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To improve the geolocation performance of an Unexploded Ordnance (UXO) survey
platform, a geodetic Global Positioning System (GPS) receiver was combined with two
tactical-grade Inertial Measurement Units (IMUs) and mounted on two types of detection
systems. Analysis of data collected for typical trajectories focused on the dual-IMU/GPS
pre/post processing using optimal nonlinear estimation together with a Wave Correlation
Filter (WCF) and end-matching. Each trajectory of the platforms was estimated by the
Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF). The WCF was
then applied to the two solutions of the platform trajectories derived from each IMU in order
to extract the common components in the frequency domain, assuming that uncorrelated
components are errors. The remaining bias and trends of the estimated position results were
further removed by end-matching IMU solutions and GPS update points. The results of these
methods were applied to our field test data to show that the WCF and end-matching can
improve position accuracy from 4% to 14% with respect to the Unscented Kalman Smoother
(UKS) solution alone.
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1. INTRODUCTION. The geolocation of moving platforms, that is, the
accurate determination of their position coordinates at any time in some well-defined
coordinate system, is an important aspect of most survey systems, where positional
registration of collected data can vary in required accuracy from metres to millimetres.
For example, the reliable detection of Unexploded Ordnance (UXO) and their dis-
crimination from non-hazardous ferromagnetic objects depends not only on the
sensor technology, but also on the precise geolocation data that are needed to invert
the detection signals (Lee, 2009). Positions at the precision levels of 1 cm to 10 cm and
with high temporal resolution are necessary to map and characterize (discriminate)
candidate UXO (Simms and Carin, 2004; Bell, 2005).
Where available, the Global Positioning System (GPS) or other similar Global

Navigation Satellite System (GNSS) is the primary geolocation system for most
survey platforms. It is aided by local systems in areas where satellite signal reception
is obstructed or degraded. Typical aiding systems include local ranging (e.g. laser,
radar, and acoustic systems) or completely autonomous sensors, such as Inertial
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Measurement Units (IMUs). In the case of UXO detection systems, navigation
systems such as Real-Time Kinematic (RTK) GPS are unable to satisfy the strict
position accuracy requirement in various challenging environments where signals
from GPS are frequently blocked. Therefore, the primary geolocation system can be
integrated with a three-dimensional IMU for potential improvement, but also to
increase the temporal resolution of the geolocation capability. In this paper, we
analyze the combination of a geodetic GPS receiver and two tactical-grade IMUs
(Honeywell HG1700 and HG1900) that were deployed on each of two Naval
Research Laboratory (NRL) UXO detection platforms: a vehicle-towed trailer and a
cart-based system.
With two IMUs we have two solutions of the same vehicle trajectory, where each is

combined with GPS using a filter. We test both the Extended Kalman Filter (EKF)
and the Unscented Kalman Filter (UKF). In addition, the Wave Correlation Filter
(WCF) is applied external to these filters because ideally the two inertial navigation sol-
utions should be perfectly correlated, and differences would be caused only by errors.
The WCF removes non-correlated spectral components using a pre-defined threshold.
The two filtered solutions are averaged to give improved position estimates. Since both
solutions are strongly affected by sensor biases that are not removed by the WCF,
remaining error biases and trends of the estimated position are removed finally using
an end-matching algorithm with respect to GPS updates points. Results of these
methods applied to our field data are compared and analyzed.

2. METHODOLOGY.
2.1. IMU Data Preprocessing. The performance of IMUs can be improved when

the white noise of the sensors is removed in a pre-processing step. The medium-
frequency band of the IMU data provides a good approximation of the navigation
signal, while the high frequency part has few details of the signal and constitutes
primarily noise. The separation of signal from noise is achieved by a wavelet de-
noising technique that decomposes the IMU output into approximation (signal) and
detail (noise) using a pre-defined wavelet transform (Nassar, 2003). The raw IMU
data from HG1700 and HG1900 were de-noised using the Wavelet Multi Resolution
Analysis (WMRA) method with the symlet ‘sym12’ wavelet (Daubechies, 1992) up to
level 4. Subsequently, this approximation of the IMU signal was employed in the
Kalman filtering process.

2.2. Extended Kalman Filter (EKF). The Kalman Filter (or EKF for nonlinear
systems) is widely used to estimate positions of integrated IMU/GPS systems (Rogers,
2000; Jekeli, 2000; Titterton, 2004). The Kalman Filter is an optimal, sequential,
linear, least-squares estimation algorithm based on a priori statistics of the system
states, that include, in the first place, the nine navigation states (three position errors
(δxT), three velocity errors (δvT), and three orientation errors (δψT)). Since IMU errors
include temporally correlated components, these states are typically augmented by
states associated with biases and scale factor errors of gyroscopes (bg Sg) and
accelerometers (ba Sa), among others. For the EKF all error states must be modeled
appropriately using linear dynamics models. Collecting the states in the vector,
εT=(δxT δvT δψT bg Sg ba Sa), we write the linear error dynamics model as

d
dt
ε = F · ε+ G · u (1)
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where F is the dynamics matrix characterizing the time propagation of errors and u is a
vector of normally distributed random variables, uncorrelated in time, scaled by the
matrix G, and driving the dynamics of the error states (see the detailed F and G in
Jekeli, 2000).
The errors can be estimated by observations, y, that are linearly (or through

linearization) related to them:

y = H · ε+ v (2)

where H is the sensitivity matrix and v is the (white) noise in the observations.
The state estimation is optimal in the sense of least squares (Schaffrin, 1995; Jekeli,

2000) and obtained recursively at discrete times, tk, according to

x̂k = Φk,k−1 · x̂k−1 + Kk yk −HkΦk,k−1x̂k−1
( ) (3)

where Φk,k−1 is the state transition matrix from time tk−1 to tk. The innovation (actual
minus predicted observations) in parentheses is scaled by the Kalman gain matrix,
Kk, which can be thought of as the ratio between the error covariance matrix
of the estimates, Pk, and the error covariance matrix of the observations, R:
Kk=PkHk

TR−1.
2.3. Unscented Kalman Filter (UKF). The UKF is a recursive application of the

Unscented Transformation (UT) of state variables through the nonlinear state
dynamics model (Julier and Uhlmann, 1996). The UKF differs from the EKF in that
it propagates various deterministic sample states – not just the ‘predicted state’ as in
Equation (4) – directly through the nonlinear system models in order to estimate the
states and their covariance without requiring the linearization (Julier et al., 1995).
Thus, it avoids the formulation and computation of derivatives of the system model.
Because the EKF only uses the first-order terms of the Taylor series expansion of the
nonlinear functions, it often introduces large errors in the estimated statistics of the
posterior distributions of the states. This is especially important when the models
are highly dynamic and the local linearity assumption breaks down (i.e. the effects of
the higher-order terms of the Taylor series expansion of the system model become
significant).
The UT propagates a suitably chosen set of sample points (sigma points) in the state

space through the (nonlinear) system dynamics such that they accurately capture the
transformed mean and covariance matrix of the state vector (Julier et al., 2000; Wan
and van der Merwe, 2001).
For an n-dimensional random variable x with mean, x, and covariance, P, 2n+1

sigma points, χi, of the UT are generated as follows

χ0 = x

χi = x+ α(
����������
(n+ κ)P

√
)i, i = 1, . . . , n

χi = x− α(
����������
(n+ κ)P

√
)i−n, i = n+ 1, . . . , 2n

(4)

where α and κ are scaling parameters and ( ����������
n+ κ( )P√ )i is the ith row or column of the

matrix square root of
����������
n+ κ( )P√

.
Given a nonlinear function, f (x), it can be shown that the following weighted com-

binations of zi= f (χi), i=0 ,. . ., 2n, estimate the first two statistical moments (mean, z,
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and covariance, Pz) of f (x) very well, at least up to second order in the non-linearities:

z =
∑2nc
i=0

W (m)
i zi (5)

Py =
∑2nc
i=0

W (c)
i yi − y
( )

yi − y
( )T (6)

with weights given by

W (m)
0 = 1− n

α2(n+ κ) ,

W (c)
0 = 1− n

α2(n+ κ) + (1− α2 + β),

W (m)
i = W (c)

i = 1
2α2(n+ κ) , i = 1, . . . , 2n

(7)

The weights for the mean sum to unity, while for the covariance they sum to
(1−α2+β). The scaling parameter, α (10−44α41), controls the spread of the sigma
points around x and serves to maintain the positive semi-definiteness of the covariance
(van der Merwe et al, 2000). For a Gaussian state vector, x, the estimation of the mean
and covariance of f (x) is accurate up to third order. The parameter, β, is used to
increase the accuracy of the higher-order moments.

2.4. Wave Correlation Filter (WCF). The WCF ideally extracts common spec-
tral components from two signals, while rejecting disparate ones, thus removing errors
if the two signals are supposed to refer to the same source. Of course, common errors
are not removed. With this filter we anticipate obtaining a more accurate positioning
solution from the dual IMU measurements, where random errors left in the two final
solutions should be uncorrelated and amenable to elimination or reduction by the
WCF (a similar approach was used by Serpas, 2003 and by Li, 2009 to improve
solutions derived from independent data sets). Let the two EKF solutions along the
trajectory be denoted x̂1(k) and x̂2(k), respectively. The corresponding Fourier trans-
forms are G1(l ) and G2(l ), where l is the wave number. The correlation coefficient, rl,
per wave number is obtained by

rl = Re G1 l( )( )Re G2 l( )( ) + Im G1 l( )( )Im G2 l( )( )
G1 l( )| | G2 l( )| | (8)

Each solution is filtered according to a pre-defined threshold:

G1,2 l( ) = G1,2 l( ) if rl 5 threshold
0 if rl 5 threshold

{
(9)

The final position estimates are obtained by transforming the average of the retained
frequency components back into the time domain:

p̂ k( ) = 1
2
F−1 G1 l( ) + G2 l( ){ } (10)

where is F the Fourier transform.
2.5. End-Matching. The remaining trend and bias errors of both the EKF and

UKF solutions after WCF processing were corrected by the end-matching method
with respect to the GPS positions. In terms of latitude, longitude and height
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coordinates, the end-matching algorithm is a simple linear fit to given data at the ends
of a free-inertial trajectory:

ϕ̃r
λ̃r
h̃r

2
4

3
5−

ϕ̂w
λ̃w
ĥw

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Y

=
1 (t− t0)
1 (t− t0)
1 (t− t0)

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
A

b0
m

� �
|fflffl{zfflffl}

X

(11)

where ϕ̃r, λ̃r, h̃r are GPS points, ϕ̂w, λ̂w, ĥw are the position after applying the WCF,
and b0 is a bias and m is the trend.
The remaining bias and trend (vector X ) error can be found by least-squares

estimation

X̂ = ATA
( )−1·ATY (12)

3. TEST AND ANALYSIS . The described methods were evaluated using
IMU/GPS data from field tests conducted at NRL’s UXO test site located at the
Army Research Laboratory Blossom Point Facility in Maryland with the Multi-
sensor Towed Array Detection System (MTADS), (Figure 1a) and a cart-based

Figure 1. (a) The NRLMulti-sensor Towed Array Detection System (MTADS), (b) IMU box, (c)
OSU’s dual-IMU/GPS system.
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system (Figure 2). At the centre of MTADS we mounted OSU’s dual-IMU/GPS
system (Figure 1c): two tactical-grade IMUs (HG1700 and HG1900) in the IMU box
(Figure 1b), one Topcon geodetic GPS receiver (GB-1000), and a laptop computer for
data collection and communication with the sensors. The cart-based system has only
OSU’s IMU/GPS system and one large 12 V battery for power (Figure 2).
Eight field tests were performed using the two platforms and various GPS satellite

configurations. Among these tests, GPS malfunctioned for one complete test, and
three tests were designed for deliberate GPS degradation (near a wooded area). Thus,
we considered only the four Tests 2, 5, 6, and 7 in this analysis. They were divided into
two test scenarios (Scenario 1: Tests 2 and 5, Scenario 2: Tests 6 and 7) according to
the number of visible GPS satellites. The GPS Geometric Dilution of Precision
(GDOP) for Scenario 1 was lower than that for Scenario 2.
The test range is roughly 84 m long by 24m wide. The vehicle-towed trailer

and cart-based system were moved along trajectories that are typical of a UXO survey.
At the end of each trajectory segment there are large turns to align the platform to the
next straight segment of the trajectory.
Figure 3 shows the GPS trajectories of the vehicle-towed trailer and the cart-

based system for Scenario 1 (Test 2, MTADS; Test 5, Cart) and Scenario 2 (Test 6,
Cart; Test 7, MTADS). The total distance of Test 2 (Test 5) is about 2,016 m (398 m)
and the speed of the MTADS (Cart) is about 1·85 m/s (0·95 m/s). The total distance of
Test 6 (Test 7) is about 352m (514m) and the speed of the Cart (MTDAS) is about
1·0 m/s (1·9 m/s).
The kinematic GPS analysis package ‘KinTOOLS’ was used to process 1 Hz GPS

data collected by the Topcon GB-1000 receiver. The proximity to the base station

Figure 2. The NRL cart-based system with OSU’s dual-IMU/GPS geolocation system.
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(less than 1 km) allowed us to use a single-frequency L1 analysis. We also computed
the L1-L2 combined frequency solution and we found the L1 solution to be sufficient
and robust with less noise than the combined solution. Each trajectory using the
individual inertial sensors was estimated by the EKF or the UKF and then the WCF
was applied to the common solutions with the threshold value of 0·5 (Equation (10)).
The remaining bias and trend errors are further removed by the end-matching method.
Figure 4 illustrates the general IMU/GPS data processing and analysis procedure.

3.1. Scenario 1. The filtered free-inertial (IMU-only) positions of the vehicle-
towed trailer and cart-based system were computed along the straight sections within
2, 4, and 6 second intervals representing artificial periods of GPS unavailability.
Figure 5 illustrates parts of the estimated positions from the trajectory of Test 2.
As the interval between GPS updates increases from 2 to 6 seconds, the IMU-

estimated position (HG1700) using the EKF with WCF and end-matching is demon-
strably better than the position using just the EKF and the EKF with WCF. Similar
improvement was obtained with the WCF applied to the UKF solutions.
Figure 6 shows the standard deviations of position errors of the three coordinates

(based on all straight sections of the trajectory) of Tests 2 and 5 according to the UKF,
the WCF estimates based on the UKF solutions, the estimates obtained by applying
the UKF, the WCF, and end-matching, and the Unscented Kalman Smoother (UKS)
(see Annex for detail derivation). We show only the UKF-only estimates for the
HG1700 because it yields better position accuracy than the HG1900.
Test 5 (Cart-based system) yielded overall better performances than Test 2 (vehicle-

towed trailer) because the cart-based system experienced lower dynamics and slower
speed than the vehicle-towed trailer. The WCF with end-matching improved the UKF
solutions (control updates every two points) of Test 2 by about 46%, compared to an
11% decrease in the standard deviation of errors without the end-matching. Also, the
WCF with end-matching improved the UKS solutions (control updates every two
points) of Test 2 by about 5%.
In the 4 and 6 second GPS outage cases, the position errors (standard deviations)

decreased 64% and 76% with respect to the UKF-only errors, 55% and 70% relative to
the UKF with WCF, and 9% and 14% respect to the UKS. In Test 5, the position
errors with the WCF and end-matching decreased about 52%*69% with respect
to the UKF-only solutions, 46%*64% with respect to the UKF plus WCF solutions
and 4%*10% with respect to the UKS considering all 2, 4, and 6 second GPS
outages.

Figure 3. The GPS trajectory of the vehicle-towed trailer and Cart-based system (Tests 2 and 5 are
Scenario 1 and Tests 6 and 7 are Scenario 2).
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3.1. Scenario 2. In Scenario 2 (Tests 6 and 7), the number of GPS satellite
increased from 4*5 to 7*8, and the PDOP correspondingly decreased from 4·3
(Test 5) to 2·6 (Test 6). Similar to Scenario 1, the WCF and end-matching improved

Figure 4. IMU/GPS Data Processing Flowchart.

Figure 5. The estimated vehicle trajectory using GPS, the HG1700 w/ UKF the WCF, and end-
matching, for different update rates.
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the performances of the UKF in all straight sections (Figure 7). In Test 6 (Test 7), the
position errors with the WCF decreased about 52%*69% (50%*73%) with respect
to the UKF-only solutions, 44%*63% (43%*67%) with respect to the UKF with
WCF solutions, and 4%*13% (4%*12%) with respect to the UKS considering all
GPS outages.

4. CONCLUSION. The combination of two IMUs and a GPS receiver has
been employed to address the precision geolocation needs for survey platforms, such
as a UXO detection and discrimination system. Application of the WCF with end-
matching to the two individual IMU solutions in field tests and, based on the UKF
(UKS), demonstrated the ability to improve the position accuracy of the geolocation
system. The standard deviations of the position errors of the UKF (UKS) were
reduced from 52 (4)% to 75 (14)% for a vehicle-towed platform, and from 50 (4)% to
69 (13)% for a cart-based system, while GPS was unavailable for up to 6 seconds. The
improved geolocation accuracy will enhance geophysical data inversion performance
and will decrease substantial UXO remediation cost.

ANNEX. Unscented Kalman Smoother (UKS)
The Unscented Kalman Smoother (UKS) is based on the application of the Rauch-

Tung-Striebel (RTS) smoothing algorithm to the UKF. A summary of the UKS starts

Figure 6. The standard deviation of position error in the straight section according to the UKF,
the UKF withWCF, and the UKF withWCF and end-matching based on the UKF solutions (left:
Test 2, right: Test 5).

Figure 7. The standard deviation of position error in the straight section according to the UKF,
the UKF with the WCF, and the UKF with the WCF and end-matching based on the UKF
solutions (left: Test 6, right: Test 7).
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with the propagation of the sigma points through the dynamic model (see Sarkka
(2008) for more detailed derivations)

χ−i,k+1 = f χ−i,k
( )

, i = 1, . . . , 2n+ 1, (A.1)
where χ−i,k denotes the sigma point i, which corresponds to xk.
For the next step, compute the predicted mean, the predicted covariance and the

cross-covariance

x̂−k+1 =
∑
i

W (m)
i−1χ

−
i,k+1 (A.2)

P−
k+1 =

∑
i
W (c)

i−1 χ−i,k+1 − x̂−k+1

( )
χ−i,k+1 − x̂−k+1

( )T
(A.3)

Ck+1 =
∑
i

W (c)
i−1 Yi,k − x̂k

( )
χ−i,k+1 − x̂−k+1

( )T (A.4)

where the definitions of the weights are the same as for Equation (7)
Finally, compute the smoother gain, the smoothed mean and the covariance

Dk = Ck+1 P−
k+1

[ ]−1 (A.5)
x̂sk = x̂k +Dk x̂sk+1 − x̂−k+1

[ ] (A.6)
Ps
k = Pk +Dk Ps

k+1 − P−
k+1

[ ]
DT

k . (A.7)
This is a recursive procedure. It can be used for calculating the smoothing distribution
of step k from the smoothing distribution of time step k+1. The initial conditions for
k=N are:

x̂sN = x̂N (A.8)
Ps
N = PN (A.9)
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