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INITIAL SEGMENTS OF THE DEGREES OF CEERS

URI ANDREWS AND ANDREA SORBI

Abstract. It is known that every non-universal self-full degree in the structure of the degrees of
computably enumerable equivalence relations (ceers) under computable reducibility has exactly one strong
minimal cover. This leaves little room for embedding wide partial orders as initial segments using self-full
degrees. We show that considerably more can be done by staying entirely inside the collection of non-self-
full degrees. We show that the poset 〈�<�,⊆〉 can be embedded as an initial segment of the degrees of
ceers with infinitely many classes. A further refinement of the proof shows that one can also embed the free
distributive lattice generated by the lower semilattice 〈�<�,⊆〉 as an initial segment of the degrees of ceers
with infinitely many classes.

§1. Introduction. Computably enumerable equivalence relations appear quite
often in mathematical logic and effective mathematics. For instance they appear
as relations of provable equivalence of formal systems, and as word problems or
isomorphism problems of effectively presented structures. A useful and natural way
to compare the relative complexity of ceers is by computable reducibility (or, simply,
reducibility) of equivalence relations on the set � of natural numbers: If A,B are
equivalence relations on �, then A is computably reducible (or, simply, reducible) to
B (notation: A ≤ B) if there is a computable function f such that x A y if and only
if f(x) B f(y), for all x, y ∈ �. Most of the initial investigations of ceers under
the reducibility ≤ were oriented towards identifying universal ceers in logic and
algebra. A ceer A is called universal if B ≤ A for every ceer B. For instance, provable
equivalence in Peano Arithmetic, or in other related systems, gives a universal
ceer [7]. Miller III [15] proved that there exists a finitely presented group G such
that its equality is a universal ceer; he also proved that the isomorphism relation
between finite presentations of groups is a universal ceer. A comprehensive survey
on universal ceers can be found in [2]. There has also been study of the relationship
between ceers and the c.e. algebraic structures which have the ceer as its domain,
see, e.g., [8, 10–12].

When restricted to ceers, the reducibility ≤ gives rise to a degree structure called
Ceers of which the degree of the universal ceers is the greatest element. We say that
two equivalence relations A and B on� are equivalent (denoted byA ≡ B) ifA ≤ B
andB ≤ A. The degree of A is the set of the equivalence relations that are equivalent
to A. The degrees are partially ordered by the partial ordering relation induced by
computable reducibility. If P is a property of equivalence relations, then we say that
a degree has property P if some member of the degree has property P. In the other
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direction, we will often transfer to ceers properties that should be more appropriately
understood on degrees such as order-theoretic properties like the property of being
a strong minimal cover, etc. In particular, given ceers A,B , we say that A is a strong
minimal cover of B, if B < A and for every C ≤ A, either C ≡ A, or C ≤ B .

The first paper explicitly directed to a systematic investigation of the above
defined degree structure Ceers was [9]. Andrews and Sorbi provide in [5] a thorough
investigation of this structure, with an emphasis on existence and non-existence of
meets and joins, minimal and strong minimal covers, definable classes of degrees,
and automorphisms. They propose a partition of the ceers into three classes: the
finite ceers (i.e., the ceers with finitely many equivalence classes), the light ceers (i.e.,
those ceers A such that Id ≤ A, where Id is the identity ceer), and the remaining
ceers (called dark ceers). They show that no pair of incomparable dark ceers has join
or meet. The same authors show in [4] that the first-order theory of the poset Ceers
as well as the theories of the sub-posets Light and Dark, comprised of the degrees
of light and dark ceers, respectively, are computably isomorphic to true first-order
arithmetic.

For the convenience of the reader here we collect some definitions about ceers.

Definition 1.1.

• The uniform join operation ⊕ is the operation on equivalence relations defined
by: X ⊕ Y = {(2x, 2y) : x X y} ∪ {(2x + 1, 2y + 1) : x Y y}.

• A ceer A is self-full if whenever f is a reduction of A to A then range(f)
intersects all A-equivalence classes; otherwise A is non-self-full.

• Equivalently [5, Observation 4.2], a ceer A is self-full if and only ifA⊕ Id1 �≤ A,
where Id1 is the ceer with only one equivalence class.

• The ceer Id is defined by equality, i.e., x Id y if and only if x = y.
• A ceer A is finite if it has only finitely many classes.
• A ceer A is light if Id ≤ A.
• A ceer A is dark if it is neither finite nor light.
• The posets Fin, Light, and Dark are the degree structures of the finite, light,

and dark ceers. We write Ceers \ Fin for the degree structure of ceers which
have infinitely many classes.

1.1. Non-self-full strong minimal covers: towards a theory of initial segments for
the structure of ceers. What is still missing is a satisfying theory of initial segments of
Ceers, which leaves our understanding of the structure far behind our understanding
of other familiar degree structures, possessing already well-established theories of
initial segments. Very little is indeed known in this regard about Ceers, besides the
observations on minimal covers and strong minimal covers in [5], or the observation
[3] that there is an initial segment I of the light degrees (namely those between the
degree of Id, and the degree of RK , where x RK y if and only if x = y, or x, y
both belong to the halting set K) such that one can embed every finite distributive
lattice as an initial segment I ′ of I. Note that I is not an initial segment in Ceers,
but only in the light degrees, so this does not imply results about initial segments in
Ceers. This follows from the fact that the 1-degrees of the non-simple c.e. sets can be
isomorphically embedded onto I [3, Theorem 2.4] and that every finite distributive
lattice can be embedded as an initial segment of these c.e. 1-degrees [13].
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This paper aims at giving a first contribution to fill in this gap. For this it is
very important to develop new techniques for building strong minimal covers. In
the structure Ceers we know that every non-universal degree has a strong minimal
cover. In particular, this splits into two cases, based on whether the non-universal
degree is self -full.

If a degree d is self-full, then it has a strong minimal cover e such that, for any other
degree x, if x > d, then x ≥ e [5, Lemma 4.5]. Thus every self-full degree has exactly
one strong minimal cover. On the other hand, we know [5, Corollary 7.11] that
every non-universal non-self-full degree d has infinitely many incomparable self-full
strong minimal covers e1, e1, .... Since these strongly minimal covers are self-full, they
each have exactly one strong minimal cover. With an eye towards understanding the
initial segments of Ceers, unfortunately this does not help us embed wide posets as
initial segments of the structure. In particular, while we have infinitely many strong
minimal covers of the degree of Id (which, we recall, is the ceer defined by equality),
each of these only has one strong minimal cover, which allows an embedding of the
tree�≤1, but not of�≤2, where�≤n = {α ∈ �<� : |α| ≤ n} (where |α| denotes the
length of α).

We will show however (Theorem 2.1) that non-self-full ceers C with the extra
property that C ⊕ Id ≡ C each have infinitely many incomparable strong minimal
covers A which are also non-self-full and A⊕ Id ≡ A.

Thus, we get an embedding of the poset 〈�<�,⊆〉 of the finite strings of numbers
(where � ⊆ � if � is an initial segment of �) as an initial segment of Ceers \ Fin.
Note that since Fin has order type � and is bounded by every other ceer, classifying
the initial segments in Ceers is equivalent to classifying the initial segments of
Ceers \ Fin.

Further, in Corollary 3.11 we extend this embedding to an embedding of the
free distributive lattice generated by �<� viewed as a lower semilattice as an initial
segment J of Ceers \ Fin (see Definition 3.3). We note in Observation 3.12 that the
embedding we find is not a lattice-embedding (i.e., the degrees in question do not
have joins in the ceers, though they do in J).

We leave the following questions open:

Question 1.2. Does every non-self-full ceer have a non-self-full strong minimal
cover?

Note that it follows from [1, Corollary 3.3.4] that the assumption used in this
paper that C ⊕ Id ≡ C is strictly stronger than non-self-fullness.

Question 1.3. If C is non-self-full andC ⊕ Id ≡ C , then does C have incomparable
strong minimal covers A1 and A2 so that Ai ⊕ Id ≡ Ai and A0, A1 have supremum in
the structure of ceers?

1.2. Notations and terminology. Our notations and terminology from com-
putability theory are standard and can be found in [16] or [17]. If A is an equivalence
relation on � and V ⊆ �, then the A-closure of V is [V ]A = {x : ∃y ∈ V (x A y)}.
The A-equivalence class of a number x is denoted by [x]A.

We recall the notion of restriction of a ceer to a c.e. set, see [5, Section 2.3]. If A
is a ceer and W is a nonempty c.e. set then fix a computable surjection � : � →W ,
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and define A�W to be the ceer

x A�W y ⇔ �(x) A �(y).

It is immediate to see that up to ≡,A�W does not depend on the chosen computable
surjection.

Lemma 1.4. Let A,B be ceers:

(1) For every nonempty c.e. set W, A�W ≤ A.
(2) A ≤ B if and only if there exists a nonempty c.e. set W such that A ≡ B�W .
(3) If U,V are c.e. sets and for every u ∈ U , there is some v ∈ V so that u A v,

then A�U ≤ A�V .

Proof. The second follows from the fact that if f is a reduction of A to B then
A ≡ B�W , where W = range(f). For the last claim, define a map from A�U to
A�V as follows. Fix � : � → U and ϕ : � → V . Then for every V -class X, if the
range of � intersects X then so does the range of ϕ. So, for every n, define g(n)
to be the first m seen so that �(n) A ϕ(m). It is straightforward to check that this
is a reduction of A�U (as defined using �) to A�V (as defined using ϕ). The first
condition follows from the third with V = �. �

Definition 1.5. We generalize the uniform join operation to finitely many
summands. Let (Xi)i<n be equivalence relations, with n ≥ 1. For each i < n, let
�i,n = {z ∈ � : z ≡ i mod n}, and for x ∈ �i,n let (x)i,n be x–i

n . Then let

x X0 ⊕ ··· ⊕ Xn–1 y ⇔ (∃i < n ) [x, y ∈ �i,n & (x)i,n Xi (y)i,n].

If f0, ... fn–1 are computable functions from � to �, then define ⊕ifi to be the
function given by ⊕ifi(x) = n · fi((x)i,n) + i if x ∈ �i,n.

For A any ceer and ∼ any c.e. subset of �2, define A/∼ to be the equivalence
relation generated by A and ∼. Note that ifX (here,X = A ∪ ∼) is a c.e. set of pairs,
then the equivalence relation E generated by X is defined by x E y if and only if

∃n∃z1, ... zn

(
z1 = x ∧ zn = y ∧

n–1∧
i=1

(zi , zi+1) ∈ X
)
,

so E is a ceer.
If A is any ceer and ∼ any c.e. subset of �2, we say that ∼ is A-closed if whenever

x ∼ y and x A x′ and y A y′, then also x′ ∼ y′. That is, ∼ collapses whole A-classes
together.

If f is a computable function from � to �, and ∼ is a c.e. subset of �2, define
∼f= {(a, b) : (f(a), f(b)) ∈∼}.

Lemma 1.6. If f is a reduction of A to B and ∼ is a transitive c.e. subset of �2 which
is B-closed, then A/∼f ≤ B/∼.

Proof. We will see that f is a reduction of A/∼f to B/∼.

Suppose a A/∼f b. Then there are z1, ... zn so that z1 = x ∧ zn = y ∧
∧n–1
i=1

(zi , zi+1) ∈ A ∪ ∼f . Thenf(z1) = f(x) ∧ f(zn) = f(y) ∧
∧n–1
i=1(f(zi), f(zi+1)) ∈

B ∪ ∼. So, f(a)B/∼f(b).
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Since ∼ is transitive and B-closed, B ∪ ∼ is an equivalence relation, so B/∼ =
B ∪ ∼. So, if f(a) B/∼ f(b), then either f(a) B f(b) or f(a) ∼ f(b). In either
case, we have a A/∼f b. �

Applying the above to the case of a uniform join, we get:

Lemma 1.7. If f0, ... , fn–1 are reductions witnessing Ai ≤ Bi for i < n and ∼ is a
transitive c.e. subset of �2 which is B0 ⊕ ··· ⊕ Bn–1-closed, then

(A0 ⊕ ··· ⊕ An–1)/∼⊕i fi
≤ (B0 ⊕ ··· ⊕ Bn–1)/∼.

§2. Non-self-full strong minimal covers. Since a ceer A is self-full if and only
A⊕ Id1 �≤ A, a ceer A satisfying A ≡ A⊕ Id, such as the one we construct in the
next theorem, is non-self-full.

Theorem 2.1. Given a ceer C so thatC ≡ C ⊕ Id and a non-universal ceerB ≥ C ,
there exists a ceer A which is a strong minimal cover of C so that A ≡ A⊕ Id �≤ B .

Proof. Let C,B be as in the statement of the theorem. We want to build A so as
to satisfy the following requirements:

NSF : A ≡ A⊕ Id,

Di : ϕi is not a reduction from A to B,

R : C ≤ A, and

SMCi : A ≤ A�Wi ∨ A�Wi ≤ C.
As already observed, NSF is a strictly stronger requirement than ensuring that A

is non-self-full. Satisfaction of the D-requirements guarantees that A � B . The
R requirement in conjunction with the D-requirements ensure that C < A. In
particular, we cannot have A ≤ C since C ≤ B and the D-requirements ensure
A � B . Finally if X ≤ A, and by Lemma 1.4 (2) X ≡ A�Wi for some i, then
requirement SMCi guarantees that eitherA ≤ X and thusA ≡ X , orX ≤ C . Hence
satisfaction of all SMC-requirements yields that A is a strong minimal cover of C.

As we construct the ceer A, we begin with A0 = Id and as stages go by, we say
we A-collapse, or often just say collapse, elements n and m. This means that at stage
s + 1, we let As+1 be the equivalence relation generated by As along with the pairs
that we collapse during stage s. �

2.1. Informal description of the strategies to satisfy requirements.

The NSF strategy. We will fix a computable infinite and coinfinite set I� and we
will ensure that if x ∈ I�, then [x]A = {x}. This ensures that A ≡ Id⊕(A�I�), so
A⊕ Id ≡ A. Here the symbol I� denotes the complement of I�.

The Di -strategies. We will have a c.e. set which we will callDα for some node α,
and we will cause collapse on this set only for the purpose of ensuring that ϕi is not
a reduction of A to B. We will play a diagonalizing strategy which in a finitary way
guarantees that ϕi is not a reduction witnessing A ≤ B . To do this we carry out a
finite amount of A-collapsing on the elements of Dα .
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We now describe the strategy that α runs on the set Dα . We call this strategy
the finitary-diagonalization strategy. We fix ahead of time a universal ceer U, with
computable approximations (Us)s∈� (namely, U0 = Id, Us ⊆ Us+1, and Us \ Id is
a finite set of pairs of which we can compute the canonical index uniformly in s).
Let also (Bs)s∈� be a computable approximation (defined in the same way) for
the ceer B. We fix the enumeration Dα = {aj : j ∈ �} of Dα . The strategy has a
parameter nα , which begins as nα = 0 and acts at each stage s + 1 when α is visited
and ϕi(aj) Bs ϕi(ak) if and only if aj As ak for each aj, ak ∈ Dα with j, k < nα .
In this case, we increment nα = nα + 1 and for each aj, ak ∈ Dα with j, k < nα , we
collapse aj As+1 ak if and only if j Us k. This is the only cause for collapse inside
Dα . A priori, there are two possible outcomes of this strategy: In the first case,
lims nα is finite, and thus we will never again see that ϕi(aj) Bs ϕi(ak) if and only
if aj As ak for each aj, ak ∈ Dα with j, k < nα . Thus ϕi is not a reduction of A to
B. In the second case, lims nα = ∞. But then aj A ak if and only if j U k. Thus
j �→ ϕi(aj) is a reduction of U to B. Since B is non-universal by hypothesis of the
theorem, this infinitary outcome is simply impossible. It is to emphasize this fact
that we call this strategy the finitary-diagonalization strategy.

The R-strategy. We will fix a computable set K� = {x : x ≡ 0 mod 3} and we
will directly encode C onto A�K�. Then the map f(x) = 3x will give a reduction
of C to A. We note that, as opposed to the NSF-strategy, it will not be the case
that A ≡ A�K� ⊕ A�K�. In fact, many nodes α on the true path will be building
their own sets Kα which will necessarily have representatives of the same A-classes
asK�. We will need to build these setsKα in order to put a copy of C into A�Wi for
SMCi -strategies. Further, these must represent the same A-classes as K�, because
we cannot afford to encode C ⊕ C , which might be strictly above C.

The SMCi -strategies. Here we use the Chinese boxes technique employed by
Lachlan in the proof of [14, Theorem 2]. A node α on the true path will put
numbers s into either Sα f̂ or Sα ∞̂. When we see a member of Sα f̂ be A-equivalent
to a number in Wi , α will collapse together every number (aside from those
A-equivalent to a member of K�) in Sα f̂ to a single class with s (the current
stage) and put s into Sα ∞̂. In this case, we then make Sα f̂ empty.

Under the outcome that only finitely often puts numbers into Sα ∞̂, the effect
of this procedure is that almost every A-class (aside from some copies of Id held
by higher-priority strategies, e.g., the NSF-strategy, or sets D	 being used for Di -
strategies, or sets I	 as described in the next paragraph) will be represented by
members of Sα f̂ ∪K�, and Sα f̂ has no member equivalent to a number in Wi .
Then A�Wi will have to reduce to C ⊕ Id, coming from the elements A-equivalent
to K� along with the finitely many copies of Id, and C ⊕ Id ≡ C .

Under the outcome that infinitely often puts numbers into Sα ∞̂, we have that
the entire set Sα ∞̂ is comprised of members which are A-equivalent to numbers in
Wi . Thus A�Sα ∞̂ ≤ A�Wi . In this case, the goal is to ensure that A ≤ A�Sα ∞̂. We
do this by having a copy Kα of K� inside Sα ∞̂ and having a copy Iα of Id inside
Sα ∞̂. This suffices to give us a reduction of A to A�Sα ∞̂. We send each copy of
K� into Kα ∞̂ (i.e., we send an x in some copy of K� to a representative of its own
A-class which is in Kα ∞̂), and each of the (finitely many) copies of Id being used
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by higher-priority strategies and Iα ∞̂ itself into Iα ∞̂. This uses the immediate fact
that Id⊕ Id ≡ Id.

We now move onto a description of how these strategies fit together into the
construction.

2.2. Informal description of the construction. We employ an infinite-injury priority
construction on the priority tree Tr = {∞ < f}<� . We use standard notations and
terminology about strings. In particular if α, 	 ∈ Tr then we write α <L 	 to mean
that α is to the left of 	 and α ≤ 	 to denote that either α <L 	 or α ⊆ 	 , the latter
meaning that α is an initial segment of 	 . We write α ⊂ 	 if α ⊆ 	 and α �= 	 . The
empty string is denoted by the symbol �. If α �= � then α– denotes the immediate
predecessor of α along α. The symbol |α| denotes the length of α. As usual in
computability constructions that use tree arguments, the construction will identify
the true path Tp through Tr, that is the unique infinite path through Tr such that for
every n, its restriction Tr �n is the leftmost string of length n which is visited in the
construction infinitely many times.

2.2.1. The parameters of α. Each node α ∈ Tr has parameters Sα , Kα , Iα , Dα ,
Mα . The values of these sets depend of course on the stage, and should therefore
be denoted by Sα,s , Kα,s , Iα,s , Dα,s , Mα,s , although we will omit specifying the
approximating stage unless strictly necessary. If α is on the true path of the
construction then the limit value Sα will be an infinite computable set consisting of
the numbers which have been enumerated in Sα after the last stage sα at which α
has been initialized if there is any such stage, otherwise sα = 0. There is yet another
parameter, a number nα which pertains only to nodes α �= � such that α = (α–)̂ f,
and is used in the finitary-diagonalization strategy.

A node α = (α–)̂ ∞ will be working towards satisfying SMC|α|–1 and will have
to ensure that A ≤ A�W|α|–1. Such an α will be on the true path only if every
element of Sα is A-equivalent to a member ofW|α|–1. By injuring all strategies to the
right, α will ensure that A ≡ Id⊕A�Sα ≤ A�Sα ≤ A�W|α|–1. For the equivalence
A ≡ Id⊕A�Sα , it will be essential that each equivalence class of the copy of C
which is encoded in A has representatives in Sα . This is precisely the role of the set
Kα . Similarly, it is needed that Id⊕A�Sα ≤ A�Sα . This is the role of Iα . On Iα , we
will encode a copy of Id which will be unrelated to the rest of Sα precisely to ensure
Id⊕A�Sα ≤ A�Sα . For α = (α–)̂ ∞,Dα will be empty. Finally,Mα is the stream of
numbers given for α ∞̂ and α f̂ to work with.

A node α = (α–)̂ f will automatically have SMC|α|–1 satisfied (if this α is on the
true path) and will instead work towards satisfying a D-requirement. This will be
done by the finitary-diagonalization strategy on the set Dα . The parameter nα will
describe the progress of the finitary-diagonalization strategy. The sets Kα and Iα
are empty, and once againMα is the stream of numbers for α ∞̂ and α f̂ to work
with.

Partitioning Sα . At any stage s, we will have S� = {i : i ≤ s} ∪ {x : x ≡ 0
mod 3}, and partition S� into K� = {x : x ≡ 0 mod 3}, I� = {x ≤ s : x ≡ 1
mod 3}, M� = {x ≤ s : x ≡ 2 mod 3}, and D� = ∅. If α �= � then at stage s, if
s ∈Mα– then s may enter Sα (in particular, Sα ⊆ {x : x ≤ s}). In fact, Sα will be
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the set of stages at which the node α is visited since its last initialization. At each
stage, if α = (α–)̂ ∞ then Dα = Ø and Sα is partitioned by Kα , Iα , Mα . One out
of every three elements which enter Sα will be put into Kα , one out of every three
will be put into Iα , and one out of every three will be put intoMα . If α = (α–)̂ f,
we define Kα = Iα = ∅, and Sα is partitioned by Dα,Mα . One out of every two
elements which enter Sα will be put into Dα , and one out of every two elements
which enter Sα will be put into Mα . The limit value Sα will then turn out to be
partitioned by the (limit values of the) sets Kα , Iα , Mα if α = � or α = (α–)̂ ∞,
or Dα,Mα if α = (α–)̂ f. Moreover, every Sα with α �= � will be contained
inMα– .

We will also have a single global set K (approximated by Ks at stage s), which is
the set of elements which are A-equivalent to a member of K�. That is, K = [K�]A.
This will includeKα for every node α. This will even include numbers which enter a
setKα before α is injured. Moreover, K may contain numbers which themselves are
never enumerated into any set Kα . This is a consequence of the fact that when we
witness injury to α, we will collapse all of the numbers in Sα \K to a single class,
and a representative of this class may enterK	 for some 	 . In this case, we will place
the single representative of the class into K	 , but the remainder of the class will be
in K, despite never having been enumerated into any set K
 .

2.2.2. More formal description of the strategy of a node α in isolation. We now
look at the strategies employed by the nodes on Tr (in fact, to describe the effects
of the strategy employed by α, we assume that α ⊂ Tp and α works in isolation),
describing some procedures which will be used in the formal construction.

Each node α on the tree will be working with the c.e. set W|α| to choose its
outcome. Also, α builds Sα ,Kα , Iα ,Dα ,Mα , and constructs particular ceers onKα ,
Iα , Dα . We distinguish the three cases α = �, α = (α–)̂ ∞, and α = (α–)̂ f.

α = �: Winning R and NSF. We reserve K� and I� to meet the overall
requirements R and NSF. Specifically, on K� (which will be exactly {x : x ≡ 0
mod 3}) we place a copy of C. Thus x �→ 3x will give a reduction witnessingC ≤ A,
and we let I� (which will limit to exactly {x : x ≡ 1 mod 3}) be a copy of Id:

• (Coding C in K�) Towards making the reduction C ≤ A, for every n ∈ � let
x�n = 3n be the nth element ofK�. At every stage s, we will A-collapse x�n A x

�
m

if and only if x�n, x
�
m ≤ s and n Cs m. The construction will guarantee that we

cause no additional A-collapses on K�. The notation x�n here refers to the nth
element of K�. For nodes α = α– ∞̂, we will have xαn similarly refer to the nth
element of Kα .

• We let I� be a copy of Id, by never A-collapsing throughout the construction
any pair of distinct elements of I�. We will not collapse these elements with any
other elements, so Lemma 2.14 will guarantee that A ≡ A⊕ Id.

α = (α–)̂ ∞. If we visit α– at stage s and do not end the stage, it is because
s enters Mα– . Suppose that at infinitely many stages, α– takes outcome ∞. At
stage s, α– takes outcome ∞ if and only if at that stageW|α–| contains an element
x ∈ [Sα– f̂]A which is not in K. We will call such stages α–-expansionary. In this
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case all elements of Sα– f̂ which are not in K will collapse together into the class
of s, and we enumerate s into Sα . In this case, we will make Sα– f̂ = ∅ as we injure
α– f̂. This means that the x we found inW|α–| ∩ [Sα– f̂ ]A must be A-equivalent to
a number which entered Sα– f̂ since the last time α was visited. This s then enters
one of Kα , Iα , or Mα . If we take this outcome infinitely often, then Sα will be an
infinite computable set.

• K-procedure atα. If s becomes the nth element ofKα (we express this by writing
s = xαn ) then we A-collapse s A x�n . Moreover we will cause no additional
A-collapse on the elements ofKα apart from the ones inherited from C through
K�.

• The equivalence A�Iα ≡ Id. We will cause no additional A-collapse on the
elements of Iα , so they will be pairwise non-A-equivalent as they were when
first enumerated in Iα , and thus A�Iα ≡ Id.

• The reductionA ≤ A�Sα . Since every element ofSα is in a class which intersects
W|α–|, a reduction A ≤ A�Sα yields A ≤ A�W|α–| by Lemma 1.4(3), thus
satisfying the requirement SMC|α–|. Assuming α is on the true path, � will
be partitioned into [S	 ]A \K for 	 <L α, [I
 ]A, [D
 ]A for 
 ⊂ α, and [Sα]A
(note that all of K, and thus [K
 ]A for all 
 is contained in [Sα]A as every
element of K
 is collapsed with an element of K�, and Kα , being infinite,
contains an element xαn A-equivalent to x�n for each n). We will show in the
Disjointness Lemma below that these blocks are pairwise A-disjoint. Further,
this is a computable partition (note that [S	 ]A \K for 	 <L α is a c.e. set since
it contains only finitely many classes, since we are assuming that α ∈ Tp). So,
to reduce A to A�Sα comes down to reducing each of [S	 ]A \K for 	 <L α,
[I
 ]A, [D
 ]A for 
 ⊂ α, and [Sα]AA-disjointly into Sα . Each of [S	 ]A \K for
	 <L α will be finite ceers. Each of [I
 ]A, [D
 ]A for 
 ⊂ α will be either empty
or equivalent to Id. Since Iα is a copy of Id, we build a reduction by reducing
[Iα]A along with each of [S	 ]A \K for 	 <L α, [I
 ]A, [D
 ]A for 
 ⊂ α to Iα .
The rest of [Sα]A gets sent to a member of Sα in its own equivalence class.

α = (α–)̂ f. Suppose now that α = α– f̂ is on the true path.

• The finitary-diagonalization strategy at α. Strategy α works towards satisfying
Di where i equals the number of bits f occurring in the string α– (we let #(α)
be this number). That is, #(α) = |{	 : 	 f̂ ⊂ α–}|. Strategy α carries out the
finitary-diagonalization strategy described in Section 2.1.1, which we know will
cause only finitely many collapses. Therefore, A�Dα will be equivalent to Id.

• The reduction A�W|α–| ≤ C . We see in this case that A�W|α–| ≤ C ⊕ Id,
meeting SMC|α–|. If (α–)̂ f ⊂ Tp then W|α–| ∩ [Sα]A \K is empty. Once
again, � is partitioned into [S	 ]A \K for 	 <L α, [I
 ]A, [D
 ]A for 
 ⊂ α, and
[Sα]A. So, A�W|α–| can be written as a uniform join of A�W|α–| ∩ [S	 ]A \K
for 	 <L α, A�W|α–| ∩ [I
 ]A, A�W|α–| ∩ [D
 ]A, for 
 ⊂ α, and A�W|α–| ∩K ,
since W|α–| ∩ [Sα]A \K is empty. The first of these is a finite ceer, the
second reduces to A�[I
 ]A ≡ Id, the third reduces to A�[D
 ]A ≡ Id, and
A�W|α–| ∩K ≤ A�K� ≡ C . Thus,A�W|α–| reduces to a uniform join of finitely
many copies of Id, some finite ceers, and C, which reduces to C ⊕ Id ≡ C .
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2.3. Formal construction. Let s be a stage. We proceed by substeps t at stage s. At
substep t of s we define: (1) a string αs,t ⊃ αs,t–1, such that |αs,t | = t; (2) the values
of the parameters relative to this string; and (3) a new value As,t of the ceer A. To
do this we may need to know the current values of the parameters relative to other
strings 	 , and of A as well. We assume that these values are the ones assigned to
them at the end of substep t – 1 if t > 0, or at the end of the previous stage if t = 0.
After completing substep t, we may end stage s and go on to stage s + 1, or we may
move on to substep t + 1.

Remark 2.2 (Saving on notations). When describing the actions and the
parameters at any substep t of any stage s, for simplicity we will omit specifying
the subscript s, t. Thus for instance, we refer to Sα instead of Sα,s,t(being clear from
the context whether we mean the value at the beginning of the substep, or the value
which we define at the end of the substep), and for any set X, [X ]A will stand for
[X ]As,t , etc.

A stage s + 1 is α-expansionary if α is visited at that stage, does not end the stage,
andW|α| contains an element x ∈ [Sα f̂]A \K . Note that in this case, we will injure
α f̂, in particular setting Sα f̂ = ∅. Thus, x must be A-equivalent to an element
which entered Sα f̂ since the last α-expansionary stage.

Stage 0. Let α0 = �. Let S� = K� = {x : x ≡ 0 mod 3}. Define x�n = 3n for
every n. All other sets are empty. Let A0 = Id.

Initialize all 	 �= � by setting S	 = K	 = I	 = D	 =M	 = ∅, and n	 = 0.

Stage s + 1. Substep 0: Let αs+1,0 = �. If s + 1 ≡ 0 mod 3, then we update K�
by A-collapsing 3x with 3y if and only if 3x, 3y ≤ s + 1 and x Cs+1 y. We then end
the stage. If s + 1 ≡ 1 mod 3, then put s + 1 into S� and I�. We then end the stage.
Finally, if s + 1 ≡ 2 mod 3, we put s + 1 into S� and M�. We then proceed to the
next substep.

Substep t + 1: After completing stage s + 1 substep t, having defined α = αs+1,t

and the relevant parameters for α without having stopped the stage at t, we
distinguish the following two cases:

• If s + 1 is α-expansionary, then: Let αs+1,t+1 = α ∞̂. Carry out the following
procedures:

– Perform the dumping procedure. A-collapse Sα f̂ \K into the equivalence
class of s + 1. Enumerate s + 1 into Sα ∞̂. We initialize all requirements
>L α ∞̂, and in particular we set S	 = K	 = I	 = D	 =M	 = ∅ and
n	 = 0 for all 	 ⊇ α f̂.

– Perform the partition procedure. If the cardinality |Sα ∞̂| ≡ 1 mod 3 then
we enumerate s + 1 into Kα ∞̂. If |Sα ∞̂| ≡ 2 mod 3 then we enumerate
s + 1 into Iα ∞̂. If |Sα ∞̂| ≡ 0 mod 3 then we enumerate s + 1 intoMα ∞̂.

– Perform the K-procedure. If s + 1 was enumerated into Kα ∞̂ and it is
the nth element of Kα ∞̂, then we write s + 1 = xα ∞̂

n and we collapse
s + 1 A x�n .
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– If we put s + 1 into Kα ∞̂ or Iα ∞̂, end the stage. If we put s + 1 into
Mα ∞̂, then proceed to the next substep.

• If s + 1 is not α-expansionary then let αs+1,t+1 = α f̂ and enumerate s + 1
into Sα f̂ .

– Perform the partition procedure. If |Sα f̂ | is odd, then we put s + 1 into
Dα f̂ . Otherwise, we place s + 1 intoMα f̂ .

– Perform the finitary-diagonalization-procedure. For this, we refer to the
informal description of the strategy given earlier as regards notations and
terminology. In particular, aj refers to the jth element inDα . The finitary-
diagonalization strategy at α f̂ requires attention if |Dα | ≥ nα and

ϕ#α,s(aj) Bs ϕ#α,s(ak) ⇔ aj A ak,

for each aj, ak ∈ Dα with j, k < nα . If this happens then we act by
incrementing nα = nα + 1 and by A-collapsing aj A ak if and only if
j Us k, for each aj, ak ∈ Dα with j, k < nα .

– If we put s + 1 into Dα f̂ , end the stage. If we put s + 1 intoMα f̂ , then
proceed to the next substep.

Finally let αs+1 = αs+1,̂t and As+1 = As+1,̂t , where t̂ is the last substep of stage
s + 1 (which we show exists in Lemma 2.3).

2.4. Verification. We first observe that every stage terminates. This is because
every node ends the stage when it is visited for the first time.

Lemma 2.3. Every stage has a last substep.

Proof. By induction, we may assume that all previous stages have terminated,
thus there are only finitely many α so that Sα is non-empty. Suppose towards a
contradiction that stage s does not terminate. Then there is some t so that Sαs,t is
empty at the beginning of the substep of the stage. Then we make |Sαs,t | = 1, and
therefore s is placed into Kα or Dα and the stage terminates. �

We say that α is on the true path at stage s, or s is an α-true stage if α ⊆ αs .
Next we verify that we do not accidentally cause more collapse than intended.

This will be necessary for instance to show that A�K� ≡ C .

Lemma 2.4.

(1) At every substep t of every stage s and nodes 
 �= 	 , if x A y for x ∈ S
 , y ∈ S	
then either 
 ⊆ 	 and x ∈M
 , 	 ⊆ 
 and y ∈M	 , or x, y ∈ K .

(2) At the beginning of stage s + 1 substep t, if s + 1 ∈Mαs+1,t , and y ∈ S	 for
any 	 and s + 1 A y, then 	 ⊆ αs+1,t and y ∈M	 .

(3) For each α, [Iα]A, [Dα]A, [Mα]A \K , K are always disjoint sets.

Proof. We prove all three claims by simultaneous induction on substeps of
stages. They are clearly true at stage 0 since the only α with Sα �= ∅ is � and no
collapse has happened at stage 0.

We consider each of the actions taken during the construction and see that they
maintain these conditions. At each step, the substep 0 only introduces a fresh number
to the construction and can only cause collapse if both numbers are in K�. Thus it
maintains all three conditions. We consider α = αs+1,t as we take the (t + 1)th
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substep and look at each case. First suppose that s + 1 is an α-expansionary
stage.

During the dumping procedure, we put s + 1 into Sα ∞̂ and collapse all elements
of Sα f̂ \K to be A-equivalent with s + 1. We also make S� = ∅ for every � ⊇ α f̂.
By inductive hypothesis, each element of Sα f̂ \K could only be A-equivalent to
a y ∈ S� if � ⊇ α f̂ or � ⊂ α f̂ and y ∈M� . Also, by the inductive hypothesis
on the second condition, s + 1 itself is only A-equivalent to y ∈ S� if � ⊆ α and
y ∈M� . Thus the first condition is maintained by the dumping procedure. The third
condition is also preserved since no set Iα ,Dα ,Mα , or K has been increased, and the
collapse we caused did not cause collapse between any of these sets by the inductive
hypothesis on the first condition. The second condition is changed slightly. Since
now s + 1 itself has entered Sα ∞̂, but is the only representative of its class in Sα ∞̂,
we have the additional possibility that y = s + 1 itself and � = α ∞̂. The condition
only talks about the beginning of the substep, so this is not a direct violation of the
second condition, but this affects the possibilities we must consider if s + 1 enters
Mα ∞̂ during the partition procedure.

Next, during the partition procedure, no collapse is caused and no S	 is changed,
so the first condition is preserved. If s + 1 is not placed intoMα ∞̂, then the second
condition holds vacuously. If it is placed in Mα ∞̂, then we had s + 1 only A-
equivalent to y ∈ S� if � ⊆ α and y ∈M� or if y = s + 1 and � = α ∞̂. In the
latter case, since s + 1 enteredMα ∞̂, the condition still holds. Finally, the only new
class in [I	 ]A, [D	 ]A, [M	 ]A \K is the class of s + 1 itself, by the second condition,
s + 1 is not A-equivalent to any other member of Sα ∞̂, so the third condition is
preserved.

The K-procedure only occurs if s + 1 entered Kα ∞̂. In this case, the second
condition holds vacuously after this as s + 1 /∈Mα ∞̂. In this case, s + 1 collapses
with an element of K�. Thus the first statement is preserved because this only
collapses a class into K and the statement allows for two elements of K. The third
statement is preserved as well, since the inductive hypotheses imply that both s +
1 and each member of K� are A-non-equivalent to any member of [I
 ]A, [D
 ]A,
[M
 ]A \K for any 
.

Now we suppose that s + 1 is not an α-expansionary stage. All three statements
are clearly preserved by adding s + 1 to Sα f̂ . During the partition procedure no
collapse or entry into any S	 happens, so the first statement is preserved. Since
s + 1 is not A-equivalent to any member of Sα f̂ except s + 1 itself by the inductive
hypothesis on the second condition, the third condition is also preserved. Again
the second condition has the new possibility that y = s + 1 itself and � = α f̂,
which maintains the second condition if s + 1 enters Mα f̂ . If s + 1 enters Dα f̂ ,
the condition holds vacuously.

During the finitary-diagonalization-procedure, collapse can happen only between
members of Dα f̂ . Since the inductive hypothesis shows that each of these numbers
can only be A-equivalent to x ∈ S� for � �= α f̂ if � ⊂ α f̂ and x ∈M� , the first
statement is preserved. This collapse can only involve s + 1 if s + 1 has entered
Dα f̂ , in which case the second statement holds vacuously. Similarly, since each of
these elements ofDα f̂ is not A-equivalent to any member of Iα f̂ or K orMα f̂ by
inductive hypothesis, the third condition is maintained as well. �
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We introduce some convenient notation:

Definition 2.5. For every α such that there is a biggest stage sα at which α is
initialized (taking sα = 0 if α = �), if Pα ∈ {Sα,Kα, Iα,Dα,Mα} then let

Pα =
⋃
t≥sα

Pα,t .

For every string α, at any stage and substep, let

Rα =

{
Iα, if α = � or α = (α–)̂ ∞,
Dα, if α = α– f̂,

S–
<Lα

=
⋃

{S	 \K : 	 <L α}.

Lemma 2.6 (Disjointness Lemma). For any α ⊂ Tp, the (limiting values of the)
following sets are pairwise disjoint: [Rα]A, [S–

<Lα
]A, K, [Mα]A \K . Further, for any

	 ⊂ α, these sets are all disjoint from [R	 ]A.

Proof. This follows immediately from Lemma 2.4 since each of these sets are
disjoint at each stage. �

Lemma 2.7. For every α on the true path, and for every x,

x ∈ K ∪ [S–
<Lα

]A ∪

⎡⎣⋃
	⊆α
R	

⎤⎦
A

∪ ([Mα]A \K) .

Proof. For α = �, the claim is trivial because every x lies in K� ∪ I� ∪M�.
Suppose by induction that the claim is true of α on the true path. We distinguish

as usual the two possible cases α ∞̂ ⊂ Tp or α f̂ ⊂ Tp.
Assume first that α ∞̂ is on the true path, and let x be any number. If x ∈

K ∪ [S–
<Lα

]A ∪ [
⋃
	⊆α R	 ]A then the claim is trivial. Note that S–

<Lα
= S–

<L(α) ∞̂. So
suppose that x ∈ [Mα]A \K . Then by the dumping procedure, x ∈ [Sα ∞̂]A, which
gives x ∈ [Rα ∞̂]A ∪ [Mα ∞̂]A.

Assume now thatα f̂ is on the true path, and let x be any number. Again, the case
which deserves some attention is when x ∈ [Mα]A \K . Then either x ∈ [Sα ∞̂]A
or x ∈ [Sα f̂]A. In the former case, x ∈ [S–

<Lα f̂
]A. In the latter, x ∈ [Rα f̂ ]A or

x ∈ [Mα f̂ ]A. In any case, the statement is true for α f̂. �

Lemma 2.8. For every m, n, 	, 
, if x	m[s] and x
n [t] are defined, then x	m[s] A x
n [t]
if and only if m C n.

Proof. We A-collapse x	m[s] A x�m and x	n [t] A x�n . Thus we cause the collapse
x	m[s] A x
n [t] when we update K� during substep 0 of some stage if and only if
we cause the collapse x�m A x

�
n if and only if m C n. Note that we only ever cause

A-collapse during the construction either during a dumping procedure, where we
do not collapse elements in K, or during a finitary-diagonalization strategy, where
we collapse elements ofD
 for some 
, which are not in K by Lemma 2.4, or during
the K-procedure where we collapse an element which is not yet in K, by the second
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claim in Lemma 2.4, to an element of K�. Thus we never unintentionally collapse
together distinct members of K. �

Lemma 2.9. If α ≤ Tp then each of the sets Sα , Kα , Rα , and Mα is computable
(not uniformly). If α <L Tp then each of these sets is finite. If α ⊂ Tp then each of
these sets is infinite.

Proof. We check the claim that refers to strings α ⊂ Tp, as the part that refers
to strings α <L Tp is obvious.

If α ⊂ Tp then let s0 be the last stage at which Sα is initialized. Then s > s0 enters
Sα if and only if it enters at stage s. Thus Sα is computable. It is infinite since s enters
Sα at every stage s where α is visited.1 The rest of the claim is obvious by the way
Sα is partitioned into the other relevant sets. �

Lemma 2.10. C ≤ A.

Proof. For each pair n,m, we have ensured that n C m ⇔ x�n A x�m by
Lemma 2.8. �

Lemma 2.11. For every k, there is an α on the true path with #(α) = k.

Proof. For every α �= � on the true path such thatW|α–| = ∅ we have α = α– f̂.
Thus there are infinitely many f s along the true path, so there is an α on the true
path with #(α) = k. �

Lemma 2.12. A �≤ B . Thus A �≤ C .

Proof. Given any k, we want to show that ϕk is not a reduction of A to B.
Let α be on the true path with α = (α–)̂ f and #(α) = k. Then Dα is infinite.
On the set Dα , α runs the finitary-diagonalization strategy. As we have argued in
the description of the finitary-diagonalization strategy, the only possible outcome
is the finite diagonalization outcome which ensures that ϕk is not a reduction
of A to B. �

Lemma 2.13. If α ⊂ Tp then A�Rα ≡ Id and A�(S–
<Lα

∪
⋃
	⊆α R	) ≡ Id.

Proof. First of all we show that if α ⊂ Tp then A�Rα ≡ Id. Note that we only
ever cause A-collapse either during substep 0, where we collapse elements in K�
thus we do not collapse elements in Rα ; during a dumping procedure, where we
do not collapse elements in Rα ; or during a finitary-diagonalization strategy, where
we collapse elements of D
 for some 
, which are not A-equivalent to elements of
Rα unless Rα = D
 , in which case this is a collapse for the sake of α’s finitary-
diagonalization strategy; or during a K-procedure where we collapse an element
of Kα to an element of K�, neither of which can be equivalent to a member of
Rα . Thus we never unintentionally collapse together members of Rα . So, we can
focus on the strategy itself. If Rα = Iα , then we never collapse any elements, so Iα
is comprised of distinct elements, so A�Iα ≡ Id. In the case of Rα = Dα , note that
we cause a total of finitely many collapses via the finitary-diagonalization strategy
since lims→∞ nα,s <∞. So A�Dα ≡ Id.

1The non-uniformity is because we cannot uniformly find s0, the last stage at which α is initialized.
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For any α, A�(S–
<Lα

∪
⋃
	⊆α R	) is equivalent to A�S–

<Lα
⊕

⊕
	⊆α A�R	 by the

Disjointness Lemma and the fact that S–
<Lα

is finite (the latter being needed to see
that the partition is computable). Each direct summand is finite or equivalent to Id,
and one of them (A�Rα) is equivalent to Id, so A�(S–

<Lα
∪

⋃
	⊆α R	) ≡ Id. �

Lemma 2.14. A ≡ A⊕ Id. In particular, A is non-self-full.

Proof. It is immediate from the previous lemma that A�I� ≡ Id. Further, since
I� is computable, the Disjointness Lemma implies that A ≡ A�I� ⊕ A�I�. Thus,
A⊕ Id ≡ Id⊕A�I� ⊕ A�I� ≡ Id⊕ Id⊕A�I� ≡ Id⊕A�I� ≡ A�I� ⊕ A�I� ≡ A �

Lemma 2.15. If α ∞̂ is on the true path then A ≤ A�Sα ∞̂ ≤ A�W|α| and the
requirement SMC|α| is satisfied.

Proof. In view of Lemma 2.13, there exist a computable function providing a
reduction from A�(S–

<Lα ∞̂ ∪
⋃
	⊆α ∞̂R	) to Id, and a computable reduction of Id

to A�Iα ∞̂. This lets us build a partial computable function f which has domain
S–
<Lα ∞̂ ∪

⋃
	⊆α ∞̂R	 and range Iα ∞̂ and for x, y in the domain, x A y if and only

if f(x) A f(y).
To define a reduction g witnessing A ≤ A�Sα ∞̂, consider any number x. We use

Lemma 2.7, and we search for a y in K� ∪ S–
<Lα ∞̂ ∪

⋃
	⊆α ∞̂R	 ∪Mα ∞̂ so that

x A y using simultaneous effective listings of these four sets:

(1) If we first find y = x�n ∈ K� then let g(x) = xα ∞̂
n .

(2) If we first find y ∈ S–
<Lα ∞̂ ∪

⋃
	⊆α ∞̂R	 then let g(x) = f(y).

(3) If we first find y ∈Mα ∞̂, then we let g(x) = y.

We will show that g is a function with domain � and range Sα ∞̂ so that x A y if
and only if g(x) A g(y), showing that A ≤ A�Sα ∞̂. By the Disjointness Lemma,
the only thing to check is x0 A x1 ⇔ g(x0) A g(x1), for a pair x0, x1 ∈ K such that
we use (1) to define g(x0), but we use (3) to define g(x1). Note that in both cases
(1) and (3), we define g(x) to be A-equivalent to x. So we have g(x0) A g(x1) if and
only if x0 A x1.

But if A ≤ A�Sα ∞̂ then by Lemma 1.4(3) A ≤ A�W|α| since every member
of Sα ∞̂ is A-equivalent to a member of W|α|, as s + 1 enters Sα ∞̂ only at
α-expansionary stages, where we see s + 1 A x for some x ∈W|α|. Thus the
requirement SMC|α| is satisfied. �

Lemma 2.16. If α f̂ is on the true path, then A�W|α| ≤ C ⊕ Id and requirement
SMC|α| is satisfied.

Proof. Suppose now that α f̂ is on the true path. Since α f̂ is on Tp, we have
thatW|α| ∩ [Sα f̂]A \K is empty.

Thus Lemmas 2.6 and 2.7 show that A�W|α| is partitioned by:

A�W|α| ≡ A�(K ∩W|α|) ⊕ A�([S–
<Lα̂ f

]A ∩W|α|)

⊕ A�

⎛⎝⎡⎣ ⋃
	⊂α̂ f

R	

⎤⎦
A

∩W|α|

⎞⎠ .
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But the first summand reduces to A�K , which is equivalent to C, the second is
a finite ceer, and the third reduces to A�

⋃
	⊆α f̂ R	 , which is equivalent to Id by

Lemma 2.13. So, the uniform join of all of these reduces to C ⊕ Id. �
Lemma 2.17. If X < A, then X ≤ C .

Proof. Let i be so X ≡ A�Wi by Lemma 1.4 and let α be so |α| = i and α is on
the true path. We consider two cases:

Case 1: If α ∞̂ is on the true path, then Lemma 2.15 shows that A ≤ A�Sα ∞̂ ≤
A�Wi ≡ X .

Case 2: If α f̂ is on the true path, then Lemma 2.16 shows that X ≡ A�Wi ≤
C ⊕ Id ≡ C . �

This ends the proof of the theorem. �

§3. Initial segments in the structure Ceers \Fin. Let 〈�<�,⊆〉 be the poset with
universe the set of finite strings of natural numbers partially ordered by the relation
� ⊆ � if � is an initial substring of �. In the following we use notations and
terminology about finite strings of numbers, similar to those introduced at the
beginning of Section 2.2 for strings in the tree of strategies Tr. The following corollary
is an application of Theorem 2.1:

Corollary 3.1. There is an initial segment of Ceers \ Fin isomorphic to 〈�<�,⊆〉.
Proof. We begin with Id, and note that Id ≡ Id⊕ Id. Theorem 2.1 allows us to

build infinitely many incomparable strong minimal covers each of which satisfiesA ≡
A⊕ Id. Repeating as such lets us embed �<� as an initial segment of Ceers \ Fin.

In more details, we can refer to a linear ordering � of�<� of order type�, so that
if � ⊆ � then � � �. For instance define Γn = {� ∈ �<� : |�| ≤ n&∀i < n (�(i) <
n)}, and let h(�) be the least n so that � ∈ Γn. Define � � � if h(�) < h(�) or
h(�) = h(�) and � is quasi-lexicographically less than �.

We start at “step �” by setting A� = Id. When time comes to build A� , with
� �= � (this happens at “step �”, i.e., at step n, with � the nth string in �), then we
use Theorem 2.1 to make A� a strong minimal cover of A�– , and A� not reducible
to

⊕
{A� : � ≺ �} (the universal degree is join-irreducible, i.e., there is no pair of

incomparable degrees b, c so that the universal degree is the least upper bound of
b and c (see [3, Proposition 2.6]), so this uniform join is not universal). Remember
that all these A�s satisfy A� ⊕ Id ≡ A� . In particular, all theseA�s are non-self-full.

Let us check that the mapping � �→ A� provides in fact an embedding of (�<�,⊆).
If � ⊆ � then either A� = A� or A� is built after A� so there is a computable
function f�,� which reduces A� ≤ A� . More precisely, in the construction of A�
using Theorem 2.1 we encode C = A�– directly onto K� = {x : x ≡ 0 mod 3}, so
f�,�(x) = 3|�|–|�| · x.

Suppose towards a contradiction that there are � and � with � � � and A� ≤ A� .
Take such a pair with � of minimal length. If the length of � is 0, then A� is above
A〈�(0)〉, which is strictly above Id = A� = A� by Theorem 2.1. So, we must have the
length of � is > 0. But then A� ≤ A� implies that either A� ≡ A� or A� ≤ A�– . The
latter case contradicts the minimality of the length of �. In the former case, let �
be the �-greater of � and �. Then A� is constructed so that A� �≤ ⊕{A
 : 
 ≺ �},
contradicting A� ≡ A� .
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Thus, we have an embedding of �<� as an initial segment of Ceers \ Fin. �

Corollary 3.2. The partial order � + �<� obtained by placing 〈�<�,⊆〉 on top
of 〈�,≤〉 is embeddable as an initial segment of Ceers.

Proof. The finite ceers have order type � and are initial in Ceers. Corollary 3.1
shows that �<� is an initial segment on top of that. �

Notice that 〈�<�,⊆〉 is in fact a lower semilattice with least element. We now turn
towards extending the embedding given by Corollary 3.1 to an embedding of the
free distributive lattice generated by the lower semilattice 〈�<�,∧〉 into Ceers \ Fin.
To do this, we identify for each nonempty tuple �0, ... , �n–1 a ceer B�0,...,�n–1 to act
as the join of the ceers A�0 , ... , A�n–1 . We begin by recalling the definition:

Definition 3.3. The free distributive lattice generated by the lower semilattice
〈Q,∧〉 is a distributive lattice D which has a function i : Q → D which preserves
meets, so that D, i satisfy the universal property: If L is any distributive lattice and
f : Q → Lpreserves meets, then there is a unique lattice-homomorphism h : D → L
so that f = h ◦ i .

We will recall a constructive lattice-theoretic characterization of the free
distributive lattice generated by the lower semilattice 〈�<�,∧〉 below in Definition
3.8 and Lemma 3.9.

Fix a sequence of ceers (A�)�∈�<� as built in Corollary 3.1. We define a map
which assigns, to any nonempty finite subset �0, ... �n–1 of �<� a ceer B�0,...,�n–1 as
follows:

Definition 3.4. For each nonempty tuple�0, ... , �n–1, we assign the ceerB�0,...,�n–1

which is the ceer generated by A�0 ⊕ ··· ⊕ A�n–1 plus the set ∼ of pairs defined by:

∼= {(x, y) : (∃i, j < n ) (∃u ) [x A�0 ⊕ ··· ⊕ A�n–1 f�i∧�j ,�i (u)

& y A�0 ⊕ ··· ⊕ A�n–1 f�i∧�j ,�j (u)]},

where f�,� for � ⊆ � is the reduction from A� into A� as defined in the proof
Corollary 3.1. (In other words, we mod outA�0 ⊕ ··· ⊕ A�n–1 so that for each i, j < n,
we identify the copy of A�i∧�j in A�i with the copy of A�i∧�j in A�j .)

Remark 3.5. We will also denote B�0,...,�n–1 by the expression (A�0 ⊕ ··· ⊕
A�n–1)/∼.

Remark 3.6. If we did not mod out to identify the copies of A�i∧�j in A�i and
in A�j in Definition 3.4, then we would be putting A�i∧�j ⊕ A�i∧�j below B�i ,�j ,
which we are constructing to be the join of A�i and A�j . But it is possible that
A�i∧�j ⊕ A�i∧�j > A�i∧�j . This would mean that we would not be constructing an
embedding to an initial segment in Ceers \ Fin.

Obviously, B�0,...,�n–1 ≡ B�p(0),...,�p(n–1)
for every permutation p of the set {0, ... ,

n – 1}.
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Theorem 3.7. The following hold for m, n > 0:
(1) If�i ⊇ �j with i, j < n and i �= j, thenB�0,...,�n–1 ≡ B�0,...,�j–1,�j+1,...,�n–1 . Hence,

B�0,...,�n–1 ≡ B�i0 ,...,�ik–1
,

where {�i0 , ... , �ik–1} is the ⊆-antichain comprised of the ⊆-maximal elements
in {�0, ... , �n–1}.

(2) If {�0, ... , �n–1} is a ⊆-antichain and X < B�0,...�n–1 , then there exists i < n
so that X ≤ B�0,...,�

–
i ,...,�n–1 . Further, the only degrees of infinite ceers below

B�0,...,�n–1 are degrees of the form B�0,...,�m–1 where (∀j < m )(∃i < n )[�j ⊆ �i ].
(3) If {�0, ... , �n–1} and {�0, ... , �m–1} are ⊆-antichains, then

B�0,...,�m–1 ≤ B�0,...,�n–1 ⇔ (∀j < m )(∃i < n )[�j ⊆ �i ].
Proof.

(1) We have �i ⊇ �j , with i, j < n and i �= j. In the definition of ∼, we mod out
the entirety of the copy of A�j with a part of A�i . It follows from Lemma
1.4(2) that

B�0,...,�n–1 ≡ B�0,...,�n–1�(� \ �j,n)
≡ B�0,...,�j–1,�j+1,...,�n–1 .

(2) Suppose that X < B�0,...,�n–1 , and f is a reduction from X to B�0,...,�n–1 . Let
We = [range(f)]B�0 ,...,�n–1

. Hence X ≡
(
A�0 ⊕ ··· ⊕ A�n–1

)
/∼ �We by Lemma

1.4(2).
LetWei = {x ∈We : x ≡ i mod n}, and αi be the node of length ei on the

true path of the construction of A�i in Theorem 2.1.
Case 1: For each i < n, αi ∞̂ is on the true path. Then (use the argument

in the proof that A�i is a strong minimal cover of A�–
i

to give the reduction
on each component individually) we get reductions fi witnessing A�i ≤
A�i �Wei . Thus

(
A�0 ⊕ ··· ⊕ A�n–1

)
/∼⊕i<nfi

≤
(
A�0 ⊕ ··· ⊕ A�n–1

)
/∼ �We by

Lemma 1.7 as ∼ is transitive and A�0 ⊕ ··· ⊕ A�n–1 -closed. Finally, note that
∼ includes relations on the set K� in each A�i . But in the reductions fi ,
each element in K� is sent to an image in its own equivalence class. Thus
∼⊕i<nfi=∼. Thus(

A�0 ⊕ ··· ⊕ A�n–1

)
/∼ =

(
A�0 ⊕ ··· ⊕ A�n–1

)
/∼⊕i<nfi

≤
(
A�0 ⊕ ··· ⊕ A�n–1

)
/∼ �We.

That is, B�0,...,�n–1 ≤ X .
Case 2: There is some i < n so that αi f̂ is on the true path. So A�i �Wei ≤

A�–
i
⊕ Id. Let f be the reduction as such and note that f(x�n) = 2n. It follows

that

A�0�We0 ⊕ ··· ⊕ A�n–1�Wen–1 ≤ A�0 ⊕ ··· ⊕ A�–
i
⊕ ··· ⊕ A�n–1 ⊕ Id

≡ A�0 ⊕ ··· ⊕ A�–
i
⊕ ··· ⊕ A�n–1 .

We note that in the latter reduction, we are collapsing the copy of Id with the
copy of Id in any one of the A�i , and that ∼ does not touch the sets I� in any
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of the A�j . Since f sends K� in A� (which is a copy of A�– ) exactly to A�– ,
Lemma 1.7 yields(

A�0 ⊕ ··· ⊕ A�n–1

)
/∼ �We ≤

(
A�0 ⊕ ··· ⊕ A�–

i
⊕ ··· ⊕ A�n–1

)
/∼′
,

where ∼′ is as in the definition of B�0,...,�
–
i ,...,�n–1 . That is, X ≤ B�0,...,�

–
i ,...,�n–1 .

Now, suppose X is an infinite ceer and X ≤ B�0,...,�n–1 . We can repeatedly
apply the above condition until either we represent X as B�0,...,�n–1 or until we
get to tuple of �s which is no longer an anti-chain. In this case, we can use
the result of (1) and then repeat. This process is monotonically decreasing
in the sum of the lengths of the strings, so it must either terminate with
X ≡ B�0,...,�m–1 and every �j being an initial substring of some �i for i < n,
or the sum of the lengths of the strings must go to 0, in which case we have
X ≤ B� = A� ≡ Id. But since X is infinite, this latter case gives X ≡ Id ≡ B�
and of course � is an initial segment of �0.

(3) Let {�0, ... , �n–1} and {�0, ... , �m–1} be two ⊆-antichains. It is immediate by
definition that

(∀j < m )(∃i < n )[�j ⊆ �i ] ⇒ B�0,...,�m–1 ≤ B�0,...,�n–1 .

Next, we suppose that B�0,...,�m–1 ≤ B�0,...,�n–1 and show �j is an initial
segment of some �i . In particular, we have that A�j ≤ B�0,...,�n–1 . We use
the previous result to see that A�j ≡ B�0,...,�k for some antichain of �s which
are initial segments of the sequence of �s. But then A�j ≥ A�i for each i,
which implies that �i ⊆ �j for each i < k. Since the sequence of �s forms an
antichain, we conclude that k = 0 and �0 = �j . Then �j is an initial substring
of some �. �

We now recall some lattice-theoretic facts that will help us show that we indeed
have an embedding of the free distributive lattice generated by the lower semilattice
〈�<�,∧〉.

Definition 3.8. Given a poset Q = 〈Q,≤〉, and a subset X ⊆ Q, let (X ] = {y ∈
Q : ∃x ∈ X (y ≤ x)}.

Let also P<∞(Q) be the set of nonempty finite subsets of Q.
Let L(Q) = 〈{(X ] : X ∈ P<∞(Q)},⊆〉, and let us use the symbol (P<∞(Q)] to

denote the universe of this poset.

Lemma 3.9. If Q is a lower semilattice then L(Q) is the free distributive lattice
generated by the lower semilattice Q. If Q is a lower semilattice with least element then
L(Q) has least element.

Proof. Suppose that Q = 〈Q,∧〉 is a lower semilattice. Clearly L(Q) is an
upper semilattice, with join operation ∨ given by (X ] ∨ (Y ] = (X ∪ Y ], and having
inclusion as the partial ordering relation. To show that L(Q) is also a lower
semilattice, it is enough to observe that it is closed under ∩, as if X,Y ∈ P<∞(Q)
then (X ] ∩ (Y ] = ({x ∧ y : x ∈ X, y ∈ Y}]. A straightforward calculation shows
that the lattice is distributive.

Next we show thatL(Q) enjoys the universal property of free objects, making it the
free distributive lattice on the lower semilattice Q. Let i : Q → (P<∞(Q)] be given by

https://doi.org/10.1017/jsl.2022.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.14


INITIAL SEGMENTS OF THE DEGREES OF CEERS 1279

i(x) = ({x}]. Then i preserves meets. If now L = 〈L,∨,∧〉 is a distributive lattice,
and f : Q → L preserves meets, then the mapping h : (P<∞(Q)] → L, given by
h((X ]) =

∨
x∈X f(x) is easily seen to be the unique lattice-theoretic homomorphism

so that f = h ◦ i . To see that h preserves meets, notice that by distributivity and
properties of f,

h((X ]) ∧ h((Y ]) =

( ∨
x∈X
f(x)

)
∧

⎛⎝ ∨
y∈Y
f(y)

⎞⎠
=

∨
x∈X,y∈Y

(
f(x) ∧ f(y))

=
∨

x∈X,y∈Y
f(x ∧ y) = h((X ] ∩ (Y ]).

If Q = 〈Q,∧, 0〉 is a lower semilattice with least element 0, then the least element
of L(Q) is ({0}]. �

Remark 3.10. Notice that ifQ = 〈Q,∧, 0〉 is a lower semilattice with least element
thenL(Q) can be alternatively viewed as the free distributive lattice with least element
generated by the lower semilattice Q with least element. The definition of the free
distributive lattice with least element is defined as in Definition 3.3, but requiring all
maps to preserve least element. That is, the free distributive lattice with least element
generated by the lower semilattice with least element 〈Q,∧, 0〉 is a distributive lattice
D with least element which has a function i : Q → D which preserves meets and
least element, so that D, i satisfy the universal property: If L is any distributive
lattice with least element and f : Q → L preserves meets and least element, then
there is a unique lattice-homomorphism preserving least element h : D → L so that
f = h ◦ i .

Corollary 3.11. The free distributive lattice L(�<�) on the lower semilattice
�<� = 〈�<�,∧〉 embeds as an initial segment of the degrees Ceers \ Fin.

Proof. If Q = 〈Q,≤〉 is a poset, and X ∈ P<∞(Q) then there exists a finite ≤-
antichain X ′ such that (X ] = (X ′]: This X ′ is unique, and we denote it by XM ,
since it is the set of the ≤-maximal elements in X. It is not difficult to see that if
X,Y ∈ P<∞(Q) then

(X ] ⊆ (Y ] ⇔ (∀x ∈ XM )(∃y ∈ YM )[x ≤ y].

Therefore we can use items (1) and (3) of Theorem 3.7 to show that the mapping

(X ] �→ B�0,...,�n–1

(where X is a nonempty finite subset of �<� and XM = {�0, ... , �n–1}) order-
theoretically embeds L(〈�<�,⊆〉) to the degrees of ceers. Item (2) of Theorem
3.7 shows that, up to equivalence, the range of this embedding is an initial segment
of Ceers \ Fin. The least element in the embedding is the degree of Id. �

Notice that the embedding of the previous corollary maps meets of L(�<�) to
meets of Ceers (since the image is an initial segment), but maps joins to joins of the
image, which need not be joins of Ceers. We now show that in fact the embedding
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distinctly does not map joins to joins. In fact, even in the simplest case where
� ∧ � �= �, A� and A� do not have a join. In the following, if u, v are numbers, then
〈u, v〉 denotes the string of length 2 comprised of u, v.

Observation 3.12. For any i, j, k ∈ � with j �= k, A〈i,j〉 and A〈i,k〉 do not have a
join in the ceers. In particular, B〈i,j〉,〈i,k〉 is not a join since B〈i,j〉,〈i,k〉 �≤ A〈i,j〉 ⊕ A〈i,k〉.

Proof. From Theorem 3.7, B〈i,j〉,〈i,k〉 bounds no other degree which is above
both A〈i,j〉 and A〈i,k〉; thus if there is a join of A〈i,j〉 with A〈i,k〉, the join must be
B〈i,j〉,〈i,k〉. So, it suffices to show B〈i,j〉,〈i,k〉 �≤ A〈i,j〉 ⊕ A〈i,k〉.

We will show this by taking a supposed reduction g of B〈i,j〉,〈i,k〉 to A〈i,j〉 ⊕ A〈i,k〉
and showing that in this case some Sα for α of the form α = (α–)̂ ∞ on the true
path in the construction of A〈i,j〉 must be sent entirely to the evens or entirely to the
odds, but it can’t be the odds asA〈i,j〉 ≤ A〈i,j〉�Sα andA〈i,j〉 �≤ A〈i,k〉. The symmetric
argument shows that some Sα′ for α′ on the true path in the construction of A〈i,k〉
must be sent entirely to the odds. But then the two copies ofAi which are equivalent
in B〈i,j〉,〈i,k〉 via ∼ are not equivalent in their g-images, yielding a contradiction.

Thus suppose that B〈i,j〉,〈i,k〉 reduces toA〈i,j〉 ⊕ A〈i,k〉 via the function g. Let X be
the set of x so that g(2x) is odd. That is, X is the pre-image of A〈i,k〉 on the copy
of A〈i,j〉 inside B〈i,j〉,〈i,k〉. Similarly, let Y be the set of x so that g(2x) is even. That
is, Y is the preimage of A〈i,j〉 on the copy of A〈i,j〉 inside B〈i,j〉,〈i,k〉. Since X =Wa
and Y =Wb for some a, b ∈ � give a partition of �, either the true path in the
construction of A〈i,j〉 has ∞ as the ath bit or the bth bit. To see this, suppose both
the ath bit and the bth bit of the true path is an f. Then for any 	 along the true path
of length greater than a or b, S	 \K (referencing the sets with these names in the
construction ofA〈i,j〉) would be disjoint from both X and Y. But X and Y partition
�, so this is impossible.

If the former is the case (i.e., the ath bit is ∞), then by Lemma 2.15 we have
A〈i,j〉 ≤ A〈i,j〉�Sα ≤ A〈i,j〉�X ≤ A〈i,k〉 which contradicts Corollary 3.1, and thus the
latter must be the case. But then an entire Sα is contained in Y for some α ⊂ Tp.
Thus every class in K intersects Y. So, the entire copy of Ai inside A〈i,j〉 must be
sent to even numbers. The symmetric argument (taking X to be the set of x so that
g(2x + 1) is even, and Y to be the set of x so that g(2x + 1) is odd) shows that
the entire copy of Ai inside A〈i,k〉 must be sent to odd numbers. But then g is not
a reduction after all, because the two copies of Ai (the one inside A〈i,j〉 and the
one inside A〈i,k〉) are equivalent in B〈i,j〉,〈i,k〉, but their images are not equivalent in
A〈i,j〉 ⊕ A〈i,k〉. �

We now characterize the initial segments of L(�<�), giving a characterization of
the countable distributive lattices that we know how to embed as an initial segment
of Ceers \ Fin.

Corollary 3.13. A countable distributive lattice L is isomorphic to an initial
segment of L(�<�) if and only if

(1) L satisfies the descending chain condition (i.e., there is no infinite descending
chain);

(2) the poset of its join-irreducible elements is order-theoretic isomorphic to a
subtree of �<� .
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Therefore, any countable distributive lattice satisfying these conditions can be
embedded as an initial segment of Ceers \ Fin.

Proof. Let L satisfy the descending chain condition, and let J be the partially
ordered set of its join-irreducible elements. Then every element a of L can be
identified with the finite antichain of J comprised of the maximal elements of J
which are below a [6, Section III.2]. Therefore (looking at the proof of Lemma
3.9), it is easy to see that if J is a lower semilattice then L is isomorphic with L(J ).
Suppose in addition that J is (up to isomorphism) a subtree of �<� . Then clearly
this isomorphism extends to an isomorphism of L(J ) with an initial segment of
L(�<�). It follows that if L satisfies the two conditions of the corollary then L is
isomorphic to an initial segment of Ceers \ Fin.

In the other direction, suppose that L is isomorphic to an initial segment of
L(�<�). Then trivially L satisfies the descending chain condition. Moreover the
isomorphism must send the join-irreducible elements of L to an initial segment of
join-irreducible elements of L(�<�) which are ceers of the form A� , so after all J is
isomorphic to a subtree of �<� . �
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