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1. Introduction

The purpose of this article is to show the existence of points on eigenvarieties for an

inner form of SL2, whose associated systems of Hecke eigenvalues come from classical

automorphic representations of an inner form of GL2, but which are not classical

themselves, in the sense that there are no classical forms for these systems of Hecke

eigenvalues in the corresponding spaces of overconvergent forms. By construction there

are overconvergent forms giving rise to these points. For each such point we also construct

a twin on a different eigenvariety which is classical. The overconvergent non-classical

form f on the first eigenvariety and the classical form g on the second eigenvariety are

L-indistinguishable in the sense that they give rise to the same Galois representation.

Although there is no definition of a global p-adic L-packet, our results suggest that, for

any future definition, f and g should lie in the same L-packet.

We describe our results in more detail: let B/Q be a definite quaternion algebra and

denote by SB the set of primes where B ramifies. Let G̃ be the algebraic group over Q
defined by the units B∗ and G the subgroup of elements of reduced norm one. Fix a

prime p /∈ SB and a finite extension E/Qp.

For S a finite set of places which includes p and SB , we have a Hecke algebra H̃S :=

H̃ur,S ⊗E Ãp for G̃, which is the product of the spherical Hecke algebras at all places

not in S and an Atkin–Lehner algebra at p, and an analogue HS for G. Any idempotent

ẽ = ⊗ẽl ∈ C∞c (G̃(A
p
f ),Q), such that ẽl = 1GL2(Zl ) for all l /∈ S, gives rise to an eigenvariety

D(̃e) of idempotent type ẽ, whose underlying set of points embeds

D(̃e)(Qp) ↪→ Hom(H̃S,Qp)× W̃(Qp),

where W̃ = Homcts((Z∗p)2,Gm) denotes the usual weight space. If e ∈ C∞c (G(A
p
f ),Q) is an

idempotent with the same set S of bad places, we have an eigenvariety D(e) of idempotent
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type e for G, whose underlying set of points embeds

D(e)(Qp) ↪→ Hom(HS,Qp)×W(Qp),

for the corresponding weight space W = Homcts(Z∗p,Gm). There are natural maps

HS ↪→ H̃S, W̃ →W.

Definition (Definition 5.1). A point z on an eigenvariety of idempotent type is called

classical, if there is a classical automorphic eigenform in the corresponding space of

overconvergent forms, whose system of Hecke eigenvalues is that defined by z.

Let π(θ̃) be an algebraic automorphic representation of G̃(A) associated to a

Größencharacter θ̃ of an imaginary quadratic field L. Assume that p splits in L.

Then such a representation gives rise to two points on D(̃e) for a suitable idempotent

ẽ ∈ C∞c (G̃(A
p
f ), E), one which is ordinary and one which is of critical slope.

Let x̃ be the point of critical slope and consider its image in Hom(HS,Qp)×W(Qp)

under the composite of the maps

D(̃e)(Qp)
//

φ

((

Hom(H̃S,Qp)× W̃(Qp)

��

Hom(HS,Qp)×W(Qp),

which we denote by φ.

Our main theorem is the following.

Theorem (Theorem 4.3). There exist automorphic representations π(θ̃) of G̃(A) as

above together with idempotents ẽ ∈ C∞c (G̃(A
p
f ),Q) and e1, e2 ∈ C∞c (G(A

p
f ),Q), such

that, using the above notation, the image φ(̃x) of the critical slope refinement x̃ of π(θ̃)

lifts to a non-classical point on the eigenvariety D(e1) and to a classical point on D(e2).

The proof of the theorem uses a p-adic version of a Labesse–Langlands transfer proved

by the author in [10]. The representations π(θ̃) and the idempotents e1 and e2 are

constructed in such a way, that each ei sees exactly one member of the L-packet 5(π(θ̃)),

i.e., for i = 1, 2 there exists a unique element πi ∈ 5(π(θ̃)) such that ei (πi )
p
f 6= 0.

Moreover m(π1), the multiplicity of π1 in the automorphic spectrum of G, is zero and

π2 is automorphic. In particular, this implies that φ(̃x) lifts to D(e2). In order to show

that it also lifts to D(e1), the crucial point is that in a neighbourhood of x̃ we can

find many points associated to automorphic representations that do not come from a

Größencharacter. These automorphic representations of G̃(A) give rise to stable L-packets

of G and therefore their images under φ all lift to D(e1).

By construction, points on eigenvarieties give rise to systems of Hecke eigenvalues

occurring in spaces of overconvergent automorphic forms. So in particular the theorem

shows the existence of an overconvergent eigenform f of tame level e1, whose system

of Hecke eigenvalues ψ f comes from a classical automorphic representation of G̃(A).
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The multiplicity formulae of Labesse and Langlands rule out that there is a classical

eigenform for ψ f of the same tame level. On the other hand, the point on D(e2) comes

from a classical form, say g. The associated Galois representations ρ f and ρg agree as

the systems of HS-eigenvalues for f and g are the same. In this sense the two forms are

L-indistinguishable.

Notation. Fix embeddings ι∞ : Q ↪→ C and ιp : Q ↪→ Qp as well as a finite extension

E/Qp with ring of integers OE and an embedding E ⊂ Qp. For a number field K we

denote by G K := Gal(K/K ) the absolute Galois group of an algebraic closure of K . For

a finite set S of places of K , let G K ,S be the Galois group of a maximal extension of K
that is unramified outside S, and for v /∈ S, let Frobv ∈ G K ,S denote a representative of

the geometric Frobenius at v.

We will frequently choose idempotents e ∈ C∞c (H(A
p
f ),Q) where H is equal to either

G̃ or to G. We will always assume that E is chosen big enough so that ιp ◦ e takes values

in E . We ease notation by dropping the embeddings from the notation when it is obvious,

e.g., for a complex representation π
p
f of H(Ap

f ) we write e ·π p
f instead of (ι∞ ◦ e) ·π p

f .

Furthermore we assume that the idempotents we consider are given as a tensor product

of local idempotents el ∈ C∞c (H(Ql),Q), where el = 1H(Zl ) for almost all l. We denote by

S(e) the minimal finite set of finite primes containing SB and p, such that el = 1H(Zl ) for

all l /∈ S(e).
For a rigid analytic space X defined over E , any point is defined over a finite extension

of E . We write X (Qp) :=
⋃

E ′/E finite X (E ′).

2. Eigenvarieties and a p-adic Labesse–Langlands transfer

Let B, G̃ and G be as in § 1 and let e := ⊗el ∈ C∞c (G(A
p
f ),Q) be an idempotent. Choose

S ⊃ S(e) and define

Hur,S :=
⊗
l /∈S

′HE (SL2(Ql),SL2(Zl)),

where HE (SL2(Ql),SL2(Zl)) is the algebra under convolution of compactly supported

E-valued functions on SL2(Ql) that are bi-invariant under SL2(Zl). Denote by I the

Iwahori subgroup of SL2(Qp) given by

I :=
{(

a b
c d

)
∈ SL2(Zp) : c ≡ 0 mod p

}
.

Let

HS := Hur,S ⊗E Ap

be the Hecke algebra, where Ap is the commutative E-subalgebra of the Iwahori Hecke

algebra HE (SL2(Qp), I ) generated by the characteristic function on the double coset

I
(

p−1

p

)
I .

We let W := Homcts(Z∗p,Gm) be the usual weight space. Using the spaces of

overconvergent forms for G as constructed in [9] and Buzzard’s machine, one can attach

to this data an eigenvariety D(e, S) of idempotent type e (cf. [4, 9]).
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To be precise, one also has to make a choice of a compact operator in the construction,

which we fix once and for all to be

u0 := 1Hur,S ⊗ 1
I
(p−1

p

)
I
∈ HS .

The eigenvariety D(e, S) is a rigid analytic space defined over E and it comes equipped

with a locally finite (on the source) morphism

ω : D(e, S)→W

and an E-algebra homomorphism

ψ : HS → O(D(e, S)).

The points of D(e, S) correspond to finite slope systems of Hecke eigenvalues occurring

in the space of overconvergent forms mentioned above. Moreover the map

D(e, S)(Qp) → Hom(HS,Qp)×W(Qp)

x 7→ (ψx (h) := ψ(h)(x), ω(x))

is an injection (cf. [1, Lemma 7.2.7]).

Likewise, starting from an idempotent ẽ ∈ C∞c (G̃(A
p
f ),Q), a set S ⊃ S(̃e) and an

associated Hecke algebra H̃S = H̃ur,S ⊗E Ãp, we can build an eigenvariety D(̃e, S) of

idempotent type ẽ for G̃. The weight space in this case is W̃ := Homcts((Z∗p)2,Gm). We

have natural maps (see [10, §§ 2.2 and 2.3])

µ : W̃ −→ W,

λ : HS ↪→ H̃S .

In the construction of D(̃e, S) we always choose λ(u0) as the compact operator.

There are natural Q-structures on the Hecke algebras defined by the subalgebras of

Q-valued functions which we denote by HQ,S,HQ,ur,S etc. The monomorphism λ can

in fact be defined over Q (see [10, § 2] for details). In particular, we constructed in

[10, Lemma 2.10] an inclusion of Q-algebras

λl,Q : HQ(SL2(Ql),SL2(Zl)) ↪→ HQ(GL2(Ql),GL2(Zl)).

We also refer to [10] for details regarding the construction as well as general properties

of the eigenvarieties.

Remark 2.1. There exists a Zariski-dense and accumulation subset

Z ⊂ D(e, S)(Qp)

coming from p-refined classical automorphic representations as defined in [10, Definition

3.14]. This is proved as usual (cf. [5, § 6.4.5] and also [10, Proposition 3.9] for a proof of

the analogous assertion for G̃ in the same notation) using the fact that forms of small

slope are classical and that classical weights are dense in weight space.
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Define tl ∈ Hur,S , as the characteristic function on the double coset

SL2(ẐS)

(
l 0
0 l−1

)
SL2(ẐS),

where
( l

l−1

)
is understood to be the matrix in SL2(ẐS) =

∏
q /∈S SL2(Zq) which is equal

to 1 for all q 6= l and equal to
( l

l−1

)
at l. Furthermore let

hl :=
1
l
(tl + 1) ∈ Hur,S .

Note that hl is an element of the subalgebra H0
ur,S ⊂ Hur,S of OE -valued functions.

Lemma 2.2. Let D(e, S) be an eigenvariety of idempotent type for G. Then there exists

a 3-dimensional pseudo-representation

T : GQ,S → O(D(e, S))

such that T (Frobl) = ψ(hl) for all l /∈ S.

Proof. By the previous remark we have a Zariski-dense subset Z ⊂ D(e, S)(Qp) of

classical points. A point z ∈ Z comes from an algebraic automorphic representation π of

G(A) and there is a projective Galois representation

ρz : GQ,S → PGL2(Qp)

associated to π . Namely, if π̃ is any algebraic automorphic representation of G̃(A) which

is unramified outside S and lifts π , let ρ(π̃) : GQ,S → GL2(Qp) be the attached Galois

representation by Deligne. It has the property that for any l /∈ S, the characteristic

polynomial of ρ(π̃)(Frobl) is given by X2
− Tl(π̃)X + l Sl(π̃), where Tl(π̃) := ιp ◦ ι

−1
∞ (µl)

and µl is the eigenvalue of

Tl := 1
GL2(ẐS)

(
l

1

)
GL2(ẐS)

∈ H̃Q,ur,S

on (π̃ S
f )

GL2(ẐS) and similarly for Sl = 1
GL2(ẐS)

(
l

l

)
GL2(ẐS)

∈ H̃Q,ur,S .

Then

ρz = η ◦ ρ(π̃) : GQ,S → PGL2(Qp)

is the composition of ρ(π̃) and the natural homomorphism η : GL2(Qp)→ PGL2(Qp).

There is a monomorphism ι : PGL2(Qp) ↪→ GL3(Qp) coming from the adjoint action,

which identifies PGL2(Qp) with SO3(Qp). Define

σz := ι ◦ ρz : GQ,S → GL3(Qp).

Then

σz ∼= Sym2(ρ(π̃))⊗ det(ρ(π̃))−1

and an easy calculation shows that for all l /∈ S

Tr(σz(Frobl)) = Tr2(ρ(π̃)(Frobl))/ det(ρ(π̃)(Frobl))− 1

= T 2
l (π̃)/(l Sl(π̃))− 1.
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Now an elementary calculation shows that T 2
l /(l Sl)− 1 = λQ(hl) and therefore

T 2
l (π̃)/(l Sl(π̃))− 1 = ψ(hl)(z).

The lemma now follows from [5, Proposition 7.1.1] (see also [10, § 3.1.3]), i.e.,

Hypothesis H in [5] is satisfied using the Zariski-dense set Z ⊂ D(e, S)(Qp), the

representations σz for z ∈ Z and the family of functions ψ(hl) ∈ O(D(e, S)).

Remark 2.3. In the following, we abbreviate D(e) := D(e, S(e)) and D(̃e) := D(̃e, S(̃e)).

Below we will often use the so-called special idempotents attached to a finite set of
Bernstein components. Let F/Ql be a finite extension, H(F) the F-points of a reductive
group over F . Given a Bernstein component s of the category of smooth Q-representations
of H(F), there is an idempotent es ∈ C∞c (H(F),Q) such that for an irreducible smooth
Q-representation σ of H(F), es · σ 6= 0 if and only if σ is contained in the Bernstein
component s. Similarly one can attach an idempotent to a finite set Σ of Bernstein
components. We refer to [3, § 3] for a nice overview and to [3, Proposition 3.13] for the
existence of these so-called special idempotents.

When we choose special idempotents below, we may always assume they take values in
Q as all automorphic representations we deal with in this paper are algebraic and have
the property that their finite part is defined over Q.

We also want to remark here that irreducible supercuspidal representations that are
in the same Bernstein component differ from each other by a twist by an unramified
character. In particular, if two irreducible supercuspidal representations σ and σ ′ of
SL2(Ql) are in the same Bernstein component, then σ ∼= σ ′.

We use the following notation: Let s be the Bernstein component of G̃(Ql) defined by

a supercuspidal representation π̃l of G̃(Ql). Then we denote by ResG̃
G(s) the finite set of

Bernstein components defined by the representations occurring in π̃l |G(Ql ). Note that this
is well defined.

The classical transfer, by which we just mean the map that attaches to an automorphic
representation π̃ of G̃(A) an L-packet of representations 5(π̃) of G(A), can be
interpolated to maps between suitable eigenvarieties.

Definition 2.4. Two idempotents ẽ ∈ C∞c (G̃(A
p
f ),Q) and e ∈ C∞c (G(A

p
f ),Q) are called

Langlands compatible if they satisfy: For any discrete automorphic representation π̃ of
G̃(A) with ẽ · π̃ p

f 6= 0 and any τ ∈ 5(π̃p), there exists an element π in the packet 5(π̃),
such that

• m(π) > 0;

• e ·π p
f 6= 0; and

• πp = τ .

Theorem 2.5. (1) Let ẽ ∈ C∞c (G̃(A
p
f ),Q) be an idempotent. Then there exists an

idempotent e ∈ C∞c (G(A
p
f ),Q) with S(e) = S(̃e) and such that ẽ and e are Langlands

compatible. Define S := S(e).
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(2) Assume ẽ = ⊗ẽl ∈ C∞c (G̃(A
p
f ),Q) has the property that for all l ∈ S(̃e), ẽl is a

special idempotent attached to a supercuspidal Bernstein component sl. Define

e := ⊗el ∈ C∞c (G(A
p
f ),Q) where el := eSL2(Zl ) for all l /∈ S(̃e) and for l ∈ S(̃e), el

is a special idempotent attached to the finite set of Bernstein components ResG̃
G(sl).

Then ẽ and e are Langlands compatible.

(3) For any two Langlands compatible idempotents ẽ ∈ C∞c (G̃(A
p
f ),Q) and

e ∈ C∞c (G(A
p
f ),Q) with the same set S of bad places there exists a morphism

ζ : D(̃e)→ D(e) such that the diagrams

D(̃e)

ω̃
��

ζ
// D(e)

ω

��

W̃
µ
// W

HS

��

� � λ // H̃S

��

O(D(e))
ζ ∗
// O(D(̃e))

commute.

Proof. Part (1) follows from [10, Propositions 4.15 and 4.16], once we remark that for

any idempotent ẽ ∈ C∞c (G̃(A
p
f ),Q), there exists a compact open subgroup K̃ ⊂ G̃(Ap

f )

such that eK̃ · ẽ = ẽ = ẽ · eK̃ . Part (3) follows from [10, Theorem 5.7] and the proof of it.

Part (2) can be proved in the same way as [10, Proposition 4.16]. Namely, for an

automorphic representation π̃ of G̃(A) with ẽ · π̃ p
f 6= 0 and any τ ∈ 5(π̃p) define

Y (π̃, τ ) := {π ∈ 5(π̃)|e · (π p
f ) 6= 0, πp = τ }

= {π ∈ 5(π̃)|πl = π
0
l ∀l /∈ S(̃e), πp = τ },

where in the last line π0
l denotes the unique member of the L-packet 5(π̃l) with

(π0
l )

SL2(Zl ) 6= 0. We need to show that there exists π ∈ Y (π̃, τ ) such that m(π) > 0. For

that let π ∈ Y (π̃, τ ) be arbitrary and assume m(π) = 0. Then by [10, Proposition 4.11]

we may change π at a prime l ∈ SB to a different representation in the local L-packet

5(π̃l) to get a representation π ′ which is automorphic and still in Y (π̃, τ ).

Remark 2.6. We recall that ζ is constructed using two auxiliary eigenvarieties D′(̃e) and
D′′(e), which are described in [10, §§ 3.3 and 3.4]. D′(̃e) is the eigenvariety which apart

from the Hecke algebra is build from the same data as D(̃e) but where the Hecke algebra

is replaced by HS . It comes equipped with a morphism ω′ : D′(̃e)→ W̃ and the points

of D′(̃e) embed

D′(̃e)(Qp) ↪→ Hom(HS,Qp)× W̃(Qp).

We have a morphism λ′ : D(̃e)→ D′(̃e), which on points is given by

(ψx , ω̃(x)) 7→ (ψx |HS , ω̃(x)).
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The second eigenvariety D′′(e) is simply defined as the pullback W̃ ×W D(e) and the

morphism ζ is the composite

D(̃e)

ω̃
��

λ′ // D′(̃e)

ω′

��

ξ
// D′′(e)

��

// D(e)

ω

��

W̃ id // W̃ id // W̃
µ

// W

.

By [10, Proposition 5.6], the morphism ξ is a closed immersion. This is important in

what follows.

Remark 2.7. If e, e′ ∈ C∞c (G(A
p
f ),Q) are two idempotents as above, such that

S(e) = S(e′) and such that e′l |el for all l ∈ S\{p}, then there exists a closed immersion

D(e) ↪→ D(e′). (cf. [1, § 7.3].)

3. Slopes of CM points

We determine the slopes of points on eigenvarieties D(̃e) that arise from automorphic

representations π(θ̃) of G̃(A) coming from a Größencharacter.

We view Z2 as a subset of weight space via

Z2 ↪→ W̃(Qp), (k1, k2) 7→ ((z1, z2) 7→ zk1
1 zk2

2 ).

Let k = (k1, k2) ∈ Z2, k1 > k2. We denote by Ĩ the Iwahori subgroup of GL2(Qp) given

by

Ĩ :=
{(

a b
c d

)
∈ GL2(Zp) : c ≡ 0 mod p

}
.

Recall (cf. [1, § 7.2.2] and [10, Definition 3.14]) that a p-refined automorphic

representation of weight k of G̃(A) is a pair (π̃, χ) such that

• π̃ is an automorphic representation of G̃(A);
• π̃p has a non-zero fixed vector under the Iwahori Ĩ and χ = (χ1, χ2) is an ordered

pair of characters χi : Q
∗

p → C∗, i = 1, 2 such that π̃p ↪→ Ind
GL2(Qp)

B (χ1, χ2), where

Ind
GL2(Qp)

B (−) denotes the normalized parabolic induction from the upper triangular

Borel B ⊂ GL2(Qp);

• π̃∞ ∼= (Symk1−k2(C2)⊗Nrdk2)∗.

Different points on an eigenvariety that come from the same automorphic representation

π̃ are parametrized by the different choices of pairs χ = (χ1, χ2), such that π̃p ↪→

Ind
GL2(Qp)

B (χ1, χ2), which are called refinements. Note that if πp ∼= Ind
GL2(Qp)

B (χ1, χ2),

there are precisely two refinements, namely (χ1, χ2) and (χ2, χ1).

Fix an idempotent ẽ and let S := S(̃e). Define

Up := 1H̃ur,S
⊗ 1̃I(1 p )̃I ∈ H̃S .

The operator

1H̃ur,S
⊗ 1

Ĩ
(p−1

p

)̃
I
∈ H̃S

is the image of u0 under λ, and we denote it by u0 again.
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Recall from § 2 that D(̃e) comes equipped with a morphism ψ : H̃S → O(D(̃e)). For

a point z on the eigenvariety D(̃e) which corresponds to a p-refined automorphic

representation (π̃, (χ1, χ2)) of weight k, we have

ψ(Up)(z) = ψ(π̃,(χ1,χ2))(Up) = ιp(χ2(p)p1/2)p−k2

and

ψ(u0)(z) = ιp(χ2(p)χ1(p)−1)pk1−k2+1. (1)

To justify the next definition recall the following classicality theorem. Again fix k as

above and choose an affinoid neighbourhood X of k in W̃. We denote by M (̃e, k, k(X))
the E-Banach space of overconvergent forms of weight k and ‘tame level’ ẽ as defined in

[9, § 3]. It comes equipped with an action of H̃S . We sometimes omit the parameter

k(X) and write M (̃e, k) instead. If x ∈ D(̃e)(Qp) with ω̃(x) = k, then there exists an

overconvergent finite slope eigenform f ∈ M (̃e, k, k(X)) with eigenvalues ψx . The space

M (̃e, k, k(X)) has a finite-dimensional subspace M (̃e, k)cl of classical forms.

Theorem 3.1 [9, Theorem 3.9.6]. Let k = (k1, k2) ∈ Z2, k1 > k2. Let E ′/E be a finite

extension, λ ∈ E ′∗ and σ := vp(λ). If

σ < k1− k2+ 1,

then the generalized λ-eigenspace of Up acting on M (̃e, k, k(X))⊗̂E E ′ is contained in the

subspace M (̃e, k)cl
⊗̂E E ′.

Definition 3.2. (1) A point x = (ψx , ω̃(x)) on D(̃e), with ω̃(x) = (k1, k2) is called of

critical slope if vp(ψx (Up)) = k1− k2+ 1.

(2) A refinement χ of an automorphic representation π̃ of G̃(A) of weight (k1, k2) is

called of critical slope if vp(ψ(π̃,χ)(Up)) = k1− k2+ 1.

Now let L/Q be an imaginary quadratic extension and let θ̃ : A∗L/L∗→ C∗ be a

Größencharacter which does not factor through the norm. In [7], Jacquet and Langlands

show how to associate to θ̃ a cuspidal automorphic representation τ(θ̃) of GL2(A). We

refer to [7, § 12] for details regarding the construction and characterization. Assume τ(θ̃)

is in the image of the global Jacquet–Langlands transfer JL from G̃ to GL2, i.e., τ(θ̃)v is a

discrete series representation for all v ∈ SB . Then π(θ̃) := JL−1(τ (θ̃)) is an automorphic

representation of G̃(A). Assume π(θ̃) is of weight (k1, k2) ∈ Z2, so

π(θ̃)∞ ∼= (Symk1−k2(C2)⊗Nrdk2)∗ ∼= Symk1−k2(C2)⊗Nrd−k1

and θ̃∞ : L∗∞→ C∗ is given by θ̃∞(z) = (zz)−k1−1/2zk1−k2+1 (see [6, Remark 7.7]). Let

ẽ ∈ C∞c (G̃(A
p
f ),Q) be an idempotent such that ẽ ·π(θ̃)p

f 6= 0.

Lemma 3.3. Let π(θ̃) be an automorphic representation of G̃(A) associated to a

Größencharacter of L as above. Assume p splits in L and π(θ̃)p is unramified. Then π(θ̃)

has a refinement of critical slope. More precisely, let x̃, ỹ ∈ D(̃e) be the two points attached

to π(θ̃). Then the slopes of ψx̃ (Up) and ψỹ(Up) are k1− k2+ 1 and 0. Furthermore

vp(ψx̃ (u0)) = 2(k1− k2+ 1).
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Proof. The Größencharacter θ̃0 := θ̃ ||NL/Q(·)||−1/2 is algebraic and we can turn it into a

p-adic character by shifting the weight from ∞ to p, i.e., we define

θ̃ ′ : A∗L/L∗→ Q∗p
θ̃ ′(x) = ιp(θ̃0(x)θ̃−1

0,∞(x∞))τw(xw)
−k2τw(xw)−k1−1,

where we have matched the two complex embeddings of L∞ with the two places w,w

above p. The finite part of an algebraic Größencharacter takes values in a number field.

Moreover, θ̃ ′ factors through the compact group A∗L/L∗L∗∞, so it takes values in O∗F for

some finite extension F/Qp.

Our assumptions imply that π(θ̃)p ∼= Ind
GL2(Qp)

B (θ̃w, θ̃w) and the two refinements of

π(θ̃) are given by (θ̃w, θ̃w) and (θ̃w, θ̃w).

Let pw = (1, . . . , 1, p, 1, . . . , 1) ∈ A∗L (respectively pw) denote the idele which is 1 at

all places except for w (respectively w), where it equals p. Then

θ̃ ′(pw) = ιp(θ̃w(p)p1/2)p−k2 = ψ(π(θ̃),(θ̃w,θ̃w))(Up) and

θ̃ ′(pw) = ιp(θ̃w(p)p1/2)p−k1−1
= ψ(π(θ̃),(θ̃w,θ̃w))(Up)pk2−k1−1.

As θ̃ ′(pw) and θ̃ ′(pw) are in O∗F this implies the claim on the slopes of the Up-eigenvalues.

Using Equation (1), one then verifies the slope of ψx̃ (u0).

Remark 3.4. The character θ̃ ′ : A∗L/L∗→ Q∗p in the proof of the above lemma is trivial

on L∗∞, so it factors through the quotient A∗L/L∗L∗∞ ∼= Gab
L . We may therefore view θ̃ ′ as a

continuous character of GL with values in Q∗p. In this notation, the Galois representation

ρπ(θ̃) : GQ→ GL2(Qp) attached to π(θ̃) is given by

ρπ(θ̃)
∼= IndGQ

GL
(θ̃ ′)

as one easily checks by comparing traces of Hecke operators and Frobenius.

Lemma 3.5. Let π(θ̃) be an automorphic representation of G̃(A) of tame level ẽ, weight

(k1, k2) and unramified at p which is associated to a Größencharacter θ̃ : A∗L/L∗→ C∗
and assume that p is inert in L. Then π(θ̃) gives rise to two distinct points x, y on D(̃e).
Their slopes agree and are equal to

vp(ψx (Up)) = vp(ψy(Up)) = (k1− k2+ 1)/2.

Proof. Let v denote the unique place above p, and let ω : Q∗p → C∗ be the character

associated to the quadratic extension Lv/Qp by local class field theory. By assumption θ̃v
is unramified and therefore factors through the norm NLv/Qp : L∗v → Q∗p. Let δ : Q∗p → C∗

be a character such that θ̃v = δ ◦NLv/Qp . Then by construction π(θ̃)p = Ind
GL2(Qp)

B (δ, δω),

in particular, the two refinements are distinct. The Up-eigenvalues on the two points x
and y are given by

ψx (Up) = ιp(δ(p)p1/2)p−k2 ,

ψy(Up) = ιp(δ(p)ω(p)p1/2)p−k2 = ιp(−δ(p)p1/2)p−k2 .
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In particular, we see that they have the same slope. A similar calculation as in the proof

of the last lemma, with

θ̃ ′(x) = ιp(θ̃0(x)θ̃−1
0,∞(x∞))(NLv/Qp (xv))

−k1−1τv(xv)k1−k2+1,

implies that the slope is given by (k1− k2+ 1)/2.

4. Existence of L-indistinguishable forms

Let q > 5 be a prime number such that −q ≡ 1 mod 4 and let L := Q(
√
−q) be the

associated imaginary quadratic extension. Choose a prime p which splits in L and let B
be the quaternion algebra over Q such that SB = {q,∞}. Let G̃ and G be as above.

Let π(θ̃) be an automorphic representation of G̃(A) coming from a Größencharacter

θ̃ : A∗L/L∗→ C∗ of L. Assume that

(1) π(θ̃)l is unramified for all l 6= q.

(2) The L-packet 5(π(θ̃)q) = {τ1, τ2} defined by π(θ̃)q is of size two.

(3) Precisely one of the representations

π1 :=
⊗
l 6=q

π0
l ⊗ τ1⊗π∞, π2 :=

⊗
l 6=q

π0
l ⊗ τ2⊗π∞

is automorphic. As before π0
l denotes the unique member of the local L-packet

5(π(θ̃)l), which has a non-zero fixed vector under SL2(Zl).

Lemma 4.1. Automorphic representations π(θ̃) of G̃(A) satisfying the above list of

properties exist.

Proof. Note that (
∏
w 6=∞O∗w × L∗∞)/O∗L ↪→ A∗L/L∗ is of finite index. Furthermore, our

assumptions imply that O∗L = {1,−1} and that q is the only prime that ramifies in L.

Define a Größencharacter θ̃ : A∗L/L∗→ C∗ as follows.

Let θ̃∞ : L∗∞→ C∗ be the character given by θ̃∞(z) 7→ (zz)r zm , where r ∈ C and m > 2
is an even integer, so that θ̃∞ is trivial on O∗L .

Denote by v the unique place of L above q. For all w 6= v let θ̃w : O∗w → C∗ be the

trivial character.

For v, let O1
v be the kernel of the norm map (NLv/Qq )|O∗v . Choose any continuous

non-quadratic character

θ ′v : O1
v/{1,−1} → C∗

and extend it to a continuous character

θ̃v : O∗v → C∗.

Now the character ∏
w 6=∞

θ̃w × θ̃∞ :

 ∏
w 6=∞

O∗w × L∗∞

/O∗L → C∗

is continuous. Extend it arbitrarily to a character θ̃ of L∗\A∗L .

https://doi.org/10.1017/S1474748016000062 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748016000062


436 J. Ludwig

We verify the conditions (1)–(3) for π(θ̃). By construction θ̃w is unramified for all finite

places w not equal to v, and the local extensions Lw/Ql are unramified for q 6= l, which

implies (1). Part (2) follows from [8, Lemma 7.1]. As we have chosen a non-quadratic

character θ ′v in the construction of θ̃v, there exists an element γ ∈ O1
v such that

θ̃v(γ ) 6= θ̃v(γ
−1) = θ̃v(γ ). The other conditions of [8, Lemma 7.1] are also satisfied by

construction.

Part (3) follows from the multiplicity formulae. The representations π1 and π2 are of

type (a) and the formula for their multiplicity is given in [8, Proposition 7.3].

Remark 4.2. The reason for this slightly delicate choice of the local character at the place

above q in the above proof is that we are constructing L-packets of an inner form of SL2,

which is not quasi-split. Changing a representation in a global endoscopic packet at a

place where the local L-packet is of size two therefore not always changes the multiplicity.

Now fix an automorphic representation π(θ̃) as above and such that

θ̃∞(z) 7→ (zz)−k1−1/2zk1−k2+1,

where k1, k2 ∈ Z and k1− k2+ 1 > 2 is an even integer. In particular,

π(θ̃)∞ ∼= (Symk1−k2(C2)⊗Nrdk2)∗.

We have two representations π1 and π2 as above and we assume that π2 is automorphic

and π1 is not.

The representation π(θ̃) shows up in the following eigenvariety: for all l 6= q define

ẽl := eGL2(Zl ) and let ẽq be the special idempotent attached to the Bernstein component

defined by the supercuspidal representation π(θ̃)q . Define ẽ = ⊗l ẽl ∈ C∞c (G̃(A
p
f ),Q). Let

S = S(̃e) = {p, q} and H̃S := H̃ur,S ⊗ Ãp as in § 2. Then by construction π(θ̃) gives rise

to two points on the eigenvariety D(̃e), one of which is of critical slope by Lemma 3.3,

which we denote again by x̃ .

Let eq,1 (respectively eq,2) ∈ C∞c (G(Qq),Q) be the special idempotent associated

with τ1 (respectively τ2) and define

e1 :=
⊗

l 6=q,p

eSL2(Zl )⊗ eq,1 ∈ C∞c (G(A
p
f ),Q) and

e2 :=
⊗

l 6=q,p

eSL2(Zl )⊗ eq,2 ∈ C∞c (G(A
p
f ),Q).

Theorem 4.3. There exist points x1 ∈ D(e1)(Qp) and x2 ∈ D(e2)(Qp) such that

(ψx1 , ω(x1)) = (ψx2 , ω(x2)) = (ψx̃ |HS , µ(ω(̃x))).

Proof. By construction π2 is an automorphic representation such that e2 · (π2)
p
f 6= 0 and

so there is a point x2 ∈ D(e2)(Qp) as claimed.

For the existence of x1 we use the p-adic transfer. Recall the notation of Remark 2.6.

We have a Zariski-dense and accumulation set Z ′ on D′(̃e), which is in bijection with the

set of pairs

{(λ′ ◦ψ(π̃,χ), (k1, k2))},
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where π̃ is a p-refined automorphic representation of G̃(A) of weight (k1, k2) (cf. [10,

§ 3.3]). In particular, λ′(̃x) ∈ Z ′.
Let 5s be the set of all stable L-packets of G(A) and let

Z ′s := {(λ
′
◦ψ(π̃,χ), (k1, k2)) ∈ Z ′ | 5(π̃) ∈ 5s}

be the subset of Z ′ arising from representations π̃ that do not come from a

Größencharacter. This is well defined (cf. [10, § 3.3.1]).

Claim. There exists an open affinoid neighbourhood U of λ′(̃x) ∈ D′(̃e)(Qp) such that

Z ′s ∩U is Zariski-dense and accumulation in U . Indeed choose any open affinoid

neighbourhood W of λ′(̃x) and let

V := {x ∈ W | vp(ψx (u0)) = vp(ψλ′ (̃x)(u0)) = 2(k1− k2+ 1)}.

This is an affinoid neighbourhood of λ′(̃x). Choose U ⊂ V to be an open affinoid

neighbourhood of λ′(̃x) with the property that ω′(U ) ⊂ W̃ is open affinoid and the

induced morphism ω′|U : U → ω′(U ) is finite and surjective when restricted to any

irreducible component of U .

To see that Z ′s ∩U is Zariski-dense and accumulation, let y := µ(ω̃(̃x)) = k1− k2 and

y′ := 2(k1− k2)+ 1 ∈W(E) and define Y := (µ ◦ω′)|−1
U ({y, y′}) to be the fibre, which is

a Zariski-closed subspace of U of codimension 1. Let U ′ := U\Y . Then Z ′ ∩U ′ ⊂ Z ′s by

Lemmas 3.3 and 3.5 above. But Z ′ ∩U ′ is still Zariski-dense and accumulation in U , as

we have only removed a Zariski-closed subset of smaller dimension. This proves the claim.

Define e :=
⊗

l 6=q,p eSL2(Zl )⊗ eq ∈ C∞c (G(A
p
f ),Q), where eq is the special idempotent

associated with the two Bernstein components defined by the representations τ1 and τ2.

Then ẽ and e are Langlands compatible and we have a p-adic transfer as in Theorem 2.5.

By Remark 2.7 we have a closed immersion D(e1) ↪→ D(e), which we base-change along

µ : W̃ →W to ι : D′′(e1) ↪→ D′′(e). Consider the following diagram (cf. Remark 2.6)

D′′(e1)

ι

��

// D(e1)

��

D(̃e) λ′ // D′(̃e)
ξ
// D′′(e) // D(e)

.

As ξ and ι are closed immersions of equi-dimensional rigid analytic spaces, their images

are a union of irreducible components of D′′(e). We identify D′(e) and D′′(e1) with their

images in D′′(e), i.e., we consider them as subspaces of D′′(e).
Let T be an irreducible component of D′(̃e) containing λ′(̃x). Let U be as above. Then

U ∩ Z ′s ∩ T is still Zariski-dense in U ∩ T and so there exists a point s ∈ Z ′s ∩ T and we can

also assume that s /∈ T ′ ∩ T for any irreducible component T ′ 6= T . As s ∈ Z ′s , s comes

from an automorphic representation that gives rise to a stable L-packet for G, which

implies that s ∈ D′′(e1). Therefore T ⊂ D′′(e1) and in particular, λ′(̃x) ∈ D′′(e1).

Remark 4.4. One can of course cook up other examples by using more general imaginary

quadratic fields L and quaternion algebras B with more ramified primes. For example,

assume that B is ramified at more places and π ′ is a representation in an endoscopic
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L-packet 5(π̃), such that π ′l is unramified for all l /∈ SB , with m(π ′) = 0, and such that

5(π̃p) has size one. Then one can again use the special idempotents at the bad places to

construct idempotents e ∈ C∞c (G(A
p
f ),Q) such that

e ·π p
f 6= 0 for π ∈ 5(π̃) if and only if π = π ′.

In fact, this trick works as long as π ′l is supercuspidal at all places where it is not

unramified.

Corollary 4.5. In the notation of Theorem 4.3 define ϕ := ψx̃ |HS and let n = µ(ω̃(̃x)) =
k1− k2 ∈W(E). The eigenspaces M(e1, n)ϕ and M(e2, n)ϕ are both non-zero. The Galois

representations attached to the eigenforms in these two spaces agree.

Proof. The Galois representations exist by Lemma 2.2 and depend only on the points on

the eigenvariety defined by the eigenforms. But the images of x1 and x2 in D(e), with e
as in the proof of Theorem 4.3, agree by construction.

5. Consequences

Definition

5.1. Let ω : D(e)→W (respectively ω̃ : D(̃e)→ W̃) be an eigenvariety of idempotent

type e (respectively ẽ). We call a point z ∈ D(e)(Qp) (respectively D(̃e)(Qp)) classical

if there exists f ∈ M(e, ω(z))cl (respectively M (̃e, ω̃(z))cl) such that h · f = ψz(h) f
for all h ∈ HS(e) (respectively H̃S(̃e)).

For the group G̃ we have the following phenomenon.

Proposition 5.2. Assume ẽ′ and ẽ in C∞c (G̃(A f ),Qp) are idempotents with

S(̃e′) = S(̃e) =: S and assume for all l ∈ S the local idempotents ẽ′l and ẽl are special

idempotents associated to Bernstein components. Assume that ẽ ∗ ẽ′ = ẽ′ = ẽ′ ∗ ẽ so that

we have a closed immersion h : D(̃e′) ↪→ D(̃e). Assume z ∈ D(̃e′)(Qp) is such that h(z)
is classical. Then z is classical.

Proof. We have to show that there exists a classical automorphic eigenform

f ∈ M (̃e′, ω̃(z))cl with system of Hecke eigenvalues ψz . By construction of the

eigenvarieties there exists an overconvergent eigenform foc ∈ M (̃e′, ω̃(z)) with system

of Hecke eigenvalues given by ψz . By assumption the point h(z) is classical, so there

exists an eigenform g ∈ M (̃e, ω̃(z))cl for the same system of Hecke eigenvalues ψh(z) = ψz .

In particular, we have a p-refined automorphic representation π̃h(z) giving rise to

h(z). Both eigenvarieties D(̃e′) and D(̃e) carry pseudo-representations T ′ and T (see

[10, Proposition 3.10]) and T ′ = h∗ ◦ T , where h∗ : O(D(̃e))→ O(D(̃e′)) denotes the

homomorphism induced by h. For l ∈ S, let Il be the inertia subgroup of Gal(Ql/Q). By

[1, Lemma 7.8.18], T |Il is constant on the connected components of D(̃e). Let x ∈ D(̃e′)
be a classical point on the same connected component as z. Then T ′x |Il = T ′h(z)|Il = Tz |Il .

Local–global compatibility, compatibility of the local Jacquet–Langlands transfer with

twists and the inertial local Langlands correspondence (see [2, Appendix 1.2]) imply that
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the local components (π̃h(z))l and (π̃x )l are in the same Bernstein component. Therefore

ẽ′l · (π̃h(z))l 6= 0.

The situation for eigenvarieties of the group G is different. First of all we have the

following result.

Proposition 5.3. In the notation of Theorem 4.3, the point x1 ∈ D(e1)(Qp) is not classical.

Proof. Assume x1 is classical. Then there exists an automorphic representation π of G(A)
such that

e1 ·π
p
f 6= 0, (2)

in particular, π
SL2(Zl )
l 6= 0 for all l /∈ {p, q}. The system of Hecke eigenvalues ψx̃ |Hur,S(̃e)

determines the representation πl with π
SL2(Zl )
l 6= 0 and the local L-packet 5l = 5(π(θ̃)l)

uniquely. But this implies π ∈ 5(π(θ̃)) (cf. [11, Theorem 4.1.2]). Condition (2) implies

that πq = τ1, so the only choice left might be at p. But by construction5(π(θ̃)p) = {π1,p}

is a singleton and therefore π ∼= π1. But m(π1) = 0.

Remark 5.4. It is obvious that one cannot produce non-classical points starting from

Größencharacters of an imaginary quadratic field L in which p is inert. There are multiple

reasons for this. For example, note that any ‘candidate for x1’ that one would end up

constructing would automatically be classical by the classicality theorem. The critical

slope for u0 is given by 2(k1− k2+ 1) and Lemma 3.5 implies that the slope of the

u0-eigenvalue of any candidate is k1− k2+ 1.

Corollary 5.5. Let D(e) be an eigenvariety of idempotent type e for G and assume

z ∈ D(e)(Qp) is a point whose system of Hecke eigenvalues ψz comes from a classical

automorphic representation π̃ of G̃(A). Then z is not necessarily classical.

Remark 5.6. Note however that one can always enforce classicality by passing to a

suitable idempotent (e.g., the idempotent attached to a sufficiently small compact open

subgroup K ⊂ G(Ap
f )). In our example, the image of the non-classical point x1 under

the map D(e1) ↪→ D(e) from the proof of Theorem 4.3 is classical. The analogue of

Proposition 5.2 for G is therefore false.
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