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When the classical Rayleigh–Bénard (RB) system is rotated about its vertical axis
roughly three regimes can be identified. In regime I (weak rotation) the large-
scale circulation (LSC) is the dominant feature of the flow. In regime II (moderate
rotation) the LSC is replaced by vertically aligned vortices. Regime III (strong
rotation) is characterized by suppression of the vertical velocity fluctuations. Using
results from experiments and direct numerical simulations of RB convection for a cell
with a diameter-to-height aspect ratio equal to one at Ra ∼ 108–109 (Pr = 4–6) and
0 . 1/Ro . 25 we identified the characteristics of the azimuthal temperature profiles at
the sidewall in the different regimes. In regime I the azimuthal wall temperature profile
shows a cosine shape and a vertical temperature gradient due to plumes that travel
with the LSC close to the sidewall. In regimes II and III this cosine profile disappears,
but the vertical wall temperature gradient is still observed. It turns out that the vertical
wall temperature gradient in regimes II and III has a different origin than that observed
in regime I. It is caused by boundary layer dynamics characteristic for rotating flows,
which drives a secondary flow that transports hot fluid up the sidewall in the lower
part of the container and cold fluid downwards along the sidewall in the top part.
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1. Introduction
The classical system to study buoyancy driven flows is the Rayleigh–Bénard (RB)

system (Ahlers, Grossmann & Lohse 2009; Lohse & Xia 2010). In this system a
layer of fluid is confined between two horizontal plates and is heated from below and
cooled from above. The RB system is also very suitable to study the influence of
rotation on heat transport mechanisms. In order to do this the RB system is rotated
at an angular speed Ω about its vertical axis. Studies about the influence of rotation
on heat transport are relevant to understand many geophysical and astrophysical flow
phenomena such as the global thermohaline circulation, convection in the interior of
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gaseous planets, and convection in the outer layer of the Sun. Furthermore, the studies
are also very relevant for optimization of industrial applications. Therefore, turbulent
rotating convection has been studied extensively in laboratory experiments (for
example, Rossby 1969; Boubnov & Golitsyn 1986; Fernando, Chen & Boyer 1991;
Zhong, Ecke & Steinberg 1993; Liu & Ecke 1997; Sakai 1997; Hart & Olsen
1999; Vorobieff & Ecke 2002; Kunnen, Clercx & Geurts 2008b; Liu & Ecke 2009;
Niemela, Babuin & Sreenivasan 2010; Zhong & Ahlers 2010), direct numerical
simulations (for example, Julien et al. 1996a,b; Kunnen, Clercx & Geurts 2006;
Schmitz & Tilgner 2009; Kunnen, Geurts & Clercx 2009; Schmitz & Tilgner 2010;
Stevens, Clercx & Lohse 2010a,c), and with combined experimental and numerical
investigations (Kunnen, Clercx & Geurts 2008a; Stevens et al. 2009; Zhong et al.
2009; Kunnen, Geurts & Clercx 2010a,b; Weiss et al. 2010).

In this paper we indicate the rotation rate around the vertical axis by the Rossby
number Ro, which compares the inertial and Coriolis forces in the system. Here, Ro is
defined as

Ro=
√

Ra

PrTa
= 1

2Ω

√
βg∆

L
, (1.1)

where Pr = ν/κ is the Prandtl number, Ta = (2ΩL2/ν)
2 is the Taylor number and

Ra = βgL3∆/(νκ) is the Rayleigh number, with Ω the rotation rate, β the thermal
expansion coefficient, g the gravitational acceleration, ν the kinematic viscosity, κ the
thermal diffusion coefficient, and ∆ the temperature difference between the two plates.
Throughout the paper we consider a cell with aspect ratio Γ ≡ D/L = 1, with L the
height of the RB cell and D its diameter. The dimensionless heat transport in the
system is indicated by the Nusselt number,

Nu= QL

λ∆
, (1.2)

where Q is the heat–current density and λ the thermal conductivity of the fluid in the
absence of convection.

In figure 1 we show a typical measurement of the heat transport enhancement
with respect to the non-rotating case as function of the rotation rate (Stevens et al.
2009; Zhong et al. 2009). The figure shows that, depending on the rotation rate,
three different regimes can be identified: regime I (weak rotation), where no heat
transport enhancement is observed; regime II (moderate rotation), where a strong
heat transport enhancement is found; and regime III (strong rotation), where the heat
transport starts to decrease. We note that the division between regime I and regime
II is obvious as there is a bifurcation (Stevens et al. 2009; Zhong et al. 2009; Weiss
et al. 2010). Furthermore, we note that the log plot in figure 1 makes the transition
from regime II to regime III look more sudden than it actually is. Zhong et al. (2009)
and Stevens et al. (2009) have shown that the position of the onset does not depend
on Ra and Pr . However, the position of the maximum heat transfer enhancement
shifts towards lower 1/Ro when Ra is increased or Pr is decreased. In addition, the
maximum heat transfer enhancement decreases with increasing Ra and decreasing Pr .
For a detailed discussion on the influence of Ra and Pr we refer the reader to Zhong
et al. (2009) and Stevens et al. (2010c). Flow visualization experiments (Boubnov &
Golitsyn 1990; Kunnen et al. 2010a) and the analysis of the flow structures obtained
in numerical simulations (Stevens et al. 2009; Kunnen et al. 2010a) have confirmed
that this division of regimes coincides with changes observed in the flow patterns and
flow characteristics.
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FIGURE 1. (Colour online available at journals.cambridge.org/flm) The scaled heat transfer
Nu(1/Ro)/Nu(0), with Nu the Nusselt number defined in (1.2), as a function of 1/Ro on a
logarithmic scale. Experimental and numerical data for Ra = 2.73 × 108 and Pr = 6.26 are
indicated by red dots and open squares, respectively. Data taken from Stevens et al. (2009)
and Zhong et al. (2009) and are called run E2 in Zhong & Ahlers (2010). The transition
between the different regimes, see the text, is indicated by the vertical dashed lines.

In regime I (1/Ro . 0.5) the large-scale circulation (LSC), typical for non-rotating
RB convection, is still present, because the Coriolis force is too weak to overcome the
buoyancy force that causes the LSC. Stevens et al. (2009) showed that there is a sharp
transition to the regime where rotational effects become important, while at the same
time the strength of the LSC is decreasing (Kunnen et al. 2008a). Zhong & Ahlers
(2010) experimentally found that the time-averaged LSC amplitudes decrease strongly
at the transition from regime I to regime II, see figure 13 of their paper. In regime II
(0.5 . 1/Ro . 6.67) the LSC is replaced by predominantly vertically oriented vortical
columns as the dominant flow structures and a large increase in the heat transport is
observed.

This enhanced heat transport has been ascribed to Ekman pumping (Rossby 1969;
Julien et al. 1996a; Vorobieff & Ecke 2002; Kunnen et al. 2008a; King et al. 2009;
Stevens et al. 2009). The effect of Ekman pumping, and thus the observed heat
transfer enhancement, depends strongly on the Ra and Pr values (Zhong et al. 2009;
Stevens et al. 2010c). When the rotation rate is increased further a large decrease in
the heat transport is observed, because the vertical velocity fluctuations are suppressed
due to the rotation (Kunnen et al. 2008b, 2010a). We call this regime III.

In this paper we address the question of how these different regimes can be
identified from measurements of the azimuthal wall temperature distribution and the
vertical temperature gradient along the sidewall, with probes that are embedded in the
sidewall of a RB convection cell. This method of sidewall temperature measurements
has been introduced by Brown, Nikolaenko & Ahlers (2005b) and a validation of
this method is described in the second paragraph of Section 2 of Brown & Ahlers
(2006b). Recently, Zhong & Ahlers (2010) have extensively studied the properties
of the LSC in rotating Rayleigh–Bénard (RRB) convection in aspect ratio Γ = 1
experiments using this method. These measurements covered the Ra number range
3 × 108 . Ra . 2 × 1010, the Pr number range 3.0 . Pr . 6.4, and the 1/Ro number
range 0 . 1/Ro . 20. In these measurements detailed statistics about the thermal LSC
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amplitude (i.e. the amplitude of the cosine fit to the azimuthal temperature profile
at the sidewall), the LSC orientation over time, the temperature gradient along the
sidewall, the retrograde rotation of the LSC, the frequency of cessations, etc. over this
wide parameter range were determined.

This paper is organized as follows. The experimental setup that has been built at the
Fluid Dynamics Laboratory at Eindhoven University of Technology is discussed in § 2.
The design of this setup is closely based on the Santa Barbara design (Brown et al.
2005a). Subsequently we present some experimental results on the properties of the
azimuthal temperature profiles in § 3. For a much more detailed set of experimental
results on the properties of the azimuthal temperature profiles we refer to the paper
of Zhong & Ahlers (2010). In § 4 we compare the experimental data with the
azimuthal temperature and vertical-velocity profiles close to the sidewall found in
direct numerical simulations (DNSs). In order to explain the sidewall temperature
measurements we study the azimuthally averaged flow profiles obtained from DNSs.
The analysis presented in § 5 reveals that the sidewall temperature measurements,
particularly the presence of the vertical wall temperature gradients in regimes II and
III (Zhong & Ahlers 2010), can be explained by the presence of Stewartson layers that
are formed along the sidewall.

2. Experimental setup

Based on the setup described by Brown et al. (2005a) we have built a new RB
setup in Eindhoven, which is suitable for high precision heat transport measurements.
The convection cell has a diameter D and height L of 250 mm, making the aspect
ratio Γ = D/L = 1.0. The modular design of the setup provides the ability to perform
measurements at different aspect ratios as well, although this paper will only describe
the Γ = 1 setup in detail. During rotating experiments the RB cell is placed on
the Eindhoven rotating table facility (RTF) (see van Bokhoven 2007, for details).
A rotating connection is available for coolant fluid, with separated in and out flow
tubes. The rotation rate Ω of the RTF can be controlled from 0 to 10 rad s−1 with a
resolution of 0.001 rad s−1 and a relative accuracy of 0.5 %. The rotation rates were
kept below Ω = 1.57 rad s−1, yielding Froude numbers Fr = Ω2(D/2)/g less than
0.03 for all runs and much smaller for most. This means that the effect of centrifugal
forces can be considered negligible.

A schematic diagram of the RB cell is shown in figure 2. From bottom to top, we
first find the support plate A (400 × 400 mm aluminium), used to mount the setup on
the RTF and to align the rotational axes of the table and the convection cell so that the
offset of the cylinder axis and the rotation axis is less than 0.1 mm. Next, part B is a
10 mm insulation layer to prevent heat loss of the bottom adiabatic shield C (310 mm
outer diameter, 10 mm thick aluminium) to the support plate. The shield is fitted with
a 250 W heater to actively control its temperature. Inside this adiabatic shield, part D
is another 10 mm insulation layer, followed by the copper bottom plate E (270 mm
outer diameter, 30 mm thick) of the convection cell. The back of the bottom plate
is covered uniformly with two double spiral grooves of 2 mm depth, 2 mm width
and 6 mm spacing. Two 4 m, 12.3 � resistance wires are fixed with epoxy into these
grooves. From the back of the plate, five small holes (one at the centre, two at a radius
of 98 mm and two at 100 mm, i.e. in the space that is available between the heater
wires that are placed inside the plate) are drilled to within 0.7 mm of its top surface
and thermistors are mounted in these holes.
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FIGURE 2. Schematic diagram (not to scale) of the Eindhoven RB apparatus. From bottom to
top the figure shows the support plate A, an insulation layer B, the bottom adiabatic shield C,
an insulation layer D, the bottom copper plate E, the Plexiglas sidewall F, the adiabatic side
shield G, the top copper plate H, and the Plexiglas top plate I. See further details in the text.

On top of the bottom plate, the Plexiglas sidewall F with an inner diameter of
250 mm is placed. The thickness of the Plexiglas sidewall is 10 mm to provide enough
strength in strongly RRB experiments. A rubber O-ring seals the interface between the
bottom plate and the sidewall and prevents any leakage of fluid. The sidewall contains
a fluid inlet near the bottom plate and, at opposite angular position, an outlet adjacent
to the top plate. Care has been taken to avoid the entrapment of air in the convection
cell, both when filling the cell and when heating the fluid. The sidewall is surrounded
by an adiabatic side shield G made of two 3 mm thick aluminium plates. The shield
is actively temperature controlled, ensuring that its temperature is always close to the
mean temperature of the system. Additional insulation is present between the Plexiglas
sidewall and the aluminium side shield.

The top of the convection cell is formed by the copper top plate H, which has
similar dimensions as the bottom plate. The top plate contains a double spiral water
channel of 8 mm width, 26 mm depth and 25 mm spacing. The water, coming from a
refrigerated circulator (Thermo Scientific HAAKE DC50-K41) at 12.5 l min−1, cools
the top plate down to the desired temperature. From the top of the plate, five small
holes (one at the centre, four at a radius of 100 mm) were drilled to within 0.7 mm
of the copper–fluid interface and thermistors are mounted in these holes. The top plate
is covered by a Plexiglas top I and the water channel is sealed with a rubber ring.
The visual access provides a way to check the proper operation of the cooling system.
An aluminium construction ring is connected to the upper side of the top plate. It is
supported by six stainless steel support poles. With these poles, the RB cell can be
fixed to achieve a fully watertight connection between the plates and the sidewall. To
decrease the effects of air convection near the convection cell, the entire construction
is placed in a wooden box covered with a 40 mm insulating layer on the inside.

The apparatus contains 40 thermistors, which were calibrated simultaneously in
a separate apparatus against a laboratory standard. During the calibration procedure
all thermistors and the laboratory standard are placed in an extremely well
temperature-controlled batch (temperature differences less than 0.002 K) to determine
the resistance at a set of known temperatures. From this calibration data fits were
made with fifth-order logarithmic polynomials to calculate temperature values from
three-wire resistance measurements. Deviations from these fits are generally less than
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FIGURE 3. (Colour online) The ratio of the Nusselt number Nu(1/Ro) in the presence
of rotation to Nu(0) for Pr = 4.38 (Tm = 40 ◦C) and Γ = 1. The solid symbols are the
data obtained in the Eindhoven RB setup and the open symbols are the corresponding
data obtained in Santa Barbara (Stevens et al. 2009; Zhong et al. 2009). Solid triangles:
Ra = 2.99 × 108 (∆ = 0.50 K). Solid circles: Ra = 5.88 × 108 (∆ = 1.00 K). Solid squares:
Ra= 1.16×109 (∆= 2.00 K). Open circles: Ra= 5.6×108 (∆= 1.00 K, run E4 in Zhong &
Ahlers 2010). Open squares: Ra= 1.2× 109 (∆= 2.00 K, run E5 in Zhong & Ahlers 2010).

0.001 K. During the calibration procedure all thermistors are connected to the same
software and hardware as in the real experiments. Twenty-four of these thermistors are
placed in the sidewall, forming three rings of eight equally spaced sensors at heights
0.25L, 0.5L and 0.75L. Both the top and bottom plate contain five sensors to monitor
the temperature of the plate. The remaining sensors are used to control the temperature
of the bottom adiabatic shield and of the insulation around the Plexiglas sidewall.
Readings of all thermometer resistances and of the bottom plate heater current and
heater voltage were taken every second. The top (bottom) temperature Tt (Tb) was
set equal to the area average of the five thermometers embedded in the top (bottom)
plate. For any given data point, measurements over typically the first 4 hours were
discarded to avoid transients, and data taken over an additional period of at least
another 8 hours were averaged to get the heat–current density Q, and the temperatures
Tb and Tt. Owing to the imperfect temperature uniformity of the bottom shield there
was a small parasitic heat loss from the bottom plate of about 0.1 W, which was
determined by measuring the required power to keep the bottom and top plate at
40 ◦C, a measurement which takes 2 days. For each measurement this parasitic heat
loss was subtracted from the measured power.

The measurements have been verified against the experiments of Funfschilling et al.
(2005), Ahlers et al. (2009) and Stevens et al. (2009). For the present measurements
the difference is in the order of 1 %, well within the differences observed between
different RB setups (Ahlers et al. 2009). In figure 3 we show the heat transfer
enhancement Nu(Ω)/Nu(0) as function of the rotation rate 1/Ro for Ra = 2.99 × 108,
Ra = 5.88 × 108 and Ra = 1.16 × 109 at Pr = 4.38, which corresponds with a mean
temperature of the fluid of 40 ◦C, and compare them with similar heat transport
measurements reported in the literature (Stevens et al. 2009; Zhong et al. 2009).
We find that the two datasets involving rotation also agree within 1 %, which can be
considered a very good agreement.
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3. Experimental sidewall measurements
In RB experiments it is common to determine the flow properties by analysing the

azimuthal wall temperature profile obtained by thermistors that are embedded in the
sidewall (Ahlers et al. 2009) and in our setup we do the same. Following Stevens,
Clercx & Lohse (2010b) we define the relative LSC strength at the midheight (S̄m),
based on the energy in the different modes of the azimuthal temperature profile, as

S̄m =max




te∑
tb

E1

te∑
tb

Etot

− 1
N


/(

1− 1
N

)
, 0

 . (3.1)

Here
∑te

tb
E1 indicates the sum of the energy in the first Fourier mode over time, i.e.

from the beginning of the simulation t = tb to the end of the simulation t = te,
∑te

tb
Etot

the sum of the total energy in all Fourier modes over time, and N the total number
of Fourier modes that can be determined. The relative LSC strength S̄m always has
a value between 0 and 1; here 1 indicates that the azimuthal profile is a pure cosine
profile, which is a signature of the LSC according to Brown & Ahlers (2006b), and 0
indicates that the magnitude of the cosine mode is equal to (or weaker than) the value
expected from a random noise signal. Hence, S̄m � 0.5 indicates that a cosine fit on
average is a reasonable approximation of the data, as then most energy in the signal
resides in the first Fourier mode. In contrast, S̄m � 0.5 indicates that most energy
resides in the higher Fourier modes. Hence, we consider the LSC as dominant once
S̄m� 0.5 at the midheight. A small value of S̄m indicates that no single LSC is found,
implying the existence of either multiple rolls or, in the case of RRB convection,
vertically aligned vortices.

Figure 4(a) shows the magnitude of the different Fourier modes of the azimuthal
wall temperature profile for the experiments at Ra = 1.16 × 109 with Pr = 4.38 based
on the data of eight equally spaced thermistors placed inside the sidewall (located at
z = 0.5L). The corresponding relative LSC strength is given in figure 4(b). The figure
clearly shows that the relative LSC strength is large in regime I, which indicates the
presence of a LSC. However, for higher rotation rates, i.e. regime II, the relative LSC
strength decreases because vertically aligned vortices become the dominant feature of
the flow. For this flow one expects a random azimuthal temperature profile at the
midheight, which is confirmed by the low relative LSC strength Sm in regimes II
and III, see figure 4(b).

Extensive sidewall temperature gradient measurements for non-rotating RB
convection were performed by Brown & Ahlers (2007) and for RRB convection by
Zhong & Ahlers (2010), see their figures 10 and 11. When the LSC is the dominant
feature of the flow the vertical temperature gradient at the sidewall is mainly due
to plumes that travel close to the sidewall with the LSC. Thus, one would expect
that the temperature gradient along the sidewall should decrease in regime II as the
LSC disappears there. However, figure 10 of Zhong & Ahlers (2010) shows that the
temperature gradient along the sidewall even increases in regime II and III. This
non-zero temperature gradient along the sidewall in regime II and III is caused by
the secondary flow that will be discussed in § 5. Further interesting information about
the LSC can be found in figure 13 of Zhong & Ahlers (2010). The figure shows
that the temperature amplitude of the LSC, i.e. the strength of the first Fourier mode,
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FIGURE 4. (Colour online) Experimental results on the magnitude of the different Fourier
modes and Sm for Ra = 1.16 × 109 and Pr = 4.38 based on the data of eight azimuthally
equally spaced probes at z = 0.50L. (a) The energy in the different Fourier modes of the
azimuthal wall temperature profile normalized by the energy present in all Fourier modes as
function of 1/Ro. (b) The corresponding relative LSC strength Sm. The two dashed vertical
lines in both panels indicate the transitions between regimes I and II, and between II and III,
respectively.

starts to decrease at 1/Ro ≈ 0.41 and that the LSC ceases to contribute significantly
for 1/Ro & 0.8. Thus, our experimental results in figure 4 are in good agreement with
the results of Zhong & Ahlers (2010). It is interesting to note that the measurements
of Zhong & Ahlers (2010) reveal an increase in the LSC strength between 1/Ro = 0
and 1/Ro ≈ 0.41. In our data this effect is not visible, since we do not have enough
measurement points in regime I. As is discussed by Zhong & Ahlers (2010) there is no
well-accepted theoretical explanation for this phenomenon at the moment.

4. Numerical study of temperature and vertical-velocity profiles close to the
sidewall

We now consider the results of DNSs of RRB convection performed at various Ro
values for Ra = 2.73 × 108 and Pr = 6.26 (see details in Zhong et al. 2009) and for
Ra = 1.00 × 109 and Pr = 6.4 (see details in Kunnen et al. 2010a), which are in
the same parameter regime as the experiments discussed above. In the simulations
we solved the three-dimensional Navier–Stokes equations within the Boussinesq
approximation in a cylindrical cell with Γ = 1 with no-slip boundary conditions at
all walls, a uniform temperature at the horizontal plates, and an adiabatic sidewall.
For further details about the numerical code we refer to Verzicco & Orlandi (1996)
and Verzicco & Camussi (1997, 2003). In all simulations we calculate the azimuthal
averages of the three velocity components and the temperature. Furthermore, in the
simulations at Ra = 2.73 × 108 we placed 32 azimuthally equally spaced numerical
probes that provide simultaneous point-wise measurements of the temperature and the
three velocity components ur, uφ and uz in the radial, azimuthal and vertical directions
r, φ and z, respectively, at the heights 0.25L, 0.50L and 0.75L and a distance 0.45L
from the cylinder axis. The azimuthal temperature and vertical-velocity profiles
measured by the probes are analysed in the same way as the experimental data.

Figure 5 shows the magnitude of the different Fourier modes of the azimuthal
vertical-velocity profiles for Ra = 2.73 × 108 and Pr = 6.26 based on the data of
8, 16 and 32 equally spaced probes. The result in figure 5(a) agrees well with the
result obtained by Kunnen et al. (2008a). Furthermore, a comparison of the relative
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FIGURE 5. (Colour online) Results from DNSs on the magnitude of the different Fourier
modes and Sm for Ra = 2.73 × 108 and Pr = 6.26 based on the data of the numerical probes
at z = 0.50L. Panels (a), (b), and (c) show the energy in the different Fourier modes of the
azimuthal temperature profile normalized by the energy present in all Fourier modes based
on the data of 8, 16 and 32 equally spaced probes, respectively. The black, red, blue and
dark green lines indicate the energy in the first, second, third and the additional modes,
respectively. Note that when the data of 8 probes are used a lot of information about the
higher modes is lost. Panel (d) shows the corresponding relative LSC strength based on the
data of 8 (red), 16 (blue) and 32 (black) equally spaced probes. The two dashed vertical lines
indicate the transitions between regimes I and II, and between regimes II and III, respectively.

energy in the different Fourier modes based on the data of 8, 16 and 32 probes, see
figure 5, reveals that 8 probes are insufficient to capture all flow characteristics. Since
the results based on the data of 16 and 32 probes are very similar, we assume that 16
probes should be sufficient to capture all relevant features of the azimuthal profiles.

Fortunately, the data of 8 equally spaced thermistors are already sufficient to reliably
calculate Sm for non-rotating RB convection, see Stevens et al. (2010b). To confirm
this observation for the RRB case (and validate the experimental results with 8 probes
discussed in § 3) we therefore calculate Sm based on the data of 8, 16 and 32 equally
spaced probes. The result is given in figure 5(d), which shows that the curves for the
relative LSC strength almost collapse for the three cases. Moreover, the numerical data
are in good agreement with the experimental result shown in figure 4, including the
large decrease of Sm at the transition between regimes I and II. The small value of
the relative LSC strength (Sm � 0.5) suggests the absence of the LSC and that the
azimuthal temperature profile at the midheight becomes random in regimes II and III.
This is confirmed by a three-dimensional visualization of the flow, see figure 5 of
Zhong et al. (2009), where it is shown that in regime II vertically aligned vortices are
the dominant feature of the flow. We note that figure 5 shows a continuous decrease of
the relative LSC strength, which is in disagreement with the measurements of Zhong
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& Ahlers (2010) that show a small increase in the temperature amplitude of the LSC
between 1/Ro = 0 and 1/Ro ≈ 0.41. This difference might be caused by the slightly
different monitoring locations (inside the sidewall in the experiments and at the radial
position 0.45L in the numerical simulations).

5. The role of Ekman and Stewartson boundary layers
In this section we first discuss the flow characteristics for regimes I and II and

sketch the influence of background rotation on the mean flow in general terms,
and then the role of the Ekman and Stewartson boundary layers is emphasized.
Subsequently, we provide physical explanations for the structure of the mean flow as
observed for regime II. Finally, we discuss the implications for the mean temperature
gradient at the sidewall of the convection cell.

5.1. Description of the flow characteristics
In figure 6 we show the azimuthally averaged temperature and velocity components uz,
uφ and ur for three typical rotation regimes: top row, 1/Ro = 0 (no rotation, regime
I); middle row, 1/Ro = 0.35 (weak rotation, regime I); and bottom row, 1/Ro = 2.78
(moderate rotation, regime II) at Ra= 1× 109 and Pr = 6.4. The left-hand side of each
picture (r = 0) represents the position of the cylinder axis (dash-dotted line), while the
right-hand side (r/L = 0.5) corresponds with the sidewall. In addition to the azimuthal
averaging, they have also been averaged in time for more than 100 large-eddy turnover
times to find the mean circulation hidden under the turbulent fluctuations. A close-up
of the thermal and flow structure in the bottom corner of the tank for the case
1/Ro= 2.78 (see figure 6c) is shown in figure 7. We note that the averaged profiles for
lower Ra values are similar to those presented in figure 6.

For the non-rotating case (1/Ro= 0), shown in figure 6(a), we observe the signature
of the LSC. When looking at a vertical cross section of the domain, the cross-sectional
plane aligned with the LSC, the mean circulation has an elliptic shape with its major
axis oriented at some angle with the cylinder axis (see the sketch in figure 8, and
also in Qiu & Tong (2001)). It is due to this mean tilt of the elliptic LSC, combined
with the rotation sense as shown in figure 8, that the azimuthal average of this
flow is not zero; especially upward and downward motions are separated in these
azimuthally averaged plots. In the top half upward motion (positive uz) is found near
the cylinder axis, while the downward flow (negative uz) is strongest near the sidewall.
The opposite situation is found for uz in the bottom half. The azimuthal velocity uφ
does not show a well-defined mean profile, just some small fluctuations. The averaged
radial velocity ur has maximal values near the intersections of the horizontal plates
with the sidewall, consistent with the averaged vertical velocity uz near these regions.
Note also the weak radially inward flow near the sidewall around the midheight.

When a small rotation is introduced (1/Ro = 0.35, figure 6b), a first observation is
that the mean velocities become smaller (except the averaged azimuthal velocity uφ
which grows due to organization of the azimuthal flow). The vertical velocity uz still
has the dominant structuring due to the LSC, but especially near the cylinder axis
some disturbances appear. For the azimuthal velocity a well-defined structure emerges
due to the azimuthal averaging. The Coriolis force, deviating the parts of the LSC
with mean horizontal velocity to the right with respect to the local direction of the
(mean) horizontal flow, is driving the organization of an average azimuthal flow. The
blue regions near the corners in the plot of the azimuthal velocity uφ represent the
anticyclonic motion induced by the mean horizontal outward flow of the LSC (near
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FIGURE 6. The figures from left to right indicate temporal and azimuthal averages of
temperature and the velocity components uz, uφ and ur, respectively, for Ra= 1.00 × 109 and
Pr = 6.4. The rows from top to bottom indicate the results for (a) 1/Ro= 0, (b) 1/Ro= 0.35,
and (c) 1/Ro= 2.78, respectively. The left-hand side of each picture is the cylinder axis r = 0;
the right-hand side corresponds to the sidewall r/L = 0.5. The dashed lines in the pictures
of the bottom row indicate typical boundary-layer thicknesses: δE = Ek1/2 near the bottom
and top plates, and δS,1/3 = Ek1/3 and δS,1/4 = Ek1/4 near the sidewall (δS,1/3 is closest to the
sidewall). Note that the azimuthally averaged azimuthal velocity for 1/Ro = 0 (a) is much
smaller than for 1/Ro= 0.35 (b) and 1/Ro= 2.78 (c).

the bottom and top plates, see figure 8). The sketch of the LSC motion shows that
the upwards (downwards) going plumes are first travelling straight up (down), before
the radial inward flow of the LSC sets in. The cyclonic motion that is observed in
the central sidewall region of the azimuthally averaged azimuthal velocity is due to
the radial inward flow of the LSC in the top (bottom) half of the cell for the upward
(downward) branch of the LSC, see figure 8. This radial inward flow of the LSC
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FIGURE 7. Close-up of the bottom-right corners of the diagrams shown in figure 6(c)
(1/Ro = 2.78). The area displayed is 0.15 < r/L < 0.5; 0 < z/L < 0.1. Colour coding and
dashed lines as in figure 6(c). The panels from top to bottom indicate the temporal and
azimuthal averages of temperature and the velocity components uz, uφ and ur, respectively.

results in a spin-up, i.e. in cyclonic azimuthal motion, by the action of the Coriolis
force. This mechanism is equivalent to conservation of angular momentum: radial
inward motion (ur < 0) of fluid parcels results in an increase of uφ , i.e. in cyclonic
motion. Because this radial inward flow is in the top (bottom) part of the sample
for the upwards (downwards) going plumes this results, after azimuthal averaging, in
one central sidewall region in which a cyclonic motion is found. This means that this
particular snapshot cannot be used for interpretation of the movement of individual
plumes travelling from bottom to top and the other way around. However, in this very
schematic picture it does seem to be consistent with experimental measurements of
the anticyclonic motion of the LSC (Hart, Kittelman & Ohlsen 2002; Brown & Ahlers
2006a; Kunnen et al. 2008a; Zhong & Ahlers 2010) as both upwards and downwards
moving plumes get anticyclonic deflection by the mean anticyclonic azimuthal flow
near the plates and any effect of mean cyclonic flow becomes effective only for
z & 2/3H (for upwards moving plumes) and z . H/3 (for downwards moving plumes).
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FIGURE 8. Schematic side view of the tilted LSC in the cylinder in the non-rotating or
weakly rotating (regime I) case. The dash-dotted line is the axis of the cylinder.

At much higher rotation rates, i.e. for larger 1/Ro values, the LSC no longer exists,
and the secondary circulation takes on a different appearance. It is obvious from
the velocity plots that relatively large mean velocities occur in thin regions near the
solid container walls. A division of the domain into several regions is appropriate,
being the bulk interior domain, the Ekman layers at the horizontal plates, and the
Stewartson layer at the sidewall. The Ekman layers have a (non-dimensional) thickness
δE = Ek1/2 (with the Ekman number defined as Ek = ν/(ΩL2), representing an inverse
Reynolds number based on the length scale L and velocity scale LΩ). The Stewartson
layer at the sidewall has a sandwich structure consisting of a thicker outer layer of
non-dimensional thickness δS,1/4 = Ek1/4 and a thinner inner layer of non-dimensional
thickness δS,1/3 = Ek1/3 (see e.g. Stewartson 1957, 1966; Moore & Saffman 1969; van
Heijst 1983, 1984, 1986). The dashed lines in figure 6(c) and figure 7 indicate these
typical layer thicknesses. In figure 7 the bottom right-hand corner is magnified for
the temperature (top panel) and each of the velocity components, so that the various
boundary layers are more easily recognized. Note that since the secondary circulation
associated with the Ekman and Stewartson layers is weak, the mean velocities ur and
uz in the bulk are very small and therefore hardly noticeable, as is confirmed by
the simulation results. It should be emphasized that the secondary circulation found
here is considerably different from that found by Hart & Olsen (1999) or that of
Homsy & Hudson (1969), both driven by centrifugal buoyancy. In both of these works
the up–down symmetry is broken due to centrifugal accelerations having opposite
directions near the plates, namely cold fluid near the top plate accelerates radially
outward while hot fluid near the bottom plate goes radially inward. Here we disregard
centrifugal acceleration and up–down symmetry is preserved. It must also be stated
that the aforementioned circulation is only of secondary magnitude. The still-turbulent
field of the vortical plumes is dominant.

The most remarkable change is observed in the distribution of the azimuthal
velocity uφ: in the bulk of the domain an anticyclonic flow (uφ < 0, indicated by
blue in figure 6c) is present, while a thin band of cyclonic flow (uφ > 0, indicated
by red) is visible only close to the sidewall. Simulations for the parameter range
0.35 . 1/Ro . 2.78 (not shown here) revealed that for increasing rotation rates
(increasing 1/Ro values) the cyclonic flow region becomes confined to a region
near the sidewall of increasingly smaller size. These observations suggest that in
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(a) (b)

FIGURE 9. (a) Fluid motion due to thermal forcing. The heated (cooled) fluid rising upward
(flowing downwards) from the bottom (top) plate result in a radially outward mean flow in the
bulk of the domain. (b) Fluid motion due to the suction of the Ekman layers (spin up). The
Ekman layers impose suction towards the plates. Mass conservation implies a radial outflow
inside these layers. The dash-dotted line in both panels indicates the centre of the cell (which
coincides with the rotation axis).

this Ro regime the Ekman and Stewartson layers play an essential role in the
mean secondary circulation, even though this circulation is relatively weak and even
continuously disturbed by the non-steady thermally driven turbulent plumes that are
present throughout the flow domain.

5.2. Analysis secondary circulation regime II
The feature of the weak anticyclonic swirl flow in the bulk of the domain in
combination with a region of cyclonic swirling motion near the cylinder wall (the
uφ-plot in figure 6c) is remarkable. Although the exact mechanism causing this bulk
motion is an open question, we offer a possible explanation as follows. The heated
fluid rising upward from the bottom plate and the cooled fluid flowing downward
from the top plate result in a radially outward mean flow in the bulk of the
domain, as sketched in the (r, z) plane in figure 9(a). Although this radial motion
is relatively weak, conservation of angular momentum (∼rV , with V = Ωr + uφ the
absolute azimuthal velocity) implies that the absolute swirl velocity of fluid parcels
will decrease, i.e. in the co-rotating frame this fluid will acquire an anticyclonic
azimuthal motion (uφ < 0). This radial outflow in the bulk of the domain is of such
small magnitude that it leaves no strong trace in the azimuthally averaged radial
velocity ur. Furthermore, the plots of averaged vertical velocity uz show no mean
motion directed away from the horizontal plates: this transport is localized in the small
thermal vortices that vanish after azimuthal averaging.

This picture of the flow is not complete, however, because a second mechanism
is active simultaneously in the bulk of the domain: the spin-up process (Greenspan
& Howard 1963). This second process is driven by the Ekman layers (figure 9b):
the bottom Ekman layer imposes a suction velocity on the interior given by
uz = (1/2)Ek ωI in dimensionless form, with ωI the vertical component of the rotation
of the relative interior flow. To clarify, as ωI is anticyclonic, the corresponding vertical
velocity according to the suction condition is directed from the bulk into the Ekman
layer. A similar suction velocity is imposed on the interior flow by the upper Ekman
layer, also directed from the bulk to the boundary layer. There is thus a mean flow
from the bulk into the Ekman layers. By conservation of mass, a radial outflow in the
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Ekman layers is needed to carry away the flux from the bulk into the Ekman layers.
The radial outflow is easily identified in the averaged radial velocity plots due to the
tiny radial cross-sectional area of the Ekman layer, leading to a relatively large mean
velocity.

The radially outward transport through the Ekman layers is returned via a
Stewartson boundary layer at the cylinder wall. This layer has a small mean radial
inward transport into the interior distributed along its vertical extent. An indication of
this radially inward transport is found in the ur plot of figure 7 at (r, z)≈ (0.4, 0.025).
There is also an internal recirculation in this layer: again, according to the principle of
conservation of angular momentum rV , with V = Ωr + uφ , the radial inward motion
from the sidewall boundary layer in the bulk implies a change in the swirl velocity,
which is reduced in magnitude and approaches zero.

It can be shown that the matching of the azimuthal velocity component uφ(r =
0.5L) to the sidewall requires a Stewartson layer of typical thickness Ek1/4, in
which this velocity is given by uφ = −(1/L)uφ(r = 0.5L) exp(ξ

√
2/L), with L the

height of the cylinder and ξ = (r − 0.5L)Ek−1/4 the stretched radial boundary-layer
coordinate (Greenspan & Howard 1963). When referring to this principal velocity
component as being O(1), the vertical and radial velocity components in this layer
are much smaller, namely O(Ek1/4) and O(Ek1/2), respectively (in non-dimensional
terms). The radial velocity is also correctly matched to the sidewall. However,
matching of the vertical velocity to the cylinder wall requires the presence of a
thinner Ek1/3 layer inside the Ek1/4 layer. The vertical matching implies a principal
solution with a vertical velocity uz ∼ O(Ek1/4) within this layer. However, the entire
velocity field in the Ek1/3 layer carries no net vertical flux; it is just an internal
recirculation (Greenspan & Howard 1963).

We will now describe the internal recirculation in more detail. Where the
Stewartson Ek1/3 layer meets the Ekman layers, the vertical velocity has a singular
structure (Moore & Saffman 1969; van Heijst 1983, 1986): uz ∼±δ(η) at z= 0 and L,
with η = (r−0.5L)Ek−1/3 the stretched radial coordinate in this Stewartson layer, and δ
the Dirac delta function. Signs of these singular eruptions of the Ekman layer fluxes at
z= 0 and z= L into the thinner Stewartson layer on the sidewall are clearly visible in
the uz plot in figure 6(c), and for the case of the bottom corner in figure 7. Note that
these vertical fluxes are positive and negative near the bottom and top Ekman layers,
respectively. Weaker vertical velocities of opposite signs are observed in the thicker
Ek1/4 layer, see figure 6(c). This oppositely signed vertical velocity next to the peak
corresponds with the internal recirculation of the singular upward flux. Furthermore,
the radial branches of the internal recirculation can be recognized in the uθ plots.
Close to the bottom and top plates there is strong radially outward flow in the thin
Ekman boundary layers, which corresponds to strongly negative azimuthal velocity
(corner regions near the sidewall of figures 6c and 7). Along the sidewall away from
the plates there is radial inflow to close this recirculation, which, due to the much
larger vertical extent, is of such small magnitude that it is not found in the plot
of mean radial velocity. However, the radial inflow leaves its signature on the mean
azimuthal velocity: radial inflow corresponds to positive uθ , which is observed as the
orange band near the sidewall in the uθ plot of figure 6(c).

To further illustrate the secondary circulation we consider radial mean profiles of
velocity. Figure 10(a) shows the azimuthally averaged velocity profiles ur(r), uφ(r),
and uz(r) at z = 0.25L according to a numerical simulation for 1/Ro = 2.78. The
radial uφ distribution clearly shows the presence of anticyclonic swirl in the interior
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FIGURE 10. (Colour online) The azimuthally averaged velocity profiles at z = 0.25L for
Ra = 1.00 × 109 and Pr = 6.4 for 1/Ro = 2.78. The azimuthal, radial and axial velocity
components are indicated by dash-dotted, solid and thick dashed lines respectively.

domain, while significant positive swirl exists in the region close to the cylinder wall.
The vertical velocity shows the peaked structure close to the cylinder wall, indicating
the singular eruption of the Ekman flux into the Ek1/3 layer, with accompanying
negative velocity directly adjacent to close the recirculation. Furthermore, the radial
inflow in the sidewall region can be observed here, corresponding to positive uθ . In
this normalized plot this radial velocity structure may be recognized, yet in absolute
sense the radial velocity component is much smaller than the vertical and azimuthal
contributions.

The description of the secondary circulation is only qualitative, as a full quantitative
treatment would lead too far for the purpose of the current paper. A quantitative
treatment of the secondary circulation will be presented in a forthcoming paper.

Additional evidence that the mean velocity profiles close to the sidewall are indeed
governed by Stewartson boundary layer dynamics is provided in figure 11, where it is
shown that the thickness of the sidewall boundary layers observed in the simulations
follows the theoretical predictions (Kunnen et al. 2010a).

The role of Ekman and Stewartson boundary layer dynamics on the average mean
flow is here illustrated with numerical simulations with Ra = 1 × 109 and Pr = 6.4.
Separate sets of simulations with Ra = 2.73 × 108 with Pr = 6.26 and Ra = 1 × 108

with Pr = 6.4 essentially revealed the same picture. The explanation provided in this
section is therefore applicable to a range of Rayleigh numbers. Further studies are
needed to explore the regime with Ra & 1 × 109 and the role of the Prandtl number.
We have also explored the role of the Rossby number, in particular by increasing
the value of 1/Ro such that the flow is dominated by strong rotation (close to
and even in regime III). The vertical vortex plumes then become stronger and data
from azimuthally averaged components of velocity reveal an increasing number of
alternating, vertically almost homogeneous regions of uφ < 0 and uφ > 0.

5.3. Influence of the secondary circulation on sidewall temperature measurements
The above observations of the flow structure enable us to explain the sidewall
temperature measurements. In figure 12 we have plotted radial distributions of the
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FIGURE 11. Boundary layer thicknesses for Ra = 1.00 × 109 and Pr = 6.4. The
dimensionless viscous boundary layer thickness near the plates is indicated by the circles.
The dimensionless boundary layer thickness of the viscous boundary layers near the sidewall,
i.e. the Stewartson layers, is indicated by the squares and follows the scaling of the inner
Stewartson boundary layer thickness, i.e. δS,1/3. Adapted from Kunnen et al. (2010a).

azimuthally averaged temperature and vertical velocity at z = 0.25L. Three main
observations from the data extracted at this particular level are: a strong vertical mean
flow near the sidewall (and for the highest rotation rate clearly within the Ek1/3 layer),
an increase of the mean temperature in the bulk with the rotation rate and an increased
mean temperature near the sidewall compared to the bulk, regardless of the existence
of the LSC. We start with the latter observation. In regime I (weak rotation) where
the LSC is the dominant feature of the flow, the temperature gradient at the sidewall
is caused by the LSC, which carries warm fluid upwards along the sidewall and cold
fluid down in the middle (when considered in an azimuthally averaged plot); and vice
versa in the top half of the cylindrical domain. In regime II (moderate rotation) the
LSC has disappeared and vertical vortices form the dominant feature of the flow. In
this regime the secondary circulation described above causes a flow directed vertically
away from the plate close to the sidewall, i.e. the singular eruption into the Ek1/3

layer, see figure 12(b). This means that in regime II the secondary circulation carries
warm fluid upwards along the sidewall in the lower half of the cylinder and cold fluid
downwards along the sidewall in the top half. The vertical temperature gradient on
the sidewall is increased. The enhanced mean temperature in the bulk with increasing
rotation rate indicates that the vertical temperature gradient in the bulk increases also
with increasing 1/Ro, see for example figure 15 of Kunnen et al. (2010a). The bulk
temperature gradient is caused by the merger of vertical plumes (see, e.g. Julien et al.
1996b, 1999; Legg et al. 2001; Sprague et al. 2006; Boubnov & Golitsyn 1986; Zhong
et al. 1993; Ecke & Liu 1998; Sprague et al. 2006), i.e. the enhanced horizontal
mixing of the temperature anomaly of the plumes results in a mean temperature
gradient. In regime III this temperature gradient in the bulk becomes stronger than in
regime II and eventually becomes equal to the temperature gradient at the sidewall.
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FIGURE 12. (Colour online) (a) Azimuthally averaged temperature and (b) vertical velocity
profiles as function of the radial position at the height z = 0.25L for Ra = 1.00 × 109

and Pr = 6.4. Solid, dash-dotted and thick dashed lines indicate the data for 1/Ro = 0,
1/Ro = 0.35 and 1/Ro = 2.78, respectively. The vertical thin dashed lines indicate typical
Stewartson boundary layer thicknesses (δS,1/3 = Ek1/3 and δS,1/4 = Ek1/4 near the sidewall
for 1/Ro = 2.78 (δS,1/3 is closest to the sidewall). Note that for 1/Ro = 2.78 there is a
strong upward flow of fluid in the inner Stewartson Ek1/3 layer, which causes a vertical
temperature gradient at the sidewall. In panel (a) the increasing mean temperature in the
bulk with increasing rotation rate indicates that the vertical temperature gradient in the bulk
increases with increasing 1/Ro. The temperature gradient in the bulk for this case is shown in
figure 15 of Kunnen et al. (2010a).

6. Conclusions
Based on the experimental data and results obtained from DNSs we have studied

the characteristics of the azimuthal temperature profiles at the sidewall. We have found
that in regime I (weak rotation) the LSC is the dominant feature of the flow. In the
sidewall temperature measurements this is identified by the strong presence of the first
Fourier mode in the signal. When the rotation is increased a sudden onset in the heat
transport enhancement is found that indicates the beginning of regime II, the moderate
rotation regime. In this regime the LSC is replaced by vertically aligned vortices
and due to their random position the magnitude of the first Fourier mode is very
weak, which confirms that the LSC has disappeared. This feature is also observed in
regime III, where the heat transfer decreases, because the vertical velocity fluctuations
are suppressed by the rotation.

When the LSC is the dominant feature of the flow the vertical temperature gradient
at the sidewall is mainly due to plumes that travel close to the sidewall because they
travel with the LSC. However, also in regimes II and III, in which the LSC is absent,
there is a strong temperature gradient at the sidewall. In these regimes, where the
vertical vortices are the dominant feature of the flow, the observed vertical temperature
gradient along the sidewall is mainly due to the secondary flow. The secondary flow,
driven by the Ekman boundary layers near the plates, causes a recirculation in the
Stewartson boundary layer on the sidewall with upward (downward) transport of hot
(cold) fluid close to the sidewall in the bottom (top) part of the cell.

It is remarkable that the secondary flow in turbulent RB convection, which is
observed after time-averaging of the flow field, is so well described by linear Ekman
and Stewartson boundary layer theory. It seems that the mean laminar flow profiles
prevail, hidden under highly turbulent fluctuations. Thus, knowledge about laminar
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flow dynamics can still be highly relevant in the study of turbulent flows. An example
is the Grossmann–Lohse (GL) theory (see Ahlers et al. 2009, for an overview), in
which the kinetic energy and thermal variance dissipation rates have been decomposed
into boundary layer and bulk contributions. Scaling-wise and in a time-averaged sense
a laminar Prandtl–Blasius profile is assumed close to the horizontal plates. The GL
theory successfully describes the Nu and Re number dependences on Ra and Pr .
Recently, Zhou & Xia (2010) and Zhou et al. (2010) have shown that the laminar PB
profile is indeed hidden under the turbulent fluctuations.
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