
Robotica (2022), 40, pp. 997–1019
doi:10.1017/S0263574721000977

RESEARCH ARTICLE

Robust fuzzy sliding mode control and vibration
suppression of free-floating flexible-link and flexible-joints
space manipulator with external interference and
uncertain parameter
Limin Xie1,∗ , Xiaoyan Yu2 , and Li Chen2

1College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350003, Fujian, China
and 2School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350016, Fujian, China
∗Corresponding author. E-mail: lucy_min@163.com

Received: 15 October 2020; Revised: 6 May 2021; Accepted: 24 June 2021; First published online: 2 August 2021

Keywords: free-floating flexible-link and flexible-joints space manipulator; singular perturbation; robust; fuzzy; vibration
suppression

Abstract
The flexibility of the free-floating flexible space manipulator system’s link and joint may affect the control accuracy
and cause vibrations. We studied the dynamics modeling, joint trajectory tracking control, and vibration suppressing
problem of free-floating flexible-link and flexible-joints space manipulator system with external interference and
uncertain parameter. The system’s dynamic equations are established using linear momentum conservation, angular
momentum conservation, assumed mode method, and Lagrange equation. Then, the system’s singular perturbation
model is established, and a hybrid control is presented. For the slow subsystem, a robust fuzzy sliding mode control
is proposed to realize the joint desired trajectory tracking. For the fast subsystem, a speed difference feedback control
and a linear-quadratic optimal control are designed to suppress the vibration caused by the flexible joints and the
flexible link separately. The simulation comparison experiments under different conditions are taken. The simulate
results demonstrate the proposed hybrid control’s validity.

1. Introduction
With the development of space technology, especially the successful application of the space station,
space shuttles, space robot, etc., the space manipulator, as a critical technology of in-orbit support and
service, has shown strong application ability and broad application prospect and has played a significant,
influential role in the development of space science and application. There are considerable achieve-
ments in the research of the space manipulator [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Many control methods
have been proposed, such as PID control, robust control [13, 14, 15], adaptive control [16, 17, 18], fuzzy
control, neural network control, and many hybrid control methods [19, 20, 21, 22, 23, 24, 25, 26].

Most of the current researches usually assume that space manipulator is a rigid system. But, in prac-
tice, the space manipulator often contains flexible components, such as the flexible joint and the flexible
link. The flexible link has lightweight, less inertia, low energy consumption, sizeable working place,
and high work efficiency. But, it may deform and vibrate [27, 28, 29]. The flexible joint, caused by the
harmonic drive gears, can reduce the damage caused by a collision when the manipulator grabs the target
object and can compensate for the torque. But, it will cause error and vibration [30, 31, 32].

With the increasing requirement of lightweight, high speed, and high precision, we cannot ignore the
influence of flexibility. Especially for the free-floating flexible space manipulator system, the system is
nonlinear and strongly coupled. The flexible link makes the system uncertain; the flexible joints make
the system’s degrees of freedom be twice the number of control inputs. So, the dynamic analysis and the
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motion control design become difficult. There are some researches on the flexible space manipulator, and
many control methods are proposed. Komats [33] had dynamical analysis for a redundant flexible space
manipulator with slewing and deployable links on the space platform. Wu [34] proposed an optimal
trajectory planning method with vibration reduction for a dual-arm space robot with flexible links using
Particle Swarm Optimization (PSO). Xie [35] offered a robust and adaptive control for the free-floating
flexible space manipulator with bounded control torques. Sabatini [36] presented an optimized adaptive
vibration control via piezoelectric devices for a space manipulator with flexible links during its on-orbit
operations. Huang [37] carried out some simulation experiments on the trajectory tracking of multi-
flexible-link space robot with a dead zone. Kumar [38] developed a simplified model controller that
only needs the space robot’s base velocity and link parameters. Kayastha [39] adopted linear quadratic
regulator (LQR) and model predictive control (MPC) algorithms to control the motion of a two-link flex-
ible space robot system under external force. But, they are only for the space manipulator with flexible
link. Yu [40] proposed an observer-based two-time scale robust control of free-flying flexible-joint space
manipulators. Nanos [41] established the flexible-joint space manipulator dynamics model. Ulrich pro-
posed an adaptive trajectory control [42], an extended Kalman filter (EKF) strategy [43], and a nonlinear
adaptive output feedback control [44] for the flexible-joint space manipulator. Liang [45] discussed a
radial basis function neural network adaptive control and elastic vibration suppression for flexible-joint
space robots with unknown parameters. But, they are only for the space manipulator with flexible joint.
The researches on the space manipulator with both flexible link and flexible joint are few. Dong [46]
considered the flexibility of joint and link and discussed the dynamic modeling and analysis of space
manipulator. Xie [47] established the free-floating flexible-joint and flexible-link space robot’s singu-
lar perturbation model and proposed a nonlinear sliding mode motion control. Zhang [48] designed
a trajectory tracking controller with friction compensation based on the computed torque method. Yu
[49] offered an augmented robust control method based on a singularly perturbed model. Zhang [50]
designed a L2 -gain robust control for space robot with flexible joints and flexible link, which directly
avoided solving the HJI inequality.

Simultaneously, we notice that some physical parameters of the space manipulator system are uncer-
tain or time varying due to the changes in parameters, load, fuel, etc. [51,52] So, the controller, which
is usually used for the fixed base manipulator, is challenging to apply to the space manipulator’s control
directly. Meanwhile, the space manipulator system will inevitably be affected by the friction between the
arm joints, movement noise, fuel change, solar wind, particle ray flow, and other external interference.

To save fuel, prolong the space robot system’s service life, and reduce the launch cost, it is essential
to study the free-floating space manipulator in which the base’s position and attitude are not actively
controlled [53]. In this paper, the dynamic modeling, motion control, and double vibration active sup-
pression for the free-floating flexible-link and flexible-joint space manipulator system with external
interference and uncertain parameters are studied. We consider the flexibility of the link and joints.
The system’s dynamic equations are established according to linear momentum conservation, angular
momentum conservation, assumed mode method [54], and Lagrange equation. To facilitate the design
of the control, according to the singular perturbation theory [55], the system is decomposed into three
subsystems:

• the slow subsystem
• the flexible-joints fast subsystem
• the flexible-link fast subsystem

Then, for the slow subsystem, a robust fuzzy sliding mode control is proposed. It can compensate
for the system’s uncertain parameters and external interference by the robust controller and can reduce
the chattering of sliding mode control by the saturated function and the fuzzy controller. And, the fuzzy
controller is designed based on the results of the system stability analysis. For the flexible-joints fast
subsystem, a velocity difference feedback controller is designed to suppress the flexible-joints vibration.
For the flexible-link fast subsystem, a linear quadratic regulator (LQR) [56] is presented to stop the
flexible-link vibration. Finally, the MATLAB simulations with different desired trajectories and external
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Figure 1. Free-floating flexible-link and flexible-joints space manipulator.

Figure 2. The simple model of flexible joint.

interference are taken to verify the proposed controller’s effectiveness. The simulation results proved
that the proposed hybrid control could control the system to track the desired trajectory accurately and
suppress the vibration caused by the flexible joints and the flexible link.

The main contributions of this study are summarized as follows:

(1) Both flexible link and flexible joint are considered in the space manipulator system.
(2) The uncertain parameters and external interference are considered.
(3) The dynamic model of the system is established and decomposed by the singular perturbed

method.
(4) A hybrid controller is proposed to track the desired trajectory and suppress the vibration caused

by the flexible joints and the flexible link.

2. System dynamic analysis and modeling
The free-floating flexible-link and flexible-joints space manipulator system is composed of a rigid base
B0, a rigid link B1, a flexible link B2, and two flexible joints Oi(i = 1, 2), as shown in Fig. 1. OXY is the
inertial coordinate system, and Ojxjyj is the main axis coordinate of Bj (j = 0, 1, 2). The centroids of B0,
B1, and the system are Oc0, Oc1, and C. Their position vectors are r0, r1, and rc. The arbitrary point’s
position vector on the flexible link B2 is r2. qj is the motion angle of Bj. θi is the motor rotor’s angle.

According to Spong’s assumption [57], we regard the flexible joints Oi as a linear spring between the
motor rotor and the link and the spring’s stiffness coefficient is kθi, as shown in Fig. 2. In this case, the
rotor’s rotation angle θi will not always equal the link’s rotation angle qi. And, the flexible-joint error
is: σi = θi − qi.

The flexible link B2 is considered as an Euler–Bernoulli beam [58]. Neglecting the rotational inertia
and shear deformation, based on the assumed mode method, the flexible link’s elastic deformation is:

υ(x2, t) =
n∑

i=1

ϕi(x2)δi(t) (1)
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where ϕti(x2) is the i th mode function, δi(t) is the i th mode coordinate, and n is the retention mode
number. Considering that the lower order modes play a leading role in elastic vibration and deformation,
the first two lower-order modes can meet the accuracy requirements and reduce the calculation [59,60].
So, we choose n = 2, that is, υ(x2, t) = ϕ1(x2)δ1(t) + ϕ2(x2)δ2(t).

According to the geometric position relationship{
r1 = r0 + l0e0 + d1e1

r2 = r0 + l0e0 + l1e1 + x2e2 + υ(x2, t)e3

(2)

where l0 is the distance between Oc0 and O1, d1 is the distance between O1 and Oc1, l1 is the length of B1.

e0 =
[

sin (q0)

cos (q0)

]T

, e1 =
[

sin (q0 + q1)

cos (q0 + q1)

]T

, e2 =
[

sin (q0 + q1 + q2)

cos (q0 + q1 + q2)

]T

, e3 =
[

cos (q0 + q1 + q2)

− sin (q0 + q1 + q2)

]T

.

The system’s total center theorem of mass is:

m0r0 + m1r1 + ρ

∫ l2

0

r2dx2 = Mrc (3)

where m0 is the mass of B0, m1 is the mass of B1, ρ is the linear density of B2, and l2 is the length of B2.
M is the total system’s mass, M = m0 + m1 + ρl2. The mass of the motor is negligible.

The position vectors can be expressed as follows:

ri = rc + Ri0e0 + Ri1e1 + Ri2e2 + (Ri3δ1 + Ri4δ2)e3 (4)

where R00 = −(m1 + ρl2)l0/M, R01 = −(m1d1 + ρl2l1)/M, R02 = −ρl2
2/(2M), R03 = −ρ

∫ l2
0

ϕ1(x2)dx2/M,
R04 = −ρ

∫ l2
0

ϕ2(x2)dx2/M, R10 = R00 + l0, R11 = R01 + d1, R12 = R02, R13 = R03, R14 = R04, R20 = R00 + l0,
R21 = R01 + l1, R22 = R02 + x2, R23 = R03 + ϕ1(x2), R24 = R04 + ϕ2(x2).

Differentiating Eq. (4), we have:

ṙi = ṙc + Ri0ė0 + Ri1ė1 + Ri2ė2 + (Ri3δ1 + Ri4δ2)ė3 + (Ri3δ̇1 + Ri4δ̇2)e3 (5)

where ṙi, ṙc, δ̇1, and δ̇2 are the first derivative of ri, rc, δ1, and δ2. ė0 = q̇0

[
cos (q0)

− sin (q0)

]T

,

ė1 = (q̇0 + q̇1)

[
cos (q0 + q1)

− sin (q0 + q1)

]T

, ė2 = (q̇0 + q̇1 + q̇2)

[
cos (q0 + q1 + q2)

− sin (q0 + q1 + q2)

]T

, and ė3 = (q̇0 + q̇1 +

q̇2)

[− sin (q0 + q1 + q2)

− cos (q0 + q1 + q2)

]T

.

Without loss of generality, the system satisfies the momentum conservation and the angular momen-
tum conservation. Let the initial values of the momentum and the angular momentum be zero, the
system’s momentum conservation equation and the angular momentum conservation equation can be
expressed as:

m0ṙ0 + m1ṙ1 + ρ

∫ l2

0

ṙ2dx2 = 0 (6)

(m0r0 × ṙ0 + J0ω0) + (m1r1 × ṙ1 + J1ω1) + ρ

∫ l2

0

(r2 × ṙ2)dx2 +
2∑

i=1

(Jθiωθi) = 0 (7)

where J0 is the inertial moment of B0, J1 is the inertial moment of B1, and Jθi is the inertial moment of
the motor rotor. ω0 is the angular velocity of B0, ω0 = q̇0. ω1 is the angular velocity of B1, ω1 = (q̇0 + q̇1).
ωθi is the angular velocity of motor rotor, ωθi = θ̇i.
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The system’s kinetic energy T contains the manipulator system’s kinetic energy Tr and the motor
rotors’ kinetic energy Tθ:

T = Tr + Tθ (8)

where Tr = T0 + T1 + T2, Tθ = Tθ1 + Tθ2. T0 = 1
2
m0ṙ2

0 + 1
2
J0ω

2
0 is B0 ’s kinetic energy, T1 = 1

2
m1ṙ2

1 +
1
2
J1ω

2
1 is B1 ’s kinetic energy, T2 = 1

2
ρ
∫ l2

0
ṙ2

2dx2 is B2 ’s kinetic energy, Tθi = 1
2
Jθiω

2
θi is the motor rotor’s

kinetic energy.
Neglecting the gravity in the space. The system’s potential energy U contains the flexible link’s

bending strain energy Ur and the flexible joints’ elastic deformation potential energy Uθ:

U = Ur + Uθ (9)

where Ur = 1
2
EI
∫ l2

0

(
∂2υ(x2,t)

∂x2
2

)2

dx2, Uθ = 1
2

2∑
i=1

kθi(θi−qi)
2, EI is the bending stiffness of B2.

The system’s Lagrangian function is: L = T − U. Choose Q = [
θ1 θ2 q0 q1 q2 δ1 δ2

]T as
the system’s generalized coordinate, F = [

τ1 τ2 0 0 0 0 0
]T as the generalized force. Then,

according to Lagrange’s second type equation d
dt

(
∂L
∂Q̇

)
− ∂L

∂Q = F, the system’s dynamic equation has the
following form

Jθθ̈ + Kθ(θ − qθ) = τ + τ d (10a)

M(q, δ)

[
q̈

δ̈

]
+ H(q, q̇, δ, δ̇)

[
q̇
δ̇

]
+
⎡
⎢⎣

0

−Kθ(θ − qθ)

Kδδ

⎤
⎥⎦= 0 (10b)

where θ = [ θ1 θ2 ]T, qθ = [ q1 q2 ]T, q = [ q0 q1 q2 ]T, δ = [ δ1 δ2 ]T, Jθ = diag(Jθ1, Jθ2) ∈ R2×2 is
the diagonal and positive definite inertia matrix of the motor, Kθ = diag(kθ1, kθ2) ∈ R2×2 is the simpli-
fied linear spring stiffness coefficient matrix of flexible joint, M(q, δ) ∈ R5×5 is the space manipulator’s

symmetric positive definite inertia matrix, H(q, q̇, δ, δ̇)

[
q̇
δ̇

]
∈ R5×1 is a column vector containing the

Coriolis force and centrifugal force, Kδ = diag(kδ1, kδ2) is the flexible link’s stiffness coefficient matrix,
kδi =

∫ l2
0

EIϕ ′′
i

T
ϕ ′′

i dx2. τ = [ τ1 τ2 ]T ∈ R2×1 is the output torque of the motors, and τ d ∈ R2×1 is the
external interference torque.

It can be seen that Eq. (10a) is the dynamic equation of the motor and Eq. (10b) is the dynamic
equation of the space manipulator.

3. Singular perturbation decomposition and control design
The free-floating flexible-link and flexible-joints space manipulator system is a rigid-flexible coupling
system. The interaction between the rigid variables and the flexible variables will make the controller’s
design difficult and affect the control quality. To reduce the interaction between variables, we use the
singular perturbation method to decompose the complex system into a slow subsystem and a fast sub-
system with independent time scales. The slow subsystem describes the system’s rigid movement. The
fast subsystem describes the system’s flexible movement. Then, the appropriate controller is designed
for each subsystem. The slow subsystem’s controller τ s is designed to achieve the desired trajectory
asymptotic tracking. The fast subsystem’s controller τ f is designed to suppress the double vibration
caused by the flexible joints and the flexible link [61]. So, we can write the system’s total controller as:
τ = τ s + τ f.
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First, we decomposed Eq. (10b) into the following form:

⎡
⎢⎣

M11 M12 M13

M21 M22 M23

M31 M32 M33

⎤
⎥⎦ ·

⎡
⎢⎣

q̈0

q̈θ

δ̈

⎤
⎥⎦+

⎡
⎢⎣

N1

N2

N3

⎤
⎥⎦+

⎡
⎢⎣

0

−Kθ(θ − qθ)

Kδδ

⎤
⎥⎦= 0 (11)

where M11 ∈ R1×1, M12 ∈ R1×2, M13 ∈ R1×2, M21 ∈ R2×1, M22 ∈ R2×2, M23 ∈ R2×2, M31 ∈ R2×1, M32 ∈ R2×2,
and M33 ∈ R2×2 are the sub-matrices of M(q, δ). N1 ∈ R1×1, N2 ∈ R2×1, N3 ∈ R2×1 are the sub-matrices of

H(q, q̇, δ, δ̇)

[
q̇
δ̇

]
.

From Eq. (11), we have

q̈0 = −M−1
11 (M12q̈θ + M13δ̈) − M−1

11 N1 (12)

Substitute Eq. (12) into Eq. (11), we have[
D11 D12

D21 D22

]
·
[

q̈θ

δ̈

]
+
[

C1

C2

]
+
[−Kθ(θ − qθ)

Kδδ

]
= 0 (13)

where D11 = −M21M−1
11 M12 + M22, D12 = −M21M−1

11 M13 + M23, D21 = −M31M−1
11 M12 + M32, D22 =

−M31M−1
11 M13 + M33, C1 = −M21M−1

11 N1 + N2, C2 = −M31M−1
11 N1 + N3.

Because the matrix

[
D11 D12

D21 D22

]
is symmetric and positive definite, it is reversible. Its inverse matrix

can be expressed as: [
D11 D12

D21 D22

]−1

=
[

G11 G12

G21 G22

]
(14)

Let the flexible-joint error vector σ = θ − qθ = [ σ1 σ2 ]T. We rewrite Eqs. (10) and (13) as following

σ̈ = θ̈ − q̈θ = −J−1
θ Kθσ + J−1

θ (τ + τ d) − q̈θ (15a)

q̈θ = −G11C1 − G12C2 − G12Kδδ + G11Kθσ (15b)

δ̈ = −G21C1 − G22C2 − G22Kδδ + G21Kθσ (15c)

Defining a singular perturbation factor: ε2 = 1/ min {kδ1, kδ2, kθ1, kθ2}, two variables: zδ = δ/ε2 and
zθ = σ/ε2, two matrices: Kδε = ε2Kδ and Kθε = ε2Kθ. Then, the singular perturbation model of the
system’s dynamic equation is established:

ε2z̈θ = −J−1
θ

Kθεzθ + J−1
θ (τ + τ d) − q̈θ (16a)

q̈θ = −G11C1 − G12C2 − G12Kδεzδ + G11Kθεzθ (16b)

ε2z̈δ = −G21C1 − G22C2 − G22Kδεzδ + G21Kθεzθ (16c)

3.1. The slow subsystem
The slow subsystem only describes the system’s rigid movement. So here, we can ignore the influences
of the flexible joints and the flexible link. Let ε = 0, then Eq. (16) can be rewritten as:
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0 = −J−1
θ K̄θε z̄θ + J−1

θ (τ s + τ d) − q̈θ (17a)

q̈θ = −Ḡ11C̄1 − Ḡ12C̄2 − Ḡ12K̄δε z̄δ + Ḡ11K̄θε z̄θ (17b)

0 = −Ḡ21C̄1 − Ḡ22C̄2 − Ḡ22K̄δε z̄δ + Ḡ21K̄θε z̄θ (17c)

where Ā is the corresponding matrix or variable of A when ε = 0, that is, the corresponding matrix or
variable calculated in the slowly varying time scale.

From Eq. (17a)

z̄θ = K̄−1

θε
(τ s + τ d − Jθq̈θ) (18)

Substituting Eq. (18) into Eq. (17c), we can get:

z̄δ = K̄−1

δε
Ḡ−1

22 [ − Ḡ21C̄1 − Ḡ22C̄2 + Ḡ21(τ s + τ d − Jθq̈θ)] (19)

Then, substituting Eqs. (18) and (19) into Eq. (17b), the slow subsystem’s dynamics equation can be
obtained as:

Dsq̈θ + Cs = τ s + τ d (20)

where Ds = [Ḡ11 − Ḡ12Ḡ
−1

22 Ḡ21]−1 + Jθ, Cs = [Ḡ11 − Ḡ12Ḡ
−1

22 Ḡ21]−1(Ḡ11 − Ḡ12) · C1.
Equation (20) can be rewritten as a quasi-linear form:

Dsq̈θ + Hsq̇θ = τ s + τ d (21)

where Hs ∈ R2×2 is not unique, but it can satisfy [62]

xT(Ḋs − 2Hs)x = 0, ∀x ∈ R2×1 (22)

Considering the system’s uncertainty,

Ds = D̂s + �Ds, Hs = Ĥs + �Hs (23)

where D̂s and Ĥs are the approximate matrices of Ds and Hs, respectively, and �Ds and �Hs are the
system model estimation errors.

Assuming the system’s uncertain parameters are bounded, �Ds and �Hs are also bounded. There
are positive constants ld and lh,

‖�Ds‖ ≤ ld, ‖�H‖ ≤ lh ‖q̇‖ (24)

And, assuming τ d is bounded. So, there is a positive constant lt that satisfies:

‖τ d‖ ≤ lt (25)

Defined qd = [ q1d q2d ]T be the expected output vector of the slow subsystem, then the output error
vector e between qd and the actual output vector qθ = [ q1 q2 ]T is: e = qθ − qd = [ e1 e2 ]T.

Selecting the following sliding surface

s = ė + λe (26)

where λ is a positive constant diagonal matrix.
Derivating s

ṡ = ë + λė = q̈θ − q̈θd + λė (27)

Substitute Eq. (16a) into Eq. (12),

Dsṡ = τ s + τ d − Hsq̇θ − Dsq̈θd + Dsλė (28)

The slow subsystem’s controller is designed as follows:

τ s = u1 + u2 + u3 (29)
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(1) u1 is an equivalent controller,

u1 = D̂sq̈θd + Ĥsq̇θ − D̂sλė − Ĥss (30)

(2) u2 is a robust controller. It is used to compensate for the system’s uncertain parameter and external
disturbance.

u2 = −Kssat
( s
�

)
(31)

where Ks = ld

∥∥λė − q̈θd

∥∥+ lh

∥∥q̇θ

∥∥ · ∥∥s − q̇θ

∥∥+ lt. sat( s
�

) = [
sat( s1

�1
) sat( s2

�2
)
]T

, it is a saturated func-
tion vector. It is used to reduce the chattering of sliding mode control itself, its elements are:

sat

(
si

�i

)
=
{

sgn(si) if |si| > �i

si
�i

if |si| ≤ �i

, (i = 1, 2) (32)

where � = [
�1 �2

]T, �1 and �2 are positive parameters, si is the i th element of s, and �i is the i th
element of �.

(3) u3 is a fuzzy controller. It is used to reduce the vibration of sliding mode control, improve the
approach speed, and ensure the system’s stability.

u3 is designed based on the results of the system stability analysis, as follows:
Defined a Lyapunov function:

V = 1

2
sTDss (33)

Differentiating V, and combining Eqs. (22) and (28), then

V̇ = sTDsṡ + 1

2
sTḊss = sT(τ s + τ d − Hsq̇θ − Dsq̈θd + Dsλė) + sTHss (34)

Substitute Eqs. (23), (29), (30), and (31) into Eq. (34), we have

V̇ = sT[D̂sq̈θd + Ĥsq̇θ − D̂sλė − Ĥss − Kssat
( s
�

)
+ u3 + τ d − Hsq̇θ − Dsq̈θd + Dsλė] + sTHss

= sT
[
�Ds

(
λė − q̈θd

)+ �Hs(s − q̇θ) − Kssat
( s
�

)
+ u3 + τ d

]
(35)

The system’s stability analysis has two cases:

Case 1: when |si| > �i, sat( si
�i

) = sgn(si). Substitute (24) and (25) into Eq. (35), we have:

V̇ ≤ sTu3 (36)

So when sTu3 < 0, V̇ < 0. Thus, the asymptotic stability of s, e, ė outside the boundary layer can be
guaranteed.

Case 2: when |si| ≤ �i, sat( si
�i

) = si
�i

. Substitute (24) and (25) into Eq. (35), we have:

V̇ ≤ sT
(

ld

∥∥λė − q̈θd

∥∥+ lh

∥∥q̇θ

∥∥ · ∥∥s − q̇θ

∥∥− Ks

s
�

+ u3 + lt

)

≤ ld

∥∥λė − q̈θd

∥∥ · ‖s‖ + lh ‖q̇θ‖ · ∥∥s − q̇θ

∥∥ · ‖s‖ − Ks

‖s‖2

‖�‖ + sTu3 + lt ‖s‖

= (
ld

∥∥λė − q̈θd

∥∥+ lh

∥∥q̇θ

∥∥ · ∥∥s − q̇θ

∥∥+ lt

) · ‖s‖ − Ks

‖s‖2

‖�‖ + sTu3

= Ks

(
‖s‖ − ‖s‖2

‖�‖
)

+ sTu3 (37)

So when sTu3 ≤ −Ks( ‖s‖ − ‖s‖2

‖�‖ ), V̇ ≤ 0, and lim
t→0

s = 0.
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Table I. The fuzzy rules.

s NB NM NS ANZ APZ PS PM PB
u3 PS PM PB PB NB NB NM NS

Figure 3. Membership function of s.

Figure 4. Membership function of u3.

In conclusion, when sTu3 < 0 and sTu3 ≤ −Ks( ‖s‖ − ‖s‖2

‖�‖ ), V̇ ≤ 0, s, e, ė are asymptotically stable.
To satisfy the above conditions, a one-input one-output fuzzy controller is designed. The input vari-

able is s, and the output variable is u3. The membership function of the input variable s is shown in Fig. 3.
The membership function of output variables u3 is shown in Fig. 4. Where � is the design parameter
defined in Eq. (32), � is a new design parameter which can be selected by trial and experience. The
fuzzy controller’s working principle is: u3 can be chosen appropriately according to s ’s value to sat-
isfy the requirements of system control. The fuzzy base rule is shown in Table I in which the following
abbreviations have been used: NB: Negative Big; NM: Negative Medium; NS: Negative Small; ANZ:
Approach Negative Zero; APZ: Approach Positive Zero; PS: Positive Small; PM: Positive Medium; PB:
Positive Big. For example, when s is NB, u3 is PS; when s is NM, u3 is PM. Finally, we use the center
of gravity method to solve the fuzzy problem.

3.2. The fast subsystem
The fast subsystem describes the system’s flexible movement. The flexible joints and the flexible link
will not only affect the control but also produce vibration. And, their vibration levels are not the same.
So, we further decompose the fast subsystem into two independent sub-sub systems: the flexible-joint
fast subsystem and the flexible-link fast subsystem. The flexible-joint fast subsystem describes the sys-
tem’s flexible movement caused by the flexible joints. And, the flexible-link fast subsystem describes
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the system’s flexible movement caused by the flexible link. The flexible-joint fast subsystem’s controller
τf1 is designed to suppress the vibration caused by the flexible joints. The flexible-link fast subsystem’s
controller τ f2 is used to suppress the vibration caused by the flexible-link actively. So, the total controller
for the fast subsystem is: τ f = τ f1 + τ f2.

3.2.1. The flexible-joint fast subsystem
Now, only the influence of the flexible joints is considered. So, let δ = 0 in Eq. (16), the dynamic equation
of the rigid-link and flexible-joints system is obtained as:

ε2z̈θ = −J−1
θ

Kθεzθ + J−1
θ

τ k1 − q̈θ (38a)

q̈θ = −D−1
s (C1 − Kθεzθ) (38b)

where τ k1 = τ s + τ f1 + τ d.
The feedback controller is designed as following

τ f1 = Kf(q̇θ − θ̇ )

ε2
(39)

where Kf = K2/ε
2, K2 is a positive definite diagonal matrix.

The controller can adjust Kf in time according to the difference of the link’s rotation angular velocity
q̇θ and the motor rotor’s rotation angular velocity θ̇ . The stability of the flexible-joint fast subsystem is
ensured. Combining with Eq. (38), the flexible-joint fast subsystem’s dynamic equation is:

ε2z̈θ = J−1
θ

(τ s + τ d − Kθεzθ − Jθq̈θ) − ε2J−1
θ

K2żθ (40)

3.2.2. The flexible-link fast subsystem
Now, only the influence of the flexible link is considered. So let θ = qθ, θ̇ = q̇θ in Eq. (16), the dynamic
equation of the flexible-link and rigid-joints system is obtained as:

q̈θ = −G∗
11C1 − G∗

12C2 − G∗
12Kδεzδ + G∗

11τ k2 (41a)

ε2z̈δ = −G∗
21C1 − G∗

22C2 − G∗
22Kδεzδ + G∗

21τ k2 (41b)

where τ k2 = τ s + τ f2 + τ d, G∗
11 =

([
1 0

0 1

]
+ G11Jθ

)−1

G11, G∗
12 =

([
1 0

0 1

]
+ G11Jθ

)−1

G12, G∗
21 =

G21 −
([

1 0

0 1

]
+ G11Jθ

)−1

G21JθG11, G∗
22 = G22 −

([
1 0

0 1

]
+ G11Jθ

)−1

G21JθG12.

Definite a fast time variant: tf = t/ε2, and its modifications: zf1 = zδ − z̄δ and zf2 = ε2żδ. In the fast
subsystem, the slow variables can be regarded as constants, that is, dz̄δ/dtf = ε2 ˙̄zδ = 0. Let ε = 0, the
dynamic equation of the flexible-link fast subsystem can be obtained as:

dZf

dtf

= AfZf + Bfτ f2 (42)

where Zf =
[

zf1

zf2

]
, Af =

[
0 I

−Ḡ∗
22Kδε 0

]
, Bf =

[
0

Ḡ∗
21

]
.

Because Eq. (42) is linear controlled, we can adjust the system state variable Zf using a linear-
quadratic optimal controller. It can reach zero to realize the active suppression of the elastic

https://doi.org/10.1017/S0263574721000977 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000977


Robotica 1007

Figure 5. The space manipulator trajectory tracking errors.

vibration caused by the flexible link. Choosing the performance function of the optimal control:
Jf = 1

2

∫ ∞
0

(ZT
f QfZf + τ T

f2Rfτ f2)dtf, the controller can be designed as:

τ f2 = −R−1
f BT

f PZf (43)

where Qf and Rf are symmetric positive definite matrices; P is the only solution for the Ricatti equation
[63]: PAf + AT

f P − PBf R−1
f BT

f P + Qf = 0.

4. Simulation
We use the proposed hybrid controller to simulate the free-floating flexible-joints and flexible-link space
manipulator system shown in Fig. 1. The actual values of the parameters in the system are: m0 = 40kg,
m1 = 2kg, ρ = 1kg/m, l1 = 3m, l2 = 3m, EI = 300N · m2, J0 = 34.17kg · m2, J1 = 3kg · m2, Jθ1 = Jθ2 =
0.5kg · m2, kθ1 = kθ2 = 300N · m/rad. The flexible link is easy to deform, so l2 is uncertain. In the sim-
ulation, its estimated value is: l2 = 2.5m. The fuzzy parameters are: �1 = �2 = 1, �1 = �2 = 10. The
control parameters are: λ = diag(12, 12), ld = 1, lh = 1, lt = 2, K2 = diag(100, 100), Qf = diag(0.1, 0.1),
Rf = diag(0.01, 0.01).

Simulation 1:

First, a simple simulation is taken. The desired trajectories are: q0d = 0, q1d = 0.1rad, q2d = 0. The
initial states are: q(0) = [

0.05 0 0.1
]T

rad, θ (0) = [
0 0.1

]T
rad, δ (0) = [

0 0
]T

m. The simulation
time: t = 10s. None external interference signal.

The simulation results are shown in Figs. 5–8. Figure 5 is the space manipulator trajectory track-
ing error curve. Figure 6 is the curve of the flexible link’s mode coordinate. Figure 7 is the flexible
link’s deformation curve. Figure 8 shows the flexible-joints angle errors. We can see that the system’s
trajectory tracking errors converge to zero (the error is only 0.009 rad). The flexible-link’s vibration
is suppressed, and its deformation is compensated. The flexible-joints angle errors are decreased. The
control is effective.
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Figure 6. The flexible link’s mode coordinate.

Figure 7. The flexible link’s deformation.

But, the desired trajectories are simple, and the external interference is not considered in simulation
1. So, simulation 2 is taken.

Simulation 2:
The desired trajectories are: q0d = π

4

[
t

10
− 1

2π
sin
(

π

5
t
)]

, q1d = π

2

[
t

10
− 1

2π
sin
(

π

5
t
)]

, q2d =
π

2

[
1 − t

10
+ 1

2π
sin
(

π

5
t
)]

. The initial state is: q(0) = [ 0 0.1 1.5 ]Trad, θ (0) = [ 0.1 1.5 ]Trad,
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Figure 8. The flexible-joints angle errors σ .

Figure 9. The space manipulator trajectory tracking errors.

δ (0) = [ 0 0 ]Tm. The simulation time: t = 10s. The external interference signal is: τ d =[
sin (t) cos (t)

]T
N · m.

The simulation results are shown in Figs. 9–12. Figure 9 is the space manipulator trajectory tracking
error curve. Figure 10 is the curve of the flexible link’s mode coordinate. Figure 11 is the flexible link’s
deformation curve. Figure 12 shows the flexible-joints angle errors. The results show that the system
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Figure 10. The flexible link’s mode coordinate.

Figure 11. The flexible link’s deformation.

can accurately track the desired trajectory (the error is only 0.015 rad). The flexible link’s deformation
is compensated. The vibrations caused by the flexible joints and the flexible link can be suppressed.

The comparison experiments are also taken in simulation 2 to prove the effectiveness of the hybrid
control:

Case 1: Turn off the fuzzy controller u3. The simulation results are shown in Figs. 13 and 14. We can
find that, when u3 is closed, the system’s tracking errors and the flexible-joints angle errors increase,
the control precision decreases.
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Figure 12. The flexible-joints angle errors σ .

Figure 13. The space manipulator trajectory tracking errors when u3 is closed.
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Figure 14. The flexible-joints angle errors σ when u3 is closed.

Figure 15. The space manipulator trajectory tracking errors when τ f is closed.

Case 2: Turn off the fast controller τ f. The simulation results are shown in Figs. 15–18. We can find
that, when τ f is closed, the trajectory tracking errors and the flexible-joints angle errors became large in
<1.2 s, the flexible-link’s vibration cannot be suppressed and its deformation cannot be compensated.
That is, the system fails to track. So, the effectiveness of τ f is proved.
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Figure 16. The flexible link’s mode coordinate when τ f is closed.

Figure 17. The flexible link’s deformation when τ f is closed.

5. Conclusion
In this paper, the free-floating space manipulator system with flexible-joints, flexible-link, uncertain
parameters, and external interference is studied. First, combining the assumed mode method, the sys-
tem’s linear momentum conservation, angular momentum conservation, and Lagrange equation, the
system’s dynamic equation is established. Considering that this is a rigid-flexible hybrid system, the sys-
tem dynamics singular perturbation model is established according to the singular perturbation method.
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Figure 18. The flexible-joints angle errors σ when τ f is closed.

Then, a hybrid control is proposed, composed of the slow subsystem’s robust fuzzy sliding mode control,
the flexible-joints fast subsystem’s speed difference feedback control, and the flexible-link fast subsys-
tem’s linear-quadratic optimal control. The MATLAB simulations with different desired trajectories and
external interference are taken. The simulation results proved that the hybrid control could control the
system to track the desired trajectory accurately and suppress the vibration caused by the flexible joints
and the flexible link. The controller has the advantages of real-time feedback, self-adaptation, and fewer
calculations.

However, we also found that the error’s convergence speed is not fast enough, the vibration is evident
at the initial stage of the response, and the results did not reach the optimal state. That may be related to
the strong coupling and non-linearity of the system and the double flexibility. Improving and optimizing
the control performance will be my main task in the future.
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Appendix: M(q, δ) and H(q, q̇, δ, δ̇) in Dynamic Eq. (10)

M(1, 1) = 2�1 + 2�2 + 2�3 + 2�4δ
2
1 + 2�5δ

2
2 + 2�6 cos (q1) + 2�7 cos (q1 + q2) − 2�8δ1 sin (q1 + q2)

− 2�9δ2 sin (q1 + q2) + 2�10 cos (q2) − 2�11δ1 sin (q2) − 2�12δ2 sin (q2) + 2�13δ1δ2

M(1, 2) = 2�2 + 2�3 + 2�4δ
2
1 + 2�5δ

2
2 + �6 cos (q1) + �7 cos (q1 + q2) − �8δ1 sin (q1 + q2)

− �9δ2 sin (q1 + q2) + 2�10 cos (q2) − 2�11δ1 sin (q2) − 2�12δ2 sin (q2) + 2�13δ1δ2

M(1, 3) = 2�3 + 2�4δ
2
1 + 2�5δ

2
2 + �7 cos (q1 + q2) − �8δ1 sin (q1 + q2) − �9δ2 sin (q1 + q2)

+ �10 cos (q2) − �11δ1 sin (q2) − �12δ2 sin (q2) + 2�13δ1δ2

M(1, 4) = �8 cos (q1 + q2) + �11 cos (q2) + �14

M(1, 5) = �9 cos (q1 + q2) + �12 cos (q2) + �15

https://doi.org/10.1017/S0263574721000977 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000977


Robotica 1017

M(2, 1) = M(1, 2)

M(2, 2) = 2�2 + 2�3 + 2�4δ
2
1 + 2�5δ

2
2 + 2�10 cos (q2) − 2�11δ1 sin (q2) − 2�12δ2 sin (q2) + 2�13δ1δ2

M(2, 3) = 2�3 + 2�4δ
2
1 + 2�5δ

2
2 + �10 cos (q2) − �11δ1 sin (q2) − �12δ2 sin (q2) + �13δ1δ2

M(2, 4) = �11 cos (q2) + �14

M(2, 5) = �12 cos (q2) + �15

M(3, 1) = M(1, 3)

M(3, 2) = M(2, 3)

M(3, 3) = 2�3 + 2�4δ
2
1 + 2�5δ

2
2 + 2�13δ1δ2

M(3, 4) = �14

M(3, 5) = �15

M(4, 1) = M(1, 4), M(4, 2) = M(2, 4), M(4, 3) = M(3, 4), M(4, 4) = 2�4, M(4, 5) = �13

M(5, 1) = M(1, 5), M(5, 2) = M(2, 5), M(5, 3) = M(3, 5), M(5, 4) = M(4, 5), M(5, 5) = 2�5

H(1, 1) = 2�4δ1δ̇1 + 2�5δ2δ̇2 − �6q̇1 sin (q1) − �7(q̇1 + q̇2) sin (q1 + q2)

− �8[δ̇1 sin (q1 + q2) + δ1(q̇1 + q̇2) cos (q1 + q2)] − �9[δ̇2 sin (q1 + q2)

+ δ2(q̇1 + q̇2) cos (q1 + q2)] − �10q̇2 sin (q2) − �11[δ̇1 sin (q2) + δ1q̇2 cos (q2)]

− �12[δ̇2 sin (q2) + δ2q̇2 cos (q2)] + �13(δ̇1δ2 + δ1δ̇2)

H(1, 2) = 2�4δ1δ̇1 + 2�5δ2δ̇2 − �6(q̇1 + q̇2) sin (q1) − �7(q̇0 + q̇1 + q̇2) sin (q1 + q2)

− �8[δ̇1 sin (q1 + q2) + δ1(q̇0 + q̇1 + q̇2) cos (q1 + q2)] − �9[δ̇2 sin (q1 + q2)

+ δ2(q̇0 + q̇1 + q̇2) cos (q1 + q2)] − �10q̇2 sin (q2) − �11[δ̇1 sin (q2) + δ1q̇2 cos (q2)]

− �12[δ̇2 sin (q2) + δ2q̇2 cos (q2)] + �13(δ̇1δ2 + δ1δ̇2)

H(1, 3) = 2�4δ1δ̇1 + 2�5δ2δ̇2 − �7(q̇0 + q̇1 + q̇2) sin (q1 + q2) − �8[δ̇1 sin (q1 + q2)

+ δ1(q̇0 + q̇1 + q̇2) cos (q1 + q2)] − �9[δ̇2 sin (q1 + q2) + δ2(q̇0 + q̇1 + q̇2) cos (q1 + q2)]

− �10(q̇0 + q̇1 + q̇2) sin (q2) − �11[δ̇1 sin (q2) + δ1(q̇0 + q̇1 + q̇2) cos (q2)]

− �12[δ̇2 sin (q2) + δ2(q̇0 + q̇1 + q̇2) cos (q2)] + �13(δ̇1δ2 + δ1δ̇2)

H(1, 4) = 2�4δ1(q̇0 + q̇1 + q̇2) − �8(q̇0 + q̇1 + q̇2) sin (q1 + q2) − �11(q̇0 + q̇1 + q̇2) sin (q2)

+ �13δ2(q̇0 + q̇1 + q̇2)

H(1, 5) = 2�5δ2(q̇0 + q̇1 + q̇2) − �9(q̇0 + q̇1 + q̇2) sin (q1 + q2) − �12(q̇0 + q̇1 + q̇2) sin (q2)

+ �13δ1(q̇0 + q̇1 + q̇2)

H(2, 1) = 2�4δ1δ̇1 + 2�5δ2δ̇2 + �6q̇0 sin (q1) + �7q̇0 sin (q1 + q2) + �8δ1q̇0 cos (q1 + q2)

+ �9δ2q̇0 cos (q1 + q2) − �10q̇2 sin (q2) − �11[δ̇1 sin (q2) + δ1q̇2 cos (q2)]

− �12[δ̇2 sin (q2) + δ2q̇2 cos (q2)] + �13(δ̇1δ2 + δ1δ̇2)
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H(2, 2) = 2�4δ1δ̇1 + 2�5δ2δ̇2 − �10q̇2 sin (q2) − �11[δ̇1 sin (q2) + δ1q̇2 cos (q2)] − �12[δ̇2 sin (q2)

+ δ2q̇2 cos (q2)] + �13(δ̇1δ2 + δ1δ̇2)

H(2, 3) = 2�4δ1δ̇1 + 2�5δ2δ̇2 − �10(q̇0 + q̇1 + q̇2) sin (q2) − �11[δ̇1 sin (q2) + δ1(q̇0 + q̇1 + q̇2) cos (q2)]

− �12[δ̇2 sin (q2) + δ2(q̇0 + q̇1 + q̇2) cos (q2)] + �13(δ̇1δ2 + δ1δ̇2)

H(2, 4) = 2�4δ1(q̇0 + q̇1 + q̇2) − �11(q̇0 + q̇1 + q̇2) sin (q2) + �13δ2(q̇0 + q̇1 + q̇2)

H(2, 5) = 2�5δ2(q̇0 + q̇1 + q̇2) − �12(q̇0 + q̇1 + q̇2) sin (q2) + �13δ1(q̇0 + q̇1 + q̇2)

H(3, 1) = 2�4δ1δ̇1 + 2�5δ2δ̇2 + �7q̇0 sin (q1 + q2) + �8δ1q̇0 cos (q1 + q2) + �9δ2q̇0 cos (q1 + q2)

+ �10(q̇0 + q̇1) sin (q2) + �11δ1(q̇0 + q̇1) cos (q2) + �12δ2(q̇0 + q̇1) cos (q2) + �13(δ̇1δ2 + δ1δ̇2)

H(3, 2) = 2�4δ1δ̇1 + 2�5δ2δ̇2 + �10(q̇0 + q̇1) sin (q2) + �11δ1(q̇0 + q̇1) cos (q2)

+ �12δ2(q̇0 + q̇1) cos (q2) + �13(δ̇1δ2 + δ1δ̇2)

H(3, 3) = 2�4δ1δ̇1 + 2�5δ2δ̇2 + �13(δ̇1δ2 + δ1δ̇2)

H(3, 4) = 2�4δ1(q̇0 + q̇1 + q̇2) + �13δ2(q̇0 + q̇1 + q̇2)

H(3, 5) = 2�5δ2(q̇0 + q̇1 + q̇2) + �13δ1(q̇0 + q̇1 + q̇2)

H(4, 1) = −2�4δ1(q̇0 + q̇1 + q̇2) + �8q̇0 sin (q1 + q2) + �11(q̇0 + q̇1) sin (q2) − �13δ2(q̇0 + q̇1 + q̇2)

H(4, 2) = −2�4δ1(q̇0 + q̇1 + q̇2) + �11(q̇0 + q̇1) sin (q2) − �13δ2(q̇0 + q̇1 + q̇2)

H(4, 3) = −2�4δ1(q̇0 + q̇1 + q̇2) − �13δ2(q̇0 + q̇1 + q̇2)

H(4, 4) = 0

H(4, 5) = 0

H(5, 1) = −2�5δ2(q̇0 + q̇1 + q̇2) + �9q̇0 sin (q1 + q2) + �12(q̇0 + q̇1) sin (q2)

− �13δ1(q̇0 + q̇1 + q̇2)

H(5, 2) = −2�5δ2(q̇0 + q̇1 + q̇2) + �12(q̇0 + q̇1) sin (q2) − �13δ1(q̇0 + q̇1 + q̇2)

H(5, 3) = −2�5δ2(q̇0 + q̇1 + q̇2) − �13δ1(q̇0 + q̇1 + q̇2)

H(5, 4) = 0

H(5, 5) = 0

where

�1 = 1

2

(
m0R2

00 + m1R
2
10 + m2R2

20 + J0

)
, �2 = 1

2

(
m0R2

01 + m1R
2
11 + m2R2

21 + J1

)
,

�3 = 1

2

(
m0R2

02 + m1R
2
12 + ρ

∫ l2

0

R2
22dx2

)
, �4 = 1

2

(
m0R2

03 + m1R
2
13 + ρ

∫ l2

0

R2
23dx2

)

�5 = 1

2

(
m0R2

04 + m1R
2
14 + ρ

∫ l2

0

R2
24dx2

)
, �6 = m0R00R01 + m1R10R11 + m2R20R21,
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�7 = m0R00R02 + m1R10R12 + ρ

∫ l2

0

R20R22dx2, �8 = m0R00R03 + m1R10R13 + ρ

∫ l2

0

R20R23dx2,

�9 = m0R00R04 + m1R10R14 + ρ

∫ l2

0

R20R24dx2, �10 = m0R01R02 + m1R11R12 + ρ

∫ l2

0

R21R22dx2,

�11 = m0R01R03 + m1R11R13 + ρ

∫ l2

0

R21R23dx2, �12 = m0R01R04 + m1R11R14 + ρ

∫ l2

0

R21R24dx2

�13 = m0R03R04 + m1R13R14 + ρ

∫ l2

0

R23R24dx2, �14 = m0R02R03 + m1R12R13 + ρ

∫ l2

0

R22R23dx2

�15 = m0R02R04 + m1R12R14 + ρ

∫ l2

0

R22R24dx2.
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