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Linear stability of pathological detonations
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(Received 11 November 1998 and in revised form 5 August 1999)

In this paper we investigate the linear stability of detonations in which the underly-
ing steady one-dimensional solutions are of the pathological type. Such detonations
travel at a minimum speed, which is greater than the Chapman–Jouguet (CJ) speed,
have an internal frozen sonic point at which the thermicity vanishes, and the unsup-
ported wave is supersonic (i.e. weak) after the sonic point. Pathological detonations
are possible when there are endothermic or dissipative effects present in the system.
We consider a system with two consecutive irreversible reactions A→B→C, with an
Arrhenius form of the reaction rates and the second reaction endothermic. We deter-
mine analytical asymptotic solutions valid near the sonic pathological point for both
the one-dimensional steady equations and the equations for linearized perturbations.
These are used as initial conditions for integrating the equations. We show that, apart
from the existence of stable modes, the linear stability of the pathological detonation
is qualitatively the same as for CJ detonations for both one- and two-dimensional dis-
turbances. We also consider the stability of overdriven detonations for the system. We
show that the frequency of oscillation for one-dimensional disturbances, and the cell
size based on the wavenumber with the highest group velocity for two-dimensional
disturbances, are both very sensitive to the detonation speed for overdriven detona-
tions near the pathological speed. This dependence on the degree of overdrive is quite
different from that obtained when the unsupported detonation is of the CJ type.

1. Introduction
A detonation is a supersonic (with respect to the unburnt fuel) regime of burning

in which a strong shock ignites the fuel, which then burns to equilibrium behind the
shock, and the energy thereby released helps to drive the shock.

The governing equations for such a process admit steady (in the frame of the
shock), one-dimensional solutions, the so-called Zeldovich–Neumann–Döring waves
(e.g. von Neumann 1942). Wood & Salsburg (1960) considered the possible steady
one-dimensional flows for a very general system with an arbitrary number of reversible
reactions. They showed that there were three types of steady, one-dimensional det-
onation wave. The detonation with the minimum possible speed corresponds to the
Chapman–Jouguet (CJ) detonation, where the flow is equilibrium sonic at the end of
the reaction zone. However, they showed that the CJ detonation might not occur, but
that instead a pathological detonation exists which travels at a speed which is greater
than or equal to the CJ speed. For such pathological detonations the reaction zone has
an internal frozen sonic point at which the thermicity vanishes and the detonation has
two possible wave structures downstream of the sonic point, supersonic or subsonic,
corresponding to unsupported and supported pathological detonations respectively.
Overdriven detonations, with detonations speeds greater than the minimum possible
speed are subsonic throughout and correspond to piston supported detonations.
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312 G. J. Sharpe

However, experiments (Fickett & Davis 1979; Lee 1984) reveal that detonation
fronts usually have a complicated three-dimensional, time-dependent structure with
interior transverse waves. Galloping detonations in which the front oscillates longitu-
dinally occur when blunt bodies move through a reactive gas at near CJ velocities. In
round tubes spinning detonations are observed in which the transverse waves rotate
about the tube axis. Perhaps of most interest are the cellular detonations that appear
in rectangular tubes. If the tube width is not very much larger than the natural cell
size the detonation can create remarkably regular diamond shaped patterns in soot
deposited on the walls of the tubes. In these cases the steady one-dimensional waves
are unstable to perturbations in the flow.

A first step in understanding such instabilities is a linear stability analysis of the un-
derlying steady wave. Such an analysis was pioneered by Erpenbeck (1962), who devel-
oped a method which determined the overall stability of a detonation for a given set of
parameters using Laplace transforms. Normal mode approaches to the linear stability
problem were developed by Lee & Stewart (1990) and Sharpe (1997a). In the method
of Sharpe (1997a) asymptotic solutions are found near singularities in the linearized
equations which are used as initial conditions for integrating these equations towards
the shock. This was found to be a more efficient method than that of Lee & Stewart
(1990) who integrated the linearized equations from the shock into the reaction zone.

Most of the work on the linear stability analysis of detonations has been concerned
with an idealized system with one, irreversible reaction with an Arrhenius form
of the reaction rate (Short & Stewart 1997, 1998, 1999; Sharpe 1997a, b; Short
1996a, b, 1997; Lee & Stewart 1990; Erpenbeck 1964, 1966). One-dimensional, time-
dependent numerical simulations (Sharpe & Falle 1998; Williams, Bauwens & Oran
1996; Bourlioux, Majda & Roytburd 1991; Fickett & Wood 1966) show that the
linear stability analyses give excellent predictions of the frequencies and neutral
stability values near the stability boundaries, and have led to the linear stability
analyses being used as benchmarks for testing such codes. Unfortunately no rigorous
comparison between the multi-dimensional linear stability results and time-dependent
calculations have been performed due to the prohibitively high resolution required
for such numerical simulations.

Pathological detonations are not possible for such idealized single irreversible
reaction detonations. However, more complicated systems (e.g. those with endothermic
stages of the reaction, mole changes during the reaction, more than one reversible
reaction, transport effects, relaxational degrees of freedom, curvature of the detonation
front; see Fickett & Davis 1979 for examples) allow the pathological type of steady
detonation to be possible and thus forbid the CJ type. There has been some work on
the linear stability of more complicated detonations. Short & Quirk (1997) carried out
a linear stability analysis and one-dimensional numerical simulations of a three-step
chain-branching reaction. However, they set the heat absorption of an endothermic
stage of the reaction to zero so that the steady detonation is of a CJ type. If
this heat of reaction is not zero then pathological detonations may occur. Kriminski,
Bychkov & Liberman (1998) calculated the one-dimensional linear stability of nuclear
detonations in white dwarf stars, which are believed to be responsible for Type Ia
Supernovae events. They used only a single reaction, representing the very early stages
of the burning, so that the steady detonation was again of the CJ type. However,
it is known that if the full nuclear reaction network is used then the detonation is
actually of the pathological type (Wiggins, Sharpe & Falle 1998; Khokhlov 1989). It
is therefore important to perform a linear stability analysis of a steady pathological
detonation to see if, and how, this differs from the stability of CJ detonations.
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The plan of the paper is as follows: § 2 gives the governing equations of the system,
together with the non-dimensional variables; the steady one-dimensional solutions
of these equations are considered in § 3; the linearized equations are determined in
§ 4; the method for determining the eigenvalues is described in § 5; the results are
presented in § 6 (for one-dimensional disturbances) and § 7 (for multi-dimensional
disturbances); § 8 contains the conclusions.

2. Governing equations
In this paper we use a model system with two consecutive irreversible reactions

A→B→C, with Arrhenius forms of the reaction rates and the second reaction en-
dothermic. The governing equations are

Dρ

Dt
+ ρ∇ · v = 0, ρ

Dv

Dt
= −∇p, De

Dt
+ p

Dρ−1

Dt
= 0,

Dλ1

Dt
=
W1

ρ
,

Dλ2

Dt
=
W2

ρ
,

D

Dt
=

∂

∂t
+ v · ∇,

 (2.1)

where v = (u, v, w) is the fluid velocity in the laboratory frame, ρ the density, p the
pressure, e the internal energy per unit mass, λi the reaction progress variable of the
ith reaction (i = 1 or 2, with λi = 1 for unburnt and λi = 0 for burnt), γ the (constant)
ratio of specific heats and Wi the reaction rate of the ith reaction. The internal energy
per unit mass is given by

e(ρ, p, λ) =
p

(γ − 1)ρ
− Q,

where

Q = q1(1− λ1) + q2(1− λ2)

is the total heat release and qi is the constant heat of reaction for the ith reaction.
Note that q2 < 0 since the second reaction is assumed to be endothermic. The mass
fractions xA, xB , xC of species A, B, C are related to the reaction progress variables by

xA = λ1, xB = λ2 − λ1, xC = 1− λ2.

We assume an Arrhenius form of the reaction rates and a perfect gas:

W1 = −K1ρλ1e
(−TA1/T ), W2 = K2ρ(λ1 − λ2)e

(−TA2/T ), T =
µp

Rρ
, c2 =

γp

ρ
,

where T is the temperature, c the sound speed, TAi the activation temperature of the
ith reaction, Ki the constant rate coefficient for the ith reaction, R the universal gas
constant and µ the (constant) mean molecular weight. It is also useful to define the
sonic parameter

η = c2 − u2.

The shock (Rankine–Hugoniot) conditions are

[ρ (D − v) · n]+ = [ρ (D − v) · n]− = m, p+ − p− = m2

(
1

ρ−
− 1

ρ+

)
,[

e+
p

ρ
+ 1

2
|D − v|2

]
+

=

[
e+

p

ρ
+ 1

2
|D − v|2

]
−
, v+ · t = v− · t, λi+ = 1,

 (2.2)

where D is the normal shock velocity measured in the laboratory frame, n is the unit
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314 G. J. Sharpe

normal to the shock and t any tangent vector, with the +,− subscripts referring to
states immediately behind and ahead of the shock respectively.

Henceforth we use a bar ( ¯ ) to denote dimensional quantities, a zero (0) subscript
to denote steady, unperturbed quantities, an s superscript to denote quantities at a
sonic point, a p superscript to denote quantities at the pathological point and an
infinity (∞) superscript to denote quantities at the end of the reaction zone.

We non-dimensionalize by putting

ρ =
ρ̄

ρ̄−
, v =

v̄

D̄
, p =

p̄

ρ̄−D̄2
, T =

p

ρ
=
R̄T̄

µ̄D̄2
, t =

K̄1t̄

α1

, r =
K̄1r̄

α1D̄
,

q1 =
q̄1

D̄2
, q2 =

q̄2

D̄2
,

 (2.3)

where D̄ is the speed of the steady detonation wave, r = (x, y, z) is the position
vector and α1 is a scale factor chosen so that the characteristic length scale is the
half-reaction length of the first reaction, i.e. the distance between the shock and the
point at which λ1 = 1/2. We then define non-dimensional activation temperatures, τ1,
τ2, by

τ1 =
R̄T̄A1

µ̄D̄2
, τ2 =

R̄T̄A2

µ̄D̄2
,

and the non-dimensional pressure in the ambient material by

p− =
p̄−
ρ̄−D̄2

.

In terms of these non-dimensional variables equations (2.1) are unchanged in form
except that the reaction rates are now given by

W1 = −α1ρλ1 exp (−τ1ρ/p), W2 = α2ρ(λ1 − λ2) exp (−τ2ρ/p),

where α2 = α1K̄2/K̄1. Let α = α2/α1.
The majority of the results of previous work on the linear stability of detonations

have been given in terms of the more familiar scalings of Erpenbeck (1964), who
scaled the activation temperature and heat of reaction by the temperature in the
ambient material. In terms of this scaling we define

E1 =
T̄A1

T̄−
, E2 =

T̄A2

T̄−
, Q1 =

q̄1µ̄

R̄T̄−
, Q2 =

q̄2µ̄

R̄T̄−
.

Note that

T̄− =
µ̄p̄−
R̄ρ̄−

=
µ̄

R̄
D̄2p−

so that the conversion between his scalings and ours is given by

Ei =
τi

p−
, Qi =

qi

p−
.

Throughout this paper we set

γ = 1.2, α = 1,

and, unless otherwise specified,

Q1 = 100, Q2 = −75.

Note that for α = 1 and τ1 = τ2 = 0 this reduces to the pathological detonation model
of Fickett & Davis (1979).
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Figure 1. Hugoniot curves and Rayleigh lines in the (1/ρ0, p0)-plane for Q1 = 100, Q2 = −75,
α = 1, γ = 1.2.

3. The steady one-dimensional solution
3.1. Qualitative behaviour of the steady solution

The properties of the steady detonation wave can be understood by considering the
Hugoniot curves and Rayleigh lines (see, for example, Fickett & Davis 1979) in
a (p0, 1/ρ0)-plane (figure 1). For a given value of the detonation speed the steady
solution is confined to a Rayleigh line, which represents conservation of mass and
momentum. The Hugoniot curves represent conservation of energy for fixed values
of the reaction progress variables (or equivalently in this case for a given value of
the total heat release). Note that the Hugoniot curve is a projection onto the plane
of a curve in the space of the chemical and thermodynamic variables. Since the
second reaction is endothermic there can be a maximum in the heat release within
the detonation wave, in which case there are two points within the wave which have
the same value of the heat release.

The steady solution evolves along the Rayleigh line, crossing each of the Hugoniot
curves in turn until the equilibrium (i.e. burnt) state is reached (i.e. the Hugoniot
curve corresponding to Q = Qburnt in figure 1). An important point is that whenever
a Rayleigh line and Hugoniot curve are tangent to each other the flow is sonic at the
tangent point, and is subsonic above that point and supersonic below it (Landau &
Lifshitz 1959).

The shock takes the state to the Neumann point N, where the Rayleigh line and
the (unburnt) Hugoniot curve corresponding to Q = 0 cross. The Chapman–Jouguet
condition is that the flow is sonic at the end of the reaction zone, i.e the CJ detonation
speed corresponds to the Rayleigh line which is tangent to the complete reaction
Hugoniot curve (the line corresponding to D = DCJ in figure 1). For detonation speeds
below this value there can be no steady solution since the corresponding Rayleigh
line does not touch the complete reaction Hugoniot curve and so the equilibrium
state cannot be reached. However, when the detonation has an endothermic stage
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316 G. J. Sharpe

the complete reaction Hugoniot curve may also be a Hugoniot curve for incomplete
reaction. Then other incomplete reaction Hugoniot curves, corresponding to greater
values of the heat release, will lie above the complete reaction Hugoniot curve. In this
case the Rayleigh line corresponding to the CJ speed does not cross all the relevant
Hugoniot curves and the CJ point, C, is a sonic point of incomplete reaction, and no
steady solution exists for this speed. The minimum detonation speed, corresponding to
the unsupported or self-sustaining detonation wave speed, is then given by the lowest
speed for which the corresponding Rayleigh line touches all the relevant Hugoniot
curves. This is given by the Rayleigh line corresponding to D = Dp in figure 1, which
is just tangent to the Hugoniot curve corresponding to the maximum heat release
in the reaction zone, Q = Qmax, at the pathological point, P. Since the Rayleigh line
is tangent to a Hugoniot curve at P the flow is sonic there. We call the detonation
corresponding to this speed the pathological detonation. Note that the pathological
detonation speed depends on the form of the reaction rates, whereas the CJ speed
does not.

Along the Rayleigh line for the pathological speed the steady solution moves down
the line from the Neumann point N to the pathological point P, where simultaneously
the flow is sonic and the heat release has a maximum value. The solution can then
proceed down the supersonic (weak) part of the Rayleigh line if the detonation is
unsupported, to the weak equilibrium point W. Alternatively it may proceed back up
the subsonic (strong) part of the Rayleigh line for a supported pathological detonation
to the strong equilibrium point S.

For supported detonations with speeds greater than the pathological speed, which
we shall call overdriven, the steady solution proceeds down the corresponding
Rayleigh line, e.g. the line corresponding to D = Do in figure 1, from the Neu-
mann point N, until it meets the Hugoniot curve of the maximum heat release at
M, which, in general, depends on the detonation speed. It then proceeds back up the
Rayleigh line to the strong equilibrium point S on the complete reaction Hugoniot
curve. Note that in this case there is no path to the weak equilibrium point W.
The steady solution is then entirely subsonic throughout and the thermodynamic
quantities have a turning point inside the wave.

3.2. Governing equations of the steady solution

In terms of our non-dimensional variables, the steady detonation is assumed to travel
at unit speed in the positive x-direction in the laboratory frame. We transform to a
frame moving with the shock, i.e.

x = xl − t, u = ul − 1,

where xl and ul are the position and x-component of the fluid velocity in the
laboratory frame. The shock is now stationary at x = 0 and the detonation wave lies
in the negative x half-plane.

Conservation of mass and momentum then give

ρ0u0 = −1, p0 + ρ0u
2
0 = p− + 1,

which allows us to write the thermodynamic variables in terms of u0 alone:

ρ0 = − 1

u0

, p0 = p− + 1 + u0.

The sonic value of u0 can then be found from

η0 = c2
0 − u2

0 = −γ(p− + 1 + u0)u0 − u2
0 = 0,
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which gives

us0 = −γ(p− + 1)

γ + 1
.

Conservation of energy gives

γp0

(γ − 1)ρ0

+ 1
2
u2

0 = 1
2

+
γp−

(γ − 1)
+ Q0,

where

Q0 = q1(1− λ10) + q2(1− λ20).

This gives a relation between the thermodynamic and chemical variables:

Q0 = − (u0 + 1)

2(γ − 1)
[(γ + 1)u0 + 2γp− + γ − 1] (3.1a)

or

u0 = −γ(p− + 1)

γ + 1
±
[
(1− γp−)2 − 2(γ2 − 1)Q0

]1/2
γ + 1

= us0 ±
[
2(γ2 − 1)(Qs0 − Q0)

]1/2
γ + 1

, (3.1b)

so that u0 and hence the other thermodynamic variables are double valued for a given
value of the total heat release, everywhere except at a sonic point. The thermodynamic
quantities therefore have a subsonic, or strong, branch corresponding to the plus sign
and a supersonic, or weak, branch corresponding to the minus sign and the solution
can only pass from one branch to the other at a sonic point. Note that

dQ0

du0

=
η0

(γ − 1)u0

so that

du0

dx
=
u0(γ − 1)

η0

dQ0

dx
,

which diverges at a sonic point unless dQ0/dx = 0 there, i.e the total heat release
must be a maximum there, otherwise no steady solution can exist.

At the shock λ10 = λ20 = 1, Q0 = 0 and the flow is subsonic so that

u0+ =
1− 2γp− − γ

γ + 1
.

The weak branch gives u0 = −1 at x = 0, i.e. it corresponds to an unshocked state.
At the end of the reaction zone λ10 = λ20 = 0 and Q0 = q1 + q2 which gives

u∞0 = −γ(p− + 1)

γ + 1
±
[
(1− γp−)2 − 2(γ2 − 1)(q1 + q2)

]1/2
γ + 1

.

The CJ condition is that the flow is sonic for the complete reaction value of Q0,
which gives

qCJ1 + qCJ2 =
(1− γpCJ− )2

2(γ2 − 1)
.
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We define the degree of overdrive, f, by

f =

(
D̄

D̄CJ

)2

,

i.e. with respect to the CJ speed. Then

p− =
pCJ−
f
, qi =

qCJi
f
, τi =

τCJi
f

(i = 1, 2).

For the one-dimensional steady solution, the rate equations become

dλ10

dx
= −α1λ10

u0

exp
(
τ1/((p− + u0 + 1)u0)

)
,

dλ20

dx
=
α2(λ10 − λ20)

u0

exp
(
τ2/((p− + u0 + 1)u0)

)
,

 (3.2)

with u0 given by equation (3.1b). Alternatively, we can also use λ10 as the independent
variable, in which case we have

dλ20

dλ10

=
α(λ20 − λ10)

λ10

exp
(
(τ2 − τ1)/((p− + u0 + 1)u0)

)
. (3.3)

Note that in λ10, λ20 space the structure of the solution, and the pathological speed,
depend only on the ratio of rate constants, α, and the difference in activation
temperatures, τ1 − τ2.

The scale factor α1 is given by

α1 =

∫ 1/2

0

u0

λ10

exp
(−τ1/((p− + u0 + 1)u0)

)
dλ10. (3.4)

Integrating equation (3.4) together with equation (3.3) gives α1. We use a fourth-order
Runge–Kutta routine with adaptive step doubling to perform all the integrations in
this paper.

Using equation (3.1a) to write λ20 in terms of λ10 and u0, we obtain

du0

dλ10

=
(γ − 1)u0

η0λ10

(
α[Q0 − (q1 + q2)(1− λ10)] exp

(
τ2 − τ1

(p− + u0 + 1)u0

)
− q1λ10

)
, (3.5)

with Q0 given by equation (3.1a).
The pathological condition is that the flow is sonic when the thermicity is zero, i.e.

when dQ0/dx = 0. Since
dQ0

dx
= −q1

dλ10

dx
− q2

dλ20

dx

this gives the values of λ10 and λ20 at the pathological point:

λ
p
10 =

β[Qs0 − (q1 + q2)]

q1 − β(q1 + q2)
, λ

p
20 =

(βq2 − q1)λ
p
10

βq2

, (3.6)

where

βi = αi exp
(
τi/((p− + us0 + 1)us0)

)
, β =

β2

β1

. (3.7)

We use an iterative procedure to find the pathological detonation speed. For a given
value of the degree of overdrive, f, we integrate equation (3.5) from the shock into
the reaction zone. If f is too small then the solution terminates at a sonic point and
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Figure 2. (a) Pathological degree of overdrive, fp, versus the difference in activation temperatures,
τ1− τ2, (b) fp versus E1−E2, (c) and (d) values of the reaction progress variables at the pathological
point versus the difference in activation temperatures. Q1 = 100, Q2 = −75, α = 1, γ = 1.2.

there is no steady solution, whereas if f is too large the solution corresponds to an
overdriven detonation, which reaches a maximum value of the heat release and then
proceeds to the strong equilibrium point. We thus obtain upper and lower bounds
for the pathological degree of overdrive, fp, and we can use these to iterate using
bisection to obtain fp to any desired degree of accuracy. A check on the convergence
is given by the value of λ10 and λ20 as predicted by equation (3.6) for the current value
of f compared to the values at the sonic point or at the maximum of the heat release.

Figure 2(a) shows the variation of the pathological degree of overdrive with the
difference in the activation temperatures using our scalings, figure 2(b) shows the same
thing for Erpenbeck’s scaling, while figures 2(c) and 2(d ) show the values of λ10 and
λ20, respectively, at the pathological point against τ1 − τ2. For τ1 � τ2 the induction
time of the second reaction is much longer than that of the first reaction, so that the
endothermic stage begins when the exothermic first reaction is virtually complete, i.e.
λ
p
10 → 0, λp20 → 1 as τ1−τ2 → −∞. On the other hand, for τ1 � τ2 the second reaction

has a faster rate than the first so that the burning can remain exothermic throughout
and the self-sustaining detonation is then CJ, with no pathological point. This occurs
for τ1 − τ2 > 0.3725, which corresponds to E1 − E2 > 9.067.

3.3. Asymptotic solution near the pathological point

Once the pathological detonation speed has been found, it remains to determine the
complete steady structure beyond the sonic point. It is also good practice to integrate
away from sonic points. In order to do so we find asymptotic expansions for the
steady variables near the pathological point on each branch of the solution and
integrate either to the shock or to an equilibrium point. These asymptotic solutions
will also be needed in the linear stability analysis.

Consider the branch of the solution between the shock and the pathological point.
We define a new variable

w = λ10 − λp10
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Figure 3. Steady pathological detonation with E1 = 50, E2 = 50, Q1 = 100, Q2 = −75, α = 1,
γ = 1.2, f = fp = 1.7157555. (a) Pressure, p0, versus distance behind shock, x, (b) p0 versus λ10, (c)
and (d ) reaction progress variables versus distance behind shock. The solid line is the branch of the
solution between the shock and the pathological point, the dashed line is the branch between the
pathological point and the strong equilibrium point and the dotted line is the branch between the
pathological point and weak equilibrium point.

so that w is small near the pathological point, and expand λ20 in terms of w as

λ20 = λ
p
20 + l1w + l2w

2 + l3w
3 + . . . ,

where

li =
1

i!

(
diλ20

dwi

)p
=

1

i!

(
diλ20

dλi10

)p
with l1 = −q1/q2 since dQ0/dw = 0 at the pathological point. Expanding equation
(3.1b) then gives

u0 = us0 +

(
2(γ − 1)q2l2

γ + 1

)1/2

w + . . .

so that

l2 =
(γ + 1)

2(γ − 1)q2

[(
du0

dw

)p]2

.

Substituting into equation (3.3) and comparing powers of w gives the li. At O(w) we
obtain

(γ + 1)

(γ − 1)q2

[(
du0

dw

)p]2

+
γ(γ − 1)q1(τ1 − τ2)

q2(u
s
0)

3

(
du0

dw

)p
+
β(q1 + q2)− q1

q2λ
p
10

= 0. (3.8)

Since (du0/dw)p > 0 on the branch between the shock and the pathological point, we
must take the positive root.

Similarly, we can obtain asymptotic solutions in terms of w near the pathological
point on the branches of the solution between the pathological point and the strong
and weak equilibrium points.

We can then use these asymptotic solutions as initial conditions with which to
integrate equations (3.2) away from the sonic pathological point. Figure 3 shows the
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Figure 4. Steady overdriven detonation with E1 = 50, E2 = 50, Q1 = 100, Q2 = −75, α = 1,
γ = 1.2, f = 1.8. (a) Pressure, p0, versus distance behind shock, x, (b) p0 versus λ10.

steady solution for both the supported and unsupported pathological detonations
when E1 = E2 = 50 (fp = 1.7157555). Note that for the supported pathological
detonation, which goes to the strong equilibrium point, there is a discontinuity in
the derivatives of the thermodynamic quantities at the pathological point. Note also
that the unsupported pathological detonation takes much longer to reach equilibrium
compared to the supported detonation due to lower temperatures. Figure 4 shows
the steady solution for an overdriven detonation with E1 = E2 = 50, f = 1.8. For
overdriven detonations the thermodynamic variables have a minimum inside the re-
action zone, but their derivatives are continuous there. The structure of the supported
pathological detonation is the limit of the structure of overdriven detonations as
f → fp from above.

4. The linearized equations
Suppose that the one-dimensional steady solution is perturbed so that the position

of the (perturbed) shock in the laboratory frame has the form

X(y, t) = t+ εeσteiky, ε�1,

i.e. a perturbation in the y-direction.
We transform to a frame moving with the perturbed shock:

x = xl −X(y, t), y = yl, t = tl , u = ul − V (y, t),

where

V (y, t) =
∂X

∂t
is the velocity of the perturbed shock in the x-direction.

We assume that the perturbed variables are of the form

q(x, y, t) = q0(x) + εq1(x)eσteiky,

where q is one of ρ, u, v, p, λ1 or λ2, and we expand W1≡W1(p, ρ, λ1) and
W2≡W2(p, ρ, λ1, λ2) as

Wi = Wi0(x) + εWi0,ρρ1(x)eσteiky + εWi0,pp1(x)eσteiky + εWi0,λ1
λ1(x)eσteiky

+εWi0,λ2
λ2(x)eσteiky + . . .

where Wi0,ρ = ∂Wi0/∂ρ0, etc.
Note that in the laboratory frame ∂/∂xl , ∂/∂yl and ∂/∂tl become

∂

∂x
,

∂

∂y
− ∂X

∂y

∂

∂x
and

∂

∂t
− ∂X

∂t

∂

∂x
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in the transformed coordinates and ul is replaced by

u+
∂X

∂t
.

Using these and substituting the expressions for the perturbed quantities into equations
(2.1), after linearizing in ε, the equations can be written in the form

η0

du

dx
= Au+ s, (4.1)

where

u = (ρ1, u1, v1, p1, λ11, λ21)
T ,

A =


(−ση0 − a2

0u
′
0 + (γ − 1)(q1W10,ρ + q2W20,ρ))/u0 (σu2

0 + (3u2
0 − a2

0)u
′
0)/u

3
0

(−u2
0u
′
0 + (γ − 1)(q1W10,ρ + q2W20,ρ))u0 (σ + 2u′0)u0

0 0
(−a2

0u
′
0 + (γ − 1)(q1W10,ρ + q2W20,ρ))u0 (σa2

0 + (u2
0 + a2

0)u
′
0)/u0

(u0λ
′
10 −W10,ρ)η0 −η0λ

′
10/u0

(u0λ
′
20 −W20,ρ)η0 −η0λ

′
20/u0

−ik (σ + γu′0 + (γ − 1)(q1W10,p + q2W20,p))/u0

−ika2
0 (σ + γu′0 + (γ − 1)(q1W10,p + q2W20,p))u0

−ση0/u0 ikη0

−ika2
0 (σ + γu′0 + (γ − 1)(q1W10,p + q2W20,p))u0

0 −η0W10,p

0 −η0W20,p

(γ − 1)(q1W10,λ1
+ q2W20,λ2

)/u0 (γ − 1)q2W20,λ2
/u0

(γ − 1)(q1W10,λ1
+ q2W20,λ2

)u0 (γ − 1)q2W20,λ2
u0

0 0
(γ − 1)(q1W10,λ1

+ q2W20,λ2
)u0 (γ − 1)q2W20,λ2

u0

−(σ + u0W10,λ1
)η0/u0 0

−η0W20,λ1
−(σ + u0W20,λ2

)η0/u0


and

s = (σ2/u0, σ
2u0,−ikη0u

′
0, σ

2a2
0/u0, 0, 0)T ,

where the prime denotes differentiation with respect to x. Since the steady reaction
zone is infinite in length, it is useful to use λ10 as the independent variable. Equation
(4.1) then becomes

−α1λ10η0

u0

exp
(
τ1/((p− + u0 + 1)u0)

) du

dλ10

= Au+ s. (4.2)

Note that equation (4.2) has a singularity whenever η0 = 0, i.e. at the pathological
point, or λ10 = 0, i.e. at the end of the reaction zone.

4.1. Boundary conditions

In the laboratory frame the shock is described by the curve

S(xl, y, t) = xl −X(y, t) = 0.

The unit normal is

n =
∇S
|∇S | where ∇S =

(
1,−∂X

∂y

)
,
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and the normal shock velocity is

D = −∂S
∂t

∇S
|∇S |2 .

Substituting this into the shock conditions (2.2) and linearizing we obtain the bound-
ary conditions at the shock:

ρ1(0) =
4σγp−(γ + 1)

(2γp− + γ − 1)2
, u1(0) =

σ(2γp− − γ + 1)

(γ + 1)
, v1(0) =

2ik(γp− − 1)

(γ + 1)
,

p1(0) =
4σ

(γ + 1)
, λ11(0) = 0 λ21(0) = 0.

 (4.3)

The boundary condition to be applied at singular points is that the perturbations
are spatially bounded there.

5. Determining the eigenvalues
5.1. Pathological detonations

For pathological detonations we seek solutions to equation (4.2) which are asymptot-
ically valid as we approach the sonic point on the branch of the solution between the
shock and pathological point. Since η0 = 0 at the pathological point equation (4.2) is
singular there. We use the methods described by Wasow (1965) for regular singular
points to determine these solutions.

Transforming to the independent variable w = λ10 − λp10, dividing equation (4.2)
through by (η0/w)dλ10/dx since η0 is O(w) near the pathological point, and expanding
the matrix entries in terms of the small quantity w, equation (4.2) can be rewritten in
the form

w
du

dw
=
(
A0 + A1w + A2w

2 + . . .
)
u+ s0 + s1w + s2w

2 + . . . , (5.1)

where now the Ai and si are independent of the steady variables, with

A0 =


a1/(u

s
0)

2 a2/(u
s
0)

2 a3/(u
s
0)

2 a4/(u
s
0)

2 a5/(u
s
0)

2 a6/(u
s
0)

2

a1 a2 a3 a4 a5 a6

0 0 0 0 0 0
a1 a2 a3 a4 a5 a6

0 0 0 0 0 0
0 0 0 0 0 0

 ,

where

a1 =
(us0)

3(du0/dw)p + γ(γ − 1)q1(τ1 − τ2)

(γ − 1)us0(du0/dw)p
, a2 =

σus0 − 2β1λ
p
10(du0/dw)p

(γ + 1)β1λ
p
10(du0/dw)p

,

a3 = − ik(us0)
2

(γ + 1)β1λ
p
10(du0/dw)p

,

a4 =
σ(us0)

4 − γβ1λ
p
10

[
(us0)

3(du0/dw)p + γ(γ − 1)q1(τ1 − τ2)
]

(γ + 1)β1λ
p
10(u

s
0)

3(du0/dw)p
,

a5 =
(γ − 1)(q1 − βq2)

(γ + 1)λp10(du0/dw)p
, a6 =

(γ − 1)βq2

(γ + 1)λp10(du0/dw)p
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(β1, β are given by equation (3.7) and (du0/dw)p is defined by equation (3.8)), and

s0 =

(
σ2

(γ + 1)β1λ
p
10u

s
0(du0/dw)p

,
σ2us0

(γ + 1)β1λ
p
10(du0/dw)p

, 0,
σ2us0

(γ + 1)β1λ
p
10(du0/dw)p

, 0, 0

)T
.

5.1.1. Solution of the homogeneous equation

The eigenvalues of the matrix A0 are h, 0, 0, 0, 0, 0, where

h =
2σ(us0)

4 − β1λ
p
10

[
(γ + 1)(us0)

3(du0/dw)p + γ(γ − 1)2q1(τ1 − τ2)
]

(γ + 1)β1λ
p
10(u

s
0)

3(du0/dw)p
.

Since none of the eigenvalues of A0 differ by a positive integer we can find a
transformation of the form

u =
(
T0 + T1w + T2w

2 + . . .
)
z,

where T0 is the matrix whose columns are the eigenvectors of A0, which reduces the
homogeneous form of equation (5.1) to

w
dz

dw
= B0z, (5.2)

where

B0 =


h 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

Equation (5.2) has the six independent solutions

z1 = (0, 1, 0, 0, 0, 0)T , z2 = (0, 0, 1, 0, 0, 0)T , z3 = (0, 0, 0, 1, 0, 0)T ,

z4 = (0, 0, 0, 0, 1, 0)T , z5 = (0, 0, 0, 0, 0, 1)T , z6 = (wh, 0, 0, 0, 0, 0)T .

Transforming back to the variables u we have six independent, homogeneous, asymp-
totic solutions of the form

ui = ai0 + ai0w + ai0w
2 + . . . , i = 1, . . . , 5,

u6 = wh
(
a6

0 + a6
0w + a6

0w
2 + . . .

)
,

where the aji are constant vectors, i.e. they depend only on the parameters.
Now, provided

Re(σ) >
β1λ

p
10

2(us0)
4

[
(γ + 1)(us0)

3(du0/dw)p + γ(γ − 1)2q1(τ1 − τ2)
]

(5.3)

(note that the term on the right-hand side of equation (5.3) is negative), then h is
negative and thus the solution u6 is unbounded at the pathological point so that the
boundedness condition requires that we discard this solution.

The fact that equation (5.3) allows stable modes distinguishes the pathological
detonation from CJ and overdriven detonations which formally have no stable modes
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when the reaction zone is infinite in length (Sharpe 1997a). Bourlioux et al. (1991)
claim that even when the detonation is infinite in length there are stable modes,
and that they are ‘resonant acoustic scattering states’, with eigenfunctions that grow
unboundedly as x → −∞. For these cases, using a method similar to that described
above, one can determine asymptotic solutions valid as x→ −∞ (note that Bourlioux
et al. 1991 give incorrect forms of these asymptotic solutions, the correct ones are
given in Sharpe 1997a). For Re(σ) > 0 there is one unbounded solution, which must
be discarded, while for Re(σ) < 0 this solution becomes bounded, but the remaining
solutions all become unbounded. Hence for Re(σ) < 0 there is only one valid solution
and the eigenvalue problem is overdetermined, so that there are no stable modes.
However, Bourlioux et al. (1991) use Lee & Stewart’s (1990) method to instead
integrate the linearized equations from the shock into the reaction zone and apply a
condition at a large distance from the shock. For Re(σ) > 0 this condition is simply
that the solution is independent of the unbounded solution, and so is equivalent to
the method used by Sharpe (1997a). For Re(σ) < 0, Bourlioux et al. (1991) continue
to use the same downstream boundary condition to find ‘stable modes’. They remark
that even though all but one of the solutions are now growing as x → −∞, their
condition eliminates the fastest growing mode. In fact it does not, it now ensures that
the solution is independent of the only bounded solution, and so is the worst possible
condition to use. It is no wonder that the ‘eigenfunctions’ of these spurious stable
modes grow unboundedly! In fact for any non-eigenvalue value of σ (whether Re(σ) is
positive or negative) the corresponding ‘eigenfunctions’ will be spatially growing since
they contain parts of unbounded solutions. Such unbounded solutions are totally
incompatible with a linear stability analysis since the perturbations are assumed to
be small, and unbounded perturbations are not small in any sense. However, this is
not too important since in reality there must be some boundary at a finite distance
behind the shock, where the perturbations will be constrained to be bounded and
hence stable modes will exist. Indeed, one-dimensional time-dependent numerical
calculations, where the boundary condition at the downstream end of the numerical
domain constrains the perturbations to be zero there, do have stable modes for CJ
and overdriven detonations which are formally of infinite length.

5.1.2. Solution of the inhomogeneous equation

To solve the inhomogeneous equation, (5.1), we transform to the variables

q = T−1
0 u

so that the equation is then of the form

w
dq

dw
=
(
B0 + B1w + B2w

2 + . . .
)
q + r0 + r0w + r0w

2 + . . . ,

where

ri = T−1
0 si

with

r0 =

(
σ2

(γ + 1)β1λ10u
s
0(du0/dw)p

, 0, 0, 0, 0, 0

)T
. (5.4)

We can find a particular integral of equation (5.4) of the form

qP = c0 + c1w + c2w
2 + . . . ,
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where the ci are found by substituting into equation (5.4) and comparing the coeffi-
cients of powers of w, with

c0 =

(
− σ2

(γ + 1)β1λ10u
s
0(du0/dw)ph

, 0, 0, 0, 0, 0

)T
.

Transforming back to u gives a particular integral of the form

uP = aP0 + aP1 w + aP2 w
2 + . . . ,

where the aPi are constant vectors.

5.1.3. Determining the linear modes

We now have an asymptotic solution of the form

u∼ b1u1 + b2u2 + b3u3 + b4u4 + b5u5 + uP

as w → 0, where the bi are (complex) constants of integration (bj = bRj + ibIj , say),
and at the shock we have, from the linearized shock conditions (4.3), u = uS , where

uS =

(
4σγp−(γ + 1)

(2γp− + γ − 1)2
,
σ(2γp− − γ + 1)

(γ + 1)
,
2ik(γp− − 1)

(γ + 1)
,

4σ

(γ + 1)
, 0, 0

)T
.

We can therefore integrate the full equation for u, equation (4.2), using the asymp-
totic solutions, ui of the homogeneous equation or up of the inhomogeneous equation,
as initial conditions, together with equation (3.5) with the asymptotic expansion for
u0 as the initial condition, until we reach the shock at λ10 = 1.

We have ten constants of integration (the bRi and bIi ) and twelve conditions at the
shock (the real and imaginary parts of the components of uS ), so only for discrete
values of the complex quantity σ, the eigenvalues, will all the conditions be satisfied
for given values of the other parameters. Given a trial value of σ, we integrate the
solutions to the shock and obtain ui(λ10 = 1) = ui,0, say, and uP (λ10 = 1) = uP ,0.
Consider the quantity

m = |(bR1 + ibI1)u1,0 + (bR2 + ibI2)u2,0 + (bR2 + ibI3)u3,0 + (bR4 + ibI4)u4,0

+(bR5 + ibI5)u5,0 + uP ,0 − uS |2 (5.5)

(where |q|2 = q · q̄). Then if σ is an eigenvalue we can choose the bRi and bIi such
that m = 0. For any given σ we can minimize m by partially differentiating (5.5) with
respect to each of the bRi and bIi and setting these quantities to zero, which clearly
corresponds to the minimum m given each of the other constants. This gives a 10×10
system of linear equations, Cv = b say, where v = (bR1 , b

I
1, . . . , b

R
5 , b

I
5)
T and C and b

are a constant matrix and vector respectively. Solving these for v gives the bRi and bIi
such that m is a minimum.

We iteratively search the real and imaginary σ-space and determine min(m) at each
point in order to find the eigenvalues where min(m) has local minima. In fact we can
iteratively change any two of the parameters, so, for example, to find the neutrally
stable wavenumbers, with the other parameters fixed, we can set Re(σ) = 0 and search
the (Im(σ), k)-plane.

In order to check that we have started the integration at a small enough value of w
for the asymptotic solutions to give an accurate value of min(m), we evaluate min(m)
by starting at a value of w and at a value of w/2. If these two values are not in
agreement to a required tolerance then w is halved and the process repeated.
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5.2. Overdriven detonations

In order to determine the linear eigenvalues for the overdriven detonations we could
find asymptotic solutions valid near the strong equilibrium point. However, a phase-
plane analysis of the steady solution about the equilibrium point gives(

λ10

λ20

)
∼ C1e

−κ1x

(
1

κ2/(κ2 − κ1)

)
+ C2e

−κ2x

(
0
1

)
(κ1 6= κ2)

as x→ −∞, where C1 and C2 are constants and

κi =
αi

u∞0
exp

(
τ1/((p− + u∞0 + 1)u∞0 )

)
, i = 1, 2,

so that λ20 is O(λ10) if κ = κ2/κ1 > 1 or O(λκ10) if κ < 1, as λ10 → 0 (note that for
κ 6 1 the derivative dλ20/dλ10 is infinite at the equilibrium point). The asymptotic
solutions and the ordering of the higher-order terms would then depend on the
value of κ, indeed, for κ < 1, λ10 would not be a suitable independent variable
for the asymptotic expansions. Since it would be somewhat tedious to determine
these different asymptotic solutions and we are only interested in the stability of the
overdriven detonations in order to compare the linear spectrum as f → fp with the
pathological spectrum, we instead use the method of Lee & Stewart (1990).

We integrate equations (3.5) and (4.2) from the shock using the shock conditions
(4.3) as initial conditions towards the end of the reaction zone, stopping at a small
value of λ10 and applying a boundedness or radiation condition there.

We first rewrite equation (4.2) as

λ10

du

dλ10

= A∗u+ s∗.

where

A∗ = − u0

α1η0

exp
(−τ1/((p− + u0 + 1)u0)

)
A,

s∗ = − u0

α1η0

exp
(−τ1/((p− + u0 + 1)u0)

)
s.

Then we have

A∞∗ =
1

κ1η
∞
0



ση∞0 /u∞0 −σ/u∞0 ik −σ/u∞0
0 −σu∞0 ik(a∞0 )2 −σu∞0
0 0 ση∞0 /u∞0 −ikη∞0
0 −σ(a∞0 )2/u∞0 ik(a∞0 )2 −σu∞0
0 0 0 0

0 0 0 0

(γ − 1)(q2κ2 − q1κ1)/u
∞
0 −(γ − 1)κ2q2/u

∞
0

(γ − 1)(q2κ2 − q1κ1)u
∞
0 −(γ − 1)κ2q2u

∞
0

0 0

(γ − 1)(q2κ2 − q1κ1)u
∞
0 −(γ − 1)κ2q2u

∞
0

(σ/u∞0 + κ1)η
∞
0 0

−κ2η
∞
0 (σ/u∞0 + κ2)η

∞
0


,
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which has eigenvalues h1, h1, h1 + 1, h1 + κ, h2 and h3, where

h1 =
σ

κ1u
∞
0

, h2 = −σu
∞
0 + a∞0

(
σ2 + k2η∞0

)1/2

κ1η
∞
0

,

h3 = −σu
∞
0 − a∞0

(
σ2 + k2η∞0

)1/2

κ1η
∞
0

.

Now, for Re(σ)>0, h3 < 0 so that the solution corresponding to this eigenvalue is
unbounded at the equilibrium point. Note that, because of the integer difference of the
eigenvalues, in order to find the asymptotic solutions corresponding to the eigenvalues
h1, h1 we need higher-order terms in the expansion of A∗ (cf. Sharpe 1997a), and
finding the asymptotic solutions becomes even more complicated whenever κ is an
integer. Also note that for Re(σ)<0 the eigenvalue problem is overdetermined, so that
there are no stable modes for any parameter values, in contrast to the pathological
detonation.

The boundedness condition requires that the solution is independent of the un-
bounded solution corresponding to the eigenvalue h3, which requires that

l · u = 0

near the equilibrium point, where

l =

(
0, σ,−iku∞0 ,

u∞0
a∞0

(
σ2 + k2η∞0

)1/2
, l5, l6

)
is the left eigenvector of A∗ corresponding to the eigenvalue h3 (here l5 and l6 are
rather complicated functions of the parameters).

To determine the eigenvalues we integrate the equations from the shock and
evaluate the quantity

m = |l · u|,
then only if σ is an eigenvalue does m = 0. We can thus iteratively search the positive
real and imaginary σ-space and determine m at each point in order to find the
eigenvalues where m has local minima. The value of λ10 at which the boundedness
condition is applied is chosen to be small enough so that a decrease in this value does
not change the value of the eigenvalue.

6. One-dimensional perturbations
We first consider the case of one-dimensional perturbations, i.e. k = 0, correspond-

ing to the longitudinal instability.

6.1. Pathological detonations

6.1.1. Neutral stability

Figure 5 shows the neutral stability curves for the three lowest-frequency modes
in the (E1, E2)-plane. On these curves Re(σ) = 0, and below and to the right of the
curves the mode is unstable to one-dimensional perturbations, i.e. Re(σ) > 0, while
above and to the left of them the mode is stable, i.e. Re(σ) < 0. The dashed line
is the line E1 − E2 = 9.067 below which the unsupported steady detonation is of
the CJ type. The neutral stability curves of the higher-frequency modes lie within
the unstable region of the modes with lower frequency, so that the neutral stability
curve of the fundamental (lowest frequency) mode is the neutral stability boundary
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Figure 5. Neutral stability curves for the three lowest-frequency modes (numbered in order of
ascending frequency) in the (E1, E2)-plane for Q1 = 100, Q2 = −75, α = 1, γ = 1.2. Also shown are
the first ten neutrally stable modes for E2 = 50 (triangles).
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Figure 6. Migration of the fundamental mode (solid curve) and the first overtone (dashed curve)
as the activation temperature of the first reaction, E1, is varied for E2 = 50, Q1 = 100, Q2 = −75,
α = 1, γ = 1.2. (a) Frequencies versus growth rates and (b) growth rate versus E1.

and the detonation itself is unstable (stable) to one-dimensional perturbations if the
fundamental mode is unstable (stable). Note that decreasing the value of E1 − E2

tends to stabilize the detonation.

6.1.2. Migration of the linear spectrum as the activation temperature of the first
reaction is varied

Figure 6 shows the dependence of the growth rates and frequencies of the funda-
mental mode and first overtone on E1 when E2 = 50, up to E1 = 59.067 when the
unsupported detonation becomes CJ. The modes are neutrally stable at E1 = 28.71
for the fundamental mode, so that the detonation is stable to one-dimensional pertur-
bations below this value, and at E1 = 34.42 for the first overtone. Note the existence
of stable modes for E1 below these values. The stable eigenvalues become difficult to
find as E1 decreases because the value of min(m) only converges at very small starting
values of w (less than 10−6). As E1 is increased above 28.71, the growth rate of the
fundamental mode increases while its frequency decreases, until it hits the Re(σ)-axis
at E1 = 38.25. As E1 is increased further the mode and its complex conjugate split
into two real non-oscillatory eigenvalues, one of which has an increasing growth rate
with E1 and the other a decreasing growth rate. The behaviour of the first overtone is
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Figure 7. Migration of the fundamental mode as the heat of reaction of the second reaction, Q2, is
varied in the range 0 > Q2 > −40, for E1 = 30, E2 = 50, Q1 = 50, α = 1, γ = 1.2. (a) Frequency
versus growth rate, (b) growth rate versus Q2.

rather different. As E1 is increased from its neutrally stable value, the growth rate of
this mode increases while its frequency decreases. At E1 = 54.55, however, the growth
rate reaches a maximum of 0.464 and then begins to decrease as E1 increases further.

As the activation temperature is increased, more and more higher-frequency modes
become unstable in order of ascending frequency (cf. figure 5). These modes behave in
a similar fashion to the first overtone. Note that between about E1 = 40 and E1 = 50
the growth rates of the larger of the non-oscillatory modes and the first overtone are
comparable, but above about E1 = 50 the growth rate of the non-oscillatory mode
begins to increase very sharply with increasing E1 so that above this value this is
the dominant mode. Apart from the existence of the stable modes, this behaviour
is qualitatively the same as for CJ detonations in the idealized case (Sharpe 1997a).
However note that the pathological degree of overdrive varies with E1 in figure 6.

6.1.3. Migration of the linear spectrum as the endothermicity is varied

We now consider how the stability changes as the endothermicity increases, and
specifically how the stability is affected as the self-sustaining detonation changes from
being of the CJ type to the pathological type. For Q2 = 0 there is no endothermic
stage and the self-sustaining steady wave is CJ. Note that in this case the internal
energy does not depend on λ2, only the rate equation for the second reaction has a
λ2 dependence, and hence the stability is the same as for the idealized one-reaction
system. As |Q2| increases, and the endothermic stage becomes more prominent, the
self-sustaining steady detonation becomes pathological, and the sonic point moves into
the reaction zone and further towards the shock. Figure 7 shows how the fundamental
mode varies as the endothermicity is increased, for E1 = 30, E2 = 50, Q1 = 50 and
Q2 in the range 0 > Q2 > −40. Figures 8 and 9 show the eigenfunctions for various
values of Q2. Note that for Q2 = 0 (when the self-sustaining detonation is of the CJ
type) we determine the linear spectrum using the method described in Sharpe (1997a).
For no endothermicity there is just one unstable mode, σ = 0.0327 + 0.0642i. It can
be seen from figure 7 that increasing the endothermicity has the effect of making
the detonation more unstable. As |Q2| increases the growth rate of the fundamental
mode increases, while the frequency decreases, until the mode hits the Re(σ)-axis at
Q2 = −36.16 and then splits into two real eigenvalues. Hence detonations of the CJ
type tend to be more stable than those of the pathological type.

6.2. Overdriven detonations

6.2.1. Migration of the linear spectrum as the degree of overdrive is varied

The structure of the unsupported pathological detonation is different from the
structure of the supported detonation as f → fp, and since we apply the boundedness
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Figure 8. Real and imaginary parts of the perturbation eigenfunctions for the density, x-component
of velocity and pressure. E1 = 30, E2 = 50, Q1 = 50, α = 1, γ = 1.2, and Q2 = 0 (solid line), Q2 = −5
(dotted line), Q2 = −15 (dashed line) and Q2 = −25 (dot-dashed line).
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Figure 9. Real and imaginary parts of the perturbation eigenfunctions for the reaction progress
variables. E1 = 30, E2 = 50, Q1 = 50, α = 1, γ = 1.2, and Q2 = 0 (solid line), Q2 = −5 (dotted line),
Q2 = −15 (dashed line) and Q2 = −25 (dot-dashed line).

condition to the linearized equations at different singular points for the patholog-
ical and overdriven detonations we now investigate whether the linear spectrum is
itself singular. Indeed, the pathological detonation admits stable modes, whereas the
overdriven detonations do not. This difference is due to the sonic singular point
of pathological detonations being at a finite distance behind the front, whereas the
equilibrium singular point is formally at an infinite distance behind the front for
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Figure 10. Migration of the fundamental mode and first overtone as the degree of overdrive, f, is
varied in the range 0 6 f − fp 6 0.1, for E1 = E2 = 50, Q1 = 100, Q2 = −75, α = 1, γ = 1.2. (a)
Growth rate versus f − fp of the fundamental mode, (b) frequency versus growth rate of the first
overtone, (c) growth rate versus f − fp of the first overtone, and (d ) frequency versus f − fp of the
first overtone.
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Figure 11. Migration of the fundamental mode as the degree of overdrive, f, is varied in the range
0 6 f − fp 6 0.1, for E1 = 35, E2 = 50, Q1 = 100, Q2 = −75, α = 1, γ = 1.2. (a) Frequency versus
growth rate, (b) growth rate versus f − fp.

overdriven detonations. Hence one may ask whether the unstable modes for the
pathological detonation are different from the unstable modes of overdriven detona-
tions as f → fp. Figure 10, which shows the migration of the two lowest-frequency
modes with f near the pathological degree of overdrive for E1 = E2 = 50, shows that
this is not the case. However, the modes are extremely sensitive to f near f = fp

and become increasingly sensitive as f → fp. The growth rates of the non-oscillatory
modes of the pathological detonation increase for the smaller growth rate and de-
crease for the larger growth rate very sharply as the degree of overdrive increases
from its pathological value (these non-oscillatory modes eventually converge into an
oscillatory mode). The first overtone meanwhile spirals out from its pathological value
very quickly, the spiral evolving with log(f − fp). This shows that even a very small
change in the degree of overdrive results in a relatively large change in the unstable
modes.

Figure 11 shows the migration of the fundamental mode for f in the range
0 6 f − fp 6 0.1 for E1 = 35, E2 = 50, when this mode is non-oscillatory for
the pathological detonation. Now this mode also spirals out from its pathological
value and again the mode is very sensitive to the degree of overdrive near its
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Figure 12. Migration of the fundamental mode as the degree of overdrive, f, is varied in the range
0 6 f − fss 6 0.1, for E1 = 30, E2 = 50, Q1 = 50, α = 1, γ = 1.2 and Q2 = 0 (solid line), Q2 = −5
(dotted line), Q2 = −10 (dashed line) and Q2 = −15 (dot-dashed line). (a) Frequency versus growth
rate, (b) growth rate versus f − fss.

pathological value. The linear mode has a frequency of 0.06637 for the pathological
detonation, which corresponds to a period of oscillation of 94.67, while for an
overdriven detonation with f− fp = 0.01 the frequency is 0.07659, which corresponds
to a period of 82.04, i.e. a 0.4% difference in the degree of overdrive results in a 13%
change in the period.

6.2.2. Change in the dependence on the degree of overdrive as the endothermicity is
varied

The behaviour of the migrating modes with the degree of overdrive described above
for pathological detonations is quite different than for CJ type detonations, for which
the modes are not at all sensitive near the minimum, i.e. CJ or f = 1, degree of
overdrive, and the growth rates and frequencies of oscillatory modes depend almost
linearly on f for not too unstable modes (Sharpe 1997b; Short 1997). Hence for the
idealized CJ detonation increasing the degree of overdrive stabilizes the detonation to
one-dimensional perturbations, i.e. the growth rates of the mode decrease. However,
figures 10 and 11 show that increasing the degree of overdrive can actually make
the detonation more unstable than the pathological detonation. Indeed, for cases
where a mode is very near the stability boundary for the pathological detonation, on
whichever side, as the degree of overdrive is increased there can be alternating ranges
of f for which the one-dimensional mode is stable/unstable due to the spiral nature
of the migrating mode. Most remarkable is the fact that the unsupported pathological
detonation can be stable to one-dimensional perturbation, but there can be a range
of corresponding overdriven detonations which are unstable.

How does this change in behaviour with the degree of overdrive unfold as the
self-sustaining detonation changes from the CJ type to the pathological type (e.g. as
the endothermicity is increased)? Figure 12 shows the dependence on the degree of
overdrive of the fundamental mode for E1 = 30, E2 = 50, Q1 = 50 and values of
Q2 = 0, −5, −10 and −15. In each case the degree of overdrive was varied in the
range 0 6 f − fss 6 0.1, where

fss =

{
fCJ = 1, Q2 = 0

fp > 1, Q2 < 0

is the self-sustaining degree of overdrive. For Q2 = 0 the self-sustaining detonation is
of the CJ type. In this case (solid line in figure 12) the growth rate decreases mono-
tonically with the degree of overdrive, while the frequency increases monotonically.
The linear spectrum is not especially sensitive near f = 1. For Q2 = −5 (dotted line in
figure 12) the self-sustaining detonation is pathological. In this case the growth rate
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now increases slightly as f increases away from fp before reaching a maximum and
then decreasing, while the frequency still increases monotonically. For lower vales of
Q2 (e.g. the dashed and dot-dashed lines in figure 12, which correspond to Q2 = −10
and Q2 = −15, respectively), the frequency initially decreases, and the spiral nature
of the migrating mode becomes more pronounced. Note that as the degree of en-
dothermicity increases, the sensitivity of the mode near f = fp also becomes more
pronounced.

7. Multi-dimensional perturbations
7.1. Pathological detonations

We now consider the case of multi-dimensional perturbations. Note that our choice
of two-dimensional perturbations also covers the case of three-dimensional perturba-
tions, since if we have three-dimensional perturbations of the form εq1(x)eσtek1yek2z ,

we can simply choose a new transverse direction, y′, with wavenumber k =
√
k2

1 + k2
2.

The linear stability analysis may give criteria for predicting the cell size of cellular
detonations. One may ask whether the wavenumber corresponding to the maximum
growth rate, regardless of the mode number, gives the correct cell spacing. For
the idealized detonation this wavenumber is usually O(1) (Short & Stewart 1998;
Sharpe 1997a; Short 1997) which would predict a cell size of about the order of
the steady detonation induction zone length. However, although such small cells are
seen in the early stages of the cellular instability, experiments show that the final
cell size is between one and two orders of magnitude greater than the corresponding
steady induction zone length (Lee 1984). Short & Stewart (1997, 1998) suggest that
an alternative criterion for predicting the cell spacing is given by the wavenumber
corresponding to the largest group speed, cg = ∂Im(σ)/∂k, of the fundamental mode,
which occurs at much smaller wavenumbers for the idealized detonation. For a
detonation in a tube of width W one would expect the cell size to be based on the
wavenumber with the maximum growth rate or group speed compatible with the tube
width, i.e. such that k = 2πn/W , n = 0, 1, 2, . . . (Bourlioux & Majda 1992).

Figure 13(a,b) shows the variation of the eigenvalues and group speeds with
wavenumber for the pathological detonation when E1 = 35, E2 = 50. For one-
dimensional disturbances, k = 0, the fundamental mode and first overtone are un-
stable, with eigenvalues σ = 0.0565 + 0.0664i and σ = 0.0177 + 0.7780i respectively.
The higher-frequency modes are all stable to one-dimensional perturbations. As the
wavenumber increases the growth rate and frequency of the fundamental mode also
increase, until the growth rate reaches a maximum of 0.1577 at k = 1.03, which is also
the largest overall growth rate. The growth rate then decreases as the wavenumber
is increased further, until the mode becomes stable to wavenumbers above k = 2.80.
Similarly, the growth rate of the first overtone also initially increases as k is increased
from zero, until it reaches a maximum of 0.1241 at k = 2.59. This mode is stable to
wavenumbers above k = 4.83. Meanwhile, the second overtone becomes unstable at
k = 3.15, reaches a maximum of 0.0427 before becoming stable again at k = 5.53.
The third and higher overtones lie entirely within the stable region Re(σ) < 0 for all
wavenumbers, so that the detonation is stable to wavenumbers above k = 5.53.

Figure 13(c,d ) shows the variation of the phase speeds, cp = Im(σ)/k, and group
speeds, cg = ∂Im(σ)/∂k of the unstable modes with wavenumber. The group speed
of the fundamental mode increases sharply as the wavenumber increases from zero
and has a maximum of cg = 0.295 at k = 0.13, and the group speed decreases as
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Figure 13. Variation of the eigenvalues, phase speeds and group speeds of the modes with
wavenumber for the pathological detonation with E1 = 35, E2 = 50, Q1 = 100, Q2 = −75, α = 1,
γ = 1.2. (a) Growth rates versus wavenumber, (b) frequencies versus growth rates, (c) phase speeds
of unstable modes versus wavenumber, and (d ) group speeds of unstable modes versus wavenumber.
The modes are numbered in order of ascending frequency.
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Figure 14. Variation of the eigenvalue, phase speed and group speed of the fundamental mode with
wavenumber for the pathological detonation with E1 = 20, E2 = 50, Q1 = 100, Q2 = −75, α = 1,
γ = 1.2. (a) Growth rates versus wavenumber, (b) frequency versus growth rates, (c) unstable phase
speed versus wavenumber, and (d ) unstable group speed versus wavenumber.

the wavenumber is increased further. The group speed of the first overtone, however,
increases monotonically with the wavenumber and has a maximum of cg = 0.250
near the neutrally stable wavenumber k = 5.53. Lastly, the group speed of the second
overtone increases from its value at the lower neutrally stable wavenumber k = 3.15,
reaches a maximum of cg = 0.221 at k = 4.60 before decreasing again. Therefore a
cell spacing based on the highest group speed would be given by the maximum of
the fundamental mode at k = 0.13, i.e. a wavelength of 48.3 steady induction zone
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Figure 15. (a) Variation of the growth rates with wavenumber, (b) variation of the group speeds
with wavenumber for the fundamental mode for overdriven detonations with f − fp = 5 × 10−5

(dotted line) and f − fp = 0.02 (solid line). E1 = 35, E2 = 50, Q1 = 100, Q2 = −75, α = 1, γ = 1.2.

lengths, compared to k = 1.03, i.e. a wavelength of 6.10 steady induction zone lengths,
based on the largest overall growth rate.

Figure 14 shows the variation of the eigenvalues, phase speed and group speed
with wavenumber for E1 = 20, E2 = 50. In this case the pathological detonation
is stable to one-dimensional disturbances. The fundamental mode remains stable to
disturbances with wavenumbers less than k = 0.15. It becomes neutrally stable at
k = 0.15, the growth rate increases to a maximum of 0.0936 at k = 1.36 and then
decreases until it becomes stable again above wavenumbers of k = 3.14. The higher-
frequency modes are now stable for all wavenumbers, so that only the fundamental
mode is unstable. The group speed is now a maximum, cg = 0.463, at the lower
neutrally stable wavenumber, k = 0.15. Hence a cell size based on the maximum
growth rate is 4.61 steady induction zone lengths, while that based on maximum
group speed is 41.9 steady induction zone lengths.

The above response of the pathological detonation to multi-dimensional perturba-
tions, where, for given a given parameter set, there is a critical mode number above
which modes are stable to all wavenumbers, and where, as the detonation becomes
more stable the fundamental mode remains unstable to a range of wavenumbers, but
the higher frequency modes all become stable, is qualitatively similar to the idealized
CJ detonation.

7.2. Overdriven detonations

We now investigate whether the sensitivity to the degree of overdrive near the
pathological degree of overdrive seen for one-dimensional disturbances also occurs
for multi-dimensional disturbances. Figure 15 shows the dependence of the growth
rate and group velocity on wavenumber for two overdriven detonations with f−fp =
5× 10−5 and f − fp = 0.02, when E1 = 35, E2 = 50. On the scale of figure 15(a), the
growth rates are virtually indistinguishable except at low wavenumbers. Indeed, both
detonations have a maximum growth rate at k = 1.03, the same wavenumber as for
the pathological detonation. However, there is a large difference in the group speeds
at low wavenumbers. For f − fp = 5× 10−5, the maximum group speed is cg = 0.305
at k = 0.12 and for f − fp = 0.02 the maximum is 0.258 at k = 0.23, compared with
a maximum of 0.295 at k = 0.13 for the pathological detonation. The predicted cell
wavelengths are thus 48.3, 52.4 and 27.3 steady induction zone lengths for detonations
with f = fp, f − fp = 5 × 10−5 and f − fp = 0.02, respectively. Hence in this case a
cell size based on the wavenumber with the largest group speed is very sensitive to
the degree of overdrive near f = fp, whereas the criterion based on the wavenumber
with the highest growth rate is not at all sensitive.
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8. Conclusions

Using a normal mode approach, we have investigated the linear stability of patho-
logical detonations for a model system. We have shown that the response of the
pathological detonation to both one- and two-dimensional disturbances is very simi-
lar to that of CJ detonations, apart from the existence of stable modes which formally
do not exist for CJ and overdriven detonations of infinite length.

We have also shown that even though the boundedness condition for the patho-
logical and overdriven detonations are applied at very different singular points, the
linear spectrum is not singular as f → fp. This presumably means that the solution
of the linearized equations that is unbounded at the pathological point is the same
solution as the one that is unbounded at the equilibrium point.

For overdriven detonations, the migration of the one-dimensional modes as the
degree of overdrive is increased is very sensitive to changes in f near the pathological
speed, and oscillatory modes spiral out from their pathological values. Overdriven
detonations may be unstable to one-dimensional perturbations even when the un-
supported pathological detonation is stable. For multi-dimensional disturbances the
group speed is also sensitive to the degree of overdrive at low wavenumbers. Thus a
cell size based on the wavenumber with the highest group speed is itself sensitive to
the degree of overdrive, whereas one based on maximum growth rate is not. Note,
however that using the group speed criterion seems to give better agreement with the
cells sizes found in experiment (Lee 1984). This suggests that one should take care in
drawing conclusions about pathological detonations from numerical simulations with
even slightly overdriven detonations.

For the pathological detonation, the boundedness condition on the linearized
equations is applied at the pathological point, so that it does not take into account
the structure after the pathological point, i.e. the linear stability of the pathological
detonation does not depend on whether the detonation is supported or unsupported.
However, since the structures of the supported and unsupported steady pathological
detonation are quite different, the long-time nonlinear stability of the two waves might
also be very different, especially for very unstable detonations. For instance, once the
detonation is in the unstable regime, the single sonic point of the supported wave
can easily be destroyed, so that disturbances from downstream of the detonation can
reach the front, whereas the supersonic branch of the unsupported wave would be
much more difficult to destroy.

In a sequel (Sharpe & Falle 1999) we intend to perform both one- and two-
dimensional numerical simulations of pathological detonations in order to compare
with the linear stability analysis and to investigate the nonlinear behaviour of the
instability for both supported and unsupported detonations. Such simulations require
efficient, adaptive codes, such as that developed by Falle & Giddings (1993), which
we intend to use for this purpose.

The author acknowledges support from PPARC during the course of this work. I
would also like to thank S. A. E. G. Falle for careful reading of the manuscript and
suggestions for improvement.
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