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Abstract

It is well known that stationary geometrically ergodic Markov chains are β-mixing
(absolutely regular) with geometrically decaying mixing coefficients. Furthermore, for
initial distributions other than the stationary one, geometric ergodicity implies β-mixing
under suitable moment assumptions. In this note we show that similar results hold also
for subgeometrically ergodic Markov chains. In particular, for both stationary and other
initial distributions, subgeometric ergodicity implies β-mixing with subgeometrically
decaying mixing coefficients. Although this result is simple, it should prove very useful
in obtaining rates of mixing in situations where geometric ergodicity cannot be estab-
lished. To illustrate our results we derive new subgeometric ergodicity and β-mixing
results for the self-exciting threshold autoregressive model.
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1. Introduction

Let Xt (t = 0, 1, 2, . . .) be a Markov chain on the state space X with n-step transition proba-
bility measure Pn and stationary distribution π . If the n-step probability measures Pn converge
in total variation norm to the stationary probability measure π at rate rn (for some r> 1),
that is,

lim
n→∞ rn‖Pn(x ; · ) − π( · )‖ = 0, π-a.e., (1)

the Markov chain is said to be geometrically ergodic. It is well known that for stationary
Markov chains, geometric ergodicity implies that so-called β-mixing coefficients (or coeffi-
cients of absolute regularity) β(n), to be defined formally in Section 2, converge to zero at the
same rate, limn→∞ rnβ(n) = 0 (see e.g. [8, page 89], [2, Theorem 3.7], or [3, Theorem 21.19]).
For initial distributions other than the stationary one, a similar mixing result has been obtained
by Liebscher [16, Proposition 4].

Received 16 April 2019; revision received 9 November 2020.
The supplementary material for this article can be found at http://doi.org/10.1017/jpr.2020.108.
∗ Postal address: Department of Economics, University of Helsinki, PO Box 17, FI–00014 University of Helsinki,
Finland. Email address: mika.meitz@helsinki.fi
∗∗ Postal address: Department of Mathematics and Statistics, University of Helsinki, PO Box 68, FI–00014 University
of Helsinki, Finland. Email address: pentti.saikkonen@helsinki.fi

© The Author(s), 2021. Published by Cambridge University Press on behalf of Applied Probability Trust.

594

https://doi.org/10.1017/jpr.2020.108 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2020.108
https://orcid.org/0000-0002-0661-7218
http://doi.org/10.1017/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jpr.2020.108&domain=pdf
https://doi.org/10.1017/jpr.2020.108


Subgeometric ergodicity and β-mixing 595

We are interested in counterparts of these mixing results when the convergence in (1) takes
place at a rate r(n) slower than geometric, that is,

lim
n→∞ r(n)‖Pn(x ; · ) − π( · )‖ = 0, π-a.e. (2)

When (2) holds with suitably defined rates r(n) slower than geometric, the Markov chain
is called subgeometrically ergodic. The main result of this note establishes that for both
stationary and other initial distributions, subgeometric ergodicity implies β-mixing with
subgeometrically decaying mixing coefficients, that is, limn→∞ r̃(n)β(n) = 0 for some rate
function r̃(n).

To illustrate some common rate functions, consider the expression

r(n) = (1 + ln (n))α · (1 + n)β · ecnγ · edn, α, β, c, d ≥ 0, γ ∈ (0, 1), n ≥ 1.

In the case α, β, c, d> 0 the four terms above satisfy edn/ecnγ → ∞, ecnγ /(1 + n)β → ∞,
and (1 + n)β/(1 + ln (n))α → ∞ as n → ∞, and this hierarchy can be used to define different
growth rates. Ordered from the fastest to the slowest growth rate, a growth rate is called geo-
metric (sometimes also exponential) if the dominant term is edn (with d> 0; note that edn = rn

with r> 1 if and only if d> 0), subexponential if the dominant term is ecnγ (c> 0 and above
d = 0), polynomial if the dominant term is (1 + n)β (β > 0, c = d = 0), and logarithmic if the
dominant term is (1 + ln (n))α (α > 0, β = c = d = 0).

We next provide some brief background on β-mixing and subgeometric ergodicity. The
notion of β-mixing (or absolute regularity) was introduced by Volkonskii and Rozanov [29,
30], who attributed it to Kolmogorov. The surveys by Bradley [1, 2], the monograph by
Doukhan [8], and the three-volume series by Bradley [3] specialized on (the various different
concepts of) mixing and contain a wealth of further references. As for subgeometric ergodicity,
the first subgeometric ergodicity results for general state space Markov chains were obtained
by Nummelin and Tuominen [21] and Tweedie [24]; the subgeometric rate functions r(n) con-
sidered were introduced by Stone and Wainger [22]. Tuominen and Tweedie [23] gave a set
of conditions that imply the convergence in (2) and, in particular, formulated a sequence of
so-called drift conditions to establish subgeometric ergodicity. Subsequent work by Fort and
Moulines [9, 10], Jarner and Roberts [11], and Douc et al. [6] led to a formulation of a single
drift condition to ensure subgeometric ergodicity, paralleling the use of a Foster–Lyapunov
drift condition to establish geometric ergodicity (see e.g. [19, Chapter 15]).

The rest of the paper proceeds as follows. Section 2 contains necessary mathematical pre-
liminaries. Section 3 reviews the relation of geometric ergodicity and β-mixing, while the
corresponding results in the subgeometric case are given in Section 4. The general results
obtained are exemplified in Section 5, where subgeometric ergodicity and β-mixing results for
the self-exciting threshold autoregressive model are presented. Section 6 concludes the paper
and all proofs are given in an Appendix.

2. Preliminaries

To formalize the discussion in the Introduction, consider Xt (t = 0, 1, 2, . . .), a time-
homogeneous discrete-time Markov chain on a general measurable state space (X, B(X)).
Comprehensive treatments of the relevant Markov chain theory can be found in [19] or [7].
Let μ be any initial measure on B(X), and suppose that X0 has distribution μ. Denote the
transition probabilities by P(x ; A) (x ∈ X, A ∈ B(X)) and let (�,F , Pμ) denote the probability
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space of the Markov process {X0, X1, . . .}. As usual, Px denotes the probability measure corre-
sponding to a fixed initial value X0 = x and Pn(x ; A) = Px(Xn ∈ A) (x ∈ X, A ∈B(X)) signifies
the n-step transition probability measure.

Next consider the rate of convergence of the n-step probability measures Pn to the stationary
probability measure π . To this end, for any two probability measures λ1 and λ2 on (X, B(X)),
the total variation distance is defined as

‖λ1 − λ2‖ = 2 sup
B∈B(X)

|λ1(B) − λ2(B)| = sup
|h|≤1

|λ1(h) − λ2(h)|,

where the last supremum runs over all B(X)-measurable functions h : X →R bounded in abso-
lute value by 1 and λi(h) = ∫

X λi(dx)h(x)<∞. The n-step probability measures Pn converge
in total variation norm to the stationary probability measure π at rate r(n), n ≥ 0, if

lim
n→∞ r(n)‖Pn(x ; · ) − π( · )‖ = 0, π-a.e. (3)

If (3) holds, we say that the Markov chain Xt is ergodic with rate r(n); geometric ergodicity
obtains when r(n) = rn for some r> 1.

To define the β-mixing coefficients, let F l
k, 0 ≤ k ≤ l ≤ ∞, signify the σ -algebra generated

by {Xk, . . . , Xl}. For the stochastic process {X0, X1, . . .}, the β-mixing coefficients β(n), n =
1, 2, . . . , are defined by ([8, Section 1.1], [3, Chapter 3])

β(n) = 1

2
sup
m∈N

sup
I∑

i=1

J∑
j=1

|Pμ(Ai ∩ Bj) − Pμ(Ai)Pμ(Bj)|

= sup
m∈N

Eμ

[
sup

B∈F∞
n+m

|Pμ(B |Fm
0 ) − Pμ(B)|

]
,

where N= {0, 1, 2, . . .}, and in the first expression for β(n) the second supremum is taken over
all pairs of (finite) partitions {A1, A2, . . . , AI} and {B1, B2, . . . , BJ} of � such that Ai ∈Fm

0
for each i and Bj ∈F∞

n+m for each j. For our purposes it is convenient to use the following
alternative expression obtained by Davydov ([5, Proposition 1; note that his definition of β(n)
includes an additional factor of 2]):

β(n) = 1

2
sup
m∈N

∫
X
μPm(dx)‖Pn(x ; · ) −μPn+m( · )‖, n = 1, 2, . . . , (4)

where μPm( · ) = ∫
X μ(dx)Pm(x ; · ) denotes the distribution of Xm (m = 1, 2, . . .; μP0 =μ).

For a stationary Markov chain (i.e. one with initial distribution π), the β-mixing coefficients
can be expressed simply as

β(n) = 1

2

∫
X
π(dx)‖Pn(x ; · ) − π( · )‖, n = 1, 2, . . . . (5)

Process Xt is said to be β-mixing (or sometimes absolutely regular) if limn→∞ β(n) = 0. As
with the convergence in (3), the rate of this convergence is of interest, and in what follows we
seek for results of the form limn→∞ r(n)β(n) = 0 with some rate function r(n).
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Subgeometric ergodicity and β-mixing 597

3. The geometric case

We start by briefly discussing the relation of geometric ergodicity and β-mixing; although
these results are well known, comparing them with the subgeometric case will be illuminating.
For a stationary Markov chain (i.e. one with initial distribution π), this relation is particularly
simple. As was first shown by Nummelin and Tuominen [20, Theorem 2.1], a geometrically
ergodic Markov chain satisfies, for some r> 1, limn→∞ rn

∫
π(dx)‖Pn(x ; · ) − π( · )‖ = 0;

given expression (5), the β-mixing property immediately follows and the mixing coefficients
satisfy limn→∞ rnβ(n) = 0. Statements of this result can be found for instance in [8, page 89],
[2, Theorem 3.7], and [3, Theorem 21.19]. For initial distributions other than the stationary
one, a corresponding result seems to have first appeared in [16, Proposition 4].

To facilitate comparison with the subgeometric case, we present the ergodicity and mixing
results as consequences of a particular drift criterion; as is discussed in [19], this is how geo-
metric ergodicity is often established. We use the following traditional Foster–Lyapunov-type
geometric drift condition (see [19, Theorem 15.0.1]). Here 1C( · ) signifies the indicator func-
tion of a set C. As a technical remark, note that in this condition we assume the function V to
be everywhere finite (i.e. V : X → [1,∞)) and such that supx∈C V(x)<∞. In contrast, in [19,
Theorem 15.0.1] it is only assumed that V is extended-real-valued (i.e. V : X → [1,∞]) and
finite at some point x0 ∈ X. Our stronger requirements hold in most practical applications and
lead to more transparent exposition and proofs.

Condition Drift–G. Suppose there exist a petite set C, constants b<∞, β > 0, and a
measurable function V : X → [1,∞) such that supx∈C V(x)<∞, satisfying

E[V(X1) | X0 = x] ≤ V(x) − βV(x) + b1C(x), x ∈ X.

For the definition of a ‘petite set’ appearing in this condition, and for the concepts of
irreducibility and aperiodicity in the theorem below, we refer the reader to [19]. Theorem 1
summarizes the relation between geometric ergodicity and β-mixing.

Theorem 1. Suppose Xt is a ψ-irreducible and aperiodic Markov chain and that Condition
Drift–G holds. Then

(a) Xt is geometrically ergodic, that is, for some r1 > 1, limn→∞ rn
1‖Pn(x ; · ) − π( · )‖ = 0

for all x ∈ X.

Suppose further that the initial state X0 has distribution μ such that
∫

X μ(dx)V(x)<∞. Then

(b) for some r2 > 1, limn→∞ rn
2

∫
X μ(dx)‖Pn(x ; · ) − π( · )‖ = 0,

(c) Xt is β-mixing and the mixing coefficients satisfy, for some r3 > 1, limn→∞ rn
3β(n) = 0.

Moreover:

(d) In the stationary case (μ= π) condition
∫

X π(dx)V(x)<∞ is not needed, (b) and (c)
hold with r2 = r3, and (b) and (c) are equivalent.

Parts (a) and (b) are very well known (see e.g. [19, Theorem 15.0.1] for part (a) and [20,
Theorem 2.3] for part (b)) and so is also the mixing result in the stationary case (see the
references given earlier). Part (c) for general initial distributions was obtained by Liebscher
[16, Proposition 4], although our formulation is somewhat different from his (our formulation
and proof avoid the use of so-called ‘Q-geometric ergodicity’ employed by Liebscher; for
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completeness, our proof of Theorem 1, which may be of independent interest, is provided in
the supplementary material). Part (d) elaborates parts (b) and (c) as well as their relation in the
stationary case.

4. The subgeometric case

We seek a counterpart of Theorem 1 in which the geometric rate rn is replaced by some
slower rate function; such rate functions were already exemplified in the Introduction. More
formally, the subgeometric rate functions we consider are defined as follows (see e.g. [21]
and [6]). Let 
0 be the set of positive non-decreasing functions r0 : N→ [1,∞) such that
ln [r0(n)]/n decreases to zero as n → ∞. The class of subgeometric rate functions, denoted by

, consists of positive functions r : N→ (0,∞) for which there exists some r0 ∈
0 such that

0< lim inf
n→∞

r(n)

r0(n)
≤ lim sup

n→∞
r(n)

r0(n)
<∞. (6)

Typical examples are obtained of rate functions r for which these inequalities hold with (for
notational convenience, we set ln (0) = 0)

r0(n) = (1 + ln (n))α · (1 + n)β · ecnγ , α, β, c ≥ 0, γ ∈ (0, 1).

The rate function r0(n) is called subexponential when c> 0, polynomial when c = 0 and β > 0,
and logarithmic when β = c = 0 and α > 0.

In analogy with the geometric case, subgeometric ergodicity and mixing results are most
conveniently obtained by verifying an appropriate drift condition. The following drift condition
for subgeometric ergodicity is adapted from [7, Definition 16.1.7]. A somewhat more general
drift condition, for instance allowing for V to be extended-real-valued, is given in [6].

Condition Drift–SubG. Suppose there exist a petite set C, a constant b<∞, a
concave increasing continuously differentiable function φ : [1,∞) → (0,∞) satisfying
limv→∞ φ′(v) = 0, and a measurable function V : X → [1,∞) such that supx∈C V(x)<∞ and

E[V(X1) | X0 = x] ≤ V(x) − φ(V(x)) + b1C(x), x ∈ X.

Note that if φ(v) = ηv (η > 0), then one obtains Condition Drift–G (but assumption
limv→∞ φ′(v) = 0 rules this out; as we are interested in subgeometric rates of ergodicity,
assuming this means no loss of generality; see [7, Remark 16.1.8]).

Following Douc et al. [6] we next introduce a rate function, denoted by rφ . First define the
function

Hφ(v) =
∫ v

1

dx

φ(x)
,

where φ is as in Condition Drift–SubG. The definition implies that Hφ is a non-decreasing, con-
cave, and differentiable function on [1,∞), and it has an inverse H−1

φ : [0,∞) → [1,∞) which
is increasing and differentiable (see [6, Section 2.1]). Thus we can define the rate function

rφ(z) = (H−1
φ )′(z) = φ ◦ H−1

φ (z).

Douc et al. [6, Lemma 2.3 and Proposition 2.5] showed that this rate function is subgeometric
and that Condition Drift–SubG implies the convergence (3) at rate rφ(n).
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Theorem 2 summarizes the relation between subgeometric ergodicity and β-mixing. Here
�k
 denotes the integer part of the real number k.

Theorem 2. Suppose Xt is a ψ-irreducible and aperiodic Markov chain and that Condition
Drift–SubG holds. Then

(a) Xt is subgeometrically ergodic with rate rφ(n), that is, limn→∞ rφ(n)‖Pn(x ; · ) −
π( · )‖ = 0 for all x ∈ X.

Suppose further that the initial state X0 has distribution μ such that
∫

X μ(dx)V(x)<∞.
Then

(b) limn→∞ rφ(n)
∫
μ(dx)‖Pn(x ; · ) − π( · )‖ = 0,

(c) Xt is β-mixing and the mixing coefficients satisfy limn→∞ r̃φ(n)β(n) = 0 for any rate
function r̃φ(n) such that lim supn→∞ r̃φ(n)/rφ(n1)<∞ where n1 = �n/2
.

Moreover:

(d) In the stationary case (μ= π) condition
∫

X π(dx)V(x)<∞ is not needed, (b) and (c)
hold with rφ(n) = r̃φ(n), and (b) and (c) (with rφ(n) = r̃φ(n)) are equivalent.

(e) If rφ(n) satisfies (6) with rφ,0(n) = (1 + ln (n))α · (1 + n)β · ecnγ and r̃φ(n) satis-
fies (6) with r̃φ,0(n) = (1 + ln (n))α · (1 + n)β · ec̃nγ for some 0< c̃< c2−γ , then
lim supn→∞ r̃φ(n)/rφ(n1)<∞.

Of the results in Theorem 2, part (a) is given in Proposition 2.5 of [6]. Part (b) can be
obtained by combining Theorem 4.1 of [23] and Proposition 2.5 of [6], but in the proof
we make use of [21]. Part (c) is new and illuminates the relation between subgeometrically
ergodic Markov chains and their β-mixing properties, thereby providing a counterpart of a
result obtained by Liebscher [16, Proposition 4] in the case of geometric ergodicity. Part (d) is
analogous to its counterpart in Theorem 1 and provides further insight into parts (b) and (c),
whereas part (e) makes part (c) more concrete in the case of the most common rate functions.
For completeness, we give a detailed proof in the Appendix.

As discussed in [6, Section 2.3] and [17, Theorem 1], there is a connection between the
function φ and the rate function rφ , which can be used to find out the latter in particular cases.
For instance, polynomial rate functions are associated with cases where the function φ is of the
form φ(v) = cvα with α ∈ (0, 1) and c ∈ (0, 1], and then the rate obtained is rφ(n) = nα/(1−α) (an
alternative form is rφ(n) = nκ−1 with κ = 1 + α/(1 − α) already given by Jarner and Roberts
[11]). In the subexponential case the function φ is such that v/φ(v) goes to infinity slower than
polynomially so that a possibility, given in [17, Theorem 1], is φ(v) = c(v + v0)/[ ln (v + v0)]α

for some α, c, v0 > 0. This results in the rate rφ(n) = (ed)n1/(1+α)
for some d> 0, which is faster

than polynomial. A logarithmic rate is an example of a rate slower than polynomial. Then the
function φ is of the form φ(v) = c[1 + ln (v)]α for some α > 0 and c ∈ (0, 1], and the resulting
rate is rφ(n) = [ ln (v)]α (see [6, Section 2.3]).

Theorem 2 (or 1) also provides information about the moments of the stationary distribution
of Xt. Specifically, once part (a) of Theorem 2 (or 1) has been established, one can deduce from
Condition Drift–SubG (or Drift–G) and Theorem 14.3.7 of [19] that

∫
X π(dx)φ(V(x))<∞ (or∫

X π(dx)V(x)<∞). This can be very useful when one aims to apply limit theorems developed
for β-mixing processes, where moment conditions are typically assumed.
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We close this section by noting that Condition Drift–SubG can also be used to obtain more
general ergodicity results than provided in Theorem 2. Without going into details, we only
mention that Theorem 2.8 of [6] and Theorem 1 of [17] show how a stronger form of ergodicity,
called (f ,r)-ergodicity, can be established.

5. Example

To illustrate our results we consider the self-exciting threshold autoregressive (SETAR)
model studied by Chan et al. [4]. These authors analyzed the model

Xt = ϕ( j) + θ ( j)Xt−1 + Wt( j), Xt−1 ∈ (rj−1, rj], (7)

where −∞ = r0 < · · ·< rM = ∞, and for each j = 1, . . . ,M, {Wt( j)} is an independent and
identically distributed mean zero sequence independent of {Wt(i)}, i �= j, and with Wt( j) having
a density that is positive on the whole real line. They considered the following conditions:

θ (1)< 1, θ (M)< 1, θ (1)θ (M)< 1, (8a)

θ (1) = 1, θ (M)< 1, 0<ϕ(1), (8b)

θ (1)< 1, θ (M) = 1, ϕ(M)< 0, (8c)

θ (1) = 1, θ (M) = 1, ϕ(M)< 0<ϕ(1), (8d)

θ (1)< 0, θ (1)θ (M) = 1, ϕ(M) + ϕ(1)θ (M)> 0, (8e)

and showed that the SETAR model is ergodic if and only if one of the conditions (8a)–(8e)
holds [4, Theorem 2.1]. Moreover, if E[|Wt( j)|]<∞ for each j, they showed that condition
(8a) ensures geometric ergodicity [4, Theorem 2.3]. To our knowledge, in the cases (8b)–
(8e) no results regarding the rate of ergodicity have as yet appeared in the literature and our
Theorem 4(b) below indicates that geometric ergodicity may not always hold without stronger
assumptions. Related to this, we note that Meyn and Tweedie [19, Section 11.4.3 and Section
B.2] discussed the (geometric) ergodicity of the SETAR model (7), reproducing the ergodicity
result of [4, Theorem 2.1] as their Proposition 11.4.5. On their page 541, Meyn and Tweedie
[19] also stated that (our additions in brackets) ‘in the interior of the parameter space [the union
of (8a)–(8e)] we are able to identify geometric ergodicity in Proposition 11.4.5 . . . the stronger
form [geometric ergodicity] is actually proved in that result’ but no formal proof is given for
this statement.

We consider rates of ergodicity and β-mixing in case (8d) when the autoregressive coeffi-
cients θ (1) and θ (M) equal unity. For intuition, note that due to non-zero intercept terms ϕ(1)
and ϕ(M), both the first and the last regimes exhibit non-stationary random-walk-type behavior
with a drift. As the intercept terms satisfy ϕ(M)< 0<ϕ(1), the drift is increasing in the first
regime and decreasing in the last regime. This feature prevents the process yt from explod-
ing to (plus or minus) infinity, thereby providing intuition why ergodicity can hold true. It is
noteworthy that ergodicity is in no way dependent on the behavior of the process in the mid-
dle regimes (2, . . . ,M − 1), which can exhibit stationary, random-walk-type (with or without
drift), or even explosive behavior.

In their results, Chan et al. [4] allowed for regime-dependent distributions for the error term
Wt( j). To obtain our results for the case (8d), we strengthen the assumptions on the error term
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and, in particular, assume that the error distribution is the same in each regime (this stronger
assumption is needed to apply the results mentioned in the proof of Theorem 3 below, and
relaxing it appears less than straightforward). To compensate, we obtain results for a model
more general than the SETAR model (7) with (8d). Specifically, we formulate our results in
terms of the general non-linear autoregressive model

Xt = g(Xt−1) + εt, t = 1, 2, . . . , (9)

where the function g : R→R and the error term εt satisfy the following conditions:

(A1) g is a measurable function with the property |g(x)| → ∞ as |x| → ∞ and such that there
exist positive constants r and M0 such that

|g(x)| ≤ (1 − r/|x|)|x| for |x| ≥ M0 and sup
|x|≤M0

|g(x)|<∞;

(A2) {εt, t = 1, 2, . . .} is a sequence of independent and identically distributed mean zero
random variables that is independent of X0 and the distribution of ε1 has a (Lebesgue)
density that is bounded away from zero on compact subsets of R.

Model (9) with conditions (A1) and (A2) is a special case of models considered by Fort and
Moulines [10, Section 2.2], Douc et al. [6, Section 3.3], and Meitz and Saikkonen [17, Sections
3–4]. These authors considered much more general models, but for clarity of presentation
we have simplified the model as much as possible while still being able to obtain results for
the SETAR model (7) with (8d) (papers [10] and [6] considered a multivariate version of (9)
whereas [17] considered a higher-order generalization of (9); the inequality constraint for the
function g in condition (A1) is also more general in these papers, where it is only required that
|g(x)| ≤ (1 − r|x|−ρ)|x| for some 0<ρ ≤ 2).

The following theorem establishes ergodicity and β-mixing results for model (9) with vary-
ing rates of convergence. The proof (in the Appendix) makes use of results in [10], [6], and
[17] to obtain rates of ergodicity, as well as Theorems 1 and 2 above to obtain rates of β-mixing
(only the subgeometric mixing results in parts (b) and (c) are new).

Theorem 3. Consider model (9) with conditions (A1) and (A2).

(a) If E[ez0|ε1|]<∞ for some z0 > 0, then Xt is geometrically ergodic with convergence
rate r(n) = rn

1 for some r1 > 1. Moreover, if the initial state X0 has a distribution such
that E[ez|X0|]<∞ for some z> 0, then Xt is also β-mixing and the mixing coefficients
satisfy, for some r3 > 1, limn→∞ rn

3β(n) = 0.

(b) If E[ez0|ε1|κ0 ]<∞ for some z0 > 0 and κ0 ∈ (0, 1), then Xt is subexponentially ergodic
with convergence rate r(n) = (ec)nκ0 (for some c> 0). Moreover, if the initial state X0
has a distribution such that E[ez|X0|κ0 ]<∞ for some z> 0, then Xt is also β-mixing and
the mixing coefficients satisfy, for some c̃> 0, limn→∞ (ec̃)nκ0

β(n) = 0.

(c) If E[|ε1|s0 ]<∞ for either s0 = 2 or s0 ≥ 4, then Xt is polynomially ergodic with
convergence rate r(n) = ns0−1. Moreover, if the initial state X0 has a distribution
such that E[|X0|s0]<∞, then Xt is also β-mixing and the mixing coefficients satisfy
limn→∞ ns0−1β(n) = 0.

Theorem 3 shows that there is a trade-off between rates of ergodicity and β-mixing
and finiteness of moments of the error term. The fastest geometric rate is obtained when
E[ez0|ε1|]<∞ (z0 > 0), so that ε1 has finite moments of all orders and the slowest polynomial
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rate is obtained when only E[ε2
1]<∞. As discussed after Theorem 2, we also have∫

X π(dx)φ(V(x))<∞ so that there is a similar trade-off between these convergence rates and
finiteness of moments of the stationary distribution (expressions of V and φ are available in
the proof of Theorem 3).

Above it was mentioned that [10], [6], and [17] considered (subgeometric) ergodicity of
models more general than (9) with conditions (A1) and (A2). Making use of our Theorems 1
and 2, subgeometric rates of β-mixing can easily be obtained for these more general models
too. We omit the details for brevity.

In a series of papers, Veretennikov and co-authors also considered the model (9) with func-
tion g satisfying |g(x)| ≤ (1 − r|x|−ρ )|x| for some 1 ≤ ρ ≤ 2. Using methods very different
from ours, they obtained results on subgeometric ergodicity and subgeometric rates for β-
mixing coefficients. The cases 1<ρ < 2 and ρ = 2 are considered in [27], [14, 15], and [13]
and are shown to lead to subgeometric rates. For the case ρ = 1 relevant for the SETAR exam-
ple, these papers refer to [25, 26] and [28]. A result corresponding to our Theorem 3(a) can be
found in [28, Theorem 1], but subgeometric rates, such as those in our Theorem 3 parts (b) and
(c), do not seem to be established in the case ρ = 1.

We now specialize the results above to the SETAR model (7) with (8d). It is easy to see that
this model, with the function g in (9) defined as

g(x) =
M∑

j=1

[ϕ( j) + θ ( j)x]1{x ∈ (rj−1, rj]}

(with 1{·} denoting the indicator function), satisfies the condition in (A1). Namely, for x large
enough and positive we have |g(x)| = g(x) = x + ϕ(M) = |x| − ( − ϕ(M)), whereas for x small
enough and negative we have |g(x)| = −g(x) = −x − ϕ(1) = |x| − ϕ(1), so that the inequal-
ity in (A1) holds for M0 >max{|r1|, |rM−1|} and r = min{ϕ(1),−ϕ(M)} (and the supremum
condition is obviously satisfied).

Part (a) of the next theorem simply restates the result of Theorem 3 for the SETAR model
(7) with (8d), whereas part (b) establishes that geometric ergodicity cannot hold under the
weaker moment assumptions of Theorem 3 parts (b) and (c).

Theorem 4. Consider the SETAR model (7) with the parameters satisfying (8d) and the error
terms satisfying Wt( j) = εt (j = 1, . . . ,M) with εt as in (A2).

(a) Sufficient conditions for geometric, subexponential, and polynomial ergodicity and β-
mixing of Xt are as in parts (a), (b), and (c) of Theorem 3, respectively.

(b) If E[ez0|ε1|] = ∞ for all z0 > 0, then Xt is not geometrically ergodic.

Theorem 4(b) shows that for the SETAR model (7) with (8d), the subgeometric rates of
Theorem 3 parts (b) and (c) cannot be improved to a geometric rate unless stronger moment
assumptions are made regarding the error term. This result is obtained by making use of a
necessary condition for geometric ergodicity of certain specific type of Markov chains in [12]
(using their necessary condition to obtain this result appears possible only in case (8d) out of
(8a)–(8e)).

6. Conclusion

In this note we have shown that subgeometrically ergodic Markov chains are β-mixing
with subgeometrically decaying mixing coefficients. Although this result is simple, it should
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prove very useful in obtaining rates of mixing in situations where geometric ergodicity cannot
be established. An illustration using the popular self-exciting threshold autoregressive model
showed how our results can yield new subgeometric rates of mixing.

Appendix A. Proofs

This Appendix contains the proofs of Theorems 2–4; proof of Theorem 1 is provided in
the supplementary material. Proofs of Theorems 1 and 2 make use of the following handy
inequality for the β-mixing coefficients due to Liebscher [16, Proposition 3]. (Note that our
Lemma A.1 below includes an additional factor of 1

2 compared to Liebscher’s Proposition 3;
see our expression for β(n) in (4) and his equation (27).) Again, �k
 denotes the integer part of
the real number k.

Lemma A.1. Suppose Xt is a Markov chain with stationary distribution π and that the initial
state X0 has distribution μ. Then

β(n) ≤ 1

2

∫
π(dx)‖Pn1 (x ; · ) − π‖ + 3

2

∫
μ(dx)‖Pn1 (x ; · ) − π‖, n = 1, 2, . . . ,

where n1 = �n/2
.

In the proof below, notation Eμ[ · ] is used for the conditional expectation of a F∞
0 -

measurable random variable conditioned on the initial state X0 with distribution μ. When
conditioning is on X0 = x the notation Ex[ · ] is used; these are connected via Eμ[ · ] =∫

X μ(dx)Ex[ · ]. We also define the concept of return time to a measurable set A as τA = inf{n ≥
1: Xn ∈ A}.

Proof of Theorem 2. First note that, due to the assumed irreducibility and aperiodicity, the
petite set C in Condition Drift–SubG is small [19, Theorem 5.5.7]. We first show that

sup
x∈C

Ex

[
τC−1∑
k=0

rφ(k)

]
<∞; (10)

by Theorem 2.1 of Tuominen and Tweedie [23] this implies the subgeometric ergodicity in
(a) (for related results implying (a); see also [21, Theorem 2.7(i)], [24, Theorem 1(iii)], [6,
Proposition 2.5]). Douc et al. [6, Proposition 2.1 and Lemma 2.3] showed that Condition Drift–
SubG implies the existence of a sequence of drift functions Vk(x), k = 0, 1, 2, . . . , such that,
for k ≥ 0,

E[Vk+1(X1) | X0 = x] ≤ Vk(x) − rφ(k) + b̃rφ(k)1C(x),

where b̃ = brφ(1)(rφ(0))−2 (see their Proposition 2.1 and the top of page 1358) and rφ ∈
 (see
their Lemma 2.3). Applying Proposition 11.3.2 of [19] with Zk = Vk(Xk), fk(x) = rφ(k), sk(x) =
b̃rφ(k)1C(x), and stopping time τC, we obtain ([6, Proposition 2.2] also states this conclusion;
note also that by their equation (2.2) we have V0(x) ≤ V(x))

Ex

[
τC−1∑
k=0

rφ(k)

]
≤ V(x) +Ex

[
τC−1∑
k=0

b̃rφ(k)1C(x)

]

= V(x) + b̃rφ(0)1C(x)

= V(x) + b
rφ(1)

rφ(0)
1C(x). (11)
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By condition supx∈C V(x)<∞ (in Condition Drift–SubG), we obtain (10). Now Theorem 2.1
of [23] ensures that limn→∞ rφ(n)‖Pn(x ; · ) − π( · )‖ = 0, so the subgeometric ergodicity in
(a) is established (note that as V0(x) ≤ V(x) holds with V(x) assumed everywhere finite, the set
S(f ,r) in Theorem 2.1 of [23] coincides with X, so the aforementioned convergence holds for
all x ∈ X).

To prove (b), suppose the initial state X0 has distributionμ such that
∫

X μ(dx)V(x)<∞. We
will use Theorems 2.7(i,ii) and 2.2 of [21], but first we obtain a property of the rate function
rφ(z) (which is well known for members of 
0 but not for members of 
). Recall that rφ(z) =
(H−1
φ )′(z) = φ ◦ H−1

φ (z) so that rφ ′(z)/rφ(z) = φ′ ◦ H−1
φ (z). As φ′ is non-increasing (see [6, first

paragraph of Section 2.1]) and H−1
φ is increasing, it follows that rφ ′(z)/rφ(z) = φ′ ◦ H−1

φ (z) is
non-increasing. Therefore the function

ln (rφ(x))/x = 1

x

∫ x

0
(rφ ′(s)/rφ(s)) ds (x> 0)

is also non-increasing. Following the proof of Lemma 1 of Stone and Wainger [22] (which
relies only on their property (iii) on their page 326) yields the desired property rφ(m + n) ≤
rφ(m)rφ(n) for all m, n> 0.

Using this property we now obtain

rφ(τC) ≤ rφ(1)rφ(τC − 1) ≤ rφ(1)
τC−1∑
k=0

rφ(k),

and further that

Ex

[
τC∑

k=0

rφ(k)

]
≤ (rφ(1) + 1)Ex

[
τC−1∑
k=0

rφ(k)

]
and Ex[rφ(τC)] ≤ rφ(1)Ex

[
τC−1∑
k=0

rφ(k)

]

(see [23, equations (5) and (14)]). The former result together with (10) implies that condition
(2.12) of Theorem 2.7(i) of [21] is satisfied. The latter result together with (11) yields

Ex[rφ(τC)] ≤ rφ(1)[V(x) + b
rφ(1)

rφ(0)
1C(x)]

and, as Eμ[rφ(τC)] = ∫
X μ(dx)Ex[rφ(τC)], the assumed bound

∫
X μ(dx)V(x)<∞ implies

Eμ[rφ(τC)]<∞,

so the condition in Theorem 2.7(ii) of [21] is satisfied. Therefore, by Theorems 2.7(i,ii) and
2.2 of [21],

lim
n→∞ rφ(n)

∫
μ(dx)‖Pn(x ; · ) − π( · )‖ = 0.

Next consider part (d). In the stationary case (μ= π), the desired result

lim
n→∞ rφ(n)

∫
π(dx)‖Pn(x ; · ) − π( · )‖ = 0

follows from the last remark in Theorem 2.2 of [21] (and condition
∫

X π(dx)V(x)<∞ is
not needed). Thus (b) holds in the stationary case. Regarding part (c) in the stationary case,
note from (5) that now β(n) = ∫

π(dx)‖Pn(x ; · ) − π‖, n = 1, 2, . . . , so (b) and (c) are clearly
equivalent (and hold with the same rate rφ(n)).
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To prove (c), use Lemma A.1 to obtain the inequality

r̃φ(n)β(n)

≤ r̃φ(n)

rφ(n1)

[
1

2
rφ(n1)

∫
π(dx)‖Pn1(x ; · ) − π‖ + 3

2
rφ(n1)

∫
μ(dx)‖Pn1 (x ; · ) − π‖

]
.

The term in square brackets converges to zero as n → ∞ by parts (b) and (d) and, by
assumption, lim supn→∞ r̃φ(n)/rφ(n1)<∞. This establishes (c).

To prove (e), it suffices to note that

r̃φ(n)

rφ(n1)
= r̃φ(n)

r̃φ,0(n)

r̃φ,0(n)

rφ,0(n1)

rφ,0(n1)

rφ(n1)
,

where the first and the last ratio on the right-hand side are bounded from above uniformly in n
due to (6), and that

rφ,0(n1) =
(

1 + ln (n1)

1 + ln (n)

)α
(1 + ln (n))α ·

(
1 + n1

1 + n

)β
(1 + n)β · ecnγ1

ec(n/2)γ e(c2−γ )nγ ,

where the three ratios on the right-hand side are clearly bounded from below uniformly in n by
some constant larger than zero. �

Proof of Theorem 3. The ergodicity results of parts (a) and (b) could be obtained using
results in [6, Section 3.3] and those in part (c) using results in [10, Section 2.2]; for clarity of
presentation, we will in all parts rely on the results in [17]. Model (9) with conditions (A1)
and (A2) is a special case of the model considered in [17] (with p = ρ = 1 in that paper). Of
the assumptions made in [17], Assumption 1 holds due to (A1) and either Assumption 2(a)
or 2(b) holds due to (A2) and the moment conditions assumed in parts (a)–(c) of Theorem 3.
Therefore we can make use of Theorems 2 and 3 in [17] to obtain suitable ergodicity results.

(a) In this case Assumption 2(a) of [17] holds with κ0 = 1 and we apply their Theorem 2(ii).
From the proof of that theorem (case p = 1) it can be seen that Condition Drift–G holds with
V(x) = eb1|x| for some b1 ∈ (0, z0), which can be chosen as small as desired. From Theorem
2(ii) of [17] we obtain that Xt is geometrically ergodic with convergence rate r(n) = (ec)n

(for some c> 0), i.e. r(n) = rn
1 for some r1 > 1. To obtain results on β-mixing, we next apply

Theorem 1 of the present paper. If the initial state X0 has distribution such that E[ez|X0|]<∞
for some z> 0 (and noting that above b1 can be chosen small enough so that b1 ≤ z holds),
then by Theorem 1 Xt is β-mixing and the mixing coefficients satisfy, for some r3 > 1,
limn→∞ rn

3β(n) = 0.
(b) In this case Assumption 2(a) of [17] holds with κ0 ∈ (0, 1) and we apply their Theorem

2(i). From the proof of that theorem (case p = 1) it can be seen that Condition Drift–SubG
holds with V(x) = eb1|x|κ0 (for some b1 ∈ (0, β0), which can be chosen as small as desired) and
φ(v) = c0(v + v0)( ln (v + v0))−α (for some c0, v0 > 0 and α = 1/κ0 − 1). From Theorem 2(i)
of [17] we obtain that Xt is subexponentially ergodic with convergence rate r(n) = (ec)nκ0 (for
some c> 0). To obtain results on β-mixing, we next apply Theorem 2 of the present paper.
If the initial state X0 has distribution such that E[ez|X0|κ0 ]<∞ for some z> 0 (and noting
that above b1 can be chosen small enough so that b1 ≤ z holds), then by Theorem 2 Xt is β-
mixing and the mixing coefficients satisfy, for any c̃ ∈ (0, z2−κ0 ), limn→∞ r̃(n)β(n) = 0 with
r̃(n) = (ec̃)nκ0 .
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(c) In this case Assumption 2(b) of [17] holds with either s0 = 2 or s0 ≥ 4 and we apply
their Theorem 3(ii) (in which exactly the cases s0 = 2 and s0 ≥ 4 are available). From the
proof of that theorem (the end of step 4 and case p = 1) it can be seen that Condition Drift–
SubG holds with V(x) = 1 + |x|s0 and φ(v) = cvα (for some c> 0 and α = 1 − 1/s0). From
Theorem 3(ii) of [17] we obtain that Xt is polynomially ergodic with convergence rate r(n) = n
(s0 = 2) or r(n) = ns0−1 (s0 ≥ 4). To obtain results on β-mixing, we next apply Theorem 2
of the present paper. If the initial state X0 has distribution such that E[|X0|s0]<∞, then Xt

is β-mixing and the mixing coefficients satisfy limn→∞ nβ(n) = 0 (s0 = 2) or limn→∞ ns0−1

β(n) = 0 (s0 ≥ 4). �
Proof of Theorem 4. Part (a) follows immediately from Theorem 3 and the discussion pre-

ceding it, noting that the SETAR model (7) with (8d) satisfies the condition in (A1). To prove
(b), assume that E[ez0|ε1|] = ∞ for all z0 > 0 but that Xt would be geometrically ergodic. We
will use results of [12] to show that this leads to a contradiction. To this end, note that for the
SETAR model (7) with the parameters satisfying (8d), the function g in our equation (9) equals

g(x) =
M∑

j=1

[ϕ( j) + θ ( j)x]1{x ∈ (rj−1, rj]},

which can be written as

g(x) = [ϕ(1) + x]1{x ≤ r1} + [ϕ(M) + x]1{rM−1 < x}

+
M−1∑
j=2

[ϕ( j) + θ ( j)x]1{x ∈ (rj−1, rj]}

= x + ϕ(1)1{x ≤ r1} + ϕ(M)1{rM−1 < x}

+
M−1∑
j=2

[ϕ( j) + θ ( j)x − x]1{x ∈ (rj−1, rj]}

or as g(x) = x + g̃(x), where g̃(x) is bounded. Also recall that it is assumed that the error terms
satisfy Wt( j) = εt (j = 1, . . . ,M) with εt as in (A2). These facts show that the SETAR model
(7) with (8d) can be expressed in the form of equation (3) in Jarner and Tweedie [12] so that
Xt is what [12] call a ‘random-walk-type Markov chain’. (Note also that this holds only in case
(8d) out of (8a)–(8e).) Theorem 2.2 of [12] shows that a necessary condition for the geometric
ergodicity of a random-walk-type Markov chain Xt with stationary probability measure π is
that there exists a z> 0 such that

∫
R

ez|x|π(dx)<∞. This can be shown to be in contradiction
with our assumption that E[ez0|ε1|] = ∞ for all z0 > 0, as follows.

Suppose z> 0 is such that
∫
R

ez|x|π(dx)<∞ and assume that X0, and hence also X1, has
the stationary distribution π . Thus E[ez|X0|]<∞ and E[ez|X1|]<∞. As 0< ezx ≤ ez|x| and
0< e−zx ≤ ez|x|, it follows that E[ezX0], E[e−zX0], E[ezX1], and E[e−zX1 ] are all positive and
finite. As X1 = X0 + g̃(X0) + ε1 with X0 and ε1 independent, E[ezX1 ] =E[ezX0 ezg̃(X0)]E[ezε1]
(due to the non-negativity of the exponential function, this holds whether the expectations
involved are finite or equal +∞). As 0<E[ezX0],E[ezX1 ]<∞ and g̃(X0) is bounded, this
implies that 0<E[ezε1]<∞. An analogous argument yields that 0<E[e−zε1 ]<∞. Finally,
non-negativity of the random variables involved implies that

E[ez|ε1|] =E[ezε11{ε1 ≥ 0} + e−zε11{ε1 < 0}] ≤E[ezε1] +E[e−zε1 ]<∞,

yielding a contradiction. �
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