. We consider the perturbation dynamics under
various inlet–outlet boundary conditions.

For the case where the periodic inlet–outlet conditions are imposed at the pipe inlet
and outlet, the problem (7.2) depicts a conservative perturbation dynamics. This is
found from multiplying (7.2) by A and integrating the result over the axial interval
[0, 1]; one obtains

1

2

d

dt∗

∫ 1

0

A2 dX = −
∫ 1

0

1

τ
AXAXX dX +

1

τ
AAXX

∣∣∣X=1

X=0
+

κωβ

τ

A2

2

∣∣∣X=1

X=0

= −1

τ

A2
X

2

∣∣∣X=1

X=0
+

1

τ
AAXX

∣∣∣X=1

X=0
+

κωβ

τ

A2

2

∣∣∣X=1

X=0
. (7.3)

It is clear that

d

dt∗

∫ 1

0

A2 dX = 0, (7.4)

when the periodic inlet–outlet conditions are imposed. Thus,
∫ 1

0
A2 dX, which is

proportional to the kinetic energy of the disturbance, is conserved for all time. The
result (7.4) implies the linear stability of the base flow at near-critical swirl ratios
under the periodic conditions. Note that the conservation nature of the full linearized
equations (2.5) is retained by (7.2).

We now consider the perturbation dynamics under non-periodic conditions imposed
at the pipe inlet and outlet. One notices that (7.2) contains the third-order dispersive
term AXXX . Therefore, three boundary conditions must be imposed at the pipe inlet
and outlet, among them two are imposed at the inlet and one at the outlet, to
form a well-posed problem. The necessary non-symmetric treatment of the boundary
conditions at the inlet and outlet is likely to break up the conservative nature of
the perturbation dynamics and leads to the change of the vortex stability around the
critical swirl. We consider the two possible cases of conditions studied above.

For the boundary conditions A(0, t∗) = A(1, t∗) = 0 and AXX(0, t∗) = 0, we find
from (7.3) that

1

2

d

dt∗

∫ 1

0

A2 dX =
1

τ

A2
X(0, t∗) − A2

X(1, t∗)

2
. (7.5)

The terms on the right-hand side of (7.5) depend at all time on the boundary values
AX(0, t∗) and AX(1, t∗). These are not specified by the boundary conditions and
are, therefore, subject to the evolution of the perturbation function A. The linear
stability analysis in § 3.2 shows that indeed the dominant mode of perturbation for
this set of boundary conditions is stable and A2

X(0, t∗) < A2
X(1, t∗) for ω <ω1 and

is unstable and A2
X(0, t∗) > A2

X(1, t∗) for ω >ω1. The physical implication of this
result is that the flow instability may be controlled by restraining the magnitude of
the radial velocity at the inlet. In fact, in this case, a flow control approach, which
imposes a radial velocity at the inlet related with AX(0, t∗) such that for all time
|AX(0, t∗)| � |AX(1, t∗)|, instead of AXX(0, t) = 0, would stabilize the flow.
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For the boundary conditions A(0, t∗) = AX(1, t∗) = 0 and AXX(0, t∗) = 0, we have

1

2

d

dt∗

∫ 1

0

A2 dX =
1

τ

A2
X(0, t∗)

2
+

1

τ
A(1, t∗)AXX(1, t∗) +

κωβ

τ

A2(1, t∗)

2
. (7.6)

The terms on the right-hand side of (7.6) depend at all time on the boundary values
AX(0, t∗), A(1, t∗) and AXX(1, t∗). Again, these are not specified by the boundary
conditions and are, therefore, subject to the evolution of the perturbation function A.
In this case, the dominant term is the term related to κω. The linear stability analysis
in § 3.2 shows that when κω <κω,1 (or ω <ω1), this term is negative and causes the
decay of the perturbation. When κω >κω,1 (or ω >ω1), this term is sufficiently positive
and destabilizes the flow.

Remark 7.1. The result (7.3) sheds further light on the dynamics of the flow. Consider,
for example, the case where the boundary conditions are given by

A(0, t∗) = AX(0, t∗) = 0 and A(1, t∗) = 0. (7.7)

Note that we simply replace the inlet condition AXX(0, t∗) = 0 with AX(0, t∗) = 0,
which specifies a vanishing radial velocity at the inlet for all time. One finds, for this
case,

d

dt∗

∫ 1

0

A2 dX = −1

τ

AX(1, t∗)2

2
, (7.8)

which is negative for all time. Thus, the flow under these boundary conditions is
always asymptotically stable. A similar result was found in Gallaire & Chomaz
(2004) for the solid-body rotation flow.

Remark 7.2. Another case of interest is where the boundary conditions are given by

A(0, t∗) = AX(0, t∗) = 0 and AX(1, t∗) = 0. (7.9)

Here, again we replace the inlet condition AXX(0, t∗) = 0 with AX(0, t∗) = 0, which
specifies a vanishing radial velocity at the inlet and the outlet for all time. This set of
boundary conditions has recently been studied by Leclaire & Sipp (2010). One finds,
for this case,

d

dt∗

∫ 1

0

A2 dX =
1

τ
A(1, t∗)AXX(1, t∗) +

κωβ

τ

A2(1, t∗)

2
. (7.10)

The terms on the right-hand side of (7.10) depend at all time on the boundary values
A(1, t∗) and AXX(1, t∗). Again, these are not specified by the boundary conditions
and are, therefore, subject to the evolution of the perturbation function A. In this
case, again, the dominant term is the term related to κω. Leclaire & Sipp (2010) found
that the critical κω in this case is higher than the critical values for the cases mentioned
above. As found in their analysis, indeed, when κω is less than this critical number,
this term is negative and causes the decay of the perturbation. When κω is greater
than this critical number, this term is sufficiently positive and destabilizes the flow.

The fact that (d/dt∗)
∫ 1

0
A2 dX is solely determined by the boundary terms of

the time-dependent solution of the linear governing equation, does not imply that
the energy transfer between the disturbance and the base flow occurs only at the
boundary. On the contrary, a kinetic energy transfer does take place at the pipe
inlet and outlet as well as inside the domain, as shown in § 6. This situation can be
explained by the fact that there exists a strong coupling of the kinetic energy transfer
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mechanism between the boundary and the internal flow. The terms that appear on
the right-hand side of (7.5) and (7.6) comprise the combined contribution from both
the boundary and the internal flow to the perturbation’s kinetic energy production.
Note that the basic stability equation (3.8) is but a solvability condition for the ε2

order stability equation (3.7). See also Remark 6.1.
The principal mechanism for the perturbation’s energy production is analysed in

§ 6 using the Reynold–Orr equation. This enables one to pinpoint where and how the
perturbation’s kinetic energy is produced. We have found the following points.

(a) At the pipe inlet and outlet, the perturbation’s kinetic energy production is
generated through the flow convection and the work performed on the perturbation
by the pressure perturbation. See (6.4) and (6.5) for the detailed expressions of the
kinetic energy production terms at the boundaries.

(b) Inside the flow domain the perturbation’s kinetic energy production is generated
through the interaction of the velocity field of the perturbation and the strain-rate
field of the base flow, regulated by the Reynold–Orr equation. See (6.4) and (6.5)
for the detailed expressions of the kinetic energy production terms in the bulk. The
underlying physics is that the presence of the non-periodic boundary conditions at
the inlet and outlet applies a change of flow force on the flow, alters naturally the
perturbation’s mode shape, and thereby induces the internal energy transfer in the
domain. This type of internal kinetic energy transfer is a generic behaviour of vortex
flows and exists in general swirling flows confined in a finite-length pipe, except for
the special case of the strain-free solid-body rotation with a uniform axial flow.

This discussion consolidates our view that the Rayleigh stability mechanism of a
swirling flow would be eliminated for the flow that is confined in a finite-length pipe.
With the influence of the physical non-periodic boundary conditions at the pipe inlet
and outlet, the perturbation is robustly engaged in kinetic energy transfer with the
base flow at the inlet and outlet as well as inside the domain. The neutrally stable
vortex flow according to Rayleigh’s stability analysis is either asymptotically stable or
unstable, depending on the net perturbation’s kinetic energy production as a function
of the swirl ratio. This perturbation’s kinetic energy production mechanism governs
the WR instability.

8. Conclusions
The rate of change of the perturbation’s kinetic energy E of a perturbed columnar

and near-critical swirling flow in a finite-length pipe with periodic and non-periodic
inlet–outlet conditions can be analysed by an asymptotic approach for a long pipe.
A novel asymptotic solution of the linear stability of a flow in a long pipe has been
developed and provides the dominant perturbation’s mode shape and growth rate.
This solution technique is general and can be applied to any vortex flow profile, in a
range of swirl levels around the critical level for vortex breakdown, and for various
outlet conditions. The solutions of the perturbation’s mode shape can be used in a
modified form of the Reynolds–Orr equation to estimate the production (or loss) of
the perturbation’s kinetic energy E at the pipe boundaries and inside the domain.
The analysis provides a new energy-based understanding of the WR vortex instability
mechanism and the exchange of global stability around the critical swirl ω1. The
complex interaction between the various production terms of E is demonstrated. It
is found that the solid-body rotation is a special case where the production of the
perturbation’s kinetic energy vanishes and the stability is determined only by the
asymmetric transfer of E at the boundaries. For a general vortex flow, the production
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of E inside the domain competes with the transfer of E at the boundaries to determine
the flow stability.

The present analysis shows that the production of E inside the domain plays
an important role in the WR instability mechanism. For a general base flow, the
perturbation’s mode shape develops natural deviations with respect to the pipe inlet
(or outlet) in response to the non-periodic inlet–outlet conditions. These deviations
affect the production of E inside the domain and at the boundaries and form
a critical balance of production of E from the base flow that governs the flow
stability around the critical state. The flow in the domain is active in convecting the
perturbations from the inlet to the outlet as well as affecting their size and growth
rate by engaging with the base flow strain rates to produce (or lose) their kinetic
energy. Real flow effects such as pipe divergence or contraction, slight viscosity, inlet
vorticity disturbances, weak reaction and compressibility may result in similar effects
that also alter the production of energy inside the domain and promote (or delay) the
onset of instability at swirl ratios below (or above) the critical level. It is proposed to
use the energy considerations presented in this paper for the future design of active
control systems of the stability of vortex flows in pipes that either promote or delay
the Wang–Rusak instability.

Appendix A. The inlet condition
Using the radial momentum equation for a steady, inviscid and incompressible

axisymmetric swirling flow in axisymmetric coordinates, uur +wux −v2/r = −pr , with
the given inlet conditions ux(0, r) = 0, v(0, r) = ωv0(r), w(0, r) = w0(r), p(0, 0) = p0,
we find that the profile of the inlet pressure is given by

p(0, r) = p0 + ω2

∫ r

0

v2
0(r

′)

r ′ dr ′ − 1

2
u2(0, r), (A 1)

for 0 � r � 1. The total head H = p + (1/2)(u2 + v2 + w2) profile at the inlet is

H (0, r) = p(0, r) +
1

2

(
u2(0, r) + v2(0, r) + w2(0, r)

)
= p0 + ω2

∫ r

0

v2
0(r

′)

r ′ dr ′ +
1

2

(
ω2v2

0(r) + w2
0(r)

)
, (A 2)

for 0 � r � 1. It shows that for all ω, under the given inlet conditions, H (0, r) does
not change with the solution of the flow inside the domain even though the solution
may exhibit a non-zero radial velocity u(0, r) at the inlet. Therefore, this set of pipe
inlet conditions describes for all ω a total head-conserving apparatus which can be
physically realized.

On the other hand, if the inlet condition ux(0, r) = 0 is replaced by a zero radial
velocity at the inlet u(0, r) = 0 used by Leclaire & Sipp (2010), we have

p(0, r) = p0 + ω2

∫ r

0

v2
0(r

′)

r ′ dr ′ −
∫ r

0

w0ux(0, r ′) dr ′, (A 3)

for 0 � r � 1. The total head H = p+(1/2)(u2+v2+w2) profile at the inlet in this case is

H (0, r) = p(0, r) +
1

2
(v2(0, r) + w2(0, r))

= p0 + ω2

∫ r

0

v2
0(r

′)

r ′ dr ′ +
1

2

(
ω2v2

0(r) + w2
0(r)

)
−

∫ r

0

w0ux(0, r ′) dr ′, (A 4)
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for 0 � r � 1. It shows that for all ω, under the given inlet conditions, H (0, r) changes
with the solution of the flow inside the domain since the solution will exhibit a
non-zero axial gradient of the radial velocity ux(0, r) at the inlet. This set of pipe
inlet conditions describes a situation where the total head is non-conserving. This is
not a natural situation and as such requires an apparatus with special (non-trivial)
adjustments upstream of the pipe to be physically realized.

Appendix B. The Reynolds–Orr equation for a swirling flow in a straight
long pipe

We develop an asymptotic form of the Reynolds–Orr equation from the asymptotic
solution of the stability equation. We first derive the perturbation’s velocity field.

B.1. The perturbation’s velocity field

From the streamfunction relationship with the radial and axial velocity components
and the perturbation’s form (2.4), we have u1 = −ε1ψ1x/

√
2y + · · · and w1 = ε1ψ1y +

· · · . From the perturbation’s mode shape (2.7), u1 = −ε1(φ1x/
√

2y) eσ t + · · · and
w1 = ε1φ1ye

σ t + · · · . Therefore, using (6.5), ū1 = −
√

ε(φX/
√

2y) and w̄1 = φy . From
the perturbation’s asymptotic shape for a long pipe (3.1), we have

ū1(X, y; σ ∗) = − 1√
2y

(ε1/2φB(y)AX + ε3/2φ̄X) + O(ε5/2),

w̄1(X, y; σ ∗) = φByA + εφ̄y + O(ε2).

⎫⎪⎬
⎪⎭ (B 1)

Also, from the relationship between the circulation function and the circumferential
velocity, we have v = K/

√
2y and, from (2.4) and (2.7), v1 = ε1K1/

√
2y = ε1k/

√
2y eσ t .

Then, using (6.5), v̄1 = k/
√

2y. The linearized circulation equation in (2.5) gives

K1(x, y, t) =
2y2

ωK0(y)

∫ x

0

(χ1t + ψ0yχ1x − χ0yψ1x) dx, (B 2)

where χ1 = −(ψ1yy +ψ1xx/2y). Let χ1 = ε1χ
+ eσ t , where χ+ = −(φyy +φxx/2y). Inserting

this, (2.7), and σ = ε3/2σ ∗ into (B 2) and using the inlet conditions (2.9) yields

k(X, y; σ ∗) =
2y2

ωK0(y)

(
εσ ∗

∫ X

0

χ+ dX′ + ψ0yχ
+ − χ0yφ

)
. (B 3)

Using (3.1), χ+ = −φByyA − ε(φBAXX/2y + φ̄XX) + O(ε2). Substituting this and (3.1)
in (B 3) gives

k(X, y; σ ∗) =
2y2

√
ΩBK0(y)

[
−

(
ψ0yφByy + χ0yφB

)
A

− ε

(
σ ∗φByy

∫ X

0

A(X′; σ ∗) dX′ + (ψ0yφ̄yy + χ0yφ̄) + ψ0y

φB

2y
AXX

)]

+ ε
κωy2

Ω
3/2
B

(ψ0yφByy + χ0yφB)A + O(ε2). (B 4)
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From (B 4) we obtain

v̄1(X, y; σ ∗) =

√
2y3/2

√
ΩBK0(y)

[
−(ψ0yφByy + χ0yφB)A

+ ε

(
−σ ∗φByy

∫ X

0

A(X′; σ ∗) dX′ − (ψ0yφ̄yy + χ0yφ̄) − ψ0y

φB

2y
AXX

+
κω

2ΩB

(ψ0yφByy + χ0yφB)A

)]
+ O(ε2). (B 5)

Integrating (3.7) twice with respect to X, and using the inlet conditions (3.3), (3.5)
and A(0; σ ∗) = AXX(0; σ ∗) = 0, results in

φ̄yy +

(
ΩB

K0K0y

2y2ψ2
0y

+
χ0y

ψ0y

)
φ̄ +

φB

2y
AXX + κω

K0K0y

2y2ψ2
0y

φBA

− σ ∗

(
ΩB

K0K0y

y2ψ3
0y

+
χ0y

ψ2
0y

)
φB

∫ X

0

A(X; σ ∗) dX′ = 0. (B 6)

Using (B 6) and

φByy +
χ0y

ψ0y

φB = −ΩB

K0K0y

2y2ψ2
0y

φB, (B 7)

the expression (B 5) can be written in a compact form

v̄1(X, y; σ ∗) =

√
ΩBK0y√
2yψ0y

φBA+ε

[√
ΩBK0y√
2yψ0y

φB

(
κω

2ΩB

A− σ ∗

ψ0y

∫ X

0

A(X′; σ ∗) dX′
)

+

√
ΩBK0y√
2yψ0y

φ̄

]
+ O(ε2). (B 8)

B.2. Asymptotic form of the terms in the Reynolds–Orr equation

In the following, the asymptotic expressions for the various terms in the Reynolds–Orr
equation (5.7) are derived.

1. Euv: Inserting u1 and v1 from (6.1), (6.2) and ω =
√

ΩB + κωε in (5.8), and
arranging the terms in the corresponding orders, gives

Euv = ε2
1 eσ ∗t∗

[
−

√
ΩB + κωε

∫ 1

0

∫ 1/2

0

(
K0y − K0

y

)
ū1v̄1 dy dX

]
+ · · ·

= ε2
1 eσ ∗t∗

[
− ΩB

∫ 1

0

∫ 1/2

0

(
K0

y
− K0y

)
K0y

2yψ0y

φ2
BAAX dy dX

− ε

[
ΩB

∫ 1

0

∫ 1/2

0

(
K0

y
− K0y

)
K0y

2yψ0y

φ2
B

×
(

κω

2ΩB

A − σ ∗

ψ0y

∫ X

0

A(X′; σ ∗) dX′
)

AX dy dX

+ ΩB

∫ 1

0

∫ 1/2

0

(
K0

y
− K0y

)
K0y

2yψ0y

φB(AXφ̄ + Aφ̄X) dy dX

+ κω

∫ 1

0

∫ 1/2

0

(
K0

y
− K0y

)
K0y

4yψ0y

φ2
BAAX dy dX

]
+ O(ε2)

]]
+ · · · . (B 9)
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Using A(0; σ ∗) = 0,

∫ 1

0

AAX dX =
1

2
A2(1; σ ∗),∫ 1

0

AX

∫ X

0

A(X′; σ ∗) dX′ = A(1; σ ∗)

∫ 1

0

A dX −
∫ 1

0

A2 dX,

⎫⎪⎪⎬
⎪⎪⎭ (B 10)

leads to

Euv = ε2
1 eσ ∗t∗

[
−1

2
ΩB

( ∫ 1/2

0

(
K0

y
− K0y

)
K0y

2yψ0y

φ2
B dy

)
A2(1; σ ∗)

− ε

[
1

2
κω

( ∫ 1/2

0

(
K0

y
− K0y

)
K0y

2yψ0y

φ2
B dy

)
A2(1; σ ∗)

− σ ∗ΩB

( ∫ 1/2

0

(
K0

y
− K0y

)
K0y

2yψ2
0y

φ2
B dy

)(
A(1; σ ∗)

∫ 1

0

A dX −
∫ 1

0

A2 dX

)

+ ΩB

( ∫ 1/2

0

(
K0

y
− K0y

)
K0y

2yψ0y

φBφ̄(1, y; σ ∗) dy

)
A(1; σ ∗)

]
+ O(ε2)

]
+ · · · .

(B 11)

2. Euw: Inserting u1 and w1 from (6.1), (6.2) and −w0y = χ0 in (5.8) gives

Euw = ε2
1 e2σ ∗t∗

[ ∫ 1

0

∫ 1/2

0

√
2yχ0ū1w̄1 dy dX

]
+ · · ·

= −ε2
1 e2σ ∗t∗

[ ∫ 1

0

∫ 1/2

0

χ0(φBAX + εφ̄X + O(ε2))(φByA + εφ̄y + O(ε2)) dy dX

]
+ . . .

= ε2
1 e2σ ∗t∗

[
1

2

( ∫ 1/2

0

χ0yφ
2
B dy

)
A2(1; σ ∗)

− ε

∫ 1

0

∫ 1/2

0

χ0(φ̄XφByA + φ̄yφBAX) dy dX + O(ε2)

]
+ · · · . (B 12)

Here we used
∫ 1/2

0
χ0φBφBy dy = − 1

2

∫ 1/2

0
χ0yφ

2
B dy. To further explore the term O(ε)

in (B 12), we integrate (3.7) twice with respect to X and use the inlet conditions (3.5),
then (3.3), and then A(0; σ ∗) = AXX(0; σ ∗), and find

φ̄yy +

(
ΩB

K0K0y

2y2ψ2
0y

− ψ0yyy

ψ0y

)
φ̄ +

φB

2y
AXX + κω

K0K0y

2y2ψ2
0y

φBA

− σ ∗

(
ΩB

K0K0y

y2ψ3
0y

+
χ0y

ψ2
0y

)
φB

∫ X

0

A(X′; σ ∗) dX′ = 0. (B 13)
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Multiplying (B 13) by ψ0yφBAX , using (3.2), and then integrating the result over the
domain 0 � X � 1 and 0 � y � 1/2 gives∫ 1

0

∫ 1/2

0

(φ̄yyφB − φ̄φByy)ψ0yAX dy dX

+

∫ 1

0

∫ 1/2

0

ψ0y

φ2
B

2y
AXXAX dy dX + κω

∫ 1

0

∫ 1/2

0

K0K0y

2y2ψ0y

φ2
BAAX dy dX

− σ ∗
∫ 1

0

∫ 1/2

0

(
2ΩB

K0K0y

2y2ψ2
0y

+
χ0y

ψ0y

)
φ2

B

( ∫ X

0

A(X′; σ ∗) dX′)

)
AX dy dX = 0. (B 14)

Through twice integrating the first term in (B 14) by parts, one time with respect to
X and then with respect to y, and the use of inlet conditions (3.3) and A(0; σ ∗) = 0
we find that ∫ 1

0

∫ 1/2

0

(
φ̄yyφB − φ̄φByy

)
ψ0yAX dy dX

=

∫ 1

0

∫ 1/2

0

χ0(φ̄XφByA + φ̄yφBAX) dy dX

−
( ∫ 1/2

0

χ0φByφ̄(1, y; σ ∗) dy

)
A(1; σ ∗). (B 15)

Using (B 15) and the integrals
∫ 1

0
AXXAX dX = 1

2
(A2

X(1; σ ∗) − A2
X(0; σ ∗)),

∫ 1

0
AAX dX =

1
2
A2(1; σ ∗), and

∫ 1

0
AX

∫ X

0
A(X′; σ ∗ dX′) dX =A(1; σ ∗)

∫ 1

0
A dX−

∫ 1

0
A2 dX in (B 14) and

this in (B 12), we find

Euw = ε2
1 e2σ ∗t∗

[
1

2

( ∫ 1/2

0

χ0yφ
2
B dy

)
A2(1; σ ∗) − ε

[
1

2
κω

( ∫ 1/2

0

K0K0y

2y2ψ0y

φ2
B dy

)
A2(1; σ ∗)

+
1

2

( ∫ 1/2

0

ψ0y

φ2
B

2y
dy

)(
A2

X(1; σ ∗) − A2
X(0; σ ∗)

)

− σ ∗
( ∫ 1/2

0

(
2ΩB

K0K0y

2y2ψ2
0y

+
χ0y

ψ0y

)
φ2

B dy

)(
A(1; σ ∗)

∫ 1

0

A dX −
∫ 1

0

A2 dX

)

−
( ∫ 1/2

0

χ0φByφ̄(1, y; σ ∗) dy

)
A(1; σ ∗)

]
+ O(ε2)

]
+ · · · . (B 16)

3. Euuinlet
: Inserting u1(0, y, t) = −ε1 eσ ∗t∗

(1/
√

2y)(ε1/2φB(y)AX(0; σ ∗) + · · · ) in (5.8)
gives

Euuinlet
= −1

2
ε2
1 e2σ ∗t∗

[
ε

( ∫ 1/2

0

ψ0y

φ2
B

2y
dy

)
A2

X(0; σ ∗) + O(ε2)

]
+ · · · . (B 17)

4. Euuoutlet
: Inserting u1(L, y, t) = −ε1 eσ ∗t∗

(1/
√

2y)(ε1/2φB(y)AX(1; σ ∗) + · · · ) in (5.8)
gives

Euuoutlet
= −1

2
ε2
1 e2σ ∗t∗

[
ε

( ∫ 1/2

0

ψ0y

φ2
B

2y
dy

)
A2

X(1; σ ∗) + O(ε2)

]
+ · · · . (B 18)
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5. Evvoutlet
: Inserting v1(L, y, t) = ε1 eσ ∗t∗

v̄1(1, y; σ ∗)+ · · · in (5.8) and using (B 8) gives

Evvoutlet
= −1

2
ε2
1e

2σ ∗t∗
∫ 1/2

0

w0v̄
2
1(1, y; σ ∗) dy

= −1

2
ε2
1e

2σ ∗t∗
[
ΩB

( ∫ 1/2

0

K2
0y

2yψ0y

φ2
B dy

)
A2(1; σ ∗)

− ε

[
1

2
κω

( ∫ 1/2

0

K2
0yφ

2
B

2yψ0y

dy

)
A2(1; σ ∗)

− σ ∗ΩB

( ∫ 1/2

0

K2
0yφ

2
B

2yψ0y

dy

)(
A(1; σ ∗)

∫ 1

0

A dX

)

+ ΩB

( ∫ 1/2

0

K2
0y

2yψ0y

φBφ̄(1, y; σ ∗) dy

)
A(1; σ ∗)

]
+ O(ε2) + · · ·

]
. (B 19)

6. Ewwoutlet
: Inserting w1(L, y, t) = ε1 eσ ∗t∗

w̄1(1, y; σ ∗) + · · · in (5.8) and using (B 1)
gives

Ewoutlet
= −1

2
ε2
1 e2σ ∗t∗

[ ∫ 1/2

0

w0w̄
2
1(1, y; σ∗) dy

]
+ · · ·

= −1

2
ε2
1 e2σ ∗t∗

[ ∫ 1/2

0

ψ0yφ
2
By dy

+ 2ε

( ∫ 1/2

0

ψ0yφByφ̄y(1, y; σ ∗) dy

)
A(1; σ ∗) + O(ε∗)

]
+ · · · . (B 20)

Using

φByy = −
(

ω2
BK0K0y

2y2ψ2
0y

+
χ0y

ψ0y

)
φB, (B 21)

w0y = −χ0 and w0yy = −χ0y , then twice integrating by parts and applying the boundary
conditions φB(0) = φB(1/2) = 0, gives

−
∫ 1/2

0

ψ0yφ
2
By dy =

∫ 1/2

0

(ψ0yyφBy + ψ0φByy)φB dy =

∫ 1/2

0

(
ψ0yφByyφB +

1

2
χ0yφ

2
B

)
dy

= −
∫ 1/2

0

(
ΩB

K0K0y

2y2ψ0y

+
1

2
χ0y

)
φ2

B dy (B 22)

and

−
∫ 1/2

0

ψ0yφBy(y)φ̄y(1, y; σ ∗) dy =

∫ 1/2

0

(
− χ0φBy + ψ0yφByy

)
φ̄(1, y; σ ∗) dy

= −
∫ 1/2

0

[
χ0φBy + φB

(
ΩB

K0K0y

2y2ψ0y

+ χ0y

)]
φ̄(1, y; σ ∗) dy. (B 23)
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Combining (B 20)–(B 23), we have

Ewwoutlet
= −1

2
ε2
1 e2σ ∗t∗

[
1

2

∫ 1/2

0

(
ΩB

K0K0y

2y2ψ0y

+
1

2
χ0y

)
φ2

B dyA2(1; σ ∗)

+ ε

∫ 1/2

0

(
χ0φBy + χ0yφB + ΩB

K0K0y

2y2ψ0y

φB

)
φ̄(1, y; σ ∗) dyA(1; σ ∗)

+ O(ε2) + · · ·
]
. (B 24)

7. Ewpoutlet
: Let p1(x, y, t) = ε1p̄1(X, y; σ ∗) eσ t be the pressure perturbation. Using this

and the axial and radial velocity perturbations u1 = ε1ū1 eσ t+· · · and w1 = ε1w̄1 eσ t+· · ·
in the linearized axial momentum equation w1t + w0ru1 + w0w1x = −p1x gives at
order ε1:

σw̄1 + w0r ū1 + w0w̄1x = −p̄1x. (B 25)

Substituting (B 1), X =
√

εx, and σ = σ ∗ε3/2 in (B 25) gives

p̄1X = −(φBχ0AX + ψ0yφByAX) − ε

[
σ ∗φBy

A + φ̄Xχ0 + ψ0yφ̄yX

]
+ O(ε2). (B 26)

Integrating (B 26) with respect to X from X =0 to X = 1 gives

p̄1(1, y; σ ∗) − p̄1(0, y; σ ∗) = −(φBχ0 + ψ0yφBy)A(1; σ ∗)

− ε

[
σ ∗φBy

∫ 1

0

A dX + φ̄(1, y; σ ∗)χ0 + ψ0yφ̄y(1, y; σ ∗)

]
+ O(ε2). (B 27)

Moreover, the linearized radial momentum equation u1t + w0u1x − 2ωv0v1/r =
−p1r and the inlet conditions u1x(0, y, t) = 0, v1(0, y, t) = 0 show that
p1y(0, y, t) = −u1t (0.y, t)/

√
2y. Since u1 = ε1ū1 eσ t + · · · and σ = σ ∗ε3/2 we find that

p̄1(0, y; σ ∗) = O(ε2). Therefore, it can be neglected in the expression for p̄1(1, y; σ ∗)
in (B 27).

Inserting w̄1 from (B 1) and p̄1 from (B 27) in (5.8) and retaining the terms up to
order O(ε) gives

Ewpoutlet
= −ε2

1 e2σ ∗t∗
[ ∫ 1/2

0

w̄1(1, y; σ ∗)p̄1(1, y; σ ∗) dy

]

= ε2
1 e2σ ∗t∗

[ ∫ 1/2

0

(φByA(1; σ ∗) + εφ̄y(1, y; σ ∗) + O(ε2))

[
(φBχ0 + ψ0yφBy)A(1; σ ∗)

+ ε

(
σ ∗φBy

∫ 1

0

A dX + φ̄(1, y; σ ∗)χ0 + ψ0yφ̄y(1, y; σ ∗)

)]
dy + O(ε2)

]
+ · · · .

(B 28)
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Integrating by parts and using the boundary conditions for φB and the inlet conditions
for A results in

Ewpoutlet
= ε2

1 e2σ ∗t∗
{

ΩB

( ∫ 1/2

0

K0K0yφ
2
B

2y2ψ0y

)
dyA2(1; σ ∗)

+ ε

[
σ ∗

( ∫ 1/2

0

(
ΩB

K0K0y

2y2ψ2
0y

+
χ0y

ψ0y

)
φ2

B dy

)(
A(1; σ ∗)

∫ 1

0

A dX

)

+

( ∫ 1/2

0

(
2χ0φBy + φB

(
ΩB

K0K0y

y2ψ0y

+ χ0y

))
φ̄(1, y; σ ∗) dy

)
A(1; σ ∗)

]

+ O(ε2)

}
+ · · · . (B 29)
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