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Abstract. In this paper we prove the equivalence of two definitions of laminated currents.

1. Introduction
Let K be a relatively-closed subset of the bidisc 12(z, w)= {(z, w); |z|, |w|< 1}. We
suppose that K is a disjoint union of holomorphic graphs, w = fα(z), where fα is a
holomorphic function on the unit disc with fα(0)= α and | fα(z)|< 1. We let L denote
the lamination of K .

There are two notions of laminated currents that we will discuss. Let T be a positive
closed (1, 1)-current supported on K . We assume that T is the restriction of a positive

closed current defined on a neighborhood of 1
2
. We denote by [Vα] the current of

integration along the graph of fα. Let λ denote a continuous (1, 0)-form which at (z, fα(z))
equals a non-zero multiple of dw − f ′

α(z) dz.

Definition 1. We say that T is a laminated current directed by L if λ ∧ T = 0 for any
such λ.

These are the same as Sullivan’s structure currents [10]. The present terminology was
introduced by Berndtsson and Sibony in [1], and such currents were treated further in [4].
In accordance with Dujardin [3] we also define the following.

Definition 2. We say that T is a laminated current subordinate to L if there is a positive
measure µ such that T =

∫
α
[Vα] dµ(α).

Our main result is the following.

MAIN THEOREM. The current T is subordinate to L if and only if it is directed by L.
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We note that this is a result by Sullivan in the case of the lamination being smooth, i.e.
the graphs vary smoothly with α [10]. In the continuous setting Dujardin has shown that if
a current T is dominated by a current subordinate to L then T is subordinate to L.

The part of Sullivan’s proof that does not go through automatically in the non-smooth
case is a certain approximation step, and so in the present article we are concerned
with approximation of partially-smooth functions. In [5] the authors proved such an
approximation theorem in the case of laminations in R2 and in R3. In the last section
we show that the main theorem breaks down for Riemann-surface laminations in higher
dimension.

For related material on laminated currents the reader may consult the paper of Bedford
et al [2].

2. Holomorphic motions and preliminary estimates for slopes of holomorphic graphs
We need to know how the lamination L defined above varies with the parameter λ, and we
use the fact that it defines a holomorphic motion. Let1 := {z ∈ C : |z|< 1} denote the unit
disc in C. A holomorphic motion is a subset E of the complex plane C (or the Riemann
sphere Ĉ) and a map f :1× E → C (or Ĉ) such that f (0, ·)= id, f (λ, ·) is injective for
each λ, and f (·, z) is holomorphic for each z. The lamination L defines a holomorphic
motion.

Let us briefly recall some facts. It is known [9] that any holomorphic motion has an
extension to a holomorphic motion f :1× C → C. This means that we may regard
K as a subset of a lamination of 1× C. From [8] we have that f is automatically
jointly continuous in (λ, z); in fact the map (λ, z) 7→ (λ, fλ(z)) is a homeomorphism onto
1× C. Moreover, f (λ, ·) is quasi-conformal for each λ, and f (λ, ·) distorts cross-ratios
by a bounded amount depending on |λ|. In particular we have the following. If C is
compact in C∗ and x, y, z are three distinct points in C with c0 = (x − y)/(z − y) ∈ C ,
then ( fλ(x)− fλ(y))/( fλ(z)− fλ(y)) is close to c0 depending only on |λ| (for a fixed
C). To see this one can consider the map λ 7→ ( fλ(x)− fλ(y))/( fλ(z)− fλ(y)), a map
from the unit disk to C \ {0, 1}, and use the fact that it has to be distance-decreasing in
the Poincaré metric. Finally we recall that f (λ, ·) is Hölder continuous with exponent
1 + ε(|λ|).

Next we need a basic estimate on slopes of the graphs. For the benefit of the reader we
include the details of this well-known fact. We denote by O(�) the space of holomorphic
functions on �. Let ‖ · ‖∞ denote the sup norm. Set

H∞
= H∞(1)= { f ∈O(1) : ‖ f ‖∞ <∞}.

Also, if 0< C <∞ we set

H∞

C = H∞

C (1)= { f ∈O(1) : ‖ f ‖∞ < C}.

LEMMA 1. If f ∈ H∞

1 (1) and f (z) 6= 0 for all z ∈1, then

| f ′(0)| ≤ 2| f (0)| log(1/| f (0)|).

Proof. Pick a holomorphic function f (z) on the unit disc such that 0 6= | f (z)|< 1 for all
z ∈1. We can replace f (z) by eiθ f (z) for any real θ. This does not change | f (0)| or
| f ′(0)|. Hence we can assume that f (0) > 0.
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We set h(z) := log f (z). Then h(z) is a holomorphic function on the unit disc and
Re(h(z)) < 0. We can also choose a branch of the logarithm so that log( f (0))= −a < 0.
If k(z)= h(z)/a, then k(z) is a holomorphic function on the unit disc and k(0)= −1,
Re(k(z)) < 0. We define L(w)= (w + 1)/(w − 1). Then L(−1)= 0 and if Re(w) < 0
then |L(w)|< 1. Then 0(z) := L(k(z)) is a holomorphic function from the unit disc to
the unit disc. Moreover 0(0)= L(k(0))= L(−1)= 0. Since 0(0)= 0 and |0(z)|< 1
we can apply the Schwarz lemma. So we can conclude that |0′(0)| ≤ 1. By the chain
rule, 0′(0)= L ′(k(0))k′(0)= L ′(−1)k′(0). Since L ′(w)= −2/(w − 1)2 we get 0′(0)=

−2/(−1 − 1)2k′(0) and therefore k′(0)= −20′(0). Hence we get |k′(0)| ≤ 2. Since
k(z)= h(z)/a, we can conclude next that |k′(0)| = |h′(0)|/a. Hence |h′(0)| = a|k′(0)| ≤

a · 2, so |h′(0)| ≤ 2a. Next recall that h(z)= log f (z), so f (z)= eh(z). Hence f ′(z)=

eh(z)h′(z). Therefore f ′(0)= eh(0)h′(0)= f (0)h′(0). Hence | f ′(0)| ≤ | f (0)||h′(0)|. This
implies that | f ′(0)| ≤ 2a| f (0)|. Now recall that log f (0)= −a. But we have set this
up so that log f (0)= log | f (0)| + i arg f (0) is real-valued. So log | f (0)| = −a, i.e.
log(1/| f (0)|)= a. Therefore | f ′(0)| ≤ 2a| f (0)| = 2| f (0)| log(1/| f (0)|). This concludes
the proof of the lemma. 2

COROLLARY 1. Suppose that we have two functions f and g holomorphic on the unit
disc with f − g ∈ H∞

1 (1). Suppose that f (z) 6= g(z) for each z ∈1. We then have the
estimate | f ′(z)− g′(z)| ≤ 4| f (z)− g(z)| log(1/| f (z)− g(z)|) for all z ∈1, |z|< 1/2.

Proof. Pick z, |z|< 1/2. We define G(w)= f (z + w/2)− g(z + w/2). Then G(w)
satisfies the conditions of Lemma 1. Hence |G ′(0)| ≤ 2|G(0)| log (1/|G(0)|). Therefore,

1
2
| f ′(z)− g′(z)| ≤ 2| f (z)− g(z)| log

1
| f (z)− g(z)|

. 2

3. Approximation for complex curves in C2

We assume that for every c = (a, b)= (a + ib) ∈ C we have a holomorphic graph 0c given
by w = y1 + iy2 = fc(z), z = x1 + i x2 ∈1. We assume that all surfaces are disjoint and
that there is a surface through every point in 1× C. We assume that fc(0)= c.

Let π :1× C → C be defined by π(z, fc(z))= c. By the discussion in the previous
section the function π is continuous.

Fix a positive constant R. By Corollary 1 there exists a positive real number δ0 > 0 such
that if z ∈ (1/2)1 and if c, c′

∈ R1 with |c − c′
|< δ0 then∣∣∣∣ ∂∂z

fc′(z)−
∂

∂z
fc(z)

∣∣∣∣ ≤ 4 · | fc′(z)− fc(z)| log
1

| fc′(z)− fc(z)|
. (1)

We define a class of partially-smooth functions:

A :=

{
φ ∈ C(1× C) : φ(z, fc(z)) ∈ C1(0c),

8(x1, x2, w) :=
∂

∂x1
φ(x1, x2, fc(x1, x2)), w = fc(x1, x2) ∈ C(1× C),

9(x1, x2, w) :=
∂

∂x2
φ(x1, x2, fc(x1, x2)), w = fc(x1, x2) ∈ C(1× C)

}
.
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THEOREM 1. Let φ ∈A, let R be a positive real number and let ε > 0. Then there exists
a function ψ ∈ C1(1× R1) such that for every point (x1, x2, w)= (x1, x2, fc(x1, x2)) ∈

1× R1:

|ψ(x1, x2, w)− φ(x1, x2, w)|< ε,∣∣∣∣ ∂∂x1
[ψ(x1, x2, fc(x1, x2))] −

∂

∂x1
[φ(x1, x2, fc(x1, x2))]

∣∣∣∣< ε,∣∣∣∣ ∂∂x2
[ψ(x1, x2, fc(x1, x2))] −

∂

∂x2
[φ(x1, x2, fc(x1, x2))]

∣∣∣∣< ε.
We will prove the theorem using the following result.

PROPOSITION 1. Let g ∈A, g(x1, x2, fa+ib(x1, x2))= a, and let R be a positive real
number. There exists a positive real number t0 such that the following holds. For all
ε > 0 there exists a function h ∈ C1(t01× R1) such that for every point (x1, x2, w)=

(x1, x2, fc(x1, x2)) ∈ t01× R1:

|h(x1, x2, w)− g(x1, x2, w)|< ε,∣∣∣∣ ∂∂x1
[h(x1, x2, fc(x1, x2))]

∣∣∣∣< ε,∣∣∣∣ ∂∂x2
[h(x1, x2, fc(x1, x2))]

∣∣∣∣< ε.
The same result holds if we replace a by b in the definition of g.

Proof of Theorem 1 from Proposition 1.

LEMMA 2. Let p ∈1 be a point, and let R, t0 be positive real numbers such that
1t0(p)⊂⊂1. Consider the lamination restricted to 1t0(p)× C. If the conclusion of
Proposition 1 holds on 1t0(p)× R1 (with respect to projection onto {p} × C), then the
conclusion of Theorem 1 holds on 1t0(p)× R1.

Proof. Let π = (π1, π2) denote the projection onto {p} × C. For each j, k ∈ Z and δ > 0
we let cδ( j, k) denote the point (p, jδ + kδi). Let 3δj denote the C1-smooth function

defined by 3δj (t)= cos2
[π/2δ(t − jδ)] when ( j − 1)δ ≤ t ≤ ( j + 1)δ and 0 otherwise.

For each cδ( j, k) we first define a function

ψδjk(z) := φ(z, fcδ( j,k)(z)),

and then we define a preliminary approximation

ψδ(z, w)=

∑
j,k

ψδjk(z)3 j (π1(z, w))3k(π2(z, w)).

Let (z0, w0) ∈1t0(p)× R1. Then π(z0, w0) is contained in a square with corners
cδ( j, k), cδ( j + 1, k), cδ( j, k + 1) and cδ( j + 1, k + 1), and

ψδ(z0, w0)=

∑
m= j, j+1,n=k,k+1

ψδmn(z0)3m(π1(z0, w0))3n(π2(z0, w0)).
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We have

|ψδ(z0, w0)− φ(z0, w0)| =

∣∣∣∣ ∑
m= j, j+1,n=k,k+1

[ψδmn(z0)− φ(z0, w0)]

×3δm(π1(z0, w0)) ·3δn(π2(z0, w0))

∣∣∣∣
≤ maxm= j, j+1,n=k,k+1|ψ

δ
mn(z0)− φ(z0, w0)|.

Since the map from 1t0(p)× C defined by (z, α) 7→ (z, fα(z)) is a homeomorphism it
follows that ψδ → φ uniformly as δ → 0.

Next we approximate derivatives along leaves. Let α be such that (z0, w0)=

(z0, fα(z0)). Since the functions 3δj ◦ πi are constant along leaves,∣∣∣∣ ∂∂xi
[ψδ(z0, fα(z0))− φ(z0, fα(z0))]

∣∣∣∣
=

∣∣∣∣∣ ∑
m= j, j+1,n=k,k+1

[
∂

∂xi
[ψδmn(z0)− φ(z0, fα(z0))]

]

× 3δm(π1(z0, fα(z0))) ·3δn(π2(z0, fα(z0)))

∣∣∣∣∣
≤ maxm= j, j+1,n=k,k+1

∣∣∣ ∂
∂xi

[ψδmn(z0)− φ(z0, fα(z0))]

∣∣∣.
It follows that ψδ → φ also in C1-norm on leaves.

Now the conclusion of Lemma 2 follows because the functions π j can be approximated
uniformly and in C1-norm on leaves. 2

For each point p ∈1 there exists by Proposition 1 a positive real number tp such that
constant approximation is possible on 1tp (p)× R1. Hence by Lemma 2 approximation
of functions in A is possible.

We may then choose a locally-finite cover {Uα}α∈N of 1 by disks such that
approximation by functions in A is possible on each Uα × R4. Let {ϕα} be a partition
of unity subordinate to {Uα}. For each α let Cα = ‖∇ϕα‖.

For a given εα let gεα be an εα-approximating function of φ on Uα × R4. We will show
that there is a sequence {εα} such that the function

ψ =

∑
α

ϕα · gεα

satisfies the claims of the theorem.

Let z0 ∈ Uα , and let {α1, . . . , αm} be the finite set of α’s, such that the support of φα
intersects Uα . Then

ψ(z, fc(z))=

m∑
i=1

ϕαi (z) · gεαi
(z, fc(z)),
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for all z near z0. Then

|ψ(z0, fc(z0))− φ(z0, fc(z0))|

=

∣∣∣∣∣
[ m∑

i=1

ϕαi (z0) · gεαi
(z0, fc(z0))

]
−φ(z0, fc(z0))

∣∣∣∣∣
≤

m∑
i=1

ϕαi (z0) · |gεαi
(z0, fc(z0))− φ(z0, fc(z0))|

≤ max{εαi }.

Further ∣∣∣∣ ∂∂x1
[ψ(z0, fc(z0))− φ(z0, fc(z0))]

∣∣∣∣
=

∣∣∣∣∣ ∂∂x1

[[ m∑
i=1

ϕαi (z) · gεαi
(z0, fc(z0))

]
− φ(z0, fc(z0))

]∣∣∣∣∣
=

∣∣∣∣ m∑
i=1

∂

∂x1
[ϕαi (z0) · (gεαi

(z0, fc(z0))− φ(z0, f (z0)))]

∣∣∣∣
=

∣∣∣∣ m∑
i=1

∂

∂x1
[ϕαi (z0)] · (gεαi

(z0, fc(z0)))− (φ(z0, f (z0)))

+

m∑
i=1

ϕαi (z0) ·
∂

∂x1
[gεαi

(z0, fc(z0))− φ(z0, f (z0))]

∣∣∣∣
≤ m · max{Cαi } · max{εαi } + max{εαi }.

Similarly we get that∣∣∣∣ ∂∂x2
[ψ(z0, fc(z0))− φ(z, fc(z0))]

∣∣∣∣ ≤ m · max{Cαi } · max{εαi } + max{εαi }.

It is clear that we may choose εαi for i = 1, . . . , m to get the desired estimate for all
points z0 ∈ Uα for this particular α. Running through all α we find that any particular αi

will only come under consideration a finite number of times. Hence we may choose the
sequence {εα}. 2

We proceed to prove the proposition.
Fix δ0 to get the estimate (1) (in the beginning of §3) for all |c − c′

|< δ0 with
|c|, |c′

| ≤ 2R. For any δ with 0< δ < δ0 we let cδ( j, k)= ( j + k · i) · δ for j, k ∈ Z. Let
χ : [0, 1] → R be a smooth function such that χ(t)= 0 for 0 ≤ t ≤ 1/4 and χ(t)= 1 for
3/4 ≤ t ≤ 1. Let C be a constant such that |χ ′(t)| ≤ C for all t ∈ [0, 1].

We first define a function hδ on the surfaces 0cδ( j,k) simply by hδ|0cδ ( j,k)
≡ jδ. We want

to interpolate this function between the surfaces.
For a fixed z consider the sets of points

Qcδ( j,k)(z) := { fcδ( j,k)(z), fcδ( j+1,k)(z), fcδ( j,k+1)(z), fcδ( j+1,k+1)(z)}.

We first show that these sets move nicely with z for small enough |z| and independent of
δ. In particular we want to know that we may define quadrilateral regions Rδ, j,k(z), with
straight edges and corners Qcδ( j,k)(z), and that these sets have disjoint interior.

https://doi.org/10.1017/S0143385707000880 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385707000880


Laminated currents 1471

We make the change of coordinates in the w variable, by setting

w̃(z, w)= w̃ jk(z, w)=
w − fcδ( j,k)(z)

fcδ( j+1,k) − fcδ( j,k)(z)
.

We get

w̃(z, fcδ( j,k)(z))≡ 0,

w̃(z, fcδ( j+1,k)(z))≡ 1.

From the discussion on holomorphic motions in §2 we get the following.

LEMMA 3. Fix N . Then there exists a real number t0 > 0 independent of δ such that if
|l|, |m|< N then |w̃ jk(z, fcδ( j+l,k+m)(z))− w̃ jk(z, fcδ( j+l,k+m)(0))|< 1/10 for all |z|<
t0 and any j, k.

From now on we assume that |z| ≤ t0.

LEMMA 4. The quadrilaterals have disjoint interiors.

Proof. Pick ( j, k). We use the linear change of coordinates in the w direction for fixed z:

w̃ jk(z, w)=
w − fcδ( j,k)(z)

fcδ( j+1,k)(z)− fcδ( j,k)(z)
.

This sends fcδ( j+l,k+m)(z) close to ( j + l, k + m) on a small disc in the z direction for
uniformly bounded (l, m). Hence it is clear that the quadrilaterals are disjoint. 2

Next we define preliminary functions hδjk on the respective quadrilaterals. First we
define a function tz(y1, y2) to be constant equal to 0 on the line between fcδ( j,k)(z) and
fcδ( j,k+1)(z), and constant equal to 1 on the line between fcδ( j+1,k)(z) and fcδ( j+1,k+1)(z).
We extend tz continuously to be affine on the two other edges, and then we extend tz to
be constant equal to v on the line between fcδ( j,k)(z)+ v · ( fcδ( j+1,k)(z)− fcδ( j,k)(z)) and
fcδ( j,k+1)(z)+ v · ( fcδ( j+1,k+1)(z)− fcδ( j,k+1)(z)). Finally we define hδjk by

hδjk(z, y1, y2)= jδ + δ · (χ ◦ tz) (y1, y2).

The hδjk patch up smoothly along the vertical sides of the quadrilaterals where the functions
are constant. To be able to patch them together in the ‘horizontal’ directions we first extend
each hδjk across the ‘horizontal’ edges.

To do this we use the coordinates defined by w̃. Consider the normalization

w̃ jk(z, w)=
w − fcδ( j,k)(z)

fcδ( j+1,k)(z)− fcδ( j,k)(z)
.

Let h̃δjk be defined by h̃δjk ◦ w̃ = hδjk . We want to glue together the two functions on
the quadrilaterals sharing (in the new coordinates) the line segment γ between (0, 0) and
(1, 0), i.e. the function h̃δjk defined above γ and the function h̃δj (k−1) below γ .

We start by extending the function h̃δjk . Note first that by Lemma 3 the

quadrilaterals Rδ, j,k and Rδ, j,k−1 in the new coordinates – henceforth denoted R̃δ, j,k and

https://doi.org/10.1017/S0143385707000880 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385707000880


1472 J. E. Fornæss et al

R̃δ, j,k−1 – have corners within (1/10)-distance from the points (l, m) for l, m ∈ {0, 1,−1}.
Note also that if we define a function t̃z(ỹ1, ỹ2) (w̃ = ỹ1 + i ỹ2) along lines in the
quadrilateral R̃δ, j,k(z) in the new coordinates as we did when we defined tz(y1, y2) above,
then hδjk = ( jδ + δ(χ ◦ t̃)) ◦ w̃. Because of the placing of the corners we see that there
exists a constant K independent of δ, j, k such that ‖∇w̃( jδ + δ(χ ◦ t̃))‖ ≤ K δ.

Continue the lines in R̃δ, j,k that pass through the interval [(1/8), 1 − (1/8)] and extend
h̃δjk to be constant on these lines. By the placing of the corners there is a constant µ
– independent of δ and j, k – such that these lines can be extended to the line between
(0,−µ) and (1,−µ). Let P̃δ, j,k denote the extended set R̃δ, j,k ∪ (R̃δ, j,k−1 ∩ {y2 ≥ −µ});
we see that h̃δjk extends to be constant on the part of P̃δ, j,k where it is not already defined.

Extend h̃δj (k−1) similarly in the other direction.
To glue the functions together we choose a smooth function ϕ(z, ỹ1, ỹ2)= ϕ(ỹ2) such

that ϕ(ỹ2)= 1 if y2 ≥ µ and such that ϕ(ỹ2)= 0 if y2 ≤ −µ. We define our final function

hδ(z, w) := (ϕ ◦ w̃ jk) (z, w) · hδjk(z, w)+ (1 − ϕ ◦ w̃ jk) (z, w) · hδj (k−1)(z, w). (2)

Fix a constant M such that ‖∂ϕ/∂ ỹ2‖ = M .

LEMMA 5. There are constants N1 and N2 such that for each j, k, δ we have hδjk(z, w)=

jδ if |w − fcδ( j,k)(z)| ≤ N1| fcδ( j+1,k)(z)− fcδ( j,k)(z)|. Moreover there is a smooth
function g̃δjk(z, ỹ1, ỹ2) such that hδjk = g̃δjk ◦ w̃ and ‖∇w̃ g̃δjk‖ ≤ N2δ.

Proof. The existence of the constant N1 can be seen by our description of the function in
local coordinates where we used Lemma 3. To see the rest let us give the function g̃δjk
explicitly.

Fix z. Let (a1, a2) denote the corner of R̃δj,k that is close to (0, 1), and define a
map Az(ỹ1, ỹ2) := (ỹ1 − ỹ2(a1/a2), ỹ2(1/a2)). Then Az changes smoothly with z and
‖Az‖< 2 for all the possibilities of (a1, a2) we are considering.

Next we define a function t̂ on the quadrilateral Az(R̃δj,k) along lines as above. Let
(b1, b2) denote the corner close to (1, 1) and fix ŷ = (ŷ1, ŷ2). We have that the two vertical
sides of Az(R̃δj,k)meet at the point (0,−L)where L = b2/(b1 − 1). Calculating the slope
of the line from the point ŷ to the point (̂t(ŷ), 0), we get that ŷ1/(L + ŷ2)= t̃(y)/L , which
gives us

t̂(ŷ)=
ŷ1 · L

L + ŷ2
=

ŷ1 · b2

b2 + ŷ2(b1 − 1)
.

We have that t̂ varies smoothly with (b1, b2) and we see that t̂ has bounded derivatives for
the cases of (b1, b2) we are considering. Define g̃δjk by

g̃δjk = jδ + δ(χ ◦ t̂ ◦ Az),

and the function hδjk is given by hδjk = g̃δjk ◦ w̃. 2

LEMMA 6. hδ → g in sup norm on 1t0 × R1.

Proof. It is clear that hδ(0, ·)→ g(0, ·) uniformly. The claim then follows from Lemma 8
below. 2
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LEMMA 7. If t0 and δ are small enough, then | fcδ( j,k)(z)− fcδ( j+1,k)(z)| ≥ δ2 for all z
with |z| ≤ t0 and all j, k such that |cδ( j, k)| ≤ 2R.

Proof. This follows from the Hölder continuity of the holomorphic motion. 2

LEMMA 8. Let c ∈ R1. The function hδ(z, fc(z)) is small in C1-norm along the graph 0c.

Proof. We need to estimate the derivatives of the function hδ(z, fc(z)) at an arbitrary point
(z0, fc(z0)), and this point is contained in some extended quadrilateral Pδ, j,k . We estimate
∂/∂x = ∂/∂x1 – the case of ∂/∂x2 is similar. Since we are working on lines we use the
notation (x, y1, y2) for coordinates.

If the point is close to the vertical edges, then the function hδ is locally constant, so we
are done. We can assume that also (z0, fc(z0)) ∈ Pδ, j,k \ Pδ, j,k+1. We divide the proof
into two cases. Assume first that (z0, fc(z0)) is not in Pδ, j,k−1. Then the function hδ is
simply equal to the function hδjk (see (2)).

We have that

∂

∂x
(hδjk(x, f (x))) =

(
∂hδjk

∂x
,
∂hδjk

∂y1
,
∂hδjk

∂y2

)
(x, f (x)) ·

(
1,
∂ f1

∂x
,
∂ f2

∂x

)
(x)

=
∂hδjk

∂x
(x, f (x))+

(
∂hδjk

∂y1
,
∂hδjk

∂y2

)
(x, f (x)) ·

(
∂ f1

∂x
,
∂ f2

∂x

)
(x).

(3)

For fixed s, v we may define a curve (x, g(x)):

g(x) = (1 − s) [(1 − v) fcδ( j,k)(x)+ v fcδ( j+1,k)(x)]

+ s[(1 − v) fcδ( j,k+1)(x)+ v fcδ( j+1,k+1)(x)].

Then hδjk(x, g(x))≡ jδ + χ(v)δ. Choose s and v so that (x0, g(x0))= (x0, fc(x0)).
We get that

0 =
∂

∂x
(hδjk(x, g(x)))

=
∂hδjk

∂x
(x, g(x))+

(
∂hδjk

∂y1
,
∂hδjk

∂y2

)
(x, g(x)) ·

(
∂g1

∂x
,
∂g2

∂x

)
(x), (4)

and so substracting (4) from (3) we get

∂

∂x
(hδjk(x0, f (x0)))=

(
∂hδjk

∂y1
,
∂hδjk

∂y2

)
(x0, g(x0)) ·

(
∂ f1

∂x
−
∂g1

∂x
,
∂ f2

∂x
−
∂g2

∂x

)
(x0).

Using Lemma 3 we see that ‖ fc(x0)− fcδ( j+l,k+m)(x0)‖ ≤ 2‖ fcδ( j+1,k)(x0)−

fcδ( j,k)(x0)‖ for l, m ∈ {0, 1}, and so
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( fc − fcδ( j+l,k+m)) (x0)

∥∥∥∥
≤ 4‖( fc − fcδ( j+l,(k+m)) (x0))‖ log

1
‖( fc − fcδ( j+l,k+m)) (x0)‖

≤ 8‖( fcδ( j+1,k) − fcδ( j,k)) (x0)‖ log
1

2‖( fcδ( j+1,k) − fcδ( j,k)) (x0)‖
.

It follows that∥∥∥∥ ∂∂x
(hδ(x, f (x)))

∥∥∥∥ ≤ 8 ·

∥∥∥∥(
∂hδ
∂y1

,
∂hδ
∂y2

)∥∥∥∥ · ‖( fcδ( j+1,k) − fcδ( j,k)) (x0)‖

× log
1

2‖( fcδ( j+1,k) − fcδ( j,k)) (x0)‖
.

We proceed to estimate ‖(∂hδ/∂y1, ∂hδ/∂y2)‖. We change coordinates according to
Lemma 5 and write hδ as a composition g̃δ ◦ w̃(y). We get ‖Dww̃‖ = 1/(‖ fcδ( j+1,k)(x0)−

fcδ( j,k)(x0)‖), and we have that ‖∇w̃ g̃δ‖ ≤ N2δ. This shows that∥∥∥∥(
∂hδ
∂y1

,
∂hδ
∂y2

)∥∥∥∥ ≤ N2δ
1

‖ fcδ( j+1,k)(x0)− fcδ( j,k)(x0)‖
.

This gives∥∥∥∥ ∂∂x
(hδ(x, f (x)))

∥∥∥∥ ≤ 8N2δ log
1

‖ fcδ( j+1,k)(x0)− fcδ( j,k)(x0)‖
.

We have by Lemma 7 that ‖ fcδ( j+1,k)(x0)− fcδ( j,k)(x0)‖ ≥ δ2, and so∥∥∥∥ ∂∂x
(hδ(x0, f (x0)))

∥∥∥∥ ≤ 8N2δ log
1

2δ2 → 0 as δ → 0.

The other case we have to consider is when (z0, fc(z0)) is contained in an overlap
where we glued our functions together. In that case we may assume that (z0, fc(z0)) is
also contained in Pδj (k−1) (see (2)).

Let Ev denote the vector Ev = ∂/∂x(x0, fc(x0)). We have that

∇hδ(x0, fc(x0)) · Ev = ∇[ϕ ◦ w̃ · hδjk] (x0, fc(x0)) · Ev

+ ∇[(1 − ϕ) ◦ w̃ · hδj (k−1)] (x0, fc(x0)) · Ev

= hδjk(x0, fc(x0)) · ∇[ϕ ◦ w̃] (x, fc(x0)) · Ev

+ (ϕ ◦ w̃) (x0, fc(x0)) · ∇[hδjk] (x0, fc(x0)) · Ev

+ hδj (k−1)(x0, fc(x0)) · ∇[(1 − ϕ) ◦ w̃] (x, fc(x0)) · Ev

+ ((1 − ϕ) ◦ w̃) (x0, fc(x0)) · ∇[hδj (k−1)] (x0, fc(x0)) · Ev.

By the above calculations we need not worry about the second and fourth term in this
sum so we have to check that

(hδjk(x0, fc(x0))− hδj (k−1)(x0, fc(x0))) · ∇[ϕ ◦ w̃] (x0, fc(x0)) · Ev → 0

as δ → 0.
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First of all we have that |hδjk(x0, fc(x0))− hδj (k−1)(x0, fc(x0))| ≤ 2δ. Further, |∇[ϕ

◦ w̃] (x0, fc(x0)) · Ev| ≤ M · ‖D[w̃] (x0, fc(x0)) (Ev)‖.
Now

D[w̃] (x0, fc(x0)) (Ev)=
∂

∂x

[(
x,

fc(x)− fcδ( j,k)(x)

fcδ( j+1,k)(x)− fcδ( j,k)(x)

)]
(x0).

Ignoring the constant term (it gets killed by δ), we get that

‖D[w̃] (x0, fc(x0)) (Ev)‖ ≤

| f ′
c(x0)− f ′

cδ( j,k)
(x0)|

| fcδ( j+1,k)(x0)− fcδ( j,k)(x0)|

+

| fc(x0)− fcδ( j,k)(x0)| · | f ′

cδ( j+1,k)
(x0)− f ′

cδ( j,k)
(x0)|

| fcδ( j+1,k)(x0)− fcδ( j,k)(x0)|2

≤
| fc(x0)− fcδ( j,k)(x0)|

| fcδ( j+1,k)(x0)− fcδ( j,k)(x0)|
log

1
| fc(x0)− fcδ( j,k)(x0)|

+
| fc(x0)− fcδ( j,k)(x0)| · | fcδ( j+1,k)(x0)− fcδ( j,k)(x0)|

| fcδ( j+1,k)(x0)− fcδ( j,k)(x0)|2

× log
1

| fcδ( j+1,k)(x0)− fcδ( j,k)(x0)|
.

By Lemma 3, | fc(x0)− fcδ( j,k)(x0)|/| fcδ( j+1,k)(x0)− fcδ( j,k)(x0)| ≤ 2, and so

‖D[w̃] (x0, fc(x0)) (Ev)‖ ≤ 2 · log
1

| fcδ( j+1,k)(x0)− fcδ( j,k)(x0)|

+ 2 log
1

| fc(x0)− fcδ( j,k)(x0)|
.

By Lemma 5, our function is constant unless | fc(x0)− fcδ( j,k)(x0)| ≥ N1| fcδ( j+1,k)(x0)

− fcδ( j,k)(x0)| ≥ N1δ
2 (by Lemma 7), and so we may assume that

‖D[w̃] (x0, fc(x0)) (Ev)‖ ≤ 2 log
1

δ2 + 2 log
1

N1δ2 .

All in all:

|(hδjk(x0, fc(x0))− hδj (k−1)(x0, fc(x0))) · ∇[ϕ ◦ w̃] (x0, fc(x0)) · Ev|

≤ 4Mδ

(
log

1

δ2 + log
1

N1δ2

)
→ 0 as δ → 0. 2

4. Proof of the main theorem
We are ready to prove the main theorem. As pointed out in §2, by the theorem of
Slodkowski [9, 11], we can assume that L is a lamination of 1× C as in the previous
section.

Proof of the main theorem. Suppose that T is a positive closed (1, 1)-current on 12(0, 1),
supported on the laminated set K described in the introduction. We assume that T is
subordinate to the lamination L of K . Hence there is a positive measure µ such that
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T =
∫

[Vα] dµ(α). Suppose that λ= dw − f ′
α(z) dz. We want to show that λ ∧ T = 0.

Let φ be any smooth (1, 0) test form. We need to show that 〈λ ∧ T, φ〉 = 0. This follows
since

〈λ ∧ T, φ〉 =

∫
(λ ∧ T ) ∧ φ

=

∫
T ∧ (λ ∧ φ)

=

∫
α

(∫
Vα
λ ∧ φ

)
dµ(α)

=

∫
α

0 = 0.

Assume next that T is directed by L. Since L is a lamination of 1× C we may invoke
the approximation result from the previous section. With the approximation result at hand
the implication follows from Sullivan’s proof of the smooth case [10]. We include the
proof for the benefit of the reader.

Step 1 is to show that there exists a family of probability measures σα such that σα is
supported on 0α , and a measure µ′ on the α-plane such that for all test forms ω,

T (ω)=

∫ (∫
0α

ω dσα

)
dµ′.

Let ω be a (1, 1) test form and let λ(z, w)= dw − f ′
α(z) dz for w = fα(z). Let

Ev1(z, w)= (1, f ′
α(z)) and let Ev2(z, w)= (i, i · f ′

α(z)) for w = fα(z), and define the
2-tangent field v(z, w)= ( Ev1(z, w), Ev2(z, w)).

Switching basis,

ω = ψ1 dz ∧ dz + ψ2 dz ∧ λ+ ψ3 dz ∧ λ+ ψ4λ ∧ λ,

for some functions ψi , and by assumption, T (ω)= T (ψ1 dz ∧ dz). The function ψ1 is
given by ψ1 = (1/2i)ω(v), and so

T (ω)= T

(
1
2i
ω(v) dz ∧ dz

)
.

On the other hand we may use T to define a linear functional L on C0(1× C) by
L(ψ)= T (ψ dz ∧ dz), and so by the Riesz representation theorem there is a measure ν
such that

L(ψ)=

∫
ψ dν.

This means that

T (ω)=

∫
1
2i
ω(v) dν.

Now the measure ν disintegrates [6]: there exists a family of probability measures
σα such that σα is supported on 0α , and a measure µ′ on the α-plane such that for all
ψ ∈ C0(1× C), ∫

ψ dν =

∫ (∫
0α

ψ dσα

)
dµ′.
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We define currents Tα by Tα(ω)=
∫
0α
(1/2i)ω(v) dσα , and we get that

T (ω)=

∫
Tα(ω) dµ′.

The next step is to show that Tα is closed for µ′-almost all α. Let {ω j } be a dense
set of C1-smooth (0, 1) test forms and fix a j ∈ N. Let g be a continuous function in the
α-variable and extend g constantly along leaves. We want to show that∫

g · Tα(∂ω) dµ′
= 0,

because this would imply that ∂Tα = 0 for µ′-almost all α (since g is arbitrary).
By Theorem 1 there exists a sequence gi of smooth functions such that gi → g

uniformly and in C1-norm on leaves. Since T is closed,

0 =

∫
Tα(∂(gω j )) dµ′

=

∫
Tα(∂gi ∧ ω j ) dµ′

+

∫
gi · Tα(∂ω j ) dµ′.

Since Tα(∂gi ∧ ω)→ 0 we get that∫
g · Tα(∂ω j ) dµ′

= lim
i→∞

∫
gi · Tα(∂ω j ) dµ′

= 0.

Running through all ω j we see that Tα is closed for µ′-almost all α. The only possibility
then is that the measures σα are constant multiples of dz ∧ dz, i.e. σα = ϕ(α) dz ∧ dz
where ϕ is a measurable function [7]. Define µ := ϕ · µ′.

5. Two counterexamples
In [5] the authors proved versions of the main theorem for real laminations in R2 and R3.

In those results we added an extra slope condition on the laminations which is analogous
to the estimate in Corollary 1. We give here a simple example of a lamination of curves
in R2 where the slope condition is not satisfied. Also, the conclusion of the main theorem
fails. The analogue of Theorem 1, i.e. approximation of partially-smooth functions, fails
as well.

For each t ∈ R, we let γt be the curve y = ft (x)= (x − t)3 in R2. Clearly this gives
a continuous lamination of R2 by curves. The curves are all tangent to the x-axis. This
implies that the current of integration of the x-axis is annihilated by the 1-form λ defined
by dy − f ′

t (x) dx on γt . However, this current is not an integral of currents [γt ]. We also
observe that the function a(x, y) defined by a(x, ft (x))= t cannot be approximated by
C1 functions, because any such approximation will have to have a small derivative along
the x-axis.

We can also modify this example so that we have a Riemann surface lamination in
C3. For t ∈ C, let γt be the complex curve γt (s)= (z, w, τ)= (s, (s − t)2, (s − t)3).
These curves laminate C3, and γt is tangent to the z-axis at (t, 0, 0). Hence the z-axis
is annihilated by any continuous 1-forms defining the lamination. Hence the current of
integration of the z-axis is directed. But clearly it is not subordinate to the lamination.
Again the function a(z, w, τ) defined by a|γt = t cannot be approximated by C1 functions.
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