
TLP 17 (5–6): 855–871, 2017. C© Cambridge University Press 2017

doi:10.1017/S1471068417000394 First published online 23 August 2017

855

Program completion in the input
language of GRINGO�

AMELIA HARRISON, VLADIMIR LIFSCHITZ and DHANANJAY RAJU

Department of Computer Science, Austin, Texas, USA

(e-mails: ameliaj@cs.utexas.edu,vl@cs.utexas.edu,draju@cs.utexas.edu)

submitted 18 July 2017; revised 18 July 2017; accepted 27 July 2017

Abstract

We argue that turning a logic program into a set of completed definitions can be sometimes

thought of as the “reverse engineering” process of generating a set of conditions that could

serve as a specification for it. Accordingly, it may be useful to define completion for a large

class of Answer Set Programming (ASP) programs and to automate the process of generating

and simplifying completion formulas. Examining the output produced by this kind of software

may help programmers to see more clearly what their program does, and to what degree its

behavior conforms with their expectations. As a step toward this goal, we propose here a

definition of program completion for a large class of programs in the input language of the

ASP grounder gringo, and study its properties.

KEYWORDS: formal methods, program completion, Answer Set Programming.

1 Introduction

Our interest in defining completion (Clark 1978) for programs in the input language

of the ASP grounder gringo (https://potassco.org) is motivated by the goal

of extending formal methods for software verification to answer set programming.

Turning a logic program into a set of completed definitions can be sometimes

thought of as the “reverse engineering” process of generating a set of conditions

that could serve as a specification for it. Consider, for instance, the condition “set r

is the union of sets p and q.” In the language of logic programming, this definition

of r is represented by the pair of rules

r(X)← p(X),

r(X)← q(X).
(1.1)

The corresponding completed definition

∀X(r(X)↔ p(X) ∨ q(X))

is the usual definition of union in set theory. Turning program (1.1) into a completed

definition gives us a plausible specification that could have led to this program in

� This work was partially supported by the National Science Foundation under Grant IIS-1422455.

https://doi.org/10.1017/S1471068417000394 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000394

856 A. Harrison et al.

the first place. The stable model semantics of program (1.1) matches the completed

definition, because the program is tight (Fages 1994; Erdem and Lifschitz 2003).

It may be useful to define completion for a large class of ASP programs

and to automate the process of generating and simplifying completion formulas.

(Simplifying is essential because “raw” completion rarely provides such a clean

specification as in the example above.) Examining the output produced by this kind

of software may help programmers to see more clearly what their program does, and

to what degree its behavior conforms with their expectations. If the programming

project started with a formal specification, then they may be able to verify the

correctness of the program relative to that specification by comparing the given

specification with the “engineered specification” extracted from the program.

As a step toward this goal, we propose here a definition of program completion

for a large class of gringo programs. Three issues need to be addressed. First,

gringo programs often include constraints and choice rules, which are not covered

by Clark’s theory. Extending completion to these constructs has been discussed in

the literature; see, for instance, Ferraris et al. (2011, Section 6.1).

Second, we need to take into account the fact that in the language of gringo a

ground term may denote a set of values, rather than a single value. For instance, the

term 1..8 denotes the set {1, . . . , 8}, and the condition X = 1..8 in the body of a rule

expresses that X is an element of that set. In standard mathematical notation, this

condition would be expressed using the set membership symbol rather than equality.

The syntax of gringo allows us to write also

X..X+1 = Y ..Y +1,

which is understood as

X and Y are integers, and {X,X+1} ∩ {Y , Y +1} �= ∅.

Third, the semantics of aggregate expressions in the language of gringo depends

on the distinction between local and global variables. This is similar to the distinction

between bound and free variables familiar from first-order logic, except that the

definition of a local variable does not refer to quantifiers. The expression sum{X×Y :

p(X,Y)} in the body of a rule1 may correspond to any of the expressions∑
X,Y : p(X,Y)

X×Y ,
∑

X : p(X,Y)

X×Y ,
∑

Y : p(X,Y)

X×Y

depending on where X and Y occur in other parts of the rule. Our way of translating

aggregate expressions takes into account this feature. Otherwise, it is similar to the

approach proposed by Ferraris and Lifschitz (2010), which is closely related to the

use of generalized quantifiers by Lee and Meng (2009, 2012). One of their results

(Lee and Meng 2012, Theorem 4) relates stable models of formulas with generalized

quantifiers to program completion.

1 We use here an “abstract” syntax, which disregards some details related to writing rules as strings of
ASCII characters (Gebser et al. 2015, Section 1). In an actual gringo program, this expression would
be written as #sum{X*Y:p(X,Y)}.

https://doi.org/10.1017/S1471068417000394 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000394

Program completion in GRINGO 857

We start by discussing a class of programs that do not contain aggregate

expressions. Sections 2 and 3 define a language of programs and a language of

formulas—the source and the target of the completion operator. Section 4 describes

the process of representing rules by formulas, which is used in the definition of

completion in Section 5. We discuss tight programs in Section 6 and give an example

of calculating an engineered specification in Section 7. Incorporating aggregate

expressions is described in Section 8. In Section 9, the class of formulas is further

extended by adding variables for integers, which can be often used to simplify

formulas that involve arithmetic operations. The definition of a stable model for the

class of programs defined in Section 8 is given in Appendix A. Proofs of theorems

are given in Appendix B, posted online.

2 Programs

We assume that four disjoint sets of symbols are selected: numerals; symbolic

constants; variables; and operation names of various arities. We assume that these

sets do not contain the interval symbol

..

the relation symbols

= �= < > � �

and the symbols

inf sup not ∧ ∨ ←

, ; : () { }

∈ ¬ ∧ ∨ → ↔ ∀ ∃
We assume that a 1–1 correspondence between the set of numerals and the set Z

of integers is chosen. For every integer n, the corresponding numeral will be denoted

by n. We will identify a numeral with the corresponding integer when this does not

lead to confusion.

We assume that for every operation name op, a function bop from a subset of Zn

to Z is chosen, where n is the arity of op. For instance, we can choose plus as a

binary operation name, define bplus as the addition of integers, and use t1 + t2 as

shorthand for plus(t1, t2).

Terms are defined recursively, as follows:

• numerals, symbolic constants, variables, and the symbols inf and sup are

terms,

• if f is a symbolic constant and t is a non-empty tuple of terms (separated by

commas), then f(t) is a term,

• if op is an n-ary operation name and t is an n-tuple of terms, then op(t) is a

term,

• if t1 and t2 are terms, then (t1..t2) is a term.

https://doi.org/10.1017/S1471068417000394 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000394

858 A. Harrison et al.

A term, or another syntactic expression, is ground if it does not contain variables.

A ground term is precomputed if it contains neither operation names nor the interval

symbol. According to the semantics of terms defined in Appendix A.1, every ground

term t denotes a finite set [t] of precomputed terms, which are called the values of t.

For instance,

[8] = {8}, [1..8] = {1, . . . , 8}, [abc + 1] = ∅
if abc is a symbolic constant.

We assume a total order on precomputed terms such that inf is its least element,

sup is its greatest element, and, for any integers m and n, m � n iff m � n.

Atoms are expressions of the form p(t), where p is a symbolic constant and t

is a tuple of terms, possibly empty. An atom of the form p() will be written as p.

Literals are atoms (positive literals) and atoms preceded by not (negative literals).

A comparison is an expression of the form (t1 ≺ t2) where t1, t2 are terms and ≺ is

a relation symbol.

A choice expression is an expression of the form {A} where A is an atom.

A rule is an expression of the form

Head ← Body (2.1)

where

• Body is a conjunction (possibly empty) of literals and comparisons, and

• Head is either an atom [then we say that (2.1) is a basic rule], or a choice

expression [then (2.1) is a choice rule], or empty [then (2.1) is a constraint].

If the body of a basic rule or choice rule is empty, then the arrow will be dropped.

A program is a set of rules.

An interpretation is a set of atoms of the form p(t) where t is a tuple of

precomputed terms. Every program denotes a set of interpretations, which are called

its stable models (Appendix A).

3 Formulas

The language defined in this section is essentially a first-order language with variables

for precomputed terms.

An argument is a term that contains neither operation names nor the interval

symbol2. Formulas are defined recursively:

(a) if p is a symbolic constant and arg is a tuple of arguments, then p(arg) is a

formula,

(b) if arg1 and arg2 are arguments and ≺ is a relation symbol, then (arg1 ≺ arg2)

is a formula,

(c) if arg is an argument and t is a term, then arg ∈ t is a formula,

2 Thus, precomputed terms (Section 2) can be alternatively described as ground arguments. This will
not be the case, however, when we extend the definition of an argument in Section 8.2 to incorporate
aggregates.

https://doi.org/10.1017/S1471068417000394 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000394

Program completion in GRINGO 859

(d) ⊥ (“false”) is a formula,

(e) if F and G are formulas, then (F → G) is a formula,

(f) if F is a formula and X is a variable, then ∀XF is a formula.

We will drop parentheses in formulas when it does not lead to confusion. Proposi-

tional connectives other than implication, and the existential quantifier, are defined

as abbreviations in the usual way. Free and bound occurrences of variables, closed

formulas, and the universal closure of a formula are defined as usual in first-order

logic.

Note that a term that is not an argument can occur in a formula in only one

position—to the right of the ∈ symbol. For example, X ∈ 1..8 and X ∈ Y +1 are

formulas, but X = 1..8 and X = Y +1 are not. The reason why we do not allow

Y +1 in equalities is that substituting a precomputed term for Y in this expression

(for instance, abc) may give a term that has no values.

If F is a formula, X is a variable, and r is a precomputed term, then FX
r stands

for the formula obtained from F by substituting r for all free occurrences of X.

The truth value FI, assigned by an interpretation I to a closed formula F , is

defined as t or f, in accordance with the following rules:

(a) p(arg)I is t if p(arg) ∈ I (and f otherwise),

(b) (arg1 ≺ arg2)
I is t if arg1 ≺ arg2,

(c) (arg ∈ t)I is t if arg ∈ [t],

(d) ⊥I is f,

(e) (F → G)I is f if FI is t and GI is f,

(f) (∀XF)I is t if, for every precomputed term r, (FX
r)I is t.

We say that an interpretation I satisfies a closed formula F if FI = t.

For example, the interpretation {p(2), p(3), p(4)} satisfies the formula ∃X(p(X)∧X ∈
1..8). Indeed, it satisfies p(3), because it includes p(3); it also satisfies 3 ∈ 1..8, because

[1..8] is {1, . . . , 8}, and 3 is an element of this set. Consequently, it satisfies the

conjunction p(3) ∧ 3 ∈ 1..8.

A formula is universally valid if its universal closure is satisfied by all interpre-

tations. A formula F is equivalent to a formula G if F ↔ G is universally valid.

Since our definition of satisfaction treats propositional connectives, quantifiers, and

equality in the same way as the standard definition of satisfaction applied to

the domain of precomputed terms, all equivalent transformations sanctioned by

classical first-order logic can be used in this setting as well. The following additional

observations about equivalence will be useful.

Observation 1. For any argument arg and any ground term t, arg ∈ t is equivalent

to
∨

r∈[t](arg = r).

This is immediate from the definition of satisfaction.

For example, for any integers m and n, arg ∈ m..n is equivalent to
∨n

i=m(arg = i).

Observation 2. For any arguments arg1 and arg2, arg1 ∈ arg2 is equivalent to

arg1 = arg2.

https://doi.org/10.1017/S1471068417000394 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000394

860 A. Harrison et al.

It is sufficient to check this claim for the case when arg1, arg2 are ground. In this

case, it follows from the fact that [arg2] is the singleton {arg2}.
For example, X ∈ Y is equivalent to X = Y .

4 Representing rules by formulas

In this section, we define a syntactic transformation φ that turns rules and their

subexpressions into formulas—their formula representations.

Formula representations of literals and comparisons are defined as follows:

• φp(t) is ∃X(X ∈ t ∧ p(X))3,

• φ(not p(t)) is ∃X(X ∈ t ∧ ¬p(X)),

• φ(t1 ≺ t2) is ∃X1X2(X1 ∈ t1 ∧X2 ∈ t2 ∧X1 ≺ X2);

here, X is a tuple of new variables of the same length as t, and X1, X2 are new

variables.

For example, the transformation φ turns p(X) into ∃Y (Y ∈ X ∧ p(Y)); this

formula is equivalent to ∃Y (Y = X ∧ p(Y)), and consequently to p(X). The formula

representation of p(1..X) is ∃Y (Y ∈ 1..X ∧ p(Y)). The representation of X = 1..8 is

∃X1X2(X1 ∈ X ∧X2 ∈ 1..8 ∧X1 = X2);

this formula is equivalent to X ∈ 1..8.

If each of the expressions C1, . . . , Ck is a literal or a comparison, then φ(C1∧· · ·∧Ck)

stands for φC1 ∧ · · · ∧ φCk.

The formula representation of a basic rule

p(t)← Body (4.1)

is defined as the implication

V ∈ t ∧ φ(Body)→ p(V), (4.2)

where V is a tuple of new variables of the same length as t. For example, the formula

representation of the rule

q(X+1)← p(X) ∧X = 1..8 (4.3)

is

V ∈ X+1 ∧ φp(X) ∧ φ (X = 1..8) → q(V);

after applying equivalent transformations to the antecedent, this formula becomes

V ∈ X+1 ∧ p(X) ∧X ∈ 1..8 → q(V). (4.4)

The formula representation of a choice rule

{p(t)} ← Body (4.5)

3 If X is X1, . . . , Xn, and t is t1, . . . , tn, then X ∈ t stands for the conjunction
∧n

i=1 Xi ∈ ti.

https://doi.org/10.1017/S1471068417000394 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000394

Program completion in GRINGO 861

is defined as the (universally valid) formula

V ∈ t ∧ φ(Body) ∧ p(V)→ p(V), (4.6)

where V is a tuple of new variables of the same length as t.

For example, the formula representation of the rule {p(1..8)} is

V ∈ 1..8 ∧ p(V)→ p(V).

The formula representation of a constraint ← Body is the formula

¬φ(Body). (4.7)

5 Completion

A predicate symbol is a pair p/n, where p is a symbolic constant and n is a non-

negative integer. The definition of a predicate symbol p/n in a program Γ consists

of

• the basic rules of Γ with the head of the form p(t1, . . . , tn), and

• the choice rules of Γ with the head of the form {p(t1, . . . , tn)}.

It is clear that any program is the union of the definitions of predicate symbols and

a set of constraints.

If the definition of p/n in a finite program Γ is {R1, . . . , Rk}, then each of the

formulas φRi has the form

Fi → p(V), (5.1)

where V is a tuple of distinct variables. We will assume that this tuple is chosen in

the same way for all i. The completed definition of p/n in Γ is the formula

∀V
(
p(V)↔

k∨
i=1

∃UiFi

)
, (5.2)

where Ui is the list of all free variables of the formula Fi that do not belong to V.

For example, if the definition of p/1 in Γ is p(1..8), then k = 1, U1 is empty, and

F1 is V ∈ 1..8, so that the completed definition of p/1 is

∀V (p(V)↔ V ∈ 1..8). (5.3)

If the definition of p/1 is the choice rule {p(1..8)}, then F1 is

V ∈ 1..8 ∧ p(V),

and the completed definition of p/1 is

∀V (p(V)↔ V ∈ 1..8 ∧ p(V)).

This formula is equivalent to

∀V (p(V)→ V ∈ 1..8). (5.4)

https://doi.org/10.1017/S1471068417000394 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000394

862 A. Harrison et al.

It is clear that completed definitions are invariant with respect to equivalent

transformations of the antecedents of implications φRi, in the sense that replacing

an antecedent Fi in (5.2) by an equivalent formula is an equivalent transformation.

Assume, for instance, that the definition of q/1 in Γ is (4.3). Formula (4.4) is the

result of simplifying the antecedent of the formula representation of that rule, and

the completed definition of q/1 can be written as

∀V (q(V)↔ ∃X(V ∈ X+1 ∧ p(X) ∧X ∈ 1..8)). (5.5)

About a program or another syntactic expression, we say that a predicate symbol

p/n occurs in it if it contains an atom of the form p(t1, . . . , tn). The completion of a

finite program Γ consists of

• the completed definitions of all predicate symbols occurring in Γ, and

• the universal closures of the formula representations of all constraints in Γ.

The definition of completion matches the stable model semantics in the following

sense:

Theorem 1

Every stable model of a finite program satisfies its completion.

In the next section, we define a class of programs for which the converse of

Theorem 1 can be proved.

6 Tight programs

For any program Γ, by GΓ we denote the directed graph that has the predicate

symbols occurring in Γ as its vertices, and has an edge from q/m to p/n if Γ

includes a rule R such that

(i) q/m occurs in the head of R, and

(ii) p/n occurs in a positive literal in the body of R.

If graph GΓ is acyclic, then we will say that program Γ is tight.

Consider, for instance, the program Γr,n (r and n are positive integers) that consists

of the rules

{in(1..n, 1..r)}, (6.1)

covered (X)← in(X, S), (6.2)

← X = 1..n ∧ not covered (X), (6.3)

← in(X, S) ∧ in(Y , S) ∧ in(X+Y , S). (6.4)

(The stable models of this program represent collections of r sum-free sets covering

{1, . . . , n}; see http://mathworld.wolfram.com/SchurNumber.html.) The graph

GΓr,n
has one edge, from covered/1 to in/2, so that this program is tight.

The vocabulary of a program Γ is the set of atoms p(r) such that r is a tuple

of n precomputed terms, and p/n occurs in Γ. For other syntactic expressions, the

vocabulary is defined in the same way.

https://doi.org/10.1017/S1471068417000394 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000394

Program completion in GRINGO 863

Theorem 2

For any tight finite program Γ, an interpretation I is a stable model of Γ iff I is

contained in the vocabulary of Γ and satisfies the completion of Γ.

The theorem shows, for instance, that the stable models of Γr,n can be characterized

as the subsets of its vocabulary that satisfy its completion.

7 Example

We will now calculate and simplify the completion of Γr,n. The formula representation

of rule (6.1) is

V1 ∈ 1..n ∧ V2 ∈ 1..r ∧ in(V1, V2) → in(V1, V2),

so that the completed definition of in/2 is

∀V1V2(in(V1, V2)↔ (V1 ∈ 1..n ∧ V2 ∈ 1..r ∧ in(V1, V2))).

This formula is equivalent to

∀V1V2(in(V1, V2)→ (V1 ∈ 1..n ∧ V2 ∈ 1..r)). (7.1)

The formula representation of rule (6.2) can be written as

V = X ∧ in(X, S)→ covered (V).

It follows that the completed definition of covered/1 is

∀V (covered (V)↔ ∃XS(V = X ∧ in(X, S))),

which is equivalent to

∀V (covered (V)↔ ∃S in(V , S)). (7.2)

The remaining two rules of the program are constraints. The universal closure of

the formula representation of (6.3) is equivalent to

∀X¬(X ∈ 1..n ∧ ¬covered (X)),

which can be further rewritten as

∀X(X ∈ 1..n→ covered (X)). (7.3)

Finally, the universal closure of the formula representation of constraint (6.4) can

be written as

¬∃XY S(in(X, S) ∧ in(Y , S) ∧ ∃Z(Z ∈ X+Y ∧ in(Z, S))). (7.4)

We showed that the completion of program Γr,n—its “engineered specification”—is

equivalent to the conjunction of formulas (7.1)–(7.4).

8 Incorporating aggregates

8.1 Programs with aggregates

In addition to the four sets of symbols mentioned at the beginning of Section 2, we

assume now that a set of aggregate names is selected, and for every aggregate name α

https://doi.org/10.1017/S1471068417000394 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000394

864 A. Harrison et al.

a functionbα is chosen that maps every set of non-empty tuples of precomputed terms

to a precomputed term. Examples are as follows:

• aggregate name count; 1count (T) is defined as the cardinality of T if T is finite,

and sup otherwise;

• aggregate name sum; bsum(T) is the sum of the weights of all tuples in T if T

contains finitely many tuples with non-zero weights, and 0 otherwise.

(The weight of a tuple t of precomputed terms is the first member of t if it is a

numeral, and 0 otherwise.)

An aggregate expression is an expression of the form

α{t : C} ≺ s (8.1)

where α is an aggregate name, t is a non-empty tuple of terms, C is a conjunction

of literals and comparisons (in the case when C is empty, the preceding colon can

be dropped), ≺ is a relation symbol, and s is a variable or precomputed term.

In the definition of a rule, the body is now allowed to have, among its conjunctive

terms, not only literals and comparisons, but also aggregate expressions.

A variable V occurring in a rule R is local if every occurrence of V in R belongs

to the left-hand side α{t : C} of one of the aggregate expressions (8.1) in its body,

and global otherwise. For instance, in the rule

q(W)← sum{X2 : p(X)} = W (8.2)

X is local and W is global.

8.2 Formulas with aggregates

The definitions of an argument and a formula in Section 3 are replaced now by a

mutually recursive definition of both concepts. It includes clauses (a)–(f) from the

old definition of a formula and three additional clauses:

(g) numerals, symbolic constants, variables, and the symbols inf and sup are

arguments;

(h) if f is a symbolic constant and arg is a non-empty tuple of arguments, then

f(arg) is an argument;

(i) if α is an aggregate name, X is a non-empty tuple of distinct variables, and F is

a formula, then α{X |F} is an argument.

Clause (i) is what makes the new definition more general than the definitions from

Section 3.

In this more general setting, the distinction between free and bound occurrences

of variables applies not only to formulas, but also to arguments. An occurrence of a

variable X in an argument or in a formula is bound if it belongs to a subformula of

the form ∀XF , or if it belongs to a subargument α{X |F} such that X is a member

of the tuple X. For example, in the argument

sum{X | ∃Y p(X,Y , Z)}

https://doi.org/10.1017/S1471068417000394 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000394

Program completion in GRINGO 865

X and Y are bound, and Z is free. An argument or a formula is closed if all

occurrences of variables in it are bound.

The substitution notation will be now applied not only to formulas, but also to

arguments: argX
r is the argument obtained from an argument arg by substituting

a precomputed term r for all free occurrences of a variable X. For every inter-

pretation I, the truth value FI that I assigns to a closed formula F , and the

precomputed term argI that I assigns to a closed argument arg , are described by

a joint recursive definition4:

(a) p(arg1, . . . , argk)
I is t if p(argI1 , . . . , argIk) ∈ I,

(b) (arg1 ≺ arg2)
I is t if argI1 ≺ argI2 ,

(c) (arg ∈ t)I is t if argI ∈ [t],

(d) ⊥I is f,

(e) (F → G)I is f if FI is t and GI is f,

(f) (∀XF)I is t if, for every precomputed term r, (FX
r)I is t,

(g) if arg is a numeral, or a symbolic constant, or inf , or sup, then argI is arg ,

(h) f(arg1, . . . , argk)
I is f(argI1 , . . . , argIk),

(i) α{X1, · · · , Xk |F}I is bα(T), where T is the set of all tuples r1, . . . , rk of precom-

puted terms such that (FX1···Xk
r1 ... rk

)I is t.

Since an argument containing aggregate names is not a term, in this more general

setting the statement of Observation 2 (Section 3) has to be modified:

Observation 2′. For any arguments arg1 and arg2 such that arg2 does not contain

aggregate names, arg1 ∈ arg2 is equivalent to arg1 = arg2.

8.3 Completion and tightness in the presence of aggregates

How do we turn an aggregate expression (8.1) into a formula? It depends on how

we classify the variables occurring in this expression into local and global. For

this reason, instead of extending the definition of φ from Section 4 to aggregate

expressions, we will define the transformation φX, where X is a list (possibly empty)

of distinct variables—those that we treat as local. The result of applying φX to an

aggregate expression (8.1) is the formula

∃Y (α{Z | ∃X(Z ∈ t ∧ φC)} ≺ Y ∧ Y ∈ s),

where Z is a tuple of new variables of the same length as t, and Y is a new variable.

Consider, for instance, the result of applying the transformation φX (“treat X as

local”) to the aggregate expression in the body of rule (8.2). It can be written as

∃Y (sum{Z | ∃X(Z ∈ X2 ∧ p(X))} = Y ∧ Y = W),

which is equivalent to

sum{Z | ∃X(Z ∈ X2 ∧ p(X))} = W.

4 This notation can be ambiguous, because some expressions can be viewed both as formulas and as
arguments. But its meaning will be always clear from the context.

https://doi.org/10.1017/S1471068417000394 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000394

866 A. Harrison et al.

In application to literals and comparisons, φX has the same meaning as φ. If each

of the expressions C1, . . . , Ck is a literal, a comparison, or an aggregate expression,

then φX(C1 ∧ · · · ∧ Ck) stands for φXC1 ∧ · · · ∧ φXCk.

Now we are ready to state how the definitions (4.2), (4.6), and (4.7) of formula

representations of rules are modified in the presence of aggregates. In all three

definitions, we replace φ(Body) by φX(Body), where X is the list of local variables

of the rule. For instance, the formula representation of rule (8.2) can be written as

V = W ∧ sum{Z | ∃X(Z ∈ X2 ∧ p(X))} = W → q(V).

All definitions from Section 5, including the definition of the completion of a

finite program, remain the same. It is easy to see that in formula (5.2), Ui is the list

of global variables of rule Ri.

In the definition of GΓ (Section 6), clause (ii) is restated as follows:

(ii′) p/n occurs in a positive literal or in an aggregate expression in the body of R.

For example, if Γ is the one-rule program (8.2), then GΓ has an edge from q/1 to

p/1. Otherwise, the definition of a tight program remains the same.

8.4 Example: 8-Queens

The following program with aggregates encodes a solution to the problem of how

to place 8 queens on an 8× 8 chessboard so that no two queens attack each other.

row (1..8), (8.3)

col (1..8), (8.4)

{queen(X,Y)} ← col (X) ∧ row (Y), (8.5)

← count{X,Y : queen(X,Y)} �= 8, (8.6)

← queen(X,Y) ∧ queen(X,YY) ∧ Y �= YY , (8.7)

← queen(X,Y) ∧ queen(XX , Y) ∧X �= XX , (8.8)

← queen(X,Y) ∧ queen(XX ,YY) ∧X �= XX ∧ |X −XX | = |Y − YY |. (8.9)

The formula representation of rule (8.3) is V ∈ 1..8→ row (V), so that the completed

definition of row/1 is

∀V (row (V)↔ V ∈ 1..8). (8.10)

Similarly, the completed definition of col/1 is

∀V (col (V)↔ V ∈ 1..8). (8.11)

The formula representation of (8.5) can be rewritten, after simplifying the an-

tecedent, as

V1 = X ∧ V2 = Y ∧ col (X) ∧ row (Y) ∧ queen(V1, V2)→ queen(V1, V2).

Consequently, the completed definition of queen/2 is

∀V1V2(queen(V1, V2)↔ ∃XY (V1 = X ∧ V2 = Y ∧ col (X) ∧ row (Y) ∧ queen(V1, V2))).

https://doi.org/10.1017/S1471068417000394 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000394

Program completion in GRINGO 867

This formula is equivalent to

∀V1V2(queen(V1, V2)→ col (V1) ∧ row (V2)). (8.12)

Variables X and Y are local in constraint (8.6), so that its formula representation

can be written as

∃Y1(count{Z1, Z2 | ∃XY (Z1 ∈ X ∧ Z2 ∈ Y ∧ queen(X,Y))} �= Y1 ∧ Y1 = 8)→ ⊥,

or, equivalently,

count{Z1, Z2 | queen(Z1, Z2)} = 8. (8.13)

The formula representations of constraints (8.7)–(8.9) can be written as

queen(X,Y) ∧ queen(X,YY)→ Y = YY ,

queen(X,Y) ∧ queen(XX , Y)→ X = XX ,

queen(X,Y) ∧ queen(XX ,YY) ∧ |X −XX | = |Y − YY | → X = XX .

(8.14)

The completion of program (8.3)–(8.9) consists of formulas (8.10)–(8.13) and

the universal closures of formulas (8.14). This set of formulas is an “engineered

specification” for that program.

9 Integer variables

We will now make the definition of formulas and arguments more general. We

assume here that the set of variables is partitioned into two classes, general variables

and integer variables. General variables are variables for precomputed terms;

integer variables are variables for numerals. Formulas without general variables

are similar to formulas of first-order arithmetic. In examples, integer variables will

be represented by identifiers that start with I , J , K , L, M, and N.

Integer arguments are defined recursively:

• numerals and integer variables are integer arguments,

• if op is an n-ary operation name such that the domain of the corresponding

function bop is the whole set Zn, and arg is an n-tuple of integer arguments,

then op(arg) is an integer argument.

Clause (g) in the definition of formulas and arguments (Section 8.2) is reformulated

as follows:

(g) integer arguments, symbolic constants, general variables, inf , and sup are

arguments.

For example, since N is an integer variable, the expression N+1 is not only a

term, but also an argument, and both p(N+1) and N+1 = 4 are formulas.

To extend the definition of the semantics of formulas and arguments given in

Section 8.2, we restrict clause (f) in that definition to the case when X is a general

variable, and add two clauses:

(f′) (∀NF)I, where N is an integer variable, is t if, for every integer n, (FX
n)I is t;

(h′) if arg is op(arg1, . . . , argk), argI1 = n1, . . . , argIk = nk , then argI is bop(n1, . . . , nk).

https://doi.org/10.1017/S1471068417000394 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000394

868 A. Harrison et al.

The following abbreviations will be useful. For any argument arg , by int(arg) we

denote the formula ∃V (V ∈ arg +1), where V is a general variable that does not

occur in arg . For any predicate symbol p/n, by int(p/n), we denote the formula

∀X1 . . . Xn(p(X1, . . . , Xn) → int(X1) ∧ · · · ∧ int(Xn)),

where X1, . . . , Xn are distinct general variables. This formula expresses that the extent

of the predicate p/n is a subset of Zn.

Using integer variables, we can rewrite formula (5.3) as

int(p/1),

∀N(p(N)↔ 1 � N � 8).

Formula (5.4) can be transformed in a similar way.

Formula (5.5) can be rewritten as

int(q/1),

∀N(q(N)↔ ∃M(N = M+1 ∧ p(M) ∧ 1 � M � 8)).

The last formula can be simplified as follows:

∀N(q(N)↔ p(N−1) ∧ 2 � N � 9).

Formula (7.1) is equivalent to

int(in/2),

∀IK(in(I, K) → 1 � I � n ∧ 1 � K � r).

Formula (7.3) is equivalent to

∀I(1 � I � n→ covered (I)).

Formula (7.4) can be equivalently rewritten, in the presence of int(in/2), as

¬∃IJS(in(I, S) ∧ in(J, S) ∧ ∃K(K=I+J ∧ in(K, S))),

and consequently as

∀IJS(in(I, S) ∧ in(J, S)→ ¬in(I+J, S)).

In the presence of completed definitions (8.10)–(8.12), all variables in (8.13) and

in the universal closures of (8.14) can be equivalently replaced by integer variables.

10 Conclusion

This paper extends familiar results on the relationship between stable models and

program completion to a large class of programs in the input language of gringo,

and we hope that this technical contribution will help us apply formal methods to

answer set programming. Much still remains to be done.

First, we would like to extend the main result of this paper, Theorem 2 from

Section 6, in several directions. Including edges from head to aggregate expressions

in graph GΓ [condition (ii′) in Section 8.3] may be unnecessary when the aggregates

are known to be monotone or antimonotone (Harrison et al. 2014, Section 6.1).

https://doi.org/10.1017/S1471068417000394 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000394

Program completion in GRINGO 869

Further, a dependency graph with atoms from the program’s vocabulary as its

vertices, rather than predicate symbols, may be useful. Finally, we would like to

adapt the definition of completion to a class of “almost tight” programs that

may contain simple recursive definitions (such as the definition of reachability in a

graph). It may be possible to achieve this at the price of allowing the least fixed

point operator (Gurevich and Shelah 1986) in completed definitions.

Second, the process of generating and simplifying completed definitions needs to

be automated. In some cases, programmers may be able to convince themselves that

a program is correct—or to decide that it is not—by examining its simplified

completion. Sometimes automated reasoning tools may help them establish a

correspondence between a given specification and the completion of the program.

These are themes of an ongoing project5 at the University of Potsdam, the home of

gringo.

Acknowledgements

Many thanks to Michael Gelfond, Joohyung Lee, Patrick Lühne, and Torsten Schaub

for useful discussions related to the topic of this paper, and to the anonymous referees

for their comments.

Supplementary materials

For supplementary material for this article, please visit https://doi.org/10.1017/

S1471068417000394

References

Clark, K. 1978. Negation as failure. In Logic and Data Bases, H. Gallaire and J. Minker,

Eds. Plenum Press, New York, 293–322.

Erdem, E. and Lifschitz, V. 2003. Tight logic programs. Theory and Practice of Logic

Programming 3, 499–518.

Fages, F. 1994. Consistency of Clark’s completion and existence of stable models. Journal of

Methods of Logic in Computer Science 1, 51–60.

Ferraris, P. 2005. Answer sets for propositional theories. In Proc. of International Conference

on Logic Programming and Nonmonotonic Reasoning (LPNMR). 119–131.

Ferraris, P., Lee, J. and Lifschitz, V. 2011. Stable models and circumscription. Artificial

Intelligence 175, 236–263.

Ferraris, P. and Lifschitz, V. 2010. The stable model semantics for first-order formulas

with aggregates. In Proc. of International Workshop on Nonmonotonic Reasoning (NMR)

http://www.kr.org/NMR/proceedings.html.

Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V. and Schaub, T. 2015. Abstract

Gringo. Theory and Practice of Logic Programming 15, 449–463.

5 https://github.com/potassco/anthem/

https://doi.org/10.1017/S1471068417000394 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000394

870 A. Harrison et al.

Gurevich, Y. and Shelah, S. 1986. Fixed-point extensions of first-order logic. Annals of Pure

and Applied Logic 32, 265–280.

Harrison, A., Lifschitz, V. and Yang, F. 2014. The semantics of Gringo and infinitary

propositional formulas. In Proc. of International Conference on Principles of Knowledge

Representation and Reasoning (KR), 32–41.

Lee, J. and Meng, Y. 2009. On reductive semantics of aggregates in answer set programming.

In Proc. of International Conference on Logic Programming and Nonmonotonic Reasoning

(LPNMR). 182–195.

Lee, J. and Meng, Y. 2012. Stable models of formulas with generalized quantifiers. In Working

Notes of the 14th International Workshop on Non-Monotonic Reasoning (NMR).

Truszczynski, M. 2012. Connecting first-order ASP and the logic FO(ID) through reducts.

In Correct Reasoning: Essays on Logic-Based AI in Honor of Vladimir Lifschitz, E. Erdem,

J. Lee, Y. Lierler and D. Pearce, Eds. Springer, 543–559.

Appendix A. Semantics of programs

Gebser et al. (2015) showed that stable models of many programs in the input

language of gringo can be described in terms of stable models of infinitary

propositional formulas. That approach is applied here to programs in the sense

of Section 8.1; we will call them EG programs (for “Essential gringo”).

The translation τ, defined below, transforms every EG program Γ into an infinitary

formula over the vocabulary of Γ. Stable models of Γ are defined as stable models

of τΓ6.

A.1 Semantics of ground terms

The set [t] of precomputed terms denoted by a ground term t is defined recursively:

• if t is a numeral, a symbolic constant, or one of the symbols inf , sup, then [t]

is {t};
• if t is f(t1, . . . , tn), where f is a symbolic constant, then [t] consists of the terms

f(r1, . . . , rn) for all r1 ∈ [t1], . . . , rn ∈ [tn];

• if t is op(t1, . . . , tn) where op is an operation name, then [t] consists of the

numerals of the form bop(k1, . . . , kn) for all tuples k1, . . . , kn in the domain of bop

such that k1 ∈ [t1], . . ., kn ∈ [tn];

• if t is (t1 .. t2), then [t] consists of the numerals m for all integers m such that,

for some integers k1, k2,

k1 ∈ [t1], k2 ∈ [t2], k1 � m � k2.

For any ground terms t1 . . . , tn, [t1, . . . , tn] is the set of tuples r1, . . . , rn for all

r1 ∈ [t1], . . . , rn ∈ [tn].

6 The stable model semantics of infinitary formulas by Truszczynski (2012) and Gebser et al. (2015,
Section 4.1) is a straightforward generalization of the definition due to Ferraris (2005).

https://doi.org/10.1017/S1471068417000394 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000394

Program completion in GRINGO 871

A.2 Transforming programs into infinitary formulas

For any ground atom p(t), τp(t) stands for
∨

r∈[t] p(r), and τ(not p(t)) stands for∨
r∈[t] ¬p(r).
For any ground comparison t1 ≺ t2, τ(t1 ≺ t2) is � if the relation ≺ holds between

some terms r1, r2 such that r1 ∈ [t1] and r2 ∈ [t2], and ⊥ otherwise.

If each of C1, . . . , Ck is a ground literal or a ground comparison, then τ(C1∧· · ·∧Ck)

stands for τC1 ∧ · · · ∧ τCk .

An aggregate expression (8.1) is closed if the term s is ground. Let X be the list

of variables occurring in a closed aggregate expression (8.1), and let A be the set of

tuples r of precomputed terms of the same length as X. Let Δ be a subset of A. By

[Δ], we denote the union of the sets [tXr] for all tuples of precomputed terms r in Δ.

We say that Δ justifies the aggregate expression (8.1) if the relation ≺ holds between

bα[Δ] and an element of the set s. We define the result of applying τ to (8.1) as the

conjunction of the implications∧
r∈Δ

τ(CX
r)→

∨
r∈A\Δ

τ(CX
r) (A.1)

over all subsets Δ of A that do not justify (8.1).

The definition of τ for conjunctions of ground literals and ground comparisons

extends in the obvious way to the case when some conjunctive terms are closed

aggregate expressions.

A rule is closed if all its variables are local. If R is a closed basic rule (4.1), then

τR is the formula

τ(Body)→
∧
r∈[t]

p(r). (A.2)

If R is a closed choice rule (4.5), then τR is the formula

τ(Body)→
∧
r∈[t]

(p(r) ∨ ¬p(r)). (A.3)

If R is a closed constraint ← Body , then τR is ¬τ(Body).

An instance of a rule is a closed rule obtained from it by substituting precomputed

terms for its global variables. For any EG program Γ, τΓ is the conjunction of the

formulas τR for all instances R of the rules of Γ.

https://doi.org/10.1017/S1471068417000394 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000394

