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Abstract Let k be a base commutative ring, R a commutative ring of coefficients, X a quasi-compact

quasi-separated k-scheme, and A a sheaf of Azumaya algebras over X of rank r . Under the assumption
that 1/r ∈ R, we prove that the noncommutative motives with R-coefficients of X and A are isomorphic.
As an application, we conclude that a similar isomorphism holds for every R-linear additive invariant.

This leads to several computations. Along the way we show that, in the case of finite-dimensional algebras
of finite global dimension, all additive invariants are nilinvariant.
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1. Introduction

Azumaya algebras

Sheaves of Azumaya algebras over schemes X were introduced in the late 1960s by
Grothendieck [17]. Formally, a sheaf A of OX -algebras is Azumaya if it is locally free

of finite rank over OX and the canonical morphism

Aop
⊗OX A

∼
−→ HomOX (A, A)

is an isomorphism. Locally, for the étale topology, A is simply a matrix algebra. This
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generalizes the notion of an Azumaya algebra over a commutative ring [2, 3] and

consequently the notion of a central simple algebra over a field.

Noncommutative motives

A differential graded (= dg) category A, over a base commutative ring k, is a category
enriched over complexes of k-modules; see § 4. Every (dg) k-algebra S gives rise to a dg

category S with a single object and (dg) k-algebra of endomorphisms S. In the same vein,

every quasi-compact quasi-separated k-scheme X gives rise to a canonical dg category
perfdg(X) which enhances the category perf(X) of perfect complexes of OX -modules;

consult § 6 for details. Let us denote by dgcat(k) the category of (small) dg categories.

Classical invariants such as algebraic K -theory (K ), nonconnective algebraic K -theory

(K), Hochschild homology (H H), cyclic homology (HC), periodic cyclic homology

(H P), negative cyclic homology (H N), topological Hochschild homology (T H H), and
topological cyclic homology (T C), extend naturally from k-algebras to dg categories. In

order to study all these invariants simultaneously, the notion of an additive invariant

was introduced in [40]. Let us now recall it. Given a dg category A, let T (A) be the

dg category of pairs (i, x), where i ∈ {1, 2} and x is an object of A. The complex of

morphisms in T (A) from (i, x) to (i ′, x ′) is given by A(x, x ′) if i ′ > i and is zero otherwise.

Composition is induced by A; consult [40, § 4] for details. Intuitively speaking, T (A) ‘dg

categorifies’ the notion of an upper triangular matrix. Note that we have two inclusion

dg functors, i1 : A ↪→ T (A) and i2 : A ↪→ T (A). A functor E : dgcat(k)→ D, with values

in an additive category, is called an additive invariant if it satisfies the following two

conditions:

(i) it sends Morita equivalences (see § 4) to isomorphisms;

(ii) given a dg category A, the inclusion dg functors induce an isomorphism1

[E(i1) E(i2)] : E(A)⊕ E(A) ∼−→ E(T (A)).

Thanks to the work of Blumberg and Mandell, Keller, Quillen, Schlichting, Thomason

and Trobaugh, Waldhausen, and others (see [8, 20, 21, 34, 36, 38, 42, 43]), all the above

invariants are additive. Moreover, when applied to S (respectively, to perfdg(X)), they

agree with the classical invariants of (dg) k-algebras (respectively, of k-schemes).

Let R be a commutative ring of coefficients. In [40], the universal additive invariant
(with R-coefficients) was constructed:

U (−)R : dgcat(k) −→ Hmo0(k)R . (1.1)

Given any R-linear additive category D, there is an induced equivalence of categories,

U (−)∗R : FunR-linear(Hmo0(k)R,D)
∼
−→ FunAdditive(dgcat(k),D), (1.2)

where the left-hand side denotes the category of additive R-linear functors and the

right-hand side the category of additive invariants. Because of this universal property,

1Condition (ii) can be equivalently formulated in terms of semi-orthogonal decompositions in the sense
of Bondal and Orlov [9]; see [40, Theorem 6.3(4)].
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which is reminiscent from motives, Hmo0(k)R is called the category of noncommutative

motives (with R-coefficients); consult § 5 for further details. The tensor product of

k-algebras also extends naturally to dg categories, thus giving rise to a symmetric

monoidal structure −⊗− on dgcat(k). After deriving it, this structure descends to

Hmo0(k)R and makes the functor 1.1 symmetric monoidal.

Motivation

Let X be a quasi-compact quasi-separated k-scheme and A a sheaf of Azumaya algebras
over X . Similarly to perfdg(X), one can construct the dg category perfdg(A) of perfect

complexes of A-modules; see § 6. This dg category reduces to perfdg(X) when A = OX ,

and comes endowed with a canonical dg functor −⊗OX A : perfdg(X)→ perfdg(A). One

obtains in this way two well-defined noncommutative motives:

U (perfdg(X))R U (perfdg(A))R . (1.3)

As mentioned above, A is étale-locally a matrix algebra. Hence, up to an étale covering

of X , A and OX are Morita equivalent. This leads naturally to the following motivating

question: How ‘close’ are the above noncommutative motives 1.3?

In this article, we provide a precise and complete answer to this question. As a

by-product, we obtain several applications of general interest; see § 3.

2. Statement of results

Let k be a base commutative ring and R a commutative ring of coefficients. Recall that

a scheme X is quasi-compact if it admits a finite covering by affine open subschemes, and

quasi-separated if the intersection of any two affine open subschemes is quasi-compact.

Note that every such scheme X always has a finite number of connected components.
Our main result, which answers the above motivating question, is the following.

Theorem 2.1. Let X be a quasi-compact quasi-separated k-scheme with m connected

components, and A a sheaf of Azumaya algebras over X of rank (r1, . . . , rm). Assume

that 1/r ∈ R with r := r1× · · ·× rm . Under these assumptions, one has the following

isomorphism:

U (−⊗OX A)R : U (perfdg(X))R
∼
−→ U (perfdg(A))R . (2.2)

When k is a field and X = Spec(k), 2.2 is an isomorphism if and only if 1/r ∈ R.

Theorem 2.1 shows us that the difference between the noncommutative motives 1.3 is

simply an r -torsion phenomenon. In order to prove Theorem 2.1, we have established

a K -theoretical result, which is of independent interest. Recall from [44, p. 71] that,

given a scheme X with m connected components, one has a well-defined (split surjective)

ring homomorphism rank : K0(X)� Zm . Let us write IX for its kernel. Whenever X is

Noetherian2, of Krull dimension d, and admits an ample sheaf, we have I d+1
X = 0; see [14,

§ V Corollary 3.10]. If one does not require a uniform bound on the order of nilpotency

of the elements in IX , then this result may be generalized as follows.

2Note that every Noetherian scheme is quasi-compact and quasi-separated.
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Theorem 2.3. Let X be a quasi-compact quasi-separated scheme X . Under this

assumption, every element in K0(X) of rank zero is nilpotent.

This statement appears not to exist in the literature. The affine case was proved by

Gabber in [15, p. 188] using absolute Noetherian approximation.3 Making use of Theorem

2.3, one obtains the following useful invertibility result.

Corollary 2.4. Let X be as in Theorem 2.3, and let α be an element in K0(X) of rank

(r1, . . . , rm). Assume that 1/r ∈ R with r := r1× · · ·× rm . Under these assumptions, the

image of α in K0(X)R is invertible.

3. Applications

Additive invariants

Let k be a base commutative ring. As explained above, all the classical invariants

of quasi-compact quasi-separated k-schemes X can be recovered from the dg category

perfdg(X). Hence, given a sheaf A of Azumaya algebras over X and an additive invariant

E : dgcat(k)→ D, let us write E(A) for the value of E at perfdg(A). By combining

Theorem 2.1 with the above equivalence 1.2 of categories, one obtains the following

result.

Corollary 3.1. Let X, A, r, R be as in Theorem 2.1, and let E : dgcat(k)→ D be an

additive invariant with values in an R-linear category. Under these assumptions, one has

an isomorphism E(X) ' E(A).

When applied to the above examples of additive invariants, Corollary 3.1 gives rise to

the following (concrete) isomorphisms:

K∗(X)1/r ' K∗(A)1/r K∗(X)1/r ' K∗(A)1/r (3.2)

T H H∗(X)1/r ' T H H∗(A)1/r T C∗(X)1/r ' T C∗(A)1/r , (3.3)

where (−)1/r := (−)Z[1/r ]. When 1/r ∈ k, one has moreover the following isomorphisms:

H H∗(X) ' H H∗(A) HC∗(X) ' HC∗(A) (3.4)

H P∗(X) ' H P∗(A) H N∗(X) ' H N∗(A). (3.5)

Remark 3.6. By considering K ,K, T H H , and T C as spectra-valued functors, one

observes that the isomorphisms 3.2–3.2 can be lifted to the homotopy category of spectra

localized at the Z[1/r ]-linear stable equivalences. In the same vein, the isomorphisms

3.4–3.4 admit a lifting to the derived category of mixed complexes; consult Keller’s survey

[19, § 5.3] for details.

3Ben Antieau [1] has indicated to us how Gabber’s approach can be extended to the general case by
using absolute Noetherian approximation for quasi-compact quasi-separated schemes and the local global
spectral sequence for nonconnective K -theory. Our argument uses simply the Mayer–Vietoris property
and does not depend on absolute Noetherian approximation.
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The isomorphism H H∗(X) ' H H∗(A) is well known and holds without the assumption

that 1/r ∈ k. In what concerns cyclic homology, the isomorphism HC∗(X) ' HC∗(A)
was established by Cortiñas and Weibel [13] in the affine case. The algebraic K -theory

isomorphism K∗(X)1/r ' K∗(A)1/r was obtained recently by Hazrat and Hoobler [18]

under the assumption that X is either regular Noetherian or Noetherian of finite

Krull dimension with an ample sheaf. Besides these particular cases, all the remaining

isomorphisms provided by Corollary 3.1 are, to the best of the authors’ knowledge, new

in the literature.

Differential operators in positive characteristic

Let k be an algebraically closed field of characteristic p > 0, X a smooth k-scheme4,
T ∗X (1) the Frobenius twist of the total cotangent bundle of X , and DX the sheaf

of (crystalline) differential operators on X ; consult [7, § 1] for details. As proved by

Bezrukavnikov, Mirković, and Rumynin in [7, Theorem 2.2.3], DX is a sheaf of Azumaya

algebras over T ∗X (1) of rank p2 dim(X). In the particular case where X is the affine space

An
:= Spec(k[x1, . . . , xn]), DX reduces to the Weyl algebra (∂i := ∂/∂xi )

k〈x1, . . . , xn, ∂1, . . . , ∂n〉 [∂i , x j ] = δi j

and T ∗X (1) to polynomials in 2n variables k[x p
1 , . . . , x p

n , ∂
p
1 , . . . , ∂

p
n ]; consult [7, p. 951] as

well as Revoy’s work [35]. Thanks to Theorem 2.1 (with X = T ∗X (1) and A = DX ), one

hence obtains a motivic isomorphism

U (perfdg(T
∗X (1)))R ' U (perfdg(DX ))R

for every commutative ring R containing 1/p.

Corollary 3.7. Let k, X, R be as above, and let E : dgcat(k)→ D be an additive invariant

with values in an R-linear category. Under these assumptions, one has an isomorphism

E(T ∗X (1)) ' E(DX ).

Cubic fourfolds containing a plane

Let k = C, and let X be a (generic) cubic fourfold, i.e. a smooth complex hypersurface

of degree 3 in P5. In the case where X contains a plane, Kuznetsov constructed in [29] a

semi-orthogonal decomposition

perf(X) = (perf(BS),OX ,OX (1),OX (2)),

where S is a smooth projective complex K 3-surface and BS a sheaf of Azumaya algebras

over S of rank 4. By combining Theorem 2.1 (with X = S and A = BS) with [33, Lemma

5.1], one hence obtains the following motivic decomposition

U (perfdg(X))R ' U (perfdg(S))R ⊕U (C)⊕3
R

for every commutative ring R containing 1/2.

4In particular, X is quasi-compact and separated.
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Corollary 3.8. Let X, S, R be as above, and let E : dgcat(C)→ D be an additive invariant

with values in an R-linear category. Under these assumptions, one has an isomorphism

E(X) ' E(S)⊕ E(C)⊕3.

Severi–Brauer varieties

Let k be a field, A a central simple k-algebra of degree
√

dim(A) = d, and SB(A) the

associated Severi–Brauer variety. As proved in [5, Proposition 2.8], one has the following

motivic decomposition

U (perfdg(SB(A)))R ' U (k)R ⊕U (A)R ⊕U (A)⊗2
R ⊕ · · ·⊕U (A)⊗d−1

R (3.9)

for every commutative ring R. Consequently, Theorem 2.1 (with X = Spec(k)), combined

with the fact that U (k)R is the ⊗-unit of Hmo0(k)R , allows us to conclude that, whenever
1/d ∈ R, 3.9 reduces to

U (perfdg(SB(A)))R ' U (k)R ⊕ · · ·⊕U (k)R︸ ︷︷ ︸
d-copies

.

Corollary 3.10. Let A, R be as above, and let E : dgcat(k)→ D be an additive invariant

with values in an R-linear category. Under these assumptions, one has an isomorphism

E(SB(A)) ' E(k)⊕d .

Remark 3.11. As pointed out by the referee, the combination of [33, Lemma 5.1] with

Bernardara’s semi-orthogonal decomposition [4] leads to a generalization of the above

motivic decomposition 3.9 to every Severi–Brauer variety X → S over a smooth projective

k-scheme S.

Clifford algebras

Let k be a field of characteristic 6= 2, V a finite-dimensional k-vector space of dimension

n, and q : V → k a nondegenerate quadratic form. Recall from [31, § V] that out of this

data one can construct the Clifford algebra C(q), the even Clifford algebra C0(q), and

the signed determinant δ(q) ∈ k×/(k×)2. The k-algebra C(q) has dimension 2n and the

k-algebra C0(q) has dimension 2n−1. When n is odd, we have the following structure

results (see [31, § V Theorem 2.4]).

(i) C0(q) is a central simple k-algebra.

(ii) When δ(q) /∈ (k×)2, C(q) is a central simple algebra over its center k(
√
δ(q)).

(iii) When δ(q) ∈ (k×)2, C(q) is a product of two isomorphic central simple algebras

over the center k× k.

Using Theorem 2.1, we then obtain the following motivic decompositions

U (C0(q))R ' U (k)R U (C(q))R '

U (k(
√
δ(q)))R when δ(q) /∈ (k×)2

U (k)R ⊕U (k)R when δ(q) ∈ (k×)2

for every commutative ring R containing 1/2. When n is even, we have the (opposite)

structure results (see [31, § V Theorem 2.5]).
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(i′) C(q) is a central simple k-algebra.

(ii′) When δ(q) /∈ (k×)2, C0(q) is a central simple algebra over its center k(
√
δ(q)).

(iii′) When δ(q) ∈ (k×)2, C0(q) is a product of two isomorphic central simple algebras

over the center k× k.

Using Theorem 2.1 once again, we obtain the motivic decompositions

U (C(q))R ' U (k)R U (C0(q))R '

U (k(
√
δ(q)))R when δ(q) /∈ (k×)2

U (k)R ⊕U (k)R when δ(q) ∈ (k×)2

for every commutative ring R containing 1/2. Thanks to Corollary 3.1, the above four

isomorphisms also hold with U replaced by any additive invariant E with values in an

R-linear category.

Quadrics

Let k, q be as in the previous subsection (with n > 3), and let Qq ⊂ P(V ) be the associated
smooth projective quadric of dimension n− 2. As explained in the proof of [5, Proposition

2.3], one has the following motivic decomposition

U (perfdg(Qq))R ' U (C0(q))R ⊕U (k)R ⊕ · · ·⊕U (k)R︸ ︷︷ ︸
(n−2)-copies

(3.12)

for every commutative ring R. By combing it with Corollary 3.1 and with the four

isomorphisms of the previous subsection, we obtain the following result.

Corollary 3.13. Let k, q be as above, let R be a commutative ring containing 1/2, and

let E : dgcat(k)→ D be an additive invariant with values in an R-linear category. Under

these assumptions, one has an isomorphism between E(Qq) and

(i) E(k)⊕n−1 when n is odd;

(ii) E(k)⊕n when n is even and δ(q) ∈ (k×)2;

(iii) E(C0(q))⊕ E(k)⊕n−1 when n is even and δ(q) /∈ (k×)2.

Remark 3.14. As pointed out by Bernardara, the combination of [33, Lemma 5.1] with
Kuznetsov’s semi-orthogonal decomposition [30, Theorem 4.2] leads to a generalization

of the above motivic decomposition 3.12 to every flat quadric fibration Q → S over a

smooth k-scheme S.

Finite-dimensional algebras of finite global dimension

Let k be a field of characteristic p > 0 and R a commutative ring. We start by describing

the behavior of the universal additive invariant with respect to nilpotent extensions.

Theorem 3.15 (Nilinvariance). Let S be a finite-dimensional k-algebra of finite global

dimension, and let I ⊂ S be a nilpotent (two-sided) ideal. Assume that
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(i) the k-algebra S/I has finite global dimension;

(ii) the quotient of S by its Jacobson radical J (S) is k-separable (e.g. k perfect) or that

1/p ∈ R.

Under the above assumptions, one has an induced isomorphism U (S)R
∼
→ U (S/I )R.

In the particular case where I = J (S), the above assumption (i) holds automatically

since S/J (S) is semi-simple. Hence, modulo assumption (ii), Theorem 3.15 shows us that

the noncommutative motives of a finite-dimensional algebra of finite global dimension

and of its largest semi-simple quotient are isomorphic.

Corollary 3.16. Let k, S, I, R be as in Theorem 3.15, and let E : dgcat(k)→ D be an

additive invariant with values in an R-linear category. Under these assumptions, one has

an isomorphism E(S) ' E(S/I ). In particular, E(S) ' E(S/J (S)).

The isomorphisms Kn(S) ' Kn(S/I ), n > 0, are well known. The case n = 0 follows

from idempotent lifting; see [44, § II Lemma 2.2]. Since S and S/I are regular Noetherian,

the cases n > 0 follow from the combination of the fundamental theorem (see [44, § V

Theorem 3.3]) with dévissage (see [44, § V Corollary 4.2]). All the remaining isomorphisms

provided by Corollary 3.16 are, to the best of the authors’ knowledge, new in the

literature.

Remark 3.17. Theorem 3.15 is false when S is of infinite global dimension. An example

is given by the k-algebra S := k[ε]/ε2 of dual numbers and by the ideal I := εS. Since S
and S/εS ' k are local k-algebras, one has the following isomorphisms:

K1(k[ε]/ε2) ' (k[ε]/ε2)∗ = k∗+ kε K1(S/εS) ' K1(k) ' k∗; (3.18)

see [44, § III Lemma 1.4]. This implies that the induced map K1(S)
ε=0
→ K1(S/εS) is not

an isomorphism, and so, using Corollary 3.16, one concludes that U (S)
ε=0
→ U (S/εS) is

not an isomorphism. Note that, in the particular case where k is a finite field, the groups

3.18 are not even abstractly isomorphic, because they have different cardinality. In this

case we hence have U (S) 6' U (S/εS).

Let V1, . . . , Vm be the simple (right) S-modules, and let D1 := EndS(V1), . . . , Dm :=

EndS(Vm) be the associated division k-algebras. Thanks to the Artin–Wedderburn

theorem, the quotient S/J (S) is Morita equivalent to D1× · · ·× Dm . The center Zi of

Di is a finite field extension of k, and Di is a central simple Zi -algebra. Let ri := [Di : Zi ]

and r := r1× · · ·× rm . Using Theorem 2.1 (with X = Spec(Zi ) and A = Di ), one then

obtains the following isomorphism

U (S/J (S))R ' U (Zi )R ⊕ · · ·⊕U (Zm)R (3.19)

for every commutative ring R containing 1/r or 1/(r p) depending on whether we assume

that S/J (S) is k-separable or not. The combination of 3.19 with the above Corollary 3.16

gives rise to the following result.
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Corollary 3.20. Let k, S, Zi , R be as above, and let E : dgcat(k)→ D be an additive

invariant with values in an R-linear category. Under the assumptions of Theorem 3.15,

one has an isomorphism E(S) ' E(Z1)⊕ · · ·⊕ E(Zm).

Intuitively speaking, Corollary 3.20 shows us that up to some torsion all additive

invariants of finite-dimensional k-algebras of finite global dimension can be computed

using solely finite field extensions of k.

Remark 3.21. When k is algebraically closed, we have D1 = · · · = Dm = k, and

consequently Z1 = · · · = Zm = k. Corollary 3.20 then reduces (for every commutative ring
R) to an isomorphism E(S) ' E(k)⊕m . This isomorphism was also obtained by Keller in

[22, § 2.3] using different arguments.

Notation

Throughout the article we will reserve the letter k for a base commutative ring, the letter

R for a commutative ring of coefficients, the letters A, B,C for sheaves of Azumaya

algebras over schemes, the letters A,B for dg categories, the letters S, T for (dg)

k-algebras, and finally the letters X, Y for k-schemes. All schemes will be assumed to

be quasi-compact and quasi-separated. Given a small category C, we will write Iso C for

its set of isomorphism classes of objects.

4. Background on dg categories

Let C(k) be the category of cochain complexes of k-modules; we use cohomological

notation. A differential graded (= dg) category A is a category enriched over C(k)
(morphisms sets A(x, y) are complexes) in such a way that composition fulfills the

Leibniz rule d( f ◦ g) = d( f ) ◦ g+ (−1)deg( f ) f ◦ d(g). A dg functor F : A→ B is a functor

enriched over C(k); consult Keller’s ICM survey [19]. In what follows, we will write
dgcat(k) for the category of (small) dg categories and dg functors.

Modules

Let A be a dg category. The category H0(A) has the same objects as A and morphisms

given by H0(A)(x, y) := H0(A(x, y)), where H0 denotes degree-zero cohomology. The

opposite dg category Aop has the same objects as A and complexes of morphisms given

by Aop(x, y) := A(y, x). A right A-module is a dg functor Aop
→ Cdg(k) with values in

the dg category Cdg(k) of cochain complexes of k-modules. Let us denote by C(A) the

category of right A-modules. Recall from [19, § 3.2] that the derived category D(A) of A
is the localization of C(A) with respect to the class of objectwise quasi-isomorphisms. Its

full subcategory of compact objects will be denoted by Dc(A).

Morita equivalences

A dg functor F : A→ B is called a Morita equivalence if the induced restriction of scalars

D(B) ∼→ D(A) is an equivalence of (triangulated) categories; see [19, § 4.6]. As proved in
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[40, Theorem 5.3], dgcat(k) admits a Quillen model structure whose weak equivalences

are precisely the Morita equivalences. Let us denote by Hmo(k) the homotopy category

hence obtained.

Tensor product

The tensor product A⊗B of two dg categories A and B is defined by the Cartesian

product of the sets of objects of A and B and by the complexes of morphisms (A⊗
B)((x, z), (y, w)) := A(x, y)⊗B(z, w). As explained in [19, § 2.3], this gives rise to a
symmetric monoidal structure on dgcat(k) with ⊗-unit the dg category k. After deriving

it −⊗L
−, this symmetric monoidal structure descends to Hmo(k); consult [19, § 4.3] for

details.

Bimodules

Let A,B ∈ dgcat(k). A A-B-bimodule B is a right (Aop
⊗B)-module, i.e. a dg functor

B : A⊗Bop
→ Cdg(k). Standard examples are the A-A-bimodule

A⊗Aop
→ Cdg(k) (x, y) 7→ A(y, x) (4.1)

as well as the A-B-bimodule

F Bi : A⊗Bop
→ Cdg(k) (x, z) 7→ B(z, F(x)) (4.2)

associated to a dg functor F : A→ B.

Smoothness and properness

Recall from Kontsevich [23–26] that a dg category A is called smooth if the A-A-bimodule

4.1 belongs to Dc(Aop
⊗

LA) and proper if for each ordered pair of objects (x, y) we have∑
i rank H iA(x, y) <∞.

5. Background on noncommutative motives

In this section, we recall from [40] the construction of the category of noncommutative

motives; consult also the survey article [37]. Let A,B ∈ dgcat(k). As proved in [40,

Corollary 5.10], one has a bijection

HomHmo(k)(A,B) ' Iso rep(A,B), (5.1)

where rep(A,B) denotes the full triangulated subcategory of D(Aop
⊗

L B) consisting of

those A-B-bimodules B such that for every x ∈ A the right B-module B(x,−) belongs

to Dc(B). Under 5.1, the composition law in Hmo(k) corresponds to the (derived) tensor

product of bimodules, and the identity of an object A is given by the isomorphism class
of the A-A-bimodule 4.1. Since the A-B-bimodules 4.2 belong to rep(A,B), we hence

obtain a well-defined symmetric monoidal functor:

dgcat(k) −→ Hmo(k) F 7→ F Bi. (5.2)

The additivization of Hmo(k) is the additive category Hmo0(k) with the same objects as

Hmo(k) and abelian groups of morphisms given by

HomHmo0(k)(A,B) := K0 rep(A,B),
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where K0 rep(A,B) is the Grothendieck group of the triangulated category rep(A,B). The

composition law is induced by the (derived) tensor product of bimodules. Note that we

also have a canonical functor:

Hmo(k) −→ Hmo0(k) B 7→ [B]. (5.3)

Finally, given a commutative ring of coefficients R, the R-linearization of Hmo0(k) is

the R-linear additive category Hmo0(k)R obtained by tensoring each abelian group of

morphisms of Hmo0(k) with R. This gives rise to a functor

Hmo0(k) −→ Hmo0(k)R [B] 7→ [B]⊗Z R. (5.4)

As proved in [40], the symmetric monoidal structure on Hmo(k) descends first to a bilinear

symmetric monoidal structure on Hmo0(k) and then to a R-linear bilinear symmetric

monoidal structure on Hmo0(k)R , making 5.3–5.4 into symmetric monoidal functors.

The universal additive invariant with R-coefficients 1.1 is then defined by the following

composition:

U (−)R : dgcat(k) 5.2
−→ Hmo(k) 5.3

−→ Hmo0(k)
5.4
−→ Hmo0(k)R .

Finally, given dg categories A,B ∈ dgcat(k) with A smooth and proper, the triangulated

category rep(A,B) ⊂ D(Aop
⊗

L B) identifies with Dc(Aop
⊗

L B); see [12, § 5]. As a

consequence, we obtain the following isomorphism:

HomHmo0(k)R (U (A)R,U (B)R) ' K0(Aop
⊗

L B)R . (5.5)

6. Perfect complexes

Let k be a base commutative ring, X a quasi-compact quasi-separated k-scheme, and A
a sheaf of OX -algebras. We introduce some notation and concepts that are standard in

the particular case where A = OX (consult [10, § 3] [19, § 4.4] and the references therein)

and whose generalization to an arbitrary sheaf A is immediate.

Let Mod(A) be the Grothendieck category of sheaves of (right) A-modules, Qcoh(A) the

full subcategory of quasi-coherent A-modules, D(A) := D(Mod(A)) the derived category

of A, and DQcoh(A) ⊂ D(A) the full triangulated subcategory of those complexes of

A-modules with quasi-coherent cohomology. When X is separated, we have DQcoh(A) '
D(Qcoh(A)).

Definition 6.1. A complex of A-modules F ∈ D(A) is called perfect if there exists a

covering X =
⋃

i Vi of X by affine open subschemes Vi ⊂ X such that for every i the

restriction F|Vi of F to Vi is quasi-isomorphic to a bounded complex of finitely generated

projective A|Vi -modules. Let us denote by perf(A) the triangulated category of perfect
complexes. Note that by construction we have the inclusions perf(A) ⊂ DQcoh(A) ⊂ D(A).

Let E be an abelian (or exact) category. As explained in [19, § 4.4], the derived dg

category Ddg(E) of E is defined as the dg quotient Cdg(E)/Acdg(E) of the dg category of

complexes over E by its full dg subcategory of acyclic complexes. Note that every exact

functor E → E ′ (or more generally every dg functor Cdg(E)→ Cdg(E ′) which restricts to

Acdg(E)→ Acdg(E ′)) gives rise to a dg functor Ddg(E)→ Ddg(E ′).
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Notation 6.2. Let us write Ddg(A) for the dg category Ddg(E) with E := Mod(A),
DQcoh,dg(A) for the full dg category of those complexes of A-modules with quasi-coherent

cohomology, and perfdg(A) for the full dg subcategory of perfect complexes. By

construction, we have inclusions perfdg(A) ⊂ DQcoh,dg(A) ⊂ Ddg(A) of dg categories and

canonical equivalences

H0(perfdg(A)) ' perf(A) H0(DQcoh,dg(A)) ' DQcoh(A) H0(Ddg(A)) ' D(A).

When A = OX , we will write in what follows X instead of OX .

Note that we have a well-defined forgetful functor D(A)→ D(X) which restricts to

perf(A)→ perf(X) when A is perfect as a complex of OX -modules. Since the forgetful

functor Mod(A)→ Mod(X) is exact, one has similar forgetful dg functors Ddg(A)→
Ddg(X) and perfdg(A)→ perfdg(X). The following (well-known) fact will be used in what

follows.

Lemma 6.3. Let X and A be as above, with A a sheaf of Azumaya algebras over X . Under

these assumptions, the following square is Cartesian:

perf(A)

forget
��

//

p

D(A)

forget
��

perf(X) // D(X) ,

i.e. a complex F ∈ D(A) belongs to perf(A) if an only if it belongs to perf(X).

Proof. Thanks to the above Definition 6.1, it suffices to prove the affine case where

X = Spec(S) and A is an Azumaya algebra over S. Recall from [28, III § 5] that

(i) A is finitely generated and projective as a right S-module;

(ii) A is separable, i.e. A is projective as a A-A-bimodule.

If by hypothesis F belongs to perf(A), then condition (i) allows us to conclude that F also

belongs to perf(X). In order to prove the converse implication, consider the base-change

functor −⊗S A : D(S)→ D(A). By construction, it preserves perfect complexes. Hence,

if by hypothesis F belongs to perf(X),F ⊗S A belongs to perf(A). Now, consider the

following short exact sequence of A-A-bimodules:

0 −→ Ker(m) −→ A⊗S A
m
−→ A −→ 0, (6.4)

where m stands for the multiplication of A. Thanks to the above condition (ii), 6.4 splits,

and hence A becomes a direct summand of the A-A-bimodule A⊗S A. Using the canonical

isomorphism F ⊗S A ' F ⊗A (A⊗S A), one concludes that F is a direct summand of

F ⊗S A. Since F ⊗S A belongs to perf(A) and this category is idempotent complete, F
also belongs to perf(A). This completes the proof.

Every sheaf A of OX -algebras gives rise to the following dg functor:

−⊗
L
OX

A : Cdg(Mod(X)) −→ Cdg(Mod(A)) F 7→ Fflat⊗OX A, (6.5)
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where Fflat denotes a (functorial) OX -flat resolution of F . Note that, when A is OX -flat

(e.g. A is locally free of finite rank over OX ), 6.5 identifies with −⊗OX A. Since 6.5

preserves acyclic and perfect complexes, it induces a dg functor

−⊗
L
OX

A : perfdg(X) −→ perfdg(A).

7. Proof of Theorem 2.3

Since X is quasi-compact and quasi-separated, the proof can be reduced to the affine

case and to a Mayer–Vietoris argument; see [10, Proposition 3.3.1]. The following result
is due to Thomason and ,Trobaugh [42, Theorem 8.1]. We have nevertheless decided to

include its proof because we will make use of it in Lemma 7.5 below.

Lemma 7.1. Let X be a quasi-compact quasi-separated scheme, and U1,U2 two Zariski

open subschemes. Assume that X = U1 ∪U2 and write U12 := U1 ∩U2. Under these

assumptions, one has the exact sequence.

K1(U1)⊕ K1(U2)→ K1(U12)
∂
→ K0(X)

±
→ K0(U1)⊕ K0(U2)→ K0(U12). (7.2)

Proof. Let us write ι1 : U1 ↪→ X and ι2 : U2 ↪→ X for the two open inclusions. Consider

the following commutative diagram in Hmo(k):

0 // perfdg(X)Z

∼

��

// perfdg(X)

Lι∗2
��

Lι∗1 // perfdg(U1)

��

// 0

0 // perfdg(U2)Z ′ // perfdg(U2) // perfdg(U12) // 0 ,

(7.3)

where Z (respectively, Z ′) is the closed set X −U1 (respectively, U2−U12) and perfdg(X)Z
(respectively, perfdg(U2)Z ′) the dg category of those perfect complexes of OX -modules

(respectively, of OU2 -modules) that are supported on Z (respectively, on Z ′). Recall from

[19, § 4.6] the notion of a short exact sequence of dg categories. Roughly speaking, it

consists of a sequence of dg categories A→ B→ C for which D(A)→ D(B)→ D(C) is

exact in the sense of Verdier. As explained in [42, § 5], both rows in 7.3 are short exact

sequences of dg categories; see also [19, § 4.6]. Furthermore, as proved in [42, Theorem

2.6.3], the induced dg functor perfdg(X)Z
∼
→ perfdg(U2)Z ′ is a Morita equivalence and

hence an isomorphism in Hmo(k).
Nonconnective algebraic K -theory gives rise to a functor K : Hmo(k)→ Ho(Spt) with

values in the homotopy category of spectra. Among other properties, it sends short

exact sequences of dg categories to distinguished triangles of spectra; see [36] [39,

Theorem 10.9]. Hence, by applying it to 7.3 we obtain the following morphism between

distinguished triangles:

Kperfdg(X)Z

∼

��

// Kperfdg(X)

K(Lι∗2)
��

K(Lι∗1) // Kperfdg(U1)

��

// ΣKperfdg(X)Z

∼

��
Kperfdg(U2)Z ′ // Kperfdg(U2) // Kperfdg(U12) // ΣKperfdg(U2)Z ′ .
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Since the outer left and right vertical maps are isomorphisms, we hence obtain a

Mayer–Vietoris long exact sequence:

· · · → Kn+1(U1)⊕ Kn+1(U2)→ Kn+1(U12)
∂
→ Kn(X)

±
→ Kn(U1)⊕ Kn(U2)→ · · · ,

where the boundary maps ∂ are obtained from the composition

Kperfdg(U12) −→ ΣKperfdg(U2)Z ′
∼
−→ ΣKperfdg(X)Z . (7.4)

The exact sequence 7.2 is a chunk of the above one, and so the proof is finished.

Recall now from [44, § IV Remark 6.6.4] that the pairing

−⊗
L
OX
− : perf(X)× perf(X) −→ perf(X)

endows K∗(X) with a graded-commutative ring structure.

Lemma 7.5. Let X,U1,U2,U12 be as in the above Lemma 7.1. Given an element α in

K0(X), we have the following commutative diagram:

K1(U1)⊕ K1(U2)

−·α1⊕−·α2

��

// K1(U12)

−·α12

��

∂ // K0(X)

−·α

��

± // K0(U1)⊕ K0(U2)

−·α1⊕−·α2

��

// K0(U12)

−·α12

��
K1(U2)⊕ K1(U2) // K1(U12)

∂
// K0(X)

±

// K0(U1)⊕ K0(U2) // K0(U12) ,

where α1, α2, and α12 denote the images of α in K0(U1), K0(U2), and K0(U12),

respectively.

Proof. Recall first from Thomason [41, § 1.6] that every element α in K0(X) is of the

form α = [F] for some perfect complex F . Note that we have the following commutative

cube in the homotopy category Hmo(k):

perfdg(X)

Lι∗2

��

Lι∗1 // perfdg(U1)

��

perfdg(X)

−⊗
L
OX

Fff

Lι∗1 //

Lι∗2
��

perfdg(U1)

��

−⊗
L
OX

F1

77

perfdg(U2)

−⊗
L
OX

F2xx

// perfdg(U12)

−⊗
L
OX

F12

''
perfdg(U2) // perfdg(U12) ,

(7.6)

where F1,F2, and F12 denote the restriction of F to U1,U2, and U12, respectively.

Following the proof of Lemma 7.1, one observes that the commutative cube 7.6 gives
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rise to a morphism between Mayer–Vietoris long exact sequences:

· · · Kn+1(U1)⊕ Kn+1(U2)

−·α1⊕−·α2

��

// Kn+1(U12)

−·α12

��

∂ // Kn(X)

−·α

��

± // Kn(U1)⊕ Kn(U2) · · ·

−·α1⊕−·α2

��
· · · Kn+1(U2)⊕ Kn+1(U2) // Kn+1(U12)

∂
// Kn(X)

±

// Kn(U1)⊕ Kn(U2) · · · ,

where the commutativity of the middle square follows from composition 7.4. The diagram
of Lemma 7.5 is a chunk of this one, and so the proof is finished.

Lemma 7.7. Let X,U1,U2,U12, and α, α1, α2, α12 be as in Lemma 7.5. Whenever α1, α2,

and α12 are nilpotent, α is also nilpotent.

Proof. Since by hypothesis α1, α2, and α12 are nilpotent, there exists an integer N > 0
for which the homomorphisms

K0(U1)
−·αN

1
−→ K0(U1) K0(U2)

−·αN
2

−→ K0(U2) K1(U12)
−·αN

12
−→ K1(U12)

are all trivial. Consequently, using the above Lemma 7.5 (with α replaced by αN ), one

obtains the following commutative diagram:

K1(U12)

−·αN
12
��

∂ // K0(X)

−·αN

��

± // K0(U1)⊕ K0(U2)

−·αN
1 ⊕−·α

N
2 0
��

K1(U12)

−·αN
12 0
��

∂ // K0(X)

−·αN

��

± // K0(U1)⊕ K0(U2)

−·αN
1 ⊕−·α

N
2
��

K1(U12)
∂
// K0(X)

±

// K0(U1)⊕ K0(U2) .

A simple diagram chasing argument then shows that the composition of the middle

vertical arrows is zero, i.e. − ·α2N
= 0. This implies that α2N

= 0, and hence that α is

nilpotent.

We now have all the ingredients needed for the proof of Theorem 2.3. Recall that X has

m connected components and that IX stands for the kernel of the ring homomorphism

rank : K0(X)� Zm . Let α be an element in IX ⊂ K0(X). One needs to show that α is
nilpotent. This will be done in three steps.

Step 1

We claim that X =
⋃n

i=1 Vi , where Vi ⊂ X is an affine open subscheme such that the

image of α in K0(Vi ) is zero. Let x ∈ X , and let Vx be an affine open neighborhood

of x . The image α|Vx of α in K0(Vx ) can be written as [P] − [Q], with P and Q two

vector bundles of the same rank. By shrinking Vx we can assume that P and Q are free

of the same rank, and hence are isomorphic. As a consequence, α|Vx = 0. Finally, using

quasi-compactness, we may take a finite subcover {Vi }
n
i=1 of {Vx }x∈X , which yields the

above claim.
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Step 2

Assume that X is a quasi-compact separated scheme. We prove Theorem 2.3 using

induction on the number of affine open subschemes in a covering trivializing α, as in

Step 1. The case n = 1 is clear. Let us then assume that n > 1, and write U1 := ∪
n−1
i=1 Vi ,

U2 := Vn , and U12 := U1 ∩U2. Since by hypothesis X is separated, Vi ∩ V j is affine for
all i, j , and so U1 and U12 are covered by n− 1 affine open subschemes on which the

restriction of α is trivial. By our induction hypothesis, α1, α2, α12 are nilpotent. Hence,

using the above Lemma 7.7, we conclude that α is also nilpotent.

Step 3

Assume that X is a quasi-compact quasi-separated scheme. Let U1,U2, and U12 be as in
Step 2. Note that U1 is covered by n− 1 affine open subschemes on which α is trivial,

and that U2 and U12 are separated (since U2 is affine and U12 ⊂ U2). Therefore, using

induction and Step 2, we can again assume that α1, α2, α12 are nilpotent. We finish the

proof by invoking Lemma 7.7 once again.

Proof of Corollary 2.4

Every ring homomorphism R→ R′ gives rise to a well-defined ring homomorphism

K0(X)R → K0(X)R′ . Hence, since Z[1/r ] is initial among the rings containing 1/r , it

suffices to prove the particular case R := Z[1/r ]. Note that since Z[1/r ] is torsion free

we have the following short exact sequence:

0→ IX ⊗Z[1/r ] ⊂ K0(X)Z[1/r ]
rank
� Zm

⊗Z[1/r ] → 0.

Moreover, thanks to Theorem 2.3, every element in IX ⊗Z[1/r ] is nilpotent. The rank

homomorphism is surjective, and so there exists an element β ∈ K0(X)Z[1/r ] of rank

(1/r1, . . . , 1/rm). Therefore, α ·β is of rank (1, . . . , 1), and consequently ([OX ] −α ·β) ∈

IX ⊗Z[1/r ]. There exists then an integer N > 0 such that ([OX ] −α ·β)
N+1
= 0. This

implies that the following element

[OX ] + ([OX ] −α ·β)+ ([OX ] −α ·β)
2
+ · · ·+ ([OX ] −α ·β)

N
∈ K0(X)Z[1/r ]

is the inverse of α ·β, and hence that α is invertible in K0(X)Z[1/r ].

8. Proof of Theorem 2.1

The proof is divided into two steps. First, we introduce an auxiliary Z[1/r ]-linear category

Az0(X)1/r of sheaves of Azumaya algebras over X and prove the analog of Theorem 2.1

therein; see Proposition 8.3. Then, we construct a Z[1/r ]-linear functor from Az0(X)1/r
to the category Hmo0(k)Z[1/r ] of noncommutative motives.

Note that every ring homomorphism R→ R′ gives rise to a well-defined additive functor

Hmo0(k)R → Hmo0(k)R′ . Hence, since Z[1/r ] is initial among the rings containing 1/r ,

it suffices to prove the case R = Z[1/r ].

394

https://doi.org/10.1017/S147474801400005X Published online by Cambridge University Press

https://doi.org/10.1017/S147474801400005X


Noncommutative motives of Azumaya algebras

Auxiliary category Az0(X)

Given two sheaves A and B of Azumaya algebras over X , let rep(A, B) be the full

triangulated subcategory of D(Aop
⊗OX B) consisting of those A-B-bimodules ABB such

that BB ∈ perf(B).

Lemma 8.1. The full triangulated subcategories rep(A, B) and perf(Aop
⊗OX B) of

D(Aop
⊗OX B) are the same.

Proof. We start with the inclusion rep(A, B) ⊆ perf(Aop
⊗OX B). Let ABB be an object of

rep(A, B) ⊂ D(Aop
⊗OX B). By definition, BB ∈ perf(B). Hence, Lemma 6.3 (with A = B)

shows us that B ∈ perf(X). Using Lemma 6.3 (with A = Aop
⊗OX B) again, we conclude

that ABB ∈ perf(Aop
⊗OX B).

We now show the converse inclusion. Let ABB be an object of perf(Aop
⊗OX B) ⊂

D(Aop
⊗OX B). Lemma 6.3 (with A = Aop

⊗OX B) shows us that B ∈ perf(X). Using
Lemma 6.3 (with A = B) again, we conclude that BB ∈ perf(B). By definition, this implies

that ABB ∈ rep(A, B), and so the proof if finished.

Let Az(X) be the category whose objects are the sheaves of Azumaya algebras over X ,

whose morphisms are given by HomAz(X)(A, B) := Iso rep(A, B), and whose composition

law is induced by

rep(A, B)× rep(B,C) −→ rep(A,C) (ABB, BB′C ) 7→ AB⊗L
B B′C . (8.2)

Note that the identity of an object A ∈ Az(X) is given by the isomorphism class of

the A-A-bimodule A AA. The additivization of Az(X) is the additive category Az0(X)
with the same objects as Az(X) and with abelian groups of morphisms given by

HomAz0(X)(A, B) := K0 rep(A, B), where K0 rep(A, B) is the Grothendieck group of

the triangulated category rep(A, B). The composition law is induced by the above

bi-triangulated functor 8.2. Note that we have a functor:

Az(X)→ Az0(X) ABB 7→ [ABB].

Finally, the Z[1/r ]-linearization of Az0(X) is the Z[1/r ]-linear category Az0(X)1/r
obtained by tensoring each abelian group of morphisms of Az0(X) with Z[1/r ]. This

gives rise to the functor

Az0(X)→ Az0(X)1/r [ABB] 7→ [ABB]1/r := [ABB]⊗Z Z[1/r ].

Proposition 8.3. Let X, A be as in Theorem 2.1. Under these assumptions and using

the above notation, one has the isomorphism [OX AA]1/r : OX
∼
→ A in Az0(X)1/r .

Proof. By definition, A is locally free of finite rank over OX . Consequently, the

A-OX -bimodule A AOX belongs to rep(A,OX ), and so one obtains a well-defined

morphism [A AOX ]1/r : A→ OX in Az0(X)1/r . The proof will consist in showing that

both compositions

[OX AA]1/r ◦ [A AOX ]1/r [A AOX ]1/r ◦ [OX AA]1/r (8.4)
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are isomorphisms. Thanks to the above Lemma 8.1 (with A = B = OX ), one has the

following Z[1/r ]-algebra isomorphism:

EndAz0(X)1/r (OX ) := K0(rep(OX ,OX ))1/r ' K0(perf(X))1/r =: K0(X)1/r , (8.5)

where the right-hand side is endowed with the multiplication induced by −⊗L
OX
−. Since

A⊗A A ' A, the composition [OX AA]1/r ◦ [A AOX ]1/r equals [OX AOX ]1/r . Hence, since by

hypothesis A is of rank (r1, . . . , rm), we conclude from Corollary 2.4 and from isomorphism

8.5 that [OX AOX ]1/r is invertible in EndAz0(X)1/r (OX ). The first composition in 8.4 is then

an isomorphism.

Let us now prove that the second composition in 8.4 is also an isomorphism. Thanks

to Lemma 8.1 (with A = B), one has the Z[1/r ]-algebra isomorphism

EndAz0(X)1/r (A) := K0(rep(A, A))1/r ' K0(perf(Aop
⊗OX A))1/r , (8.6)

where the right-hand side is endowed with the multiplication induced by −⊗L
A−. On the

other hand, Lemma 8.10 below furnishes us with the following ring isomorphism:

K0(X)
∼
−→ K0(Aop

⊗OX A) F 7→ F ⊗L
OX

A. (8.7)

Now, note that the composition [A AOX ]1/r ◦ [OX AA]1/r is equal to [A A⊗OX AA]1/r . There

exists then a unique element α in K0(X) which is mapped to [A A⊗OX AA] via the above

isomorphism 8.7. We claim that rank(α) = (r1, . . . , rm). In order to prove this claim,

consider the composed functor

perf(X)
8.11
−→ perf(Aop

⊗OX A)
forget
−→ perf(X). (8.8)

Since the OX -rank of A is (r1, . . . , rm), 8.8 gives rise to the commutative square

K0(X)

rank
����

−·[A] // K0(X)

rank
����

Zm
−·(r1,...,rm )

// Zm .

(8.9)

The equalities rank(α · [A]) = rank([A⊗OX A]) = (r1, . . . , rm)
2, combined with the

commutativity of 8.9 and the injectivity of the homomorphism − · (r1, . . . , rm), allow

us then to conclude that rank(α) = (r1, . . . , rm). Thanks to Corollary 2.4, the element α

then becomes invertible in K0(X)1/r , and so, using 8.6 and the Z[1/r ]-linearization of

8.7, one concludes that [A A⊗OX AA]1/r is invertible in EndAz0(X)1/r (A). This implies that

the second composition in 8.4 is also an isomorphism, and so the proof is finished.

Lemma 8.10. Let X, A be as in Theorem 2.1. Under these assumptions, one has the

following equivalence of monoidal triangulated categories:

perf(X)
∼
−→ perf(Aop

⊗OX A) F 7→ F ⊗L
OX

A, (8.11)

where the monoidal structure on perf(X) (respectively, on perf(Aop
⊗OX A)) is induced by

−⊗
L
OX
− (respectively, by −⊗L

A−).
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Remark 8.12. Since the monoidal structure on perf(X) is symmetric, we conclude from

8.11 that the monoidal structure on perf(Aop
⊗OX A) is also symmetric.

Proof. The fact that 8.11 is monoidal follows from the canonical isomorphisms

(F ⊗L
OX

A)⊗L
A (F

′
⊗

L
OX

A) ' (F ⊗L
OX

F ′)⊗L
OX

A.

In order to prove that 8.11 is moreover an equivalence, it suffices from Definition 6.1

to show the affine case where X = Spec(S) and A is an Azumaya algebra over S. As

explained in [28, § III Theorem 5.1 3], one has an equivalence of categories:

Mod(S)
∼
−→ Mod(Aop

⊗S A) F 7→ F ⊗S A. (8.13)

Since 8.13 preserves finitely generated projective modules, one concludes from the

definition of a perfect complex that 8.11 is an equivalence in the affine case. This

completes the proof.

Remark 8.14. Using Proposition 8.3, one observes that the category Az0(X)Q (obtained

by tensoring each abelian group of morphisms of Az0(X) with Q) has a single isomorphism

class. Kontsevich calls such categories ‘algebroids’ [27, § 1.1]. Intuitively speaking, all the

complexity of Az0(X) is torsion.

From Az0(X) to noncommutative motives

Let A, B ∈ Az0(X). Note that every A-B-bimodule ABB ∈ rep(A, B) gives rise to a dg

functor

−⊗
L
A B : perfdg(A) −→ perfdg(B) F 7→ Fflat⊗A B

and consequently to a bimodule (−⊗L
AB)Bi which belongs to rep(perfdg(A), perfdg(B)); recall

from 4.2 the notation −Bi. Similarly, every morphism f : ABB → AB′B of A-B-bimodules

gives rise to a morphism of dg functors ν f : −⊗
L
A B⇒ −⊗L

A B′ (see [19, § 2.3]), and

consequently to a morphism of bimodules ν f Bi :
−⊗

L
ABBi⇒

−⊗
L
AB′Bi.

Lemma 8.15. The above constructions give rise to a triangulated functor:

rep(A, B) −→ rep(perfdg(A), perfdg(B)). (8.16)

Proof. Note that, when f is a quasi-isomorphism, H0(ν f ) is a natural isomorphism

between triangulated functors. Using [6, Lemma 9.8], one then concludes that ν f Bi is a

quasi-isomorphism. This implies that 8.16 is well defined. The fact that it is triangulated

is clear.

Proposition 8.17. The assignment A 7→ U (perfdg(A)) on objects and ABB 7→

U ((−⊗L
AB)Bi) on morphisms gives rise to a well-defined functor:

Az0(X) −→ Hmo0(k). (8.18)
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Proof. We start by verifying that the assignment A 7→ perfdg(A) on objects and ABB 7→

(−⊗L
AB)Bi on morphisms gives rise to a well-defined functor from Az0(X) to Hmo(k).

Thanks to 8.16, one has well-defined morphisms:

HomAz(X)(A, B) −→ HomHmo(k)(perfdg(A), perfdg(B)).

Given bimodules ABB ∈ rep(A, B) and BB′C ∈ rep(B,C), the associativity of the (derived)

tensor product gives rise to a canonical isomorphism of dg functors (and consequently to

an isomorphism of bimodules):

(−⊗L
A B)⊗L

B B′ ' −⊗L
A (B⊗

L
B B′) (−⊗L

AB)⊗L
BB′Bi '

−⊗
L
A(B⊗

L
BB′)Bi.

This shows that the assignment ABB 7→ (−⊗L
AB)Bi preserves the composition operation.

The identities are also preserved, since the A-A-bimodule A AA is mapped to the identity

bimodule idBi = idperfdg(A). In conclusion, we obtain a functor:

Az(X) −→ Hmo(k). (8.19)

Now, from Lemma 8.15 and from the construction of the categories Az0(X) and Hmo0(k),
one concludes that the searched functor 8.18 is the additivization of 8.19. This completes

the proof.

We now have all the ingredients needed for the conclusion of the proof of Theorem

2.1. By Z[1/r ]-linearizing the above functor 8.18, one obtains the following commutative

diagram:

Az0(X)

(−)1/r

��

(8.18) // Hmo0(k)

(−)Z[1/r ]

��
Az0(X)1/r

(8.18)
// Hmo0(k)Z[1/r ] .

Hence, the image of the isomorphism [OX AA]1/r : OX
∼
→ A of Proposition 8.3 under 8.18

identifies with the following isomorphism:

U (−⊗OX A)Z[1/r ] : U (perfdg(X))Z[1/r ]
∼
−→ U (perfdg(A))Z[1/r ].

This concludes the proof of the first claim of Theorem 2.1.

Assume now that k is a field and that X = Spec(k). In this case, A is a central

simple k-algebra and r = dim(A). Let us prove that, if by hypothesis U (k)R ' U (A)R ,

then 1/dim(A) ∈ R. Thanks to the Wedderburn theorem (see [16, Theorem 2.1.3]),

A ' Mn×n(D) for some integer n > 1 and division algebra D ⊇ k. This implies that A
and D are Morita equivalent, and consequently that U (k)R ' U (A)R ' U (D)R . Consider

now the additive invariant

K0(−)R : dgcat(k) −→ Mod(R) (8.20)

with values in the category of R-modules. Thanks to the equivalence of categories 1.2,

8.20 descends to Hmo0(k)R . Hence, it induces an R-linear homomorphism:

HomHmo0(k)R (U (D)R,U (k)R) −→ HomMod(R)(K0(D)R, K0(k)R). (8.21)
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Since k is a field, we have K0(k)R ' R. Similarly, since D is a division k-algebra,

K0(D)R ' R. As a consequence, the right-hand side of 8.21 identifies with the R-linear

endomorphisms of R. In what concerns the left-hand side, we have

HomHmo0(k)R (U (D)R,U (k)R)
5.5
' K0(Dop)R ' K0(D)R ' R

with the class [D] of the D-k-bimodule D corresponding to 1 ∈ R. Under these

isomorphisms, 8.21 sends 1 ∈ R to the endomorphism − · dim(D) : R→ R. Therefore,
if by hypothesis U (D)R ' U (k)R , we conclude that 1/dim(D) ∈ R. The proof follows now

automatically from the equality dim(A) = dim(D)n
2
.

9. Proof of Theorem 3.15

Recall that S is a finite-dimensional k-algebra of finite global dimension and that I ⊂ S
is a nilpotent (two-sided) ideal. Let us write π : S � S/I for the quotient map. One

needs to show that it yields an isomorphism U (π)R : U (S)R
∼
→ U (S/I )R . By the Yoneda

lemma for the full subcategory of Hmo0(k)R containing the objects U (S)R and U (S/I )R ,

one observes that it suffices to show that the induced homomorphism

(U (π)R)∗ : HomHmo0(k)R (U (T )R,U (S)R) −→ HomHmo0(k)R (U (T )R,U (S/I )R)

is an isomorphism when T = S and T = S/I . Concretely, is suffices to show that

[−⊗
L
S πBi] : K0(rep(T , S))R −→ K0(rep(T , S/I ))R (9.1)

is an isomorphism. The proof is now divided into two cases.

Case 1 (S/J (S) k-separable)

Assume that S/I has finite global dimension and that S/J (S) is k-separable. Since

(S/I )/J (S/I ) = S/J (S), one concludes then from [11, p. 2] that the dg categories S and
S/I are smooth. They are also proper, and so, thanks to description 5.5, the induced

homomorphism 9.1 reduces to

[−⊗
L
S πBi] : K0(T op

⊗ S)R −→ K0(T op
⊗ S/I )R . (9.2)

Now, recall that by assumption I is nilpotent. As a consequence, the (two-sided) ideal

of the quotient map T op
⊗ S � T op

⊗ (S/I ) is also nilpotent. Using the invariance of the

Grothendieck group functor with respect to nilpotent extensions (see [44, § II Lemma

2.2]), we hence conclude that 9.2 is an isomorphism.

Case 2 (1/p ∈ R)

Assume that S/I has finite global dimension and that k is a field of characteristic p > 0
such that 1/p ∈ R. Note that, since S and S/I are finite dimensional and of finite global

dimension, we have the equivalences

rep(T , S) ' Db(mod(T op
⊗ S)) rep(T , S/I ) ' Db(mod(T op

⊗ S/I )),
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where Db(mod(−)) stands for the bounded derived category of finitely generated modules.

The above homomorphism 9.1 identifies then with

[−⊗
L
S πBi] : G0(T op

⊗ S)R −→ G0(T op
⊗ S/I )R .

Now, consider the following quotient maps:

rS : S � S/J (S) qT : T � T/J (T ) qS/I : S/I � S/J (S/I ) = S/J (S).

Using the following commutative diagram5

G0(T op
⊗ S)R

[−⊗
L
S πBi]

//

[−⊗
L
T op⊗S(qT Bi⊗qS Bi)]

++

G0(T op
⊗ (S/I ))R

[−⊗
L
T op⊗(S/I )(qT Bi⊗qS/I Bi)]

��
G0((T/J (T ))op

⊗ (S/J (S)))R

one observes that it suffices to prove that

[−⊗
L
T op⊗S (qT Bi⊗ qS Bi)] : G0(T op

⊗ S)R −→ G0((T/J (T ))op
⊗ (S/J (S)))R (9.3)

is an isomorphism. Moreover, it is sufficient by base change to treat the case R =
Z[1/p]. Note that the kernel of the quotient map qop

T ⊗ qS is nilpotent. Hence,

G0(T op
⊗ S) and G0(T/J (T ))op

⊗ (S/J (S)) are free Z-modules with a basis given by the

simple (T/J (T ))op
⊗ (S/J (S))-modules. In particular, they have the same rank. As a

consequence, it suffices to prove that 9.3 (with R = Z[1/p]) is a surjection. In order to

do so, we consider the following commutative diagram:

K0(T op
⊗ S)Z[1/p]

��

∼

−⊗
L
T op⊗S(qT Bi⊗qS Bi)

// K0((T/J (T ))op
⊗ (S/J (S)))Z[1/p]

∼

��
G0(T op

⊗ S)Z[1/p]
(9.3)

// G0((T/J (T ))op
⊗ (S/J (S)))Z[1/p] .

As in the proof of Case 1, the upper horizontal map is an isomorphism. Thanks to

Proposition 9.4 below (with U = T/J (T ) and U ′ = S/J (S)), the right vertical map is

also an isomorphism. Using these isomorphisms and the commutativity of the above

diagram, we conclude that 9.3 is a surjection. This finishes the proof.

Proposition 9.4. Given a field k of characteristic p > 0, the induced map

K0(U ⊗U ′)Z[1/p] −→ G0(U ⊗U ′)Z[1/p] (9.5)

is an isomorphism for any two finite-dimensional semi-simple k-algebras U and U ′.

5Note that although T op
⊗ S may have infinite global dimension, it is still true that (T/J (T ))op

⊗ (S/J (S))
has finite projective dimension over T op

⊗ S.
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Proof. Since U ⊗U ′ is finite dimensional, K0(U ⊗U ′)Z[1/p] and G0(U ⊗U ′)Z[1/p] are free

Z-modules with the same rank. Hence, it suffices to show that 9.5 is surjective. Let us

assume without loss of generality that U and U ′ are indecomposable. Let Z (respectively,

Z ′) be the center of U (respectively, of U ′) and Z0 (respectively, Z ′0) the separable closure

of k in Z (respectively, in Z ′). Under this notation, one has Z0⊗ Z ′0 =
⊕

i Wi with Wi/k
a separable field extension. As a consequence, one obtains the following equalities:

U ⊗U ′ =U ⊗Z0 (Z0⊗ Z ′0)⊗Z ′0
U ′

=

⊕
i

(U ⊗Z0 Wi ⊗Z ′0
U ′)

=

⊕
i

(U ⊗Z ′0
Wi )⊗Wi (U

′
⊗W0 Wi ).

Replacing k by Wi and U (respectively, U ′) by U ⊗Z0 Wi (respectively, by U ′⊗Z ′0
Wi ),

one can (and will) assume that Z and Z ′ are purely inseparable k-algebras. We hence

have

U ⊗U ′ = (U ⊗ Z ′)⊗(Z⊗Z ′) (U ′⊗ Z ′).

Note that D := U ⊗U ′ is the tensor product of two Azumaya algebras over W := Z ⊗ Z ′,
and hence is itself an Azumaya algebra. Thanks to Lemma 9.6 below, W is a local
k-algebra. By lifting idempotents and invoking Morita equivalence, the problem of

showing that 9.5 is surjective can be reduced to the case that D/J (D) is a division

algebra. In this case, D/J (D) = W/J (W )⊗W D is the unique simple D-module. Invoking

Lemma 9.6 again, we find that D = W ⊗W D is an extension of pn copies (for some n) of

W/J (W )⊗W D. Hence, pn
[D/J (D)] is in the image of 9.5. This finishes the proof.

Lemma 9.6. Let k be a field of characteristic p > 0, and let Z/k, Z ′/k be two purely

inseparable field extensions. Under these assumptions, Z ⊗ Z ′ is a local k-algebra, and its

length (as a module over itself) is a power of p.

Proof. Note that, if e ∈ Z ⊗ Z ′, then epn
∈ k for some n � 0. In the case where e is an

idempotent we then conclude that e = 0, 1. This implies that Z ⊗ Z ′ is a local k-algebra.

It is also clear that the length of Z ⊗ Z ′ must divide dimk(Z ⊗ Z ′). Hence, it is necessarily

a power of p.
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20. B. Keller, On the cyclic homology of exact categories, J. Pure Appl. Algebra 136(1),
(1999), 1–56.

21. B. Keller, On the cyclic homology of ringed spaces and schemes, Doc. Math. 3, (1998),
231–259.

22. B. Keller, Invariance and localization for cyclic homology of dg algebras, J. Pure Appl.
Algebra 123(1–3), (1998), 223–273.

23. M. Kontsevich, Noncommutative motives. Talk at the Institute for Advanced Study on
the occasion of the 61st birthday of Pierre Deligne, October 2005. Video available at htt
p://video.ias.edu/Geometry-and-Arithmetic.

402

https://doi.org/10.1017/S147474801400005X Published online by Cambridge University Press

arXiv:1303.3172
arXiv:1303.3172
arXiv:1303.3172
arXiv:1303.3172
arXiv:1303.3172
arXiv:1303.3172
arXiv:1303.3172
arXiv:1303.3172
arXiv:1303.3172
arXiv:1303.3172
arXiv:1303.3172
arXiv:1303.3172
arXiv:1303.3172
arXiv:1303.3172
arXiv:1303.3172
arXiv:1305.4687
arXiv:1305.4687
arXiv:1305.4687
arXiv:1305.4687
arXiv:1305.4687
arXiv:1305.4687
arXiv:1305.4687
arXiv:1305.4687
arXiv:1305.4687
arXiv:1305.4687
arXiv:1305.4687
arXiv:1305.4687
arXiv:1305.4687
arXiv:1305.4687
arXiv:1305.4687
arXiv:alg-geom/9506012
arXiv:alg-geom/9506012
arXiv:alg-geom/9506012
arXiv:alg-geom/9506012
arXiv:alg-geom/9506012
arXiv:alg-geom/9506012
arXiv:alg-geom/9506012
arXiv:alg-geom/9506012
arXiv:alg-geom/9506012
arXiv:alg-geom/9506012
arXiv:alg-geom/9506012
arXiv:alg-geom/9506012
arXiv:alg-geom/9506012
arXiv:alg-geom/9506012
arXiv:alg-geom/9506012
arXiv:alg-geom/9506012
arXiv:alg-geom/9506012
arXiv:alg-geom/9506012
arXiv:alg-geom/9506012
arXiv:alg-geom/9506012
arXiv:alg-geom/9506012
arXiv:alg-geom/9506012
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
http://video.ias.edu/Geometry-and-Arithmetic
https://doi.org/10.1017/S147474801400005X


Noncommutative motives of Azumaya algebras

24. M. Kontsevich, Triangulated categories and geometry. Course at the École Normale
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