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The interaction between the large and the small scales of turbulence is investigated
in a mixing layer, at a Reynolds number based on the Taylor microscale (Reλ) of
250, via direct numerical simulations. The analysis is performed in physical space, and
the local vorticity root-mean-square (r.m.s.) is taken as a measure of the small-scale
activity. It is found that positive large-scale velocity fluctuations correspond to large
vorticity r.m.s. on the low-speed side of the mixing layer, whereas, they correspond to
low vorticity r.m.s. on the high-speed side. The relationship between large and small
scales thus depends on position if the vorticity r.m.s. is correlated with the large-scale
velocity fluctuations. On the contrary, the correlation coefficient is nearly constant
throughout the mixing layer and close to unity if the vorticity r.m.s. is correlated with
the large-scale velocity gradients. Therefore, the small-scale activity appears closely
related to large-scale gradients, while the correlation between the small-scale activity
and the large-scale velocity fluctuations is shown to reflect a property of the large
scales. Furthermore, the vorticity from unfiltered (small scales) and from low pass
filtered (large scales) velocity fields tend to be aligned when examined within vortical
tubes. These results provide evidence for the so-called ‘scale invariance’ (Meneveau
& Katz, Annu. Rev. Fluid Mech., vol. 32, 2000, pp. 1–32), and suggest that some of
the large-scale characteristics are not lost at the small scales, at least at the Reynolds
number achieved in the present simulation.
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1. Introduction
According to the classical theory of turbulence, the turbulent kinetic energy is

contained at the large scales, and it is then transferred in an inviscid process to the
small scales that dissipate it into heat (Pope 2000). This inviscid transfer of energy
occurs across the inertial subrange, whose span in the power spectrum depends on the
turbulence level of the flow, i.e. the Reynolds number. At sufficiently large Reynolds
number, and according to the Kolmogorov’s hypothesis of local isotropy, the small
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scales are statistically isotropic, whereas the large scales are anisotropic, especially in
shear flows (Pope 2000). This suggests that in the transfer of energy across scales,
the characteristics of the large scales are lost and not perceptible at the small-scale
level. For this reason, large and small scales have been considered independent of
each other for a long time.

Nonetheless, Batchelor & Townsend (1949) were the first to postulate that the
turbulent kinetic energy can be transferred to the small scales without a direct
involvement of the intermediate range of scales contained in the inertial subrange.
Later, Yeung, Brasseur & Wang (1995) showed that the energy transfer from large to
small scales can be a single step process. Recent works reported that in a turbulent
boundary layer (TBL) at high Reynolds number, the large scales modulate the
small scales both in amplitude (Hutchins & Marusic 2007; Mathis, Hutchins &
Marusic 2009a; Mathis et al. 2009b; Chung & McKeon 2010) and in frequency
(Ganapathisubramani et al. 2012). In Mathis et al. (2009a), the large-scale signal
(i.e. low pass filtered velocity signal) was correlated with the large-scale filtered
envelope of the small-scale signal (i.e. high pass filtered velocity signal), at different
positions within the TBL. It was found that in the near-wall region of a TBL,
positive fluctuations of the large-scale signal correlate with higher amplitudes of
the small-scale signal, whereas in the wake region of the flow, these signals are
negatively correlated. Similar observations were made in other wall-bounded flows,
such as a channel flow and a pipe flow (Mathis et al. 2009b). At the centreline
of a mixing layer, Buxton & Ganapathisubramani (2014) found a scale interaction
analogous to the outer region of a TBL, while, in a jet, the large-scale amplitude
modulation of the small scales is similar to the near-wall region of wall-bounded
flows (Fiscaletti, Ganapathisubramani & Elsinga 2015). In their work, Fiscaletti et al.
(2015) pointed out the different level of amplitude modulation in time signals (from
hot-wire anemometry) and in space (from PIV). The strength of the small-scale
amplitude modulation in the spatial signal was found to be only 25 % of the value
obtained from the time signal. The elevated level of amplitude modulation in the
latter was attributed to the fixed spectral band filter used to obtain the large- and
the small-scale signals, which does not consider the local convection velocity. All of
these findings are consistent with the pioneering study by Bandyopadhyay & Hussain
(1984), who explored many different turbulent flows in relation to scale interaction.
Therefore, the nature of the scale interaction appears to be strongly dependent not
only on the type of flow, but also on the location within the same flow. On the other
hand, this seems to be at conflict with the classical theories of turbulence, according
to which turbulence is a universal phenomenon.

The universality of the interaction between large and small scales was suggested
by Elsinga & Marusic (2010), who evaluated the average flow patterns in the local
coordinate system defined by the eigenvectors of the strain-rate tensor. They found
that the small-scale vortical structures have the tendency to be located in regions of
shear, produced by the interaction of large-scale structures. This statistical tendency
has been observed in both numerical and experimental datasets of different flows,
including homogeneous isotropic turbulence and wall-bounded turbulence. These
observations are in agreement with the theoretical predictions by Hunt et al. (2010).
According to this theory, thin layers of intense shear are found at the interface
between large-scale motions, and are characterized by strong dissipation of turbulent
kinetic energy. These thin layers play a major role in the small-scale dynamics of
turbulence, and their importance increases with the Reynolds number of the flow. The
measurements by Worth & Nickels (2011) and the direct numerical simulations (DNS)
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of homogeneous isotropic turbulence by Ishihara, Kaneda & Hunt (2013) supported
these theories. This body of recent literature suggests that the large-scale velocity
gradients could be directly related to the small scales of turbulence, and that this
relationship between scales is the same in all turbulent flows. The correlation between
the large-scale gradient and the small-scale amplitude was explored in a turbulent
channel by Jiménez (2012). His results showed a nearly constant positive correlation
throughout most of the channel. The Smagorinsky model as well as other subgrid
scale (SGS) models used in large eddy simulations (LES) also link the activity of
the small scales to larger-scale gradients by invoking scale invariance (Meneveau &
Katz 2000).

In the references mentioned above, the small-scale activity is related to the large-
scale velocity fluctuations. If the analysis is performed in this way, the interaction
between the large and the small scales depends on both the flow and the position
within the flow. In the present paper, we investigate the modulation of the small scales
by the large-scale velocity gradients in a DNS of a mixing layer (Attili & Bisetti
2012). The modulation by the large-scale gradients is hypothesized to be insensitive
to the position within the flow, as discussed above. The DNS is ideally suited for this
purpose, as it allows access to all velocity gradients at all relevant scales. Indeed, we
will show that the large-scale shear velocity gradients modulate the small scales in the
same way throughout the mixing layer, in contrast to the modulation by the large-scale
velocity which depends on the position within the layer. In addition, the correlation
between large-scale velocity fluctuations and the small scales is shown to reflect the
spatial organization of the large-scale structures within the flow rather than an actual
interaction between large and small scales. The large scales are flow dependent, which
explains why this correlation (between large-scale velocity fluctuations and the small
scales) depends on the position within the flow, and varies between different flows.
Finally, the small-scale vorticity within vortical structures is shown to be statistically
aligned with large-scale vorticity. As a consequence of their directional coupling with
larger scales, the small scales of turbulence are found to be anisotropic, as already
observed by Yeung et al. (1995) and Shen & Warhaft (2000) among others.

2. Methods

The DNS presented in this work is performed by solving the unsteady, incompress-
ible Navier–Stokes equations. The parallel flow solver ‘NGA’ by Desjardins et al.
(2008), developed at Stanford University, is used to solve the transport equations. The
solver implements a finite difference method on a spatially and temporally staggered
grid with the semi-implicit fractional step method of Kim & Moin (1985). Velocity
and scalar spatial derivatives are discretized with a second-order finite differences
centred scheme.

A complete description of the flow parameters and methods used for the simulation
are provided in Attili & Bisetti (2012, 2013) and Attili, Cristancho & Bisetti (2014),
together with a detailed analysis of the spatial evolution of the flow in the transitional
and fully developed turbulent regions. Therefore, only a brief summary is presented
here. The flow is imposed at the inlet plane (x = 0) and free convective outflow
(Ol’Shanskii & Staroverov 2000) is specified at x= Lx. The boundary conditions are
periodic in the spanwise direction z and free slip in the cross-wise direction y. The
flow at the inlet (x = 0) is a hyperbolic tangent profile for the streamwise velocity
U with prescribed vorticity thickness δω,0: U(x= 0, y, z)=Uc + 1/21U tanh(2y/δω,0),
where Uc = (U1 + U2)/2 is the convective velocity, U1 and U2 are the high- and
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low-speed stream velocities and 1U = U1 − U2 is the velocity difference across
the layer. The ratio of the two velocities is U1/U2 = 3. Low amplitude white noise
is superimposed on the hyperbolic tangent profile, resulting in the onset of the
Kelvin–Helmholtz instability at a short distance downstream of the inlet (x≈ 50δω,0).
The cross-wise and spanwise velocity components are perturbed in the same manner.

The computational domain extends over Lx = 473δω,0, Ly = 290δω,0, Lz = 157.5δω,0
in the streamwise (x), cross-wise (y) and spanwise (z) directions, respectively.
The domain is discretized with 3072× 940× 1024≈ 3× 109 grid points (Nx×Ny×Nz).
In the region centred around y= 0 (|y|6 45δω,0), the grid is homogeneous in the three
directions: 1x = 1y = 1z = 0.15δω,0. Outside the core region for |y| > 45δω,0, the
grid is stretched linearly until 1y= 0.6δω,0 at |y| = 55δω,0 and then is constant again
up to the boundary. Overall, the spatial resolution is such that 1x=1y=1z 6 2.5η
everywhere, where η= ν3/4ε−1/4 is the Kolmogorov scale and ε the average turbulent
kinetic energy dissipation. As shown in Attili & Bisetti (2012), the high-order
structure functions display the expected viscous scaling at scales of the order of the
Kolmogorov’s length, indicating that the resolution is adequate. The time step size is
calculated in order to have a unity Courant–Friedrichs–Lewy (CFL) number.

The simulation was performed on the IBM Blue Gene/P system ‘Shaheen’ available
at King Abdullah University of Science and Technology, using up to 65 536 processing
cores (16 racks of the Blue Gene/P architecture). The simulation required around 10
million CPU hours and produced around 100 TB of data.

The Reynolds number based on the vorticity (momentum) thickness at the inlet is
Reω = 600 (resp. Reθ = 150), increasing up to Reω = 25 000 (resp. Reθ = 4250) as the
mixing layer develops. In the fully developed region, the flow achieves a Reynolds
number based on the Taylor microscale Reλ = 250.

The present analysis of scale interaction was performed in the far field of
the mixing layer, in a region where the velocity statistics are self-similar and
turbulence is fully developed. Twenty-one three-dimensional subdomains of size
16.7λ× 13.3λ× 68.3λ (λ≈ 30η is the Taylor microscale), collected at different time
instants, were considered in the analysis. The centre of these subdomains is located
at a streamwise position x = 375δω,0 and at y = 0. The convective distance between
two consecutive subdomains, computed after applying the Taylor’s hypotheses, is
167δω,0, corresponding to approximately 68 Taylor microscales and 2000 Kolmogorov
scales; therefore, the subdomains are statistically independent. The subdomains span
the entire length of the simulation domain in the spanwise direction z. Since the DNS
subdomains have been obtained at different time instants, all the variables obtained
from these subdomains throughout the whole paper are also dependent on time, which
is indicated with t. Furthermore, the vorticity root-mean-square (r.m.s.) was calculated
to be approximately eight times larger than the mean vorticity everywhere throughout
the subdomain.

A coordinate system, x̃ỹz̃, is introduced; it is centred at x= 375δω,0, y= 0, z= 0 and
non-dimensionalized by the Taylor length scale λ. The coordinate system is oriented
so that positive values of ỹ are on the high velocity side of the mixing layer. A sketch
of the coordinate systems and the numerical flow domain is presented in figure 1.

2.1. Large- and small-scale signals in physical space
With the aim of studying the modulation of the small scales by the large scales,
large- and small-scale signals were created in physical space. The ‘small scales’ were
defined as the range of length scales smaller than the Taylor length scale (λ). At a
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FIGURE 1. (Colour online) Schematics of the spatially developing mixing layer. The frame
of reference of the simulation is indicated by the axes x, y and z, while the x̃, ỹ and z̃
axes show the frame of reference centred in the region under analysis, marked by the
black box. The background figure represents a two-dimensional cut of a passive scalar
field, which shows the streamwise evolution of the mixing layer.

given cross-wise position ỹ, one signal that represents the small-scale activity was
constructed (A(x̃, ỹ, z̃, t)), and a number of different signals representative of the large
scales were created, considering both large-scale velocity fluctuations (uL(x̃, ỹ, z̃, t)),
and large-scale velocity gradients (gL(x̃, ỹ, z̃, t) and ĝL(x̃, ỹ, z̃, t)). To construct the large-
and small-scale signals in physical space, each of the twenty-one three-dimensional
subdomains described in the previous section was subdivided into cubes with sides
of one Taylor length scale (λ), and centred on ỹ. The following signals were then
constructed.

(i) The local vorticity r.m.s. A(x̃, ỹ, z̃, t) was computed inside each cube. The
following relationship was used:

A(x̃, ỹ, z̃, t)=
√√√√ 1

N

N∑
i=1

[(ωx|i − ω̄x)2 + (ωy|i − ω̄y)2 + (ωz|i − ω̄z)2], (2.1)

where ωx|i, ωy|i and ωz|i are the components of the vorticity vector in the
directions x̃, ỹ and z̃, respectively, in the ith point within the cube centred on
(x̃, ỹ, z̃, t); ω̄x, ω̄y, and ω̄z are the corresponding vorticity components averaged
over the cube, e.g. ω̄x = (1/N) ∑N

i=1 ωx|i; N is the number of points inside
each cube, equal to 3375. A(x̃, ỹ, z̃, t) was non-dimensionalized by its overall
average, Ā(ỹ), at a given ỹ, which is denoted A∗(x̃, ỹ, z̃, t) = A(x̃, ỹ, z̃, t)/Ā(ỹ).
The superscript ∗ denotes non-dimensional quantities throughout the whole paper.
The local vorticity r.m.s., A, was used to quantify the local strength of the
small-scale activity.

(ii) The mean streamwise velocity Uav(x̃, ỹ, z̃, t) was calculated inside each
cube. The strength of the local non-dimensional large-scale fluctuation was
determined as uL(x̃, ỹ, z̃, t)=Uav(x̃, ỹ, z̃, t)−Um(ỹ), where Um(ỹ) is the ensemble
average streamwise velocity at ỹ. The large-scale velocity fluctuations were
non-dimensionalized by the velocity difference over the mixing layer 1U,
therefore u∗L(x̃, ỹ, z̃, t)= uL(x̃, ỹ, z̃, t)/1U.

(iii) A moving average filter with a cube side of one Taylor length scale (λ, case 1.)
and three Taylor length scales (3λ, case 2.) was applied to the twenty-one 3-D
velocity vector fields. From this procedure, the 3-D filtered velocity fields UL, VL,
WL were obtained. The spectral leakage associated to the moving average filtering

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

53
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.53


Scale interactions in a mixing layer 159

was assessed by comparison with a Gaussian filter (characterized by the same
cube size, and by a standard deviation of 0.65 the cube size), and it was found
to be negligible for aims of the present analysis. The local large-scale gradient
signal gL(x̃, ỹ, z̃, t), computed in each cube centred on (x̃, ỹ, z̃), at time t, was
calculated using the following relationship, which includes only the derivatives
associated with shear:

gL(x̃, ỹ, z̃, t)= 1
N

N∑
i=1

√√√√( dUL

dỹ

∣∣∣∣2
i

+ dUL

dz̃

∣∣∣∣2
i

+ dVL

dx̃

∣∣∣∣2
i

+ dVL

dz̃

∣∣∣∣2
i

+ dWL

dx̃

∣∣∣∣2
i

+ dWL

dỹ

∣∣∣∣2
i

)
.

(2.2)
The derivatives were computed with a central difference scheme from the discrete
dataset in each point of the cube, and averaged over the number of mesh points
inside each cube N. Only the shear components of the gradients have been
included in gL(x̃, ỹ, z̃, t) (2.2), since the acceleration terms were found to be
not important in modulating the small scales, in agreement with the conceptual
picture of small-scale structures being organized in large-scale shear layers, as
discussed in the Introduction. The validity of this assumption is confirmed later
in the article.

(iv) A signal ĝL(x̃, ỹ, z̃, t) was also constructed, retaining in this case only the first
term of (2.2), which represents the dominant contribution to gL. Accordingly,
ĝL(x̃, ỹ, z̃, t) was defined as:

ĝL(x̃, ỹ, z̃, t)= 1
N

∣∣∣∣∣
N∑

i=1

dUL

dỹ

∣∣∣∣
i

∣∣∣∣∣ . (2.3)

In this definition of ĝL, we chose to calculate the absolute value of the sum, and
not the sum of the absolute value. In consequence of this, an inhomogeneity in the
sign of dUL/dỹ over a cube results in a lower ĝL compared to that obtained with the
absolute value of the sum. Note that this effect is small since UL is already filtered
to the size of the cube, or larger.

In the construction of the large-scale signals, the appropriate length scale for large-
scale filtering was considered to be the Taylor microscale (and larger length scales).
This is justified by the fact that the dissipation spectrum has a peak at a length scale
close to the Taylor length scale, meaning that the length scales larger than the Taylor
length scale contribute progressively less to dissipation and can be considered large
scales. In §§ 3 and 4, the small-scale signal A(x̃, ỹ, z̃, t) will be related to the large-
scale signals uL(x̃, ỹ, z̃, t), gL(x̃, ỹ, z̃, t) and ĝL(x̃, ỹ, z̃, t) to study possible interactions
between large and small scales of turbulence.

3. The interaction between large-scale velocity fluctuations and small scales
We first investigate the interaction between the large-scale velocity fluctuations

and the small scales of turbulence in the fully developed region of the mixing
layer, analogous to earlier modulation studies. At different cross-wise locations ỹ, we
consider the signals A∗(x̃, ỹ, z̃, t) and u∗L(x̃, ỹ, z̃, t) described in the previous section.
Equally spaced u∗L bins with a spacing of 0.05 ranging from u∗L = −0.2 to u∗L = 0.2
are generated. The average vorticity r.m.s. conditioned on the strength of the local
large-scale fluctuation u∗L is calculated, and denoted by A∗uL

. The minimum number of
samples that contributed to the statistics was 556, which was obtained at ỹ = +3.4,
for the bin −0.2< u∗L <−0.15.
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FIGURE 2. (Colour online) Local vorticity r.m.s. A∗uL
conditioned on the fluctuations of

the large-scale signal u∗L, at ỹ = −7.13 (dot-dashed line), ỹ = −3.93 (crosses, ‘+’), ỹ =
−1.80 (circles, ‘E’), ỹ=−0.20 (triangles, ‘B’), ỹ=+1.40 (diamonds, ‘♦’) and ỹ=+3.40
(asterisks, ‘∗’).

The results of this analysis are presented in figure 2. It is worth noting that
the interaction between large and small scales depends on the cross-wise position
(ỹ) within the flow. On the low velocity side of the mixing layer (negative values
of ỹ), positive fluctuations of the large-scale signal u∗L are associated with a stronger
activity of the small scales. Moreover, it can be observed that the extent of this scale
modulation decreases as ỹ= 0 is approached. At ỹ=−0.2, the slope is inverted, and
the activity of the small scales is now stronger for negative large-scale fluctuations,
even if the scale interaction is rather weak here. This negative dependence grows
stronger towards the top of the mixing layer, i.e. the high velocity side corresponding
to positive ỹ.

It is worth pointing out that the inversion in the trend of the scale modulation
does not occur at ỹ = 0, but on the low velocity side of the mixing layer, which is
in agreement with the works by Buxton (2011) and Buxton & Ganapathisubramani
(2014). This asymmetry is consistent with a slow drift of the mixing layer centre
towards the low speed-side. This occurs in spatially evolving flows (Bell & Mehta
1990; Attili & Bisetti 2012), but it is not present in temporally evolving mixing layer
often employed in other DNS (e.g. Rogers & Moser 1994).

In their study, Fiscaletti et al. (2015) explained the observed amplitude modulation
in terms of a spatially inhomogeneous distribution of the small-scale coherent
structures of vorticity and of intense dissipation. According to this explanation,
the small-scale structures are characterized by instantaneous convection velocities
that are on average higher than the average streamwise velocity of the flow in
regions of positive amplitude modulation, and vice versa. By positive/negative
amplitude modulation we mean that the strength of the small-scale signal is stronger
for positive/negative large-scale fluctuations. Therefore, when positive (negative)
fluctuations of the large-scale velocity signal determine locally a stronger amplitude
of the small-scale signal, the small-scale structures are more probably located in high
velocity (low velocity) regions of the flow, which means that they are characterized
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by convection velocities higher (lower) than the mean. Then, for ỹ > −1.78, we
expect the small-scale structures to have a higher probability of being located in
regions of the flow characterized by a streamwise velocity lower than the average
velocity, whereas an opposite behaviour occurs for ỹ < −1.78. From the present
DNS dataset, this trend is confirmed, but not shown for the sake of brevity. These
inferences on the spatial organization of the small-scale structures are consistent with
the measurements by Buxton, de Kat & Ganapathisubramani (2013), who found that
the convection velocities of the small-scale fluctuations are on average higher than
the mean velocity on the low velocity side, and lower than the mean velocity on
the high velocity side. The nature of the interaction between large-scale fluctuations
and the small scales in a mixing layer is similar to the scale interaction in a TBL,
where positive and negative amplitude modulation occurs at different positions within
the flow (Mathis et al. 2009a; Ganapathisubramani et al. 2012). A jet and a wake
behave similarly to the low velocity region of the mixing layer, and to the near-wall
region of the TBL, and the scale interaction does not depend on the location within
the flow (Bandyopadhyay & Hussain 1984).

Furthermore, we examined the interaction between large-scale fluctuations and
small scales from time series. One hundred and twenty-eight uncorrelated time series
were recorded at the two cross-wise positions ỹ = ±4.13 and analysed. The length
of each time series is 1.15 × 103τη, where τη is the Kolmogorov time scale. The
length of the signals is more than three orders of magnitude larger than the eddy
turnover time of one Taylor length scale. The time resolution of the signals is
1t= 0.025τη. A spectral filter is applied to these time series, analogously to Mathis
et al. (2009a), Ganapathisubramani et al. (2012) and Fiscaletti et al. (2015). Two
signals are constructed, representing the large- (large-scale signal), and the small-scale
motions (small-scale signal), respectively. The wavelength ranges in the large- and
in the small-scale signals are [3λ, 18λ] and [1.5η, 5η], respectively, when assuming
a constant convection velocity equal to the mean velocity in the application of the
Taylor hypothesis. A measure of the level of scale interaction is obtained by the
correlation coefficients between the large-scale signal and a signal representative
of the local amplitude of the small-scale signal. The latter is obtained by Hilbert
transforming and low pass filtering the small-scale signal, analogous to Mathis et al.
(2009a). It can be thought of as the filtered envelope of the small-scale signal. These
correlation coefficients were calculated for different time delays between the two
signals. The correlation coefficients R revealed a peak for time delays comparable
to one Kolmogorov time scale (τη) at both locations (R = 0.46 and R = −0.35, at
ỹ=−4.13 and ỹ=+4.13, respectively). This finding suggests that the scales interact
concurrently, and the time delays can be considered negligible. Consistently, Buxton
& Ganapathisubramani (2014) found a concurrent interaction between large and small
scales at ỹ= 0.

It is also of interest to compare amplitude modulation in physical space with
modulation in the time series. To determine the strength of the large-scale velocity
fluctuations in physical space u∗L, a procedure analogous to Fiscaletti et al. (2015) was
applied, where the local mean of the streamwise velocity U was calculated within
squares of 2.3λ× 1.3λ in size, on the x̃–ỹ plane. The planes were taken at a distance
of 16η in the spanwise direction. The large-scale velocity fluctuations were obtained
by subtracting from U the overall average streamwise velocity at ỹ. The large-scale
velocity fluctuations were non-dimensionalized by the velocity difference over the
mixing layer 1U. (Note that in the present analysis we define the large-scale signal
u∗L in a slightly different way than in § 2. This allows us to draw an analogy with
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FIGURE 3. (Colour online) Circles (E) represent the amplitude modulation in physical
space (the local r.m.s. streamwise velocity Urms/Urms conditioned on the fluctuations of
the large-scale signal u∗L), triangles (B) represent amplitude modulation from time series
(the r.m.s. of the small-scale signal σ ∗uL

, conditioned on the fluctuations of the large-scale
signal u∗L), at (a) ỹ=−4.13, and (b) ỹ= 4.13.

Fiscaletti et al. (2015).) The strength of the small-scale activity was estimated as the
local r.m.s. of the fluctuating streamwise velocity U within the corresponding square,
Urms. The fluctuations of the streamwise velocity in this case are relative to the mean
within the square. The quantity Urms was non-dimensionalized by Urms, which is
the mean of all the values of Urms at each ỹ. A total number of 26 × 103 samples
(squares) were considered in this estimate of amplitude modulation in physical space.
The use of the local r.m.s. of the streamwise velocity U instead of the local vorticity
r.m.s. (to create A(x̃, ỹ, z̃, t) as described in § 2) allows us to compare amplitude
modulation in time and in space. From the time series, the strength of the small-scale
activity conditioned on u∗L is represented by the r.m.s. of the conditional small-scale
signal σ ∗uL

. A detailed description of the procedure is presented in Ganapathisubramani
et al. (2012) (figure 3 of their paper). The same procedure has been used also by
Fiscaletti et al. (2015).

Statistics of the small-scale activity conditioned on the large-scale velocity
fluctuations are shown in figure 3, for both the spatial data and the time series.
At ỹ = −4.13 (low velocity side of the mixing layer), the magnitude of amplitude
modulation in space is approximately 50 % lower than that computed from time
series. The nonlinearity of amplitude modulation in physical space makes it difficult
to quantify the gap between amplitude modulation in physical space and from time
series by a single number. At ỹ = +4.13 (high velocity side of the mixing layer),
amplitude modulation from time series largely underestimates the value obtained
from spatial data. This analysis confirms the finding by Fiscaletti et al. (2015) in
a turbulent round jet. They showed that a positive amplitude modulation from time
series (observed in a jet) overestimates the value obtained from spatial data. This
was attributed to the fixed spectral band filter used to obtain the large and the small
scales in the time signals, as this filter does not take into account the local convection
velocity. In consequence of this, the parts of the small-scale signal associated with
positive large-scale fluctuations are characterized by a higher convection velocity
and thereby a locally longer spatial wavelength, which contains a higher amount of
turbulent kinetic energy. In the context of amplitude modulation, the low velocity
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side of a mixing layer is similar to a jet (positive amplitude modulation), while the
high velocity side compares well with the wake region of a TBL (negative amplitude
modulation). On the low velocity side, the assessment of amplitude modulation from
time series largely overestimates the phenomenon when compared to physical space,
analogous to the jet examined by Fiscaletti et al. (2015). Also, the extent of amplitude
modulation in the wake region of a TBL is expected to be stronger when evaluated
in physical space, because the intense small scales in the time signal are associated
with low convection velocities, hence shorter spatial wavelength and lower energy
content. These results should be taken into consideration when interpreting amplitude
modulation from time series.

In the available literature on the topic, the correlation coefficient has been largely
used to quantify the coupling between large and small scales (Bandyopadhyay &
Hussain 1984; Mathis et al. 2009a; Marusic, Mathis & Hutchins 2010, among
others), and its dependency on the skewness has been recently discussed (Schlatter
& Örlü 2010; Bernardini & Pirozzoli 2011; Mathis, Hutchins & Marusic 2011). Till
now, only the correlation coefficient between the large- and the small-scale velocity
fluctuations has been considered. In the next section, the interaction between large
and small scales of turbulence is quantified in space by computing the correlation
coefficient between large-scale velocity gradients and the small-scale activity.

4. A quantification based on the correlation coefficient: the role of large-scale
gradients
A correlation between the small scales and the local large-scale gradients has been

suggested by Elsinga & Marusic (2010), Hunt et al. (2010), Jiménez (2012), and
assumed in the subgrid scale (SGS) models used in LES such as the Smagorinsky
model (Smagorinsky 1963; Lilly 1967), and the dynamic model (Germano et al. 1991).
The coupling between the large-scale gradients and the small scales is expected to
be a flow-independent feature, as opposed to the large-scale velocity to small-scale
interaction, which is not only dependent on the flow, as evident from the literature,
but also dependent on the location within a given flow, as shown in § 3.

Therefore, the interaction between the large-scale gradients and the small-scale
activity is investigated, by computing the correlation coefficient at different cross-wise
locations within the mixing layer. It is important to stress that the mean of some
signals in the analysis, i.e. A(x̃, ỹ, z̃, t), gL(x̃, ỹ, z̃, t) and ĝL(x̃, ỹ, z̃, t), is not zero.
Therefore, the correlation coefficients obtained from these signals are different to
the same correlation coefficients computed after subtracting their mean. Nevertheless,
the use of correlation coefficients between signals characterized by non-zero mean
is justified by typical LES modelling, in which the mean of the large-scale signal
and the small scales are also non-zero. In the following, we show first that the
correlation coefficient between uL(x̃, ỹ, z̃, t) and A(x̃, ỹ, z̃, t) can be approximated by
the product between the correlation coefficient between gL(x̃, ỹ, z̃, t) and A(x̃, ỹ, z̃, t)
and the correlation coefficient between uL(x̃, ỹ, z̃, t) and gL(x̃, ỹ, z̃, t). We start from
the correlation coefficient at a given ỹ between uL(x̃, ỹ, z̃, t) and A(x̃, ỹ, z̃, t), denoted
as RuA(ỹ), and given by:

RuA(ỹ)=
∑
x̃,z̃,t

uL(x̃, ỹ, z̃, t)A(x̃, ỹ, z̃, t)
‖uL(x̃, ỹ, z̃, t)‖‖A(x̃, ỹ, z̃, t)‖ (4.1)

the signals uL(x̃, ỹ, z̃, t), A(x̃, ỹ, z̃, t) and gL(x̃, ỹ, z̃, t) can be considered as state vectors,
with corresponding length norm indicated by ‖ · ‖. Then, the following decomposition
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is applied:
A(x̃, ỹ, z̃, t)
‖A(x̃, ỹ, z̃, t)‖ = α(ỹ)

gL(x̃, ỹ, z̃, t)
‖gL(x̃, ỹ, z̃, t)‖ + B(x̃, ỹ, z̃, t), (4.2)

where the coefficient α(ỹ) is chosen such that B(x̃, ỹ, z̃, t) is orthogonal to gL(x̃, ỹ, z̃, t).
From the scalar product between gL(x̃, ỹ, z̃, t) and (4.2), and from trigonometric
considerations we obtain the coefficient α(ỹ), which can be expressed as:

α(ỹ)=
∑
x̃,z̃,t

A(x̃, ỹ, z̃, t)gL(x̃, ỹ, z̃, t)
‖A(x̃, ỹ, z̃, t)‖‖gL(x̃, ỹ, z̃, t)‖ = RgA(ỹ), (4.3)

where RgA(ỹ) is the correlation coefficient between A(x̃, ỹ, z̃, t) and gL(x̃, ỹ, z̃, t) at a
given ỹ. It is worth noting that α(ỹ) is independent of the directions x̃ and z̃. Then,
using (4.2) and (4.3), (4.1) is written as:

RuA(ỹ) =
∑
x̃,z̃,t

A(x̃, ỹ, z̃, t)gL(x̃, ỹ, z̃, t)
‖gL(x̃, ỹ, z̃, t)‖‖A(x̃, ỹ, z̃, t)‖

∑
x̃,z̃,t

uL(x̃, ỹ, z̃, t)gL(x̃, ỹ, z̃, t)
‖gL(x̃, ỹ, z̃, t)‖‖uL(x̃, ỹ, z̃, t)‖

+
∑
x̃,z̃,t

uL(x̃, ỹ, z̃, t)B(x̃, ỹ, z̃, t)
‖uL(x̃, ỹ, z̃, t)‖ . (4.4)

A large value of α(ỹ) (close to unity) indicates a strong correlation between the
activity of the small scales and the large-scale gradients (essentially an LES-type
model in the sense that small scales are correlated with large-scale gradients), and
implies a small value of B(x̃, ỹ, z̃, t) (4.2). Therefore, for large α(ỹ), i.e. large RgA(ỹ),
(4.4) reduces to:

RuA(ỹ) ≈
∑
x̃,z̃,t

gL(x̃, ỹ, z̃, t)A(x̃, ỹ, z̃, t)
‖gL(x̃, ỹ, z̃, t)‖‖A(x̃, ỹ, z̃, t)‖

∑
x̃,z̃,t

uL(x̃, ỹ, z̃, t)gL(x̃, ỹ, z̃, t)
‖uL(x̃, ỹ, z̃, t)‖‖gL(x̃, ỹ, z̃, t)‖

≈ RgA(ỹ)Rug(ỹ), (4.5)

which states that the correlation coefficient between the large-scale velocity fluctuations
uL(x̃, ỹ, z̃, t) and the small-scale signal A(x̃, ỹ, z̃, t) is approximately equal to the
product of the correlation coefficient between the large-scale gradients gL(x̃, ỹ, z̃, t)
and the small-scale signal A(x̃, ỹ, z̃, t) and the correlation coefficient between
the large-scale velocity signal uL(x̃, ỹ, z̃, t) and the large-scale velocity gradients
gL(x̃, ỹ, z̃, t). An identical relation may be derived for the velocity gradient ĝL (2.3),
instead of gL, assuming the correlation coefficient RĝA is large.

The correlation coefficients RuA, RgA, RĝA, Ruĝ, Rug computed at different cross-wise
positions ỹ within the mixing layer, are presented in figure 4. The correlation
coefficients were calculated directly from the signals uL, A, gL and ĝL, as defined
in § 2, and not from the relationships expressed in the equations above. Hence, the
results can be used to test the validity of (4.5). According to the assumption leading
to (4.5), RgA is large across ỹ, i.e. close to unity. Figure 4(a,b) confirm the validity
of this assumption. Moreover, RgA is approximately constant throughout the flow,
in agreement with the initial expectations. It can also be observed that the values
of RgA seem rather independent of the size of the large-scale filter used to obtain
the large-scale gradients. The correlation coefficients RĝA between ĝL and A have a
very similar trend to RgA (figure 4a,b), thus revealing the dominating weight of the
term dUL/dỹ in the large-scale gradients gL. With a large-scale filter of three Taylor
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FIGURE 4. (Colour online) Correlation coefficients between: (a,b) asterisks (∗), gL − A,
triangles (B) ĝL − A, for two different sizes of the large-scale filter, (a) at one Taylor
length scale λ (case 1), and (b) at three Taylor length scales 3λ (case 2); (c,d) circles
(E) uL − A, diamonds (♦) uL − gL, triangles (B) uL − ĝL, for two different sizes of the
large-scale filter (c) at one Taylor length scale λ (case 1), and (d) at three Taylor length
scales 3λ (case 2).

length scales 3λ, RĝA is closer to unity than with a large-scale filter of one Taylor
length scale λ. This shows that at larger scales, the contribution of the main gradient
of the flow to the large-scale small-scale coupling is predominant. Additionally, the
other large-scale gradients in (2.2) contribute to a stronger modulating activity of
the small scales in the range [1λ, 3λ] rather than at larger scales. Similarly to gL,
a signal containing all the nine components of the velocity gradient tensor (VGT)
was also constructed, analogous to (2.2), and correlated with the local vorticity r.m.s.
(A) at different cross-wise positions ỹ. The corresponding correlation coefficients
present a remarkable overlap with RgA, and for sake of clarity they are not reported
in figure 4(a,b). This observation indicates that the acceleration terms of the VGT do
not contribute significantly to the coupling between large-scale gradients and small
scales. This implies that the shear components of the VGT modulate the small scales,
which is in agreement with the expectations and consistent with the aforementioned
references. Furthermore, different choices for the large-scale gradient signal, i.e. the
large-scale vorticity and the Frobenius norm of the large-scale strain-rate tensor,
yielded a high correlation with the small-scale signal A throughout the mixing layer,
almost matching with RgA in figure 4. These results are not shown for brevity.
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The correlation coefficients RuA between uL and A range from positive values in the
low velocity region of the mixing layer to negative values in the high velocity region,
as already found in § 3. It is also of interest to note that the change in the sign of
the correlation coefficient does not occur at the centreline, but inside the low velocity
region of the mixing layer, consistent with figure 4 presented and discussed in § 3.
The trend of the correlation coefficients Rug between uL and gL across the different
cross-wise positions ỹ is very similar to the trend of RuA, both for a large-scale filter
of one Taylor length scale (figure 4c), and three Taylor length scales (figure 4d). The
similarity between RuA and Rug is again consistent with (4.5) and the observed nearly
constant value of RgA close to unity.

These observations have some important physical implications. According to the
decomposition shown in (4.5), RuA can be approximated as the product of Rug and RgA.
The correlation Rug is a term involving only the large scales, and represents the spatial
organization of the large-scale structures within the flow. The term RgA quantifies the
local interaction between large-scale gradients and the small scales, and was found to
be constant and close to unity throughout the flow. The value close to unity of RgA
and its independence of the ỹ position is an evidence that the cascade of turbulent
kinetic energy occurs in the presence of large-scale velocity gradients. In other words,
the link between large and small scales is represented by the large-scale gradients, and
not by the large-scale fluctuations, which provides the physical support for the current
SGS models for LES. Also in a channel flow, the correlation coefficient between the
local velocity gradient and the small-scale activity is approximately independent of
the wall-normal distance apart from a small region very close to the wall, as shown
in figure 3(b) of Jiménez (2012). The deviations may be attributed to difficulties in
defining a large-scale fluctuation so close to the wall. Then, with RgA constant and
positive, the trends in RuA previously reported in the literature are actually directly
driven by Rug (4.5), hence in our view they should be interpreted as a large-scale
behaviour, and not as a measure of the interaction between large and small scales.

After clarifying the role of the large-scale gradients in modulating the small scales,
we intend to quantify the extent of this scale interaction depending on the local
strength of the large-scale gradients. The procedure we apply is analogous to the
procedure described in § 3. The large-scale gradients gL(x̃, ỹ, z̃, t) at the cross-wise
position ỹ are non-dimensionalized by the average of the large-scale gradients at ỹ,
gL(ỹ), thus constructing a new signal g∗L = gL/gL representative of the fluctuations
of the large-scale gradients. Statistics of the activity of the small scales conditioned
on the large-scale gradients are shown in figure 5. Large-scale gradients above
the average (g∗L > 1) determine statistically an increase of the local vorticity r.m.s.
independently of the cross-wise position ỹ within the mixing layer, whereas a decrease
is obtained for large-scale gradients below the average (g∗L < 1). This is consistent
with expectations, and with the positive correlation coefficients between gL and A
being close to unity. For a filter size of one Taylor length scale (figure 5a), the
increase of the local vorticity r.m.s. A∗gL

with the strength of the large-scale gradients
is almost linear, and highly independent of the cross-wise location ỹ. At cross-wise
positions closer to ỹ= 0, the slope is slightly smaller than 1. For a filter size of three
Taylor length scales (figure 5b), the increase of the local vorticity r.m.s. A∗gL

with the
strength of the large-scale gradients is again confirmed, even if the slope tends to
decrease near the centreline. This analysis allows us to conclude that, independently
of the large-scale filter used, the local level of enstrophy in a turbulent mixing
layer increases statistically with the increase of the local strength of the large-scale
gradients.
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FIGURE 5. (Colour online) Local vorticity r.m.s. A∗gL
conditioned on the fluctuations of the

large-scale gradients g∗L for two different sizes of the large-scale filter, (a) at one Taylor
length scale λ (case 1), and (b) at three Taylor length scales 3λ (case 2), at ỹ=−7.13
(dot-dashed line), ỹ=−3.93 (crosses, ‘+’), ỹ=−1.80 (circles, ‘E’), ỹ=−0.20 (triangles,
‘B’), ỹ=+1.40 (diamonds, ‘♦’), and ỹ=+3.40 (asterisks, ‘∗’).

5. The local orientation of the small-scale structures

In the previous section, the local interaction between the large-scale gradients and
the small scales has been examined statistically in terms of its magnitude. In the
present section, the alignment between the vorticity vector ω and the large-scale
vorticity vector ωL is examined both within vortical tubes and unconditionally, i.e.
considering all points in the flow within the subdomains (§ 2). Results show a
preferential alignment, which is an evidence of a direct coupling between eddies of
different sizes. The implications on the isotropy of the small scales are also discussed.
The analysis is restricted to the local alignment of the vorticity vectors. At present,
we do not intend to relate these results to the energy cascade process or to the
non-local effects produced by the large-scale straining regions on the small-scale
vorticity (their importance has been pointed out in Ferré et al. (1990) and in Vernet
et al. (1999), among others).

To detect the small-scale vortical structures, the λci-criterion (Zhou et al. 1999)
based on the local swirling strength is adopted. The criterion uses the imaginary part
of the eigenvalues of the VGT, λci, where non-zero values indicate a local swirling
motion. A threshold value for λci (λci,thr) was determined as a multiple of the r.m.s.
of λci, computed on the set of points where λci was non-zero. A point is considered
as part of a vortex if the local swirling strength satisfies:

λci >Kλci,rms = λci,thr, (5.1)

where K is a constant. In each point satisfying this criterion (5.1), the vorticity vector
was considered, ω, which was used in place of the small-scale vorticity vector, under
the hypothesis that the two quantities are similar. Furthermore, a moving average
filter was applied to the 3-D velocity vector fields with a cubic kernel with a linear
dimension of one, two and three Taylor length scales (λ). In the same points, the
large-scale vorticity vectors ωL were determined from the filtered velocity vector fields
for all three cases. The large-scale vorticity, ωL, in this case includes the mean shear.
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FIGURE 6. (Colour online) P.d.f.s of the cosine of the angle between the vorticity vectors
from the filtered velocity vector fields (representative of the large scales), and the vorticity
vectors from the unfiltered velocity vector fields (representative of the small scales), in all
the points of the flow (a), and in the points satisfying the λci-criterion (5.1), with K= 3.5
(b). The size of the filter applied to the velocity vector fields is one Taylor length scale
(λ, continuous line), two Taylor length scales (2λ, dashed line) and three Taylor length
scales (3λ, dash-dotted line).

The cosine alignment between the vorticity vectors both from the filtered, ωL, and
the unfiltered velocity fields, ω, was calculated in each point satisfying the criterion
of (5.1) as:

cos(θ)= ω · ωL

‖ω‖‖ωL‖ , (5.2)

where θ represents the angle between the small-scale and the large-scale vorticity
vectors. The cosine alignment cos(θ ) was calculated for K = 3.5, and for the three
different large-scale filter lengths. More than 1.4 × 106 points contributed to the
statistics. In addition, the cosine alignment was also calculated in all the points of
the flow, without considering the criterion of (5.1), for the same three large-scale
filter lengths. In figure 6, the probability density functions (p.d.f.s) of cos(θ ) are
shown for all the points (figure 6a), and for K = 3.5 in the criterion defined in (5.1)
(figure 6b). The peak in the p.d.f.s at cos(θ) = 1 indicates a preferential alignment
between ω and ωL, in particular inside intense vortices (figure 6b). The peak in the
p.d.f.s drops significantly as the box size of the filter increases, even if a preferential
alignment is still found for a box size of three Taylor length scales (3λ). The findings
presented in figure 6 represent evidence for a preferential alignment between vorticity
at the small-scale and the large-scale level. The structures of vorticity in the range of
scales above the Taylor length scale thus have an influence on the local orientation
of the small-scale structures. The choice of approximating the small-scale vorticity
vectors with the raw unfiltered vorticity vectors did not affect importantly these
results. Similar findings were obtained when the small-scale vorticity vectors (defined
as ωS = ω − ωL) were considered in (5.2), instead of the raw unfiltered vorticity
vectors ω.

To further elaborate these findings, we examine in the following the alignment
between the vorticity vectors from filtered and unfiltered data and the three axes x̃, ỹ
and z̃ of the coordinate system. Again, we considered only points complying with the
criterion of (5.1), with K = 3.5. The result of this analysis is presented in figure 7.
The cosine alignment between the vorticity vectors within the vortex tubes and the
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FIGURE 7. (Colour online) P.d.f.s of the cosine of the angle between the x̃-axis (a), the
ỹ-axis (b) and the z̃-axis (c) and the vorticity vectors from the unfiltered velocity vector
fields (continuous line), and the vorticity vectors from the filtered velocity vector fields,
where the size of the filter is one Taylor length scales (1λ, dash-dotted line) and two
Taylor length scales (2λ, dashed line). The alignment was calculated in points satisfying
the λci-criterion (5.1) with K = 3.5.

x̃- and ỹ-axis reveals a very similar orientation for 1λ-filtered and unfiltered data. In
particular, the cosine alignment between the vorticity vectors and the ỹ-axis is almost
independent of the filtering of the velocity vector fields.

Moreover, figure 7(c) shows that the vorticity vectors from the filtered data are
preferentially aligned with the z̃-axis. This result is expected, in that the mean vorticity
of the flow, which is oriented parallel to the z̃-axis, contributes significantly to the
filtered dataset (Brown & Roshko 1974). The analysis of the vorticity computed from
the unfiltered velocity fields (continuous line) shows that the statistical predominance
of this z̃-axis alignment is lost, although values of the cos(θ ) lower than −0.6 are
still more likely than cos(θ ) > 0.6. Examining the alignment between the vorticity
vectors and the x̃-axis, it appears that the vorticity vectors for a filtering of 2λ have
a stronger tendency to be oriented orthogonally to the x̃-axis than those computed
for the unfiltered and for the 1λ-filtered fields. This is consistent with the increasing
probability of the vorticity vectors from the 2λ-filtered data to be aligned with the
z̃-axis.

In conclusion, the (unfiltered) vorticity within the small-scale vortical structures
tends to assume a preferential orientation in the far field of the mixing layer, as
the related p.d.f.s (figure 7, continuous lines) do not show a uniform distribution.
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This preferential orientation appears to be affected by the large-scale vorticity. These
findings have some important implications for the small-scale turbulence. In particular,
the results provide evidence for the so-called ‘scale invariance’ (Meneveau & Katz
2000) and suggest that part of the characteristics of the large scales are not lost at the
small scales (i.e. higher frequencies). Instead, the small scales are similarly anisotropic,
even in a statistical sense, as shown clearly in figure 7. This implies that in the
cascade mechanism the organization of the scales may not be significantly altered
across the inertial subrange. On the contrary, the anisotropy seems to be partially
preserved and transferred to the smaller scales (figure 7c). It is worth stressing that
these results are based on the analysis of one flow at moderately high Reynolds
number. Nonetheless, recent DNS simulations of homogeneous isotropic turbulence at
very high Reynolds numbers (Ishihara et al. 2013) show that the small-scale vortical
structures cluster in thin layers of intense shear. Their results suggest a preferential
orientation of the axes of the vortical tubes belonging to the same thin layer, which
supports the local anisotropy of the small scales. Further investigations of flows at
higher Reynolds number are required to explore the dependence of these results on
the Reynolds number itself.

Finally, the evidence of the anisotropic organization of the small scales presented
in this section is consistent with the observations by Yeung et al. (1995), Ferchichi &
Tavoularis (2000), Shen & Warhaft (2000), and with the already mentioned work of
Ishihara et al. (2013). In addition, the experimental investigations by Hunt et al.
(2014) suggest a direct coupling between large-scale shear and small-scale enstrophy.

6. Conclusions

In the present work, the interaction between large and small scales is investigated
in a DNS of a turbulent mixing layer at the Reynolds number based on the Taylor
microscale (Reλ) of 250. The analysis is conducted directly in physical space, since
important differences have been found in the strength of the scale interaction when
quantified from time series, analogous to Fiscaletti et al. (2015). The local vorticity
r.m.s., taken as a measure of the small-scale activity, is found to be modulated by the
large-scale velocity fluctuations. In particular, on the low-speed side of the mixing
layer, positive large-scale velocity fluctuations correspond to a higher vorticity r.m.s.,
whereas on the high-speed side, they correspond to a lower vorticity r.m.s., consistent
with Buxton et al. (2013) and Buxton & Ganapathisubramani (2014). Therefore,
the interaction between large and small scales depends on the position within the
mixing layer, similar to a turbulent boundary layer (Bandyopadhyay & Hussain 1984;
Hutchins & Marusic 2007; Mathis et al. 2009a). In the literature, this modulation
has been quantified by the correlation coefficient between the large-scale and the
small-scale velocity fluctuations.

Here, we showed that the correlation coefficient between large-scale velocity
fluctuations and small-scale vorticity r.m.s. (RuA) can be approximated by the product
of RgA and Rug (RuA ≈ RgARug), which respectively are the correlation coefficient
between vorticity r.m.s., A, and the large-scale shear velocity gradients, gL, and
the correlation coefficient between the large-scale velocity fluctuations, uL, and
the large-scale shear velocity gradients, gL. The term RgA was found to be nearly
constant throughout the mixing layer and close to unity. This reveals that large and
small scales present a strong interaction independent of the position within the flow
when the large-scale velocity gradients are considered, instead of the large-scale
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velocity fluctuations, as used in the existing literature on amplitude modulation
(Bandyopadhyay & Hussain 1984; Mathis et al. 2009a; Bernardini & Pirozzoli 2011,
among others). With RgA constant and close to unity, it follows that RuA ≈ Rug,
meaning that the correlation coefficient between the large-scale velocity fluctuations
and the small scales (RuA) can be viewed as depending exclusively on the spatial
organization of the large-scale signals, i.e. uL and gL. The present results confirm this
approximation. As such, RuA does not reflect a scale interaction. Because RuA depends
exclusively on the large scales, which are flow dependent, RuA can vary between
flows and with position in the same flow, as was indeed observed in the literature.

The observed strong correlation between large-scale gradients and small scales
suggested further investigation of possible evidence of the so-called ‘scale invariance’
(Meneveau & Katz 2000). It was found that the vorticity from unfiltered (small
scales) and from low pass filtered (large scales) velocity vector fields tend to be
aligned. This suggests that the vorticity direction does not vary significantly across
the scales. At the Reynolds number of the present investigation, the anisotropy of
the large scales is partially preserved at the small-scale level. This seems to be in
contrast with the Kolmogorov’s hypothesis of local isotropy (Kolmogorov 1941a,b),
even if further investigations of flows at even higher Reynolds numbers are necessary.
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