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Abstract
This article presents a new approach to understanding strategic decision making 
inspired by the mathematics of quantum theory. Empirical support for this new 
approach is based on five different puzzling findings from past work on the prisoner 
dilemma game including the disjunction effect, the interference of predictions on 
actions in simultaneous and sequential games, question order effect, and the effects 
of cheap promises. Eight different quantum models are described, which purport to 
account for these puzzling findings. The competing models are systematically com‑
pared with respect to their capability of accounting for the five empirical findings.

Keywords Prisoner dilemma · Disjunction effect · Interference effect · Question 
order effect · Quantum cognition

JEL code  C7

1 Introduction

Time flies and the years will never return. The short journey of life is just a fleeting 
moment in front of the boundless universe. But there are some extraordinary people 
who will draw a dazzling light in the darkness like shooting stars in their short life 
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trajectory, winning the respect and admiration of everyone! Amnon Rapoport is one 
of the scientists worthy of our respect and admiration.

Amnon Rapoport had a major influence on the careers of many well known sci‑
entists in the field of decision making, including the first author. The thorough and 
insightful review by Rapoport and Wallsten (1972) was the first author’s introduc‑
tion to the field of behavioral decison making. More personally, Amnon provided 
generous guidance and advice to the first author that helped start his career. So we 
are very grateful to have the opportunity to honor him in this special issue. Amnon 
was always a leader for establishing new directions in strategic decision making. We 
hope we can make a meaningful contribution to follow along some of his paths.

This article presents a new approach to understanding strategic decision mak‑
ing that arises from the mathematics of quantum theory. On the one hand, quan‑
tum physicists, anticipating the development of quantum computers, have developed 
quantum strategies for games, which provide new equilibrium solutions (Meyer, 
1999; Eisert et  al., 1999; Piotrowski & Sladkowski, 2002; Santos, 2020; Alonso‑
Sanz, 2019). On the other hand, quantum cognition researchers (reviewed below) 
have used quantum theory to better describe how people actually make strategical 
decisions. As we describe below, the main reason for considering quantum theory is 
that it provides a simple explanation for some puzzling findings obtained from past 
empirical research on simple economic games.

2  Five puzzling findings

2.1  Disjunction effect

The prisoner dilemma game is one of the most well known experimental economic 
games in the field (Rapoport, 1988). Briefly, there are two players, call them Ann 
and Bill, and each player can choose to defect or cooperate. In a one‑shot game, 
they play each other only once. The payoffs for the PD game are arranged so that no 
matter what choice Ann makes, Bill is better off defecting, and likewise no matter 
what choice Bill makes, Ann is better off defecting. According to the Nash equi‑
librium both players should defect, even though both would be better off cooperat‑
ing. Contrary to this, players frequently cooperate (Rapoport, 1988) producing better 
outcomes than mutual defection. This deviation from the Nash equilibrium is com‑
monly explained by additional principles like fairness (Fehr & Schmidt, 1999).

Shafir and Tversky (1992) found something more puzzling than cooperative 
behavior in the PD game – a result that they called the disjunction effect. Their 
experiments involved three conditions: (1) In one condition, here called the unknown 
condition, both players moved simultaneously and remained uncertain about the 
opponent’s decision; (2) in a second condition, here called the known defect condi‑
tion, before her own move, Ann was informed that Bill defected; and (3) and in a 
third condition, here called the known cooperate condition, before making her move, 
Ann was informed that Bill cooperated. Their main finding was that the percentage 
of cooperation in the unknown condition (37%) was significantly greater than the 
percentage of cooperation in the case when the opponent was known to defect (3%) 

Downloaded from https://www.cambridge.org/core. 16 Mar 2025 at 21:59:07, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


745Explaining interference effects in prisoner dilemma games  

and in the case when the opponent was known to cooperate (16%). Shafir and Tver‑
sky (1992) claimed that this disjunction effect reflected a violation of the sure‑thing 
principle, because 25% of participants chose to defect when the opponent defected 
and also chose to defect when the opponent cooperated, but then switched and chose 
to cooperate when the opponent’s decision was unknown. Busemeyer and Matthews 
(2006) later replicated these findings: the percentage of cooperation in the unknown 
condition (34%) was greater than that for the case when the opponent was known to 
defect (9%) and in the case when the opponent was known to cooperate (16%).

The disjunction effect can also be viewed as a violation of a prediction based on 
the application of the law of total probability. In the unknown condition, there are 
only two possible moves that the Bill can take. So when Bill’s action is unknown, 
there is some probability, p(CB) , she predicts Bill cooperates and some probabil‑
ity p(DB) she predicts Bill defects. If she predicts Bill cooperates, then there is a 
probability, p(CA|CB) , she cooperates; likewise, if Bill defects, then there is a prob‑
ability, p(CA|DB) , she cooperates. Therefore, the probability Ann cooperates in the 
unknown condition should equal

The total probability is a weighted average that must lie in between the two condi‑
tional probabilities. Contrary to this prediction, the disjunction effect occurs when 
the proportion of cooperation in the unknown condition lies above both of the 
known conditions. In sum, information about the opponent before taking an action 
reduces the total probability of cooperation.

Shafir and Tversky (1992) explained the results by arguing that the advantages 
of defection are clear when the opponent’s action is known, but these advantages 
become unclear when the opponent’s action is unknown. In the unknown condi‑
tion, Ann clearly knows that Bill can either defect or cooperate, so why can’t Ann 
consider the reasons for each case? This finding can be viewed in terms of Feyn‑
man’s path integral ideas: if there are two paths a particle can traverse to reach a 
target and the path is unknown, then they can interfere with each other and cancel 
each other out. Thus, the intuition from quantum theory is that somehow the two 
thoughts interfere with each other to produce no clear thought when the Bill’s action 
is unknown.

2.2  Interference of predictions on actions

Croson (1999) conducted 2 studies investigating the effects of predictions on actions 
using a simultaneous play PD game. These experiments involved two conditions. 
In one condition (predict‑act condition), the player (Ann) was asked to predict the 
opponent’s (Bill’s) move before making her own decision; in the other condition 
(act‑alone condition), Ann simply made a decision without expressing any predic‑
tion about Bill. The two experiments differed with respect to their payoff matrices. 
These experiments provided another type of test of the predictions using the law of 
total probability. In the act‑alone condition, there are still only two predictions that 
Ann can make – predict Bill cooperates or predict Bill defects. If we apply Eq. 1 

(1)pT (CA) = p(CB) ⋅ p(CA|CB) + p(DB) ⋅ p(CA|DB)
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to this experiment, p(CB) is the probability that she predicts Bill will cooperate, 
p(CA|CB) is the conditional probability that Ann cooperates given Bill cooperates, 
p(DB) is the probability that she predicts Bill will defect, p(CA|DB) is the condi‑
tional probability that Ann cooperates given Bill defects. So the total probability that 
Ann cooperates without expressing her prediction, p(CA), is expected to equal the 
left hand side of Eq. 1. The results turned out contrary to this expectation: In the first 
experiment, 77.5% of the participants in the act‑alone chose to cooperate, but this 
dropped to 55% for the predict‑act condition; in a second experiment, 62.5% cooper‑
ated in the act‑alone condition, which dropped to 42.5% in the predict‑act condition. 
The percentage of cooperative predictions was 45% in the first study and 42% in the 
second study, and the correlation between predictions and actions was � = 0.48 in 
the first study and � = 0.30 in the second study. In sum, making a prediction before 
taking an action reduced the total probability of cooperation. Simply asking partici‑
pants to report their prediction reduced the overall percentage of cooperation.

2.3  Question order effects

Tesar (2020) conducted an experiment that included: (a) like Shafir and Tversky 
(1992), they manipulated the information about the other opponent’s (Bill’s) move 
before the player (e.g., Ann) made her decision; (b) like Croson (1999), they manip‑
ulated whether or not the player predicted the opponent’s (Bill) before the player 
(e.g., Ann) made her decision; and (c) a new third manipulation that changed the 
order so that the player (e.g., Ann) first decided an action, and then predicted the 
opponent’s (Bill’s) decision. Tesar (2020) replicated both findings by Shafir and 
Tversky (1992) and Croson (1999), but also found that the percentage of coopera‑
tion was 65% when the player (e.g. Ann) made a decision before prediction, but this 
percentage was significantly reduced to 42% when the player (Ann) predicted the 
opponent (Bill) first. The percentage of cooperative predictions was higher, 52% , in 
the act‑predict order as compared to the 39% for the predict‑act order, and contin‑
gency correlation between predictions and actions was lower, � = 0.26, in the act‑
predict order as compared to � = 0.36 for the predict‑act order. In sum, changing the 
order of predictions and actions changed the probability of predicting cooperation, 
the probability of acting cooperatively, as well as the correlation between predic‑
tions and actions.

2.4  Sequential prisoner dilemma game

Blanco et  al. (2014) examined the effects of prediction on actions in a sequential 
prisoner’s dilemma game in which one player (say Ann) moves first and the second 
player (say Bill) responds to the first players move. If Ann defects, then both play‑
ers receive a payoff of 10 units. If Ann cooperates, then the payoffs depend on Bill’s 
move: if Bill cooperates both players gain a payoff of 14 units; but if Bill defects, he 
wins 17 units while Ann receives only 7. The subgame perfect equilibrium is defec‑
tion for Bill, and therefore defection for Ann. The experiment included three condi‑
tions: In the prediction condition, each player predicted how many players (out of a 
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total on nine in a session) would cooperate as second movers; in the feedback group, 
each player was told the number of others that cooperated as second movers; in the 
baseline group, no prediction was made nor any feedback provided. The percent‑
age of cooperation on the first move for the prediction condition was was 55%; the 
percentage of cooperation for the feedback condition was 57%; but the percentage of 
cooperation for the baseline condition was only 28%. The percentage of players pre‑
dicted to cooperate in the second stage was 51%, and there was a high, r = 0.87 , cor‑
relation between predictions about second stage and first stage actions. In sum, ask‑
ing for a prediction in the sequential game increased the probability of cooperation.

2.5  Promise effects

Kvam et  al. (2014) examined a version of the PD game that allowed for “cheap 
talk.” Each player played several repetitions with computer agents and each repeti‑
tion involve a sequence of four stages. During stage 1, they were asked to choose 
whether or not they were willing to promise agent A that they would cooperate in a 
future PD game with agent A; during stage 2, they played a standard PD game with 
a different agent B; during stage 3, they played a standard PD game against agent 
A that they faced in the first stage; and in stage 4, they played several games with 
other agents without any promises. Half the computer agents had a reputation for 
cooperation and half had a reputation for defection. The key comparison was the 
within participant rate of cooperation to agent B in the second stage (immediately 
following the promise question) as compared to the unrelated fourth stage (which 
did not include promises). Once again we can apply Eq. 1, in which case we expect 
the total probability of cooperating on the second stage (pooled across a promise 
or no promise on stage 1) should equal the probability of cooperating without any 
promise being considered (stage 4). Kvam et al. (2014) found that there was little 
difference between cooperation rates when playing an agent with a defecting repu‑
tation: in both cases the rate was very low at 16%. However, when playing against 
agents with a cooperative reputation, the rate of cooperation was significantly higher 
for the second stage (47%) as compared to the fourth stage (40%).

2.6  Summary of empirical findings

The empirical results reviewed above all indicate violations of expectations based 
on the application of the law of total probability to choices in the prisoner dilemma 
game. There are five main findings. First, the disjunction effect refers to the find‑
ing that the probability of cooperation when not knowing the action of the oppo‑
nent falls below both of the conditional probabilities for the known actions of the 
opponent. Second, the interference of prediction on action refers to the finding that 
prediction about an opponent changes the later probability of cooperation (pooled 
over predictions) compared to action without prediction. Third, the direction of the 
interference changes across types of games: In the simultaneous play version of the 
PD game, predictions decrease later cooperation, but in the sequential play version, 
prediction increase later cooperation. Fourth, the question order effect refers to the 
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finding that cooperation is lower when the predictions are made before actions as 
compared to the.reverse order. Fifth, asking a player to make a promise to one oppo‑
nent can affect the player’s cooperation to later unrelated opponents.

Regarding the direction of interference effects, Blanco et al. (2014) point out that 
the difference between their results and Croson (1999) was most likely produced 
by the difference in best response to the opponent’s expected move in the two stud‑
ies. The dominant strategy in the Croson (1999) experiments was to defect, whereas 
the best response to the expected number of cooperators in the Blanco et al. (2014) 
study was to cooperate.

Finally, interference effects, defined as the difference between the total prob‑
ability of action after making a prediction (pooled across predictions) and the the 
probability of action when no prediction is made, are not limited to the PD game. 
These effects have also been reported using gambling tasks (Tversky & Shafir, 1992; 
Broekaert et  al., 2020) and categorization‑decision tasks (Busemeyer & Lambert‑
Mogiliansky, 2009).

3  Previous quantum theory accounts

Quantum models of decision making are based on the mathematics of quantum the‑
ory, and they have attracted a growing level of interest recently (for a recent review, 
see Pothos & Busemeyer, 2022). These models have arisen in part as a response to 
the empirical challenges faced by “rational” decision‑making models, which suggest 
that human behaviour does not align well with classical probability theory.

One the one hand, classical (Kolmogorov, 1950) probability theory is based on 
assigning probabilities to events defined as subsets of a universal set (sample space). 
These subsets obey a Boolean algebra (or more generally a � field) that satisfy the 
properties of commutativity and distributivity. These two properties make it pos‑
sible to derive the classical law of total probability. Quantum (Von Neumann, 1955) 
probability theory is based on assigning probabilities to events defined as subspaces 
of a vector (Hilbert) space. These subspaces only form a partial Boolean algebra 
that do not necessarily satisfy the properties of commutativity and distributivity. 
For this reason, quantum probabilities do not necessarily obey the law of total prob‑
ability (Hughes, 1989). These violations of the law of total probability allow quan‑
tum theory to provide a natural explanation for the empirical interference effects 
reviewed above. In this sense, quantum theory provides a generalized probability 
theory that relaxes some of the axioms of classical probability theory. This gener‑
alization of probability theory allows it to account for puzzling findings including 
context effects (e.g., Bruza et al., 2023), interference effects (e.g., Kvam, Pleskac, 
Yu, & Busemeyer, 2015) and constructive judgements (e.g., White, Pothos, & Buse‑
meyer, 2014).

Then why quantum theory and not some other probability theory? The answer 
is a famous theorem by Gleason (1957): quantum probabilities are the only way to 
assign probabilities to subspaces that form an additive measure for vector spaces 
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with dimensions greater than 2. See (Busemeyer & Bruza, 2012; Khrennikov, 2010) 
for introductions to quantum probability theory applied to human decision making.

There are now at least 9 different quantum cognition models that have been 
developed to account for the puzzling disjunction and interference effects described 
above (Pothos & Busemeyer, 2009; Kvam et al., 2014; Yukalov & Sornette, 2014; 
Asano et  al., 2011a; Denolf et  al., 2016; Martínez‑Martínez & Sánchez‑Burillo, 
2016; Tesar, 2020; Tanaka et al., 2022). Below we summarize and critically evaluate 
these models, beginning with the simplest versions and progressing to more com‑
plex versions. The basic principles of quantum theory are introduced within each 
application.1

3.1  Tesar model

Tesar (2020) proposed a simple two dimensional quantum model for the disjunction 
effect in the PD game based on the following ideas. First consider the condition in 
which the player (e.g., Ann) predicts her opponent’s (Bill’s) action, and then makes 
her own decision.

Ann’s predictions are assumed to be based on a belief state that has a potential �D 
for predicting defection and another potential �C for predicting cooperation. In gen‑
eral, these potentials can be complex numbers, but their squared magnitudes must 

sum to one. These two potentials form a vector �U =

[
�D
�C

]
 . The vector �U represents 

Ann’s initial state when Bill’s actions are unknown. To compute the probability that 
Ann predicts Bill defects, denoted p(DB), we first define a projector PD = diag

[
1 0

]
 

that is used to pick the first coordinate in �U , and then compute the probability from 
the squared projection: p(DB) =

‖‖PD ⋅ �U
‖‖2 = ||�D||2. The probability that Ann pre‑

dicts Bill cooperates is then computed from p(CB) =
‖‖PC ⋅ �U

‖‖2 = ||�C||2, where 
PC = I − PD and I is the identity matrix.

If Ann eventually does predict (or is told) that Bill defects, then her belief state is 

updated according to �D =
PD⋅�U√
p(DB)

=

�
1

0

�
 . Likewise if Ann eventually does predict 

(or is told) that Bill cooperates, then her belief state is updated according to 

�C =
PC ⋅�U√
p(DC)

=

�
0

1

�
.

To evaluate her own action decision, Ann rotates her state from a prediction 
point of view to an action point of view based using a 2 × 2 unitary “rotation” 

matrix U =

[
uDD uDC
uCD uCC

]
, where for example uDC represents the transition to action 

state D from prediction state C. This unitary matrix is a complex valued, ortho‑
normal matrix, which is length preserving. Ann’s new state after evaluation then 
equals U ⋅ �j , j = C,D,U.

1 Knowledge of quantum physics is not needed. The models discussed below are all based on finite 
dimensional spaces. Only a background in matrix algebra is required.
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The projectors for Ann deciding to be cooperative versus defective is rep‑
resented by the same diagonal matrices as before, PC = diag

[
0 1

]
 , and 

PD = diag
[
1 0

]
 , respectively. The probability that Ann chooses the action 

to cooperate, given that she predicts Bill cooperates (also in the case that she 
is told Bill cooperated) equals p(CA|CB) =

‖‖(U†
⋅ PC ⋅ U) ⋅ �C

‖‖2 = ||uCC||2, 
and her probability to cooperate given she predicts Bill defects equals 
p(CA|DB) =

‖‖(U†
⋅ PC ⋅ U) ⋅ �D

‖‖2 = ||uCD||2.
Based on the above computations, the probability that Ann predicts Bill defects 

and she decides to cooperate equals

The effect of question order is produced by reversing the processing order

Finally, consider the case when Ann directly decides her own action when she does 
not predict (or when she remains uncertain about Bill’s action). In this case, she 
starts from the initial superposition state over predictions, �U . Then her probability 
to cooperate for the unknown (or act ‑ only) condition equals

Note that P
†

C
PC + P

†

D
PD = I (the identity), which guarantees that 

p(CA|U) + p(DA|U) = 1. The term, IntC, is the interference. If IntC = 0, then p(CA) 
obeys the law of total probability (Eq.  1). Positive IntC increases cooperation for 
p(CA) above that predicted by the total probability; negative IntC decreases coop‑
eration for p(CA) compared to that predicted by the total probability. Choosing a 
unitary matrix U to produce positive interference can then be used to account for the 
observed disjunction effect.

Although this model contains several unknown parameters, it does make 
two very strong a priori predictions. First of all, the unitary nature of the rota‑
tion matrix U requires double stochasticity: the squared lengths of the rows 
equal one and so do the squared lengths of the columns. In the case of a 
2 × 2 doubly stochastic matrix, this implies p(CA|DB) = p(DA|CB) . Sec‑
ond the reversed operations used to produce the question order effect require 
satisfaction of the QQ equality (see Busemeyer & Bruza, 2012, Ch. 3): 
QQ = p(CA,DB) + p(DA,CB) = p(DB,CA) + p(CB,DA) . Both of these predic‑
tions were supported in the data reported by Tesar (2020). However, the double 

(2)
p(DB,CA) = p(DB) ⋅ p(CA|DB)

=
‖‖‖(U

†
⋅ PC ⋅ U) ⋅ PD ⋅ �U

‖‖‖
2

(3)p(CA,DB) =
‖‖‖PD ⋅ (U†

⋅ PC ⋅ U) ⋅ �U
‖‖‖
2

(4)

p(CA|U) = ‖‖PC ⋅ U ⋅ �U
‖‖2

= ||uCD ⋅ �D + uCC ⋅ �C
||2

= ||uCD ⋅ �D
||2 + ||uCC ⋅ �C

||2 + 2 ⋅ Real
[
u∗
CC

⋅ �∗
C
⋅ uCD ⋅ �D

]

= p(DB) ⋅ p(CA|DB) + p(CB) ⋅ p(CA|CB) + IntC.
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stochasticity condition is strongly violated by the results of Shafir and Tversky 
(1992) where they found p(CA|DB) = 0.03 and p(DA|CB) = 0.83.

3.2  Yukalov and Sornette model

Yukalov and Sornette (2011, 2014) proposed a four dimensional model to explain 
the disjunction effect summarized as follows. They begin by assuming a (e.g., 
Ann’s) cognitive state represented by a 4 × 1 unit length vector2

The first index stands for the Ann’s prediction, and the second index stands for Ann’s 
action. For example, �CD is the potential to predict Bill cooperates but Ann defects.

The key idea of this model is that Ann’s decision to cooperate in the unknown (or 
the act‑alone) condition is not based only on the cognitive state � . Instead it is gen‑
erated from another vector �C =

1√
K

�
0 �∗

1
0 �∗

2

�†
, called the prospect for coopera‑

tion. The probability to cooperate for the unknown (or act‑only) condition is com‑
puted from the squared magnitude of the inner product

with pDC =
|||�∗

1
⋅ �DC

|||
2

 and pCC =
|||�∗

2
⋅ �CC

|||
2

.
Ann’s decision to defect in the unknown (or act‑only) condition is generated from 

the cognitive state by using another vector called the prospect for defection defined 
by �D =

1√
K

�
�∗
1
0 �∗

2
0
�† . The probability to defect during the unknown (or act‑

alone) condition is then computed from the squared magnitude of the inner product

(5)� =
[
�∗
DD

�∗
DC

�∗
CD

�∗
CC

]†
.

(6)

p(CA|U) =
|||�

†

C
⋅ �

|||
2

= ||�∗
1
⋅ �DC + �∗

2
⋅ �CC

||2
= ||�∗

1
⋅ �DC

||2 + ||�∗
2
⋅ �CC

||2
+ 2 ⋅ Real

(
�∗
1
⋅ �DC ⋅ �2 ⋅ �

∗
CC

)

= pDC + pCC + IntC

2 In general the coefficients may be complex valued. The asterisks represents conjugation and the dag‑
ger represents conjugate transpose. The vector is written this conjugated way to avoid writing a four row 
column vector.
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where we have defined pDD =
|||�∗

1
⋅ �DD

|||
2

 , pCD =
|||�∗

2
⋅ �CD

|||
2

.
The normalization factor K is needed to satisfy p(CA|U) + p(DA|U) = 1 ; i.e., K is 

selected to satisfy |||�
†

C
⋅ �

|||
2

+
|||�

†

D
⋅ �

|||
2

= 1. Note that the normalization factor K 
depends on the state � . Again the empirical fact that p(CA|U) + p(DA|U) = 1 
implies that IntC + IntD = 0 , which then implies that pCC + pDC + pCD + pDD = 1.

Thus, the distribution (pCC, pDC, pCD, pDD) can be interpreted as a classical joint 
probability distribution. These joint probabilities are factored into marginal and con‑
ditional probabilities so that pij = p(i) ⋅ p(j|i), where p(i) is interpreted as the prob‑
ability that Bill takes action i,   and p(j|i) is interpreted as the probability that Ann 
takes action j given Bill takes action i. This model is then applied to the results by 
setting p(i) equal to the observed proportion that the opponent (e.g., Bill) is pre‑
dicted (or is told) to take action i, and setting p(j|i) equal to the observed proportions 
of the player’s (e.g. Ann’s) action given the opponent’s action.

Finally, in order to make a prediction about the probability to cooperate when 
Bill’s action is unknown, Yukalov and Sornette (2011) use what they call the inter‑
ference quarter law: assuming a flat prior across interference terms, the expected 
interference is ± 1

4
 , and only the sign of the interference needs to be determined. So 

finally, the probability to cooperate in the unknown condition equals

If IntC = +.25, , then the model produces cooperation for p(CA|U) above the total 
probability, and if IntC = −.25, , then the model produces cooperation for p(CA|U) 
below the total probability. For example, to account for the Shafir and Tversky 
(1992) results, the interference needs to be positive.

The use of the quarter law makes this theory highly testable with respect to 
predicting the size of the interference. However, there are several issues with this 
model. One problem is that the model does not attempt to predict the marginal or 
conditional response probabilities, and instead it simply estimates them from the 
data. Another problem is that the model does not explain the change in the sign of 
the interference across studies. A third is that the interference term is theoretically 
bounded by the observed choice probabilities (see Appendix A), but the quarter 
law ignores this bound. In fact, a violation of the bound occurs when applying the 
quarter law to the disjunction effects Shafir and Tversky (1992); Busemeyer and 
Matthews (2006) (see Appendix A). A fourth problem is that the interference is 
not consistently well approximated by the quarter law. For example, considering 

(7)

p(DA|U) =
|||�

†

D
⋅ �

|||
2

= ||�∗
1
⋅ �DD + �∗

2
⋅ �CD

||2
= ||�∗

1
⋅ �DD

||2 + ||�∗
2
⋅ �CD

||2
+ 2 ⋅ Real

(
�∗
1
⋅ �DD ⋅ �2 ⋅ �

∗
CD

)

= pDD + pCD + IntD

p(CA|U) = p(C) ⋅ p(C|C) + p(D) ⋅ p(C|D) ± 1

4
,
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the study by Kvam et al. (2014), the empirically observed interference equals .07 
which is far below the quarter law. Finally, the model has not been developed to 
account for question order effects.

3.3  Pothos and Busemeyer model

Pothos and Busemeyer (2009) also proposed a 4 dimensional quantum model. 
The player’s (e.g., Ann’s) cognitive state is again represented as a 4 dimensional 
unit length vector generally described by Eq. 5. However, Pothos and Busemeyer 
(2009) assumed the player (e.g. Ann) starts out the game in an initial belief state, 
�U =

1√
2

�
�∗
1
�∗
1
�∗
2
�∗
2

�†
. The parameter �1 represents the potential for Ann to 

predict Bill defects, and �2 is the potential to predict Bill cooperates, and 
|�1|2 + |�2|2 = 1. This initial state begins by assigning equal potentials, 1√

2
 for 

Ann to take the cooperation or defection actions.
The projector for predicting Bill cooperates is represented by a diagonal matrix 

PPC = diag
[
0 0 1 1

]
 , which picks out the potentials for predicting Bill cooper‑

ates; the projector for predicting Bill defects is the complement PPD = I − PPC, 
where I is the identity. The probability that Ann predicts Bill cooperates then 
equals p(CB) =

‖‖PPC ⋅ �U
‖‖2 = |�2|2 and the probability she predicts Bill defects 

is p(DB) =
‖‖PPD ⋅ �U

‖‖2 = |�1|2.
If Bill is known or predicted to cooperate, then Ann’s belief state is projected 

to �C =
PPC ⋅�√
p(CD)

=
1√
2

�
0 0 1 1

�† . Likewise, if Bill is known or predicted to defect, 

then Ann’s initial belief state is projected to �D =
1√
2

�
1 1 0 0

�† . If Bill’s action 
is unknown or not predicted, then Ann remains in the initial unknown belief state, 
�U but also note that �U =

(
�1 ⋅ �C + �2 ⋅ �D

)
.

Before an action can be chosen, Ann needs to evaluate the actions based on the 
payoffs of the game. This evaluation is represented by a unitary transformation, 
U,   of the current state �j, j = C,D,U to produce a new action state U ⋅ �j. We 
describe how U is built later in this subsection.

A decision is generated probabilistically from the new action state by using a 
projector that picks out the potentials associated with an action. The projector for 
Ann to cooperate is given by PAC = diag

[
0 1 0 1

]
 , and the projector for Ann to 

defect equals PAD = diag
[
1 0 1 0

]
. The probability for Ann to cooperate then 

equals the squared magnitude of the projection of the action state on cooperative 

actions p(CA|j) = ‖‖‖PAC ⋅ U ⋅ �j
‖‖‖
2

, and the probability for Ann to defect equals the 

squared magnitude of the projection of the action state on defection actions 

p(DA|j) = ‖‖‖PAD ⋅ U ⋅ �j
‖‖‖
2

. More specifically, if Ann predicted (or was told) Bill 
cooperated, then her probability to cooperate is p(CA|CB) =

‖‖PAC ⋅ U ⋅ �C
‖‖2 ; and 

if Ann predicted (or was told) Bill defected then her probability to cooperate is 
p(CA|DB) =

‖‖PAC ⋅ U ⋅ �D
‖‖2;
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If Bill’s action remains uncertain, then

Note that P
†

AC
PAC + P

†

AD
PAD = I (the identity), which guarantees that 

p(CA|U) + p(DA|U) = 1. Once again the interference can be positive or negative 
with this model, depending on the unitary transformation U.

Similar to the Tesar model, this model predicts order effects by reversing the 
order of the projections

Pothos and Busemeyer (2009) construct the unitary rotation, U,  from the payoffs for 
each action as follows. The unitary transformation was based on the matrix expo‑
nential, U = exp

(
−i ⋅

�

2
⋅ H

)
 of a Hamiltonian built from two parts

The first part H1 is determined by the game payoffs. The upper left 2 × 2 sub‑matrix 
of H1 rotates the potentials for the actions in the directions determined by the util‑
ity parameter �1 , with �1 an increasing function of the advantage for defecting if the 
opponents defects; the lower right 2 × 2 sub‑matrix of H1 rotates the potential for the 
actions in directions determined by the utility parameter �2 , with �2 an increasing 
function of the advantage for defecting if the opponents cooperates.

The second part H2 implements what Shafir and Tversky (1992) called “wishful 
thinking’ – Ann wishes that the own strategy is same with Bill’s strategy. It coor‑
dinates actions with beliefs by increasing the potentials for �CC,�DD and decreas‑
ing the potentials for �CD,�DC. The second part of the Hamiltonian is critical for 

(8)

p(CA|U) = ‖‖PAC ⋅ U ⋅ �U
‖‖2

=
‖‖‖PAC ⋅ U ⋅

(
�1 ⋅ �C + �2 ⋅ �D

)‖‖‖
2

= ‖‖�1 ⋅ PAC ⋅ U ⋅ �C + �2 ⋅ PAC ⋅ U ⋅ �D
‖‖2

= �2

1
⋅
‖‖PAC ⋅ U ⋅ �C

‖‖2 + �2

2
⋅
‖‖PAC ⋅ U ⋅ �D

‖‖2

+ Real
(
�

†

C
⋅ U†

⋅ P
†

AC
⋅ �∗

1
⋅ �2 ⋅ PAC ⋅ U ⋅ �D

)

=
1

2
p(CA|CP) +

1

2
p(CA|DP) + IntC.

(9)
p(DB,CA) =

‖‖‖
(
U†

⋅ PAC ⋅ U
)
⋅ PPD ⋅ �U

‖‖‖
2

p(CA,DB) =
‖‖‖PPD ⋅

(
U†

⋅ PAC ⋅ U
)
⋅ �U

‖‖‖
2

.

H = H1 + H2

H1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�1√
1+�2

1

1 0 0

1
−�1√
1+�2

1

0 0

0 0
�2√
1+�2

2

1

0 0 1
−�2√
1+�2

2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,H2 =
−�√
2

⎡⎢⎢⎢⎣

1 0 1 0

0 − 1 0 1

1 0 − 1 0

0 1 0 1

⎤⎥⎥⎥⎦
.
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producing interference effects: the sign of the interference effect depends on the 
sign of � , and if � = 0 then no interference effects can occur Pothos and Busemeyer 
(2009). This model also accounts for order effects using the same reversal of order 
of projections as used in the Tesar model. In sum, this model accounts for the inter‑
ference effects, and it also accounts for question order effects.

Pothos and Busemeyer (2009) applied the model to the disjunction effect using 
only two parameters. They fixed the initial belief state parameters to �1 = �2 =

√
.5 , 

and they constrained �1 = �2 = � , because the advantage for defecting was the 
same amount regardless of whether the opponent cooperated or defected in these 
studies. Using the estimates � = 0.5263 and � = 2.2469 fit to the experiment 
by Busemeyer and Matthews (2006) produces the following model predictions: 
p(CA|CB) = 0.28, p(CA|DB) = 0.18, p(CA|U) = 0.35 . The model is able to produce a 
disjunction effect, but not as extreme as the results of the Busemeyer and Matthews 
(2006) experiment.

3.4  Denolf and Martínez model

Denolf et al. (2016) developed a quantum model for the Blanco et al. (2014) experi‑
ment. They proposed a simple 2‑dimensional model for this experiment. Accord‑
ingly, Ann’s initial state is a 2 × 1 column vector � =

[
�C �D

]†
. For simplicity, 

they assumed that these potentials are real valued. The initial state has unit length 
so that �2

D
= 1 − �2

C
 . If no prediction is made (i.e., the baseline condition), then the 

probability that Ann cooperates on the first stage simply equals p(CA) =
||�C

||2.
Recall that in the prediction condition of this experiment, the player (e.g., Ann) 

had to predict how many of the other 9 other players would cooperate. To represent 
the 10 possible predictions about the number of players, they propose that each pre‑
diction corresponds to a projector Pj = Bj ⋅ B

†

j
 for prediction j = 0, 1,… 9 , where Bj 

is a unit length 2 × 1 vector.The two extreme belief states (0, 9) are assumed to be 
orthogonal 

(
B
†

0
⋅ B9 = 0

)
 . The intermediate belief states are spaced at equal incre‑

ments in angles between these two extremes. The probability of predicting 
j = 0,… , 9 is determined from the squared length of the projection � on vector Bj , 

which equals ‖‖‖Pj ⋅ �
‖‖‖
2

=
|||B

†

j
⋅ �

|||
2

 . However, 
∑

j P
†

j
⋅ Pj ≠ I so that 

K =
∑

k

���B
†

j
⋅ �

���
2

≠ 1 and the squared projections need to be divided by a normali‑
zation factor K, which depends on the state � , to obtain the probability: 

p(j|�) =
1

K
⋅

|||B
†

j
⋅ �

|||
2

.

Ann’s state after predicting j is reduced to the unit vector Bj . The event represent‑
ing Ann’s decision to cooperate on the first stage is represented by a projector 
PC = A ⋅ A† , where A is a unit length 2 × 1 vector. The event representing Ann’s 
decision to defect on the first stage is the complement PD = I − PC. The probability 
that Ann decides to cooperate on the first stage after making the prediction j is then 
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equal to the squared length of the projection of her current state Bj on the event rep‑

resenting cooperation, A, which equals p(CA|j) = ‖‖‖PC ⋅ Bj
‖‖‖
2

=
|||A†

⋅ Bj
|||
2

 . Likewise, 
the probability that Ann defects after making the prediction j equals 
p(DA|j) = ‖‖‖PD ⋅ Bj

‖‖‖
2

 , and note P†

C
PC + P

†

D
PD = I so that p(CA|j) + p(DA|j) = 1.

An interference effect occurs because

The difference between the left and right hands sides of Eq. 10 can determine the 
interference effect.

The Denolf et al. (2016) model includes as free parameters two angles to deter‑
mine cosines between the belief vector B0 and � and B0 and A; plus the potential 
�C in � representing the initial state. After fitting these parameters to the data, the 
model closely reproduce all the results of Blanco et al. (2014). However, this model 
has never been used to account for the disjunction effect or question order effects.

3.5  Kvam and Mogiliansky model

Kvam et al. (2014) developed a “type indeterminacy” model (Lambert‑Mogiliansky 
et al., 2009) for the effects of promises on playing the PD game. They postulated 
three types of tendencies that a person could have in a PD game: a tendency T1 to 
cooperate, a tendency T3 to defect, and a moderate tendency T2 to cooperate if the 
agent cooperates and defect if the agent defects. A person (e.g., Ann) is not exactly 
any one of these types, and instead she is superposed over the types. During the first 
stage, these types have different probabilities to choose to promise or not promise 
cooperation.

They represent the Ann’s state at stage 1 as a 6 × 1 unit length column vector

(This model is restricted to real values). For example, �2

2
 is the probability that Ann 

becomes a type 2 agent, �2

P|2 is the probability that Ann promises if she is a type 2 
agent, and �2

N|2 is the probability that Ann does not promise if she is a type 2 agent. 
The potentials of this state vector depend on the reputation (cooperative or not coop‑
erative) of the computer agent.

Let’s consider the situation of an agent with a cooperative reputation. In this case, 
they assume that �P|1 = 1 , �P|2 = 1 , �N|3 = 1 (for an agent that has a non‑cooperative 
reputation, �P|2 = 0) . So when Ann plays a cooperative agent, denoted here as CA,  
her initial state is �CA =

[
�1 0 �2 0 0 �3

]†
.

(10)

||�C
||2 ≠

∑
j

p(CA|j) ⋅ p(j|�)

=
1

K

∑
j

|||A
†
⋅ Bj

|||
2

⋅

|||B
†

j
⋅ �

|||
2

.

� =
[
�1 ⋅ �P|1 �1 ⋅ �N|1 �2 ⋅ �P|2 �2 ⋅ �N|2 �3 ⋅ �P|3 �3 ⋅ �N|3

]†
.
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Choosing to promise is represented by the projector PP = diag
[
1 0 1 0 1 0

]
 , 

and choosing not to promise is represented by PN = I − PP , where I is the iden‑
tity. The probability that Ann promises to cooperate to a cooperative agent equals 
p(P) = ‖‖PP ⋅ �CA

‖‖2 = �2

1
+ �2

2
 ; and if Ann chooses to promise, then her new con‑

ditional state equals �P =
PP⋅�CA√

p(P)
. The probability that Ann does not promise to a 

cooperative agent equals p(N) = ‖‖PN ⋅ �CA
‖‖2 = �2

3
 ; and if Ann chooses not to 

promise, then her new conditional state equals �N =
PN ⋅�CA√

p(N)
. If no promise is 

made, then Ann remains in the initial state �CA for a cooperative agent.
The decision to cooperate or not with agent B in the second stage requires 

an evaluation about the actions. This evaluation is represented by a 6 × 6 rota‑
tion matrix U. The rotation matrix has only three rotation parameters, because it 
only operates on the subspace containing potentials (�1,�2,�3) . The new state 
after evaluation is U ⋅ �i , where i = P,N,CA . Using the evaluation basis, the deci‑
sion to cooperate is represented by a projector PC = diag

[
1 0 1 0 1 0

]
 , and 

the projector for the decision to defect equals PD = I − PC. The probability that 
Ann cooperates after promising to cooperate equals p(C|P) = ‖‖PC ⋅ U ⋅ �P

‖‖2; 
the probability that Ann cooperates after not promising to cooperate equals 
p(C|N) = ‖‖PC ⋅ U ⋅ �N

‖‖2;
The total probability that Ann’s cooperates at stage 2, after choosing to prom‑

ise or not, then equals pT (C) = p(P) ⋅ p(C|P) + p(N) ⋅ p(C|N) . The probability 
that Ann cooperates at stage 4 when there are no promises to make is equal to 
p(C) = ‖‖PC ⋅ U ⋅ �CA

‖‖2, which can be decomposed into the total probability plus 
interference in the same way as Eq. 8. The interference term then accounts for the 
effect of promises made of stage 1 to decisions made on stage 4. Although this 
model was not applied to question order effects, it could be applied in the same 
way as the Tesar and Pothos‑Busemeyer models by reversing the order of projec‑
tion operations (as in Eq. 9).

Kvam et al. (2014) estimated � for each type of agent from the data for each 
computer agent reputation. The unitary matrix U was derived from three rotation 
parameters also estimated from the data. These parameters were then used to pre‑
dict the cooperation data from stages 2 and 4 for each computer agent reputation, 
which provided an accurate fit the data. However, this model has never been used 
to account for the Shafir and Tversky (1992) disjunction effect.

3.6  Asano Ohya Tanaka Basieva Khrennikov model

Asano et al. (2011b) and later Asano et al. (2012) proposed a dynamic quantum 
operations model for the PD game. The state (e.g., Ann’s state) regarding each 
action is initially represented by a 2 × 1 unit length vector � =

[
�C �D

]† . This 
vector is used to form what is called a density matrix in quantum theory, denoted 
� , which is defined by the outer product: �(0) = � ⋅ �†. The diagonal values of 
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� , denoted �C for the upper diagonal and �D for the lower diagonal, contain the 
probabilities for Ann to cooperate and defect, respectively. It is hypothesized that 
Ann vacillates between thinking about cooperating and defecting, and during 
this deliberation, the density matrix evolves over time according to the following 
quantum updating operation ( � represents a small time increment for each update)

Note that Γ†

1
Γ1 + Γ†

2
Γ2 = I , which guarantees that �C(t) + �D(t) = 1 across time. 

Assuming 0 < Δi < 1 , i = 1, 2 , then the off diagonal elements of �(t) eventually 
decay toward zero, and the diagonal elements converge toward the asymptote

The updating weights, Δi, i = C,D are determined by two amplitudes, �C and �D as 
follows:

The two amplitudes, �C and �D , are in turn derived from the beliefs about Bill’s 
moves and the utilities of the payoffs to Ann.

The basic intuition is that Ann imagines the advantages produced by different 
possible changes. The notation �CC→CD symbolizes the potential for the strategies 
to change from the CC (Bill cooperates, Ann cooperates) to the CD (Bill cooper‑
ates, Ann defects) pair, and the magnitude of this potential is an increasing func‑
tion of the payoff advantage to Ann for making this change. Likewise, �DC→DD is 
the potential for changing from the CD to DD, �DC→CD is the potential for chang‑
ing from DC to CD, and �DD→CC is the potential for changing from the DD to the 
CC. Then the potentials �D and �C are defined as

The coefficients, �i, i = 1,… , 4 , represents beliefs that these transitions occur.
The disjunction effect can be obtained from this model because the potentials 

�D and �C change for known and unknown conditions. In particular, the “wishful 
thinking” transition DD → CC is only possible if Ann is uncertain about Bill’s 
action.

(11)

�(t + �) = Γ1(�) ⋅ �(t) ⋅ Γ
†

1
(�) + Γ2(�) ⋅ �(t) ⋅ Γ

†

2
(�),

Γ1(�) =

�√
1 − ΔD(�) 0

0
√
1 − ΔC(�)

�
,

Γ2(�) =

�
0

√
ΔC(�) ⋅ e

i�2√
ΔD(�) ⋅ e

i�1 0

�
.

�C =
ΔC

ΔD + ΔC

�D =
ΔD

ΔD + ΔC

.

ΔC(�) = � ⋅
||�C

||2
||�C

||2 + ||�D
||2
, ΔD(�) = � ⋅

||�D
||2

||�C
||2 + ||�D

||2
.

(12)
�D = �1 ⋅ �CC→CD + �2 ⋅ �DC→DD + �3 ⋅ �DC→CD

�C = �4 ⋅ uDD→CC.
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The main advantage of this model is that it provides a description of the 
dynamic evolution of preference during Ann’s decision. However, this model has 
not been developed to account for predictions that a player might make concern‑
ing an opponent’s play, and consequently, it is unable to account for question 
order effects.

3.7  Martínez Sánchez‑Burillo model

Martínez‑Martínez and Sánchez‑Burillo (2016) also proposed a dynamic quantum 
model for the PD game. Once again, they begin by assuming a cognitive state (e.g., 
Ann’s) represented by a 4 × 1 unit length vector � shown in Eq. 5.

As mentioned above, states in quantum theory can be represented by a vector, 
such as � , or by what is called a density matrix. The density operator produced by 
the state vector � is formed from the outer product of the cognitive state: � = � ⋅ �† . 
The diagonals of the density matrix contain the action probabilities.

The key new idea is that the density matrix evolves across time according to the 
following quantum master equation

where Lij is a 4 × 4 matrix with a one located at cell (i, j) and zeros elsewhere. The 
master equation describes the dynamics of what is called an open quantum system.

The first part, [H, �] , of the sum in Eq. 13 represents von Neumann dynamics pro‑
duced by a pure quantum system. The parameter, hij , in the 4 × 4 Hermitian matrix 
H = H† determines the rate of change in transition to state i from another state j. For 
simplicity, they set

The second part, L(�), of the sum in Eq. 13 represents the Lindblad dynamics of 
a Markov system. The parameters �ij, i, j = 1,… , 4 form a 4 × 4 Markov transi‑
tion matrix, Γ,with �ij equal to the probability of transiting to state i from another 
state j. These parameters were determined from the payoffs to the player (e.g., Ann) 
depending on her anticipation regarding the opponent’s (e.g., Bill’s) move. At each 
moment in time, there is some probability � that Ann switches from contemplating 
that Bill cooperates to defecting and visa versa. When contemplating that Bill coop‑
erates, Ann considers defecting with a probability based on the payoff advantage for 

(13)

d

dt
�(t) = −i ⋅ (1 − �) ⋅ [H, �] + � ⋅L(�),

L(�) =
∑

�ij ⋅

(
Lij ⋅ � ⋅ L

†

ij
−

1

2

{
L
†

ij
⋅ Lij, �

})
,

[H, �] = H ⋅ � − � ⋅ H,{(
L
†

ij
⋅ Lij

)
, �

}
=
(
L
†

ij
⋅ Lij

)
⋅ � + � ⋅

(
L
†

ij
⋅ Lij

)

H =

⎡
⎢⎢⎢⎣

1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

⎤
⎥⎥⎥⎦
.
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defecting when Bill cooperates; when contemplating that Bill defects, Ann considers 
defecting with a probability based on the payoff advantage for defecting when Bill 
defects.

Martínez‑Martínez and Sánchez‑Burillo (2016) applied the model to the dis‑
junction effect as follows. When told Bill cooperated, Ann’s initial state is set equal 
to �11 = �22 = 1∕2 , and �33 = �44 = 0 ; and it evolves for some period of time t 
using Eq. 13. During this evolution, the switching parameter � fixed to zero so the 
Ann remains contemplating Bill to cooperate. Then at time t, using the projection 
matrix PC = diag

[
0 1 0 1

]
 , the probability that Ann cooperates equals the trace: 

p(CA|CB) = Tr
[
PC ⋅ �C(t)

]
. Likewise, when told Bill defected, Ann’s initial state 

is set to equal �33 = �44 = 1∕2 , and �11 = �22 = 0 . Again this state evolves with 
the switching probability fixed to zero so that Ann remains contemplating Bill to 
defect. The probability that Ann cooperates under this condition equals the trace: 
p(CA|DB) = Tr

[
PC ⋅ �D(t)

]
. However, when Bill’s move is unknown, the initial state 

remains equal to �33 = �44 = 1∕4 , and �11 = �22 = 1∕4 ., and it evolves with the 
switching probability free so that Ann’s attention can switch back and forth between 
Bill cooperating and Bill defecting. Then probability that Ann cooperates equals the 
trace: p(CA|U) = Tr

[
PC ⋅ �U(t)

]
.

This open system model provides a good way to combine quantum and Markov 
systems. The system starts out operating in the quantum regime to produce a coher‑
ent (quantum) density matrix with non‑zero off‑diagonal cells, but later the system 
ends in the Markov regime to produce a de‑coherent (classical) density matrix with 
zero off‑diagonal cells.

To account for the disjunction effect, Martínez‑Martínez and Sánchez‑Bur‑
illo (2016), set the initial conditions as follows. They used three free parame‑
ters: one for the probability to cooperate based on the payoffs, on for the switch‑
ing probability, and the third was the parameter 0 ≤ � ≤ 1 that determines 
the weight of the contribution of each dynamic process. They were able to fit 
parameters that could very accurately reproduce the disjunction effect results: 
p(CA|CB) = 0.16, p(CA|DB) = 0.09, p(CA|U) = 0.34 Also their analyses show that it 
is necessary for (1 − 𝛼) > 0 to reproduce the disjunction effect (the quantum dynam‑
ics are essential). To fit the results of Shafir and Tversky (1992), their estimate of the 
weight equaled � = 0.81. However, this model has not been developed to account 
for predictions that a player might make concerning an opponent’s play, and conse‑
quently, it is unable to account for question order effects.

3.8  Tanaka Umegaki Nishiyama Kitoh‑Nishioka model

Tanaka et al. (2022) proposed another type of dynamic open system model of the 
PD game. When applied to the disjunction effect, they also use a four dimensional 
state represented by Eq. 5, which they convert into a density matrix � = � ⋅ �†. For 
the known and unknown conditions, they used the same initial conditions as used by 
Martínez‑Martínez and Sánchez‑Burillo (2016).

They assume that the state � evolves across time according to Eq. 13, but with � = 0 . 
Instead of using a Markov process, they assume that the cognitive state � is influenced 
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by many unknown (noisy) environmental influences, which they directly model using 
Hamiltonians. The total Hamiltonian for Eq. 13 (with � = 0 ) is composed of two parts: 
H = HS + HE , where HS is the Hamiltonian for the system represented by � , and HE 
is the environmental noise. The environment is modeled by a set of quantum‑mechan‑
ical harmonic oscillators that produce noise with an amount controlled by a tempera‑
ture parameter T. The environmental influences from HE eventually stabilize the state 
toward an equilibrium state, and without the latter, the system would oscillate indefi‑
nitely, The Hamiltonian HS is the key for producing the disjunction effect. They define 
the system Hamiltonian as

where the diagonal elements are determined by the payoffs to Ann for each pair of 
actions. For example, hCD is determined by the payoff Ann receives when Bill coop‑
erates and she defects. The parameter � is used to produce an effect related to what 
Shafir and Tversky (1992) called “wishful thinking.” When the opponent’s move is 
known, they set � = 0 , and when the opponent’s move is unknown they allow � to be 
a free parameter to be estimate from the data. The value of parameter � changes the 
payoffs of the game, that is, it increases the payoffs for both cooperating and both 
defecting and it decreases the payoffs for one player cooperating while the other 
player defects.

Using the two parameters, �, � to determine the system Hamiltonian, HS , and an addi‑
tional parameter, T, for the environmental noise in HE , they were able to approximately 

(14)HS =

⎡
⎢⎢⎢⎣

hDD − � Δ − � 0

Δ hDC + � 0 − �

−� 0 hCD + � Δ

0 − � Δ hCC − �

⎤⎥⎥⎥⎦

Table 1  Comparison of models with findings

Y indicates the existing model can reproduce the finding, ? indicates that the existing model is capable 
but has not been applied to this finding, N indicates the existing model is not yet capable (but could be 
modified in the future) to reproduce the finding. Tesar refers to (Tesar, 2020), Yukalov refers to (Yukalov 
& Sornette, 2014), Pothos refers to (Pothos & Busemeyer, 2009), Denolf refers to (Denolf et al., 2016), 
Kvam refers to (Kvam et al., 2014), Asano refers to (Asano et al., 2011b), Martinez refers to (Martínez‑
Martínez & Sánchez‑Burillo, 2016), Tanaka refers to (Tanaka et al., 2022)

Finding

Model Disjunction Interference Question order Sequential Promise

Tesar N Y Y N ?
Yukalov Y N N N N
Pothos Y Y Y N ?
Denolf N ? N Y N
Kvam ? ? ? N Y
Asano Y N N N N
Martinez Y N N N N
Tanaka Y N N N N
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reproduce the disjunction effect: p(CA|CB) = 0.22, p(CA|DB) = 0.22, p(CA|U) = 0.44 . 
However, this model does provide any account for predictions that a player might make 
concerning an opponent’s play, and consequently, it is unable to account for question 
order effects.

3.9  Summary of models

Table 1 provides a summary comparison of the eight models with the five findings. 
Of course, the responses in the table are based on the authors’ judgments and the 
creators of the models might have a different opinion. At least the table reflects the 
finding that was the target of the each model. There are, of course, advantages and 
disadvantages of each model that are not reflected in the table. In particular, some 
of the models are designed to account for both predictions as well as actions (Tesar, 
2020; Pothos & Busemeyer, 2009; Denolf et  al., 2016; Kvam et  al., 2014) while 
others have not developed this capability (Yukalov & Sornette, 2014; Asano et al., 
2011b; Martínez‑Martínez & Sánchez‑Burillo, 2016; Tanaka et al., 2022). Some of 
the models (Pothos & Busemeyer, 2009; Asano et  al., 2011b; Martínez‑Martínez 
& Sánchez‑Burillo, 2016; Tanaka et al., 2022) specify how the payoffs of the game 
map into the Hamiltonian used to predict the choice probabilities in the game, and 
some of the models don’t explicitly describe any mapping (Tesar, 2020; Yukalov & 
Sornette, 2014; Denolf et al., 2016; Kvam et al., 2014). Some of the models (Asano 
et al., 2011b; Martínez‑Martínez & Sánchez‑Burillo, 2016; Tanaka et al., 2022) are 
specifically designed to describe the dynamics of the decision in the game. Another 
important issue concerns differences among the models with respect to complex‑
ity and number of parameters. Finally, some quantum models not reviewed here 
(Bagarello et  al., 2017) have been applied to the PD game but not applied to the 
findings reviewed in this article. All of these models can of course be modified 
to address some of their limitations, and so this theory development is still under 
construction.

4  Discussion

In this article, we reviewed five different empirical findings obtained with the PD 
game: the disjunction effect, negative influence of predictions on actions in simulta‑
neous play, positive influence of predictions on action in sequential play, and effects 
changing the order of predictions and action questions. These findings are all dif‑
ficult for standard economic game theories to explain, but they all can be related to 
a violation of what is expected from the classical law of total probability. Quantum 
theory provides a natural explanation for violations of total probability based quan‑
tum interference effects produced by measurement. For this reason, a substantial 
amount of theoretical effort has been spent developing quantum models to explain 
these findings. However, these quantum models have never been systematically 
compared to all five findings and to each other. Furthermore, although these models 
have appeared in various fields ranging from psychology to physics, they are little 
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known in the experimental economic field. The purpose of this article was to make 
these comparisons, which are summarized in Table 1, and bring them to the atten‑
tion of experimental economists.

Future research is needed to empirically test new predictions of these models. 
One interesting prediction concerns what is called the A‑B‑A paradigm (a psychol‑
ogy version of the Stern–Gerlach experiment from physics). Suppose participants 
are asked to make a prediction at stage 1, followed by an action decision at stage 2, 
and then followed by a prediction again at stage 3, before observing the opponent’s 
action at stage 4. Models in Table 1 that employ projectors to represent the meas‑
urements (i.e., the Tesar model and the Pothos model) must predict that the action 
decision at stage 2 changes the player’s mind from stage 1 to stage 3 (Khrennikov 
et al., 2014). A more recent model of question order effects that employs quantum 
instruments rather than projectors to represent the measurements predicts no change 
from stage 1 to stage 3 (Ozawa & Khrennikov, 2019). This is important question that 
deserves further research.

One last comment concerns an interesting “interference” effect studied by (Rapo‑
port et al., 2009) called the Braess Paradox. This refers to the counterintuitive obser‑
vation that adding links to a directed transportation network with usage externalities 
may raise the costs of all users. I once discussed this finding with Amnon and sug‑
gested that perhaps there may be a quantum explanation for this paradox. He smiled 
with encouragement but I also detected a bit of skepticism in his eyes. This trace of 
doubt will be like a sharp sword, inspiring courage and motivation to cut open solu‑
tions to network paradoxes.

Appendix A: Bounds on interference

This appendix derives the bound on the Yukalov and Sornette (2011) model for the 
PD game described in Subsect. 3.2. According to their quantum model, the interfer‑
ence is derived to be

Applying the data from Shafir and Tversky (1992) we obtain

2 ⋅ Real
�
�∗
1
⋅ �CC ⋅ �2 ⋅ �

∗
DC

�
= 2 ⋅

����
∗
1
⋅ �CC ⋅ �2 ⋅ �

∗
DC

���Real(cos(�) + i ⋅ sin(�))

= 2 ⋅
����

∗
1
⋅ �CC ⋅ �2 ⋅ �

∗
DC

��� ⋅ cos(�)
= 2 ⋅

����
∗
1
⋅ �CC ⋅ �2 ⋅ �

∗
DC

��� ⋅ cos(�)
= 2 ⋅ ���∗

1
⋅ �CC

�� ⋅ ����2 ⋅ �
∗
DC

��� ⋅ cos(�)
= 2 ⋅

√
pCC ⋅

√
pDC ⋅ cos(�)

2 ⋅
√
pCC ⋅

√
pDC ⋅ cos(𝜃) = 2 ⋅

�√
0.5 ⋅ 0.16

��√
0.5 ⋅ 0.03

�
⋅ cos(𝜃)

= 0.0693 ⋅ cos(𝜃) < +0.25
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Applying the data from Busemeyer and Matthews (2006)
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